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Abstract

The location of the active fault strands along the Dead Sea Transform fault zone (DST) changed through time. In the western
margins of Dead Sea basin, the early activity began a few kilometers west of the preset shores and moved toward the center of the
basin in four stages. Similar centerward migration of faulting is apparent in the Hula Valley north of the Sea of Galilee as well as in
the Negev and the Sinai Peninsula. In the Arava Valley, seismic surveys reveal a series of buried inactive basins whereas the current
active strand is on their eastern margins. In the central Arava the centerward migration of activity was followed by outward
migration with Pleistocene faulting along NNE-trending faults nearly 50 km west of the center. Largely the faulting along the DST,
which began in the early–middle Miocene over a wide zone of up to 50 km, became localized by the end of the Miocene. The
subsidence of fault-controlled basins, which were active in the early stage, stopped at the end of the Miocene. Later during the Plio-
Pleistocene new faults were formed in the Negev west of the main transform. They indicate that another cycle has begun with the
widening of the fault zone. It is suggested that the localization of faulting goes on as long as there is no change in the stress field.
The stresses change because the geometry of the plates must change as they move, and consequently the localization stage ends.
The fault zone is rearranged, becomes wide, and a new localization stage begins as slip accumulates. It is hypothesized that
alternating periods of widening and narrowing correlate to changes of the plate boundaries, manifest in different Euler poles.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

This work aims to examine whether changes in the
geometry of faulting exhibit any pattern. It is done by
comparing the changes in at several sections of the Dead
Sea Transform fault (Fig. 1). Changes in the geometry of
fault zones as slip accumulates through time are inherent
to their evolution. The changes reflect mechanical pro-
perties of the crust and bear on the nature of the seismic

activity. Fault zones may begin as simple systems that
become more complex in time or the opposite — begin
complex and evolve toward simplicity. A common type
of geometrical complexity at the surface is fault segmen-
tation and overlapping segments. Pull-apart basins,
which are formed between such overlapping segments,
are commonly shorter than the total offsets on strike–
slip faults. This can be explained by changes in the fault
geometry and formation of such basins after some slip
had accumulated. Aydin and Nur (1982) suggest that
pull apart structures grow longer and wider in time,
preserving a length/width ratio of about 3/1.
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Reduction of fault trace complexity with increasing
cumulative slip was suggested in previous studies (e.g.,
Stirling et al., 1995). The geometrical evolution was
linked to evolution of earthquake distribution models,
beginning with Gutenberg–Richter distribution when
the fault zone is complex and becoming Characteristic

Earthquake distribution when the geometry becomes
simple (Wesnousky, 1994). The distribution pattern is
therefore important to seismic hazard assessment. Simi-
lar evolutionary trends are noticed in theoretical models
of damage evolution as well (Lyakhovsky et al., 2001).
The detailed fault zone geometry is one of the keys to
understanding the physics, mechanics, and kinematics
of faulting.

Migration of faulting activity has been documented
in many extensional structures. For example, young
continental rifts (b10 Ma), such as in southern Kenya,
commonly comprise asymmetric rift basins bound by
steep border faults that accommodate most of the strain
across the rift. The older, more evolved Asal Rift in
Djibouti is a much narrower than the transitional rift
sector at the northern end of the Main Ethiopian Rift.
Strain and magmatism have migrated from the border
faults to a narrow zone within the rift valley (Ebinger
and Casey, 2001). The West Antarctic Rift system also
began as broadly distributed extension throughout much
of West Antarctica in the Late Cretaceous but the second
stage of extension was focused in a narrow zone
primarily in the Victoria Land Basin (Huerta and Harry,
2007). Strike–slip environments also evolve because of
plate motions. For example, the location of the shear
zone between the Pacific and the North American plates
was initially west and later moved to where the San
Andreas Fault is now (Garfunkel, 1973). The Altyn
Tagh fault system comprises multiple fault strands in a
∼100 km wide zone whereas the current active strand is
very narrow. The system also evolved by the sequential
formation and death of shortlived fault strands (Cowgill
et al., 2004a).

This paper presents examples from the Dead Sea
Transform (Figs. 2–7). A new study in the Dead Sea
basin shows narrowing of the fault zone in time as fault
activity migrates toward the center of the basin (Fig. 2).
Data from other localities in the Hula Basin (Fig. 3) and
the Gulf of Aqaba (Figs. 4, 5 and 6) show similar
characteristics, but the Arava Valley at the southern DST
exhibits a different behavior, where buried fault-bound
sedimentary basins below the Arava Valley (Fig. 7)
demonstrate that such basins have limited longevity. A
group of faults in the Negev shows migration of
Quaternary activity away from the center of the valley
(Avni et al., 2000).

1.1. The Dead Sea Transform fault

The Dead Sea Transform (DST) fault accommodates
sinistral motion between the Arabia plate and the Sinai
subplate (Fig. 1), transferring the opening at the Red Sea

Fig. 1. Location of examples for changes in geometry of the Dead Sea
Transform (solid white line) fault zone. Inset: Plate tectonics in the
Middle East and the Dead Sea Transform fault (DST). Shaded relief
map from Hall (1994).
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to the Taurus–Zagros collision zone. No pre-Miocene
precursors neither rejuvenation of earlier structure was
proved (Garfunkel and Ben-Avraham, 2001). Hence, the
general location of the DST was established in the

Miocene. The interpretation of left-lateral shear along
the DST since the Middle Miocene is based on obser-
vations from four independent sources: regional plate
tectonics, local geology, seismology, and geodesy. The

Fig. 2. Top right: The Dead Sea basin, shaded relief map from Plate XI in Hall et al. (2005). The Jericho Fault (white arrows) is the active branch
where the steep western slope meets the relatively flat bottom of the lake. The eastern and western margin normal faults, which form formidable cliffs,
as well as three transverse NW-striking faults are shown in white. Dashed white line marks the approximate extent of the photo on the left. Left: An
oblique airphoto taken in the 1940s showing faults (solid lines) and scarps on the western margin of the Dead Sea basin. The fault at the bottom of the
main cliff (dashed) is overlain by the Lisan Formation, which is not faulted there. MFZ is the syn-LisanMasada Fault Zone (Marco and Agnon, 1995).
M marks Miocene faults, P is for Pleistocene–Recent. Bottom: An E–W section showing the early Kana’im Graben west of Masada, Pre-Lisan
Formation faults in the graben east of Masada, syn-Lisan faults in the Masada Fault Zone, and a post-Lisan fault offsetting the Dead Sea deposits at
the bottom of the lake. No vertical exaggeration.
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plate tectonics shows that the opening of the Red Sea,
where the Arabian plate is breaking away from Africa, is
transferred to the collision with Eurasia via sinistral
shear along the DST (Quennell, 1956; Freund, 1965;
Garfunkel, 1981; Joffe and Garfunkel, 1987). Sinistral
motion explains the systematic offset of numerous pre-
Miocene geologic features by a total of ∼105 km
(Quennell, 1956; Freund, 1965; Bartov et al., 1980).
Historic and prehistoric seismicity were associated with

sinistral offsets (Ellenblum et al., 1998; Klinger et al.,
2000; Niemi et al., 2001; Meghraoui et al., 2003). Focal
mechanisms of moderate-to-large earthquakes show
sinistral motion along the DST (Salamon et al., 1996;
Baer et al., 1999; Klinger et al., 1999). And finally,
geodetic measurements are consistent and confirm the
other evidence of 4±1 mm/yr sinistral shear (McClusky
et al., 2003; Wdowinski et al., 2004; Reilinger et al.,
2006), suggesting stable tectonic regime. The complex
geometry of the fault is apparent in pull-apart grabens,
which are associated with releasing bends, and pressure
ridges that formed where restraining bends occur.
Garfunkel (1981) maintains that the pull-apart basins
are all shorter than 105 km, the total sinistral offset,
because they began to form at a later stage, after some
motion had already accrued. This view is supported by
seismic surveys that reveal earlier buried basins, which
are no longer active (Frieslander, 2000). A different
view is presented by Eyal et al. (1981), who do not link
the pull aparts lengths with their ages. Various evolu-
tionary schemes of pull-aparts are discussed is several
papers (e.g., Mann et al., 1983; Wakabayashi et al.,
2004).

Several authors noted explicitly that the detailed
shape of the DST had changed through time (Garfunkel,
1981; Heimann and Ron, 1987; ten-Brink and Ben-
Avraham, 1989; Rotstein et al., 1992; Heimann and
Ron, 1993; ten Brink et al., 1999). The widest zone of
about 50 km of distributed faulting is found in the
Galilee, where the early-stage (Miocene) faults were
associated with formation of basins (Freund et al., 1970;
Shaliv, 1991) and with rotation of rigid blocks about
sub-vertical axes (Ron et al., 1984), although the linkage
to the transform movement is not well established.
Subsequent post-Miocene deformation took place
mostly in the form of normal faulting on E–W trending
faults and the transform movement is currently localized
in a very narrow zone. The deformation in the south is
characterized by a 20–30-km-wide zone with primarily
strike–slip and some normal slip on faults trending sub-
parallel to the main transform fault.

In the following sections, I describe several examples
of changes in the Dead Sea fault zone geometry.

1.2. The Dead Sea Basin western fault zone

A north–south trending fault zone was found in
outcrops of the late Pleistocene Lisan Formation, about
1 km west of the Dead Sea shore near Masada, the 2000-
yr-old Jewish rebel stronghold (Fig. 2). Most of the
Masada Fault Zone (MFZ) planes strike north, parallel-
ing the main graben faults and morphological trends.

Fig. 3. Faults around the Hula Valley. The age of the northern E–W
striking border fault, Maayan Baruch Fault (MB), is constrained by
displaced travertine and an unfaulted basalt flow. The basalt, which was
K/Ar-dated at 0.88±0.15 ma (Heimann and Ron, 1987), marks the end
of activity of theMaayanBaruch Fault. Themajor activity of the eastern
border Shamir Fault (SH), which created a 400-m-high scarp, predated
a 2-ma-old basalt flow. Younger activity of the Kefar Szold Fault (KS),
west of the Shamir Fault, offset a 0.4 ma basalt flow. Two younger N–S
striking faults, Azaz (AF) and Shehumit (SF), displace Late Pleistocene
sediments closer to the center of the valley. The Shehumit Fault
displaces a Late Pleistocene conglomerate unit. The Azaz Fault dis-
places by 60m a travertine unit whose C14 age is 25±0.8ma (Heimann
and Ron, 1987). Younger Early Holocene displacements of the Azaz
Fault were dated using OSL (Zilberman et al., 2000). Shaded relief map
from Plate XI in Hall et al. (2005).
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The faults are overlain by continuous horizontal layers
of the Lisan Formation, indicating that they are
syndepositional. The documented slip events on some
of these faults provide a paleoseismic record (Marco and
Agnon, 1995; Marco et al., 1996; Marco and Agnon,
2005). The MFZ planes dip 50° to 70° eastward as well
as westward, with normal displacements up to 2 m. The
average strike is 360°. In the absence of suitable
markers, it is impossible to document horizontal slip.

However, horizontal slip is probably negligible because
the prevailing dips are typical of normal faults, and
because none of the typical deformations that often
accompany strike–slip is present (e.g., push-up swells or
rhomb grabens near changes of strike). An upper bound
of the maximum E–Wextension across the 300-m-wide
fault zone is estimated by considering 6 fault planes
dipping 50° to 70° with 2 m vertical slip on each. This
estimate yields 1.4%–3.3% extension.

Fig. 4. The main faults in the Elat region show characteristic North-striking graben-and-horst structure that formed since the Miocene. On the Google
Earth mosaic Precambrian crystalline basement outcrops appear dark and carbonate sediments, mostly of Cretaceous age are light-beige. Thin lines
mark inactive faults, the active Arava fault is solid black. After Garfunkel (1970). The schematic section A–B shows that the oldest faults are not
associated with significant topographic differences, elevations of the Netafim Graben and the horsts on both sides are the similar. Younger faults that
formed the low Arava Valley are overlain by unfaulted Plio-Pleistocene clastic units and alluvial terraces. The youngest active fault, which offsets
Pleistocene alluvial terraces, is in the valley. M—Miocene faults, P—Pleistocene–Recent. After Garfunkel (1978).
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Fig. 5. Photo showing an unfaulted terrace which overlays an early stage, currently inactive fault (location marked on Fig. 4). The terrace contains
large diorite cobbles derived from a pluton now separated from this outcrop by a 200-m deep canyon. The age of the terrace is estimated as Plio-
Pleistocene (Garfunkel, 1970).

Fig. 6. Left: A∼25-km-wide zone in the eastern Sinai by the Gulf of Aqaba is crossed by several sub-parallel NNE-striking faults (Eyal et al., 1980).
Basaltic dikes (solid bold lines) of early Miocene age are displaced left-laterally (Eyal et al., 1981) but the currently active faults (solid grey) are at the
center of the gulf (Ben-Avraham, 1985). The focal mechanism and associated deformation of the Mw7.2 earthquake of November 22, 1995 confirm
the sinistral nature of the faulting in the gulf (Baer et al., 1999; Klinger et al., 1999; Shamir et al., 2003). Letters mark the locations of the towns of Elat
(E), Aqaba (A). M marks Miocene faults, P marks Pleistocene–Recent (Eyal et al., 1980). Rectangle shows location of satellite image. Center: A
Google Earth mosaic that shows incision of shore-parallel wadis along fault traces and an example of sinistrally-offset pluton boundary (white
arrows). Nuweiba—N, Dahab—D. Right: Faults (white dots) offset Quaternary fan delta alluvium on the shore of the gulf in Nuweiba, east of the
inactive faults of eastern Sinai. Examples of displaced horizons are emphasized with black dashed lines. White rock on the right is Early Cretaceous
sandstone.

191S. Marco / Tectonophysics 445 (2007) 186–199



Author's personal copy

Fig. 7. Subsurface basins in the Arava Valley (after Frieslander, 2000) show different fault patterns than the currently active faults (solid white), which
offset Pleistocene–Recent alluvial fans in the valley (after Garfunkel et al., 1981). Other faults, Barak, Halamish, Zihor, and Uvda, which offset
Pleistocene units, have been documented west of the Arava (Avni et al., 2000). All these faults have become active after the now buried basins became
inactive. Other strike–slip faults like the Al Quweira are also inactive at present. East-to-northeast trending faults (dashed) are part of a dextral shear
belt, which is displaced 105 km by the Dead Sea fault system (Quennell, 1956). M marks Miocene faults, P marks Pleistocene–Recent faults. Shaded
relief map from Plate XI in Hall et al. (2005).
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If the dips of the fault planes do not change at depth,
the fault planes that bound ∼100-m-wide grabens
should intersect at less than 300 m below the surface.
It is highly likely that the observed faults merge down-
ward to form a single fault and they are the upper part of
a “negative flower structure”, accommodating some E–
W extension as suggested by gravity models and
subsurface data (Kashai and Crocker, 1987). Similar
structures are observed in seismic images across the
DST north of Lake Kinneret (Rotstein and Bartov, 1989)
as well as other strike–slip faults (Sylvester, 1988). The
geometry and extent of the fault planes as they appear in
high-resolution seismic reflection and ground-penetrat-
ing radar indicate that they are tectonic features that
accommodate E–W extension (Agnon et al., 2006).
However, low heat flow on the order of 38–42 mW/m2

(Ben-Avraham et al., 1978; Eckstein, 1978) and absence
of magmatic activity indicate that the overall extension
across the Dead Sea fault zone is small.

An active fault, the Jericho Fault, is recognized in the
bathymetry of the Dead Sea (Fig. 2), where the steep
slope on the west meets the flat bottom along a straight
line about 3 km east of the Masada fault zone (Neev and
Hall, 1979; Hall, 1996). Seismic profiles confirm that
this break in the slope is a fault (Ben-Avraham et al.,
1993). Frieslander and Ben-Avraham (1989) suggest
that the continuity of magnetic anomalies over the
western part of the Dead Sea, in contrast to their abrupt
termination on the eastern margin of the basin, indicates
that the faulting in the western part of the basin is mainly
normal. Although they suggest that the major strike–slip
motion takes place on the fault in the eastern side of the
Dead Sea basin, direct submarine observations (Lazar
and Ben-Avraham, 2002) reveal a sharp vertical active
fault scarp at the northern end of this line, confirming
Neev and Hall's (1979) interpretations.

Garfunkel et al. (1981), as well as other authors,
noted that the location of the Dead Sea basin margin
faults have changed through time. ten-Brink and Ben-
Avraham (1989) suggest that the basin has widened
westward by the collapse and tilting of margin blocks.
They also suggest northward migration of the transverse
faults of the basin in the Pleistocene, which results in
northward growth of the basin. An E–W seismic reflec-
tion image about 10 km north of the Dead Sea basin is
interpreted to show early-stage inactive faults that are
overlain by graben fill on the west and a single active
fault, which offsets the fill, near the center of the basin
(Kashai and Crocker, 1987). This structure, together
with gravity data, led ten Brink et al. (1999) to suggest
that it is the result of continuous changes in relative plate
motion. A different evolution is suggested by Shamir

et al. (2005) and Shamir (2006), who maintain, based on
seismic reflections and earthquake epicenters relocated
relative to controlled detonations, that the shear in this
section of the DST evolved from an early, probably
Miocene–Pliocene, stage of localized strike–slip motion
primarily along the Jericho fault to a late stage
(Pliocene–Recent) when shear has been distributed
over internal fault sets. Some micro earthquakes align
with secondary faults, which have either minor or no
bathymetric expression, all are located within the deep
part of the basin and none is associated with the MFZ
neither with the main basin boundary fault. However,
the absence of alignment of epicenters with the Jericho
Fault and Lazar and Ben Avraham's (2002) submarine
observations might indicate that it is currently locked
rather than inactive.

The faults of the MFZ do not displace the top of the
Lisan Formation (Marco and Agnon, 1995). The upper-
most few meters of the Lisan Formation were deposited
after faulting stopped and migrated ∼3 km eastward.
Seismic profiles in the Dead Sea reveal thinning of
recent sediments toward fault segments (Ben-Avraham
et al., 1993), showing a similar pattern of active
syndepositional fault scarps that are larger than the
Masada fault scarps. A single small N-striking normal
fault is found between the MFZ and the major boundary
cliff (Fig. 2). It displaces the top of the Lisan Formation
by 2–3 m. The margin faults, which bound the graben
and form the 300-m-high escarpment have been dor-
mant in the post Lisan time. This is evident in the
unfaulted Lisan beds that fill the creeks and are con-
tinuous across the escarpment (Garfunkel et al., 1981).
Another graben, called Kana'im, is found west of
Masada. This graben appears to be inactive with a very
mild topographic expression, shows no signs of recent
activity, and therefore predates the Dead Sea graben. An
E–W cross section shows the migration of the major
activity toward the center of the graben (Fig. 2).

1.3. Hula Valley faults

The tectonic evolution of the Hula pull-apart basin
was studied by Heimann and Ron (1987) and Heimann
(1990). Subsidence in the Hula Valley occurred by
normal faulting around it since the Pliocene (Garfunkel
et al., 1981). A group of faults that barely offset the flat
Holocene soil of the valley (Fig. 3) appears to be very
young, whereas the activity of the border faults, which
formed the relief, predated the activity of the faults that
displace the valley fill (Heimann and Ron, 1987). The
present active zone is narrower than the earlier stage,
similar to the Dead Sea Basin.
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1.4. Southern Arava (Elat region) faults

The southern Arava (Elat region) is a deep valley,
extending northward from the tip of the gulf of Aqaba.
Its western bound is a fault-controlled escarpment,
comprised of a series of sub-parallel normal faults.
North-striking graben-and-horst structure characterizes
the Late Cenozoic structure of the region (Fig. 4). De-
spite vertical offsets of up to 1.5 km, the topographic
elevations of the horsts and graben are essentially the
same, preserving evidence of a post-faulting erosional
surface (peneplain) stage (Garfunkel, 1970). Pleistocene
terraces, which overlay the marginal faults (Fig. 5), are
not faulted (Eyal, 1973). The peneplains faulted farther
to the east by the Arava border fault, which is overlain
by Quaternary unfaulted clatic units that fill the main
valley. The major activity of the graben-and-horst faults
west of the Arava postdated the Middle–Miocene
Raham Conglomerate, a coarse conglomerate unit,
which in the Elat region is comprised of mainly Eocene
limestone and chert pebbles. The Raham conglomerate
is a key unit because it was formed together with the
onset of faulting and predates the major displacement on
the margin faults. The Middle–Miocene age of the
Raham Conglomerate was estimated stratigraphically
(Garfunkel et al., 1974). Its tectono-stratigraphic posi-
tion resembles that of the Hazeva Formation in south-
ern Israel (Garfunkel et al., 1974; Calvo et al., 2001)
and the Hordos Formation in northern Israel. The
Hordos Formation was radiometrically dated using
intercalated basaltic flows to Early–Middle–Miocene
(Shaliv, 1989).

East of the main Arava border fault escarpment,
closer to the center of the valley, a swarm of normal
faults offsets the Quaternary alluvial fans (Porat et al.,
1996; Amit et al., 1999). The youngest fault is farther
east at the center of the valley, where the 1068 AD
earthquake rupture was identified (Amit et al., 2002).
Hence, this section of the DST also exhibits centerward
migration of faulting, much like the Dead Sea and Hula
Valleys.

1.5. Southeast Sinai faults

The eastern coast of the Sinai Peninsula at the Gulf of
Aqaba is crossed by several sub-parallel NNE-striking
faults (Fig. 6). Contacts between various magmatic and
metamorphic rock units of the Precambrian crystalline
basement provide piercing points for measuring offsets
on these faults. NW-striking Miocene basaltic dikes, K–
Ar-dated to 22–19 ka, are also offset sinistrally by the
same amount. This observation indicates that the whole

sinistral movements on these faults postdates the
Miocene dikes (Steinitz et al., 1978; Eyal et al., 1981).
The Pleistocene alluvium in the same area is not faulted,
suggesting that the faults became inactive. The steep
bathymetry of the gulf margins, faulted young fan delta
deposits on the shore (Fig. 6) and coral reefs (Reches
et al., 1987; Shaked et al., 2002, 2004), seismic reflec-
tions (Ben-Avraham et al., 1979; Ben-Avraham and
Garfunkel, 1979), and epicenter locations (Baer et al.,
1999), all indicate that the currently active faulting is at
the center of the gulf.

1.6. Central Arava faults

The evolution of the Arava Valley is more complex
than the surface exposures reveal. Seismic imaging re-
veals several deep fault-bounded basins (Fig. 7), most of
which are overlain by continuous sediments (Frieslan-
der, 2000). In contrast, the surface mapping appears to
show a single continuous sinistral active fault accom-
panied by secondary normal faults, which offset Late
Pleistocene–Recent alluvial units (Zak and Freund,
1966; Garfunkel et al., 1981). Pleistocene–sub Recent
activity was also documented farther north on the same
fault (Klinger et al., 2000; Niemi et al., 2001). The
structure of the Arava section of the DST in the Miocene
was somewhat similar to the current Dead Sea. The
subsiding basins accumulated sediments until their
bounding faults became inactive, perhaps in the Plio-
cene, resulting with the filling and subsequent burial
of the basins. The thickness of the main fill unit, the
Miocene Hazeva Formation, is over 2.5 km (Calvo et al.,
2001). The overlying Quaternary sediments are faulted
in a different manner. The timetable of the changes is not
well constrained. The main active fault, which strikes
020°, offsets Quaternary alluvial fans but it is not clear
when it became active. The Barak Fault, which strikes
035°, offsets the Arava Formation dated at about 1 ma
(Avni et al., 2000). The morphology of the fault scarp
suggests minor Holocene activity but a cluster of micro-
earthquakes and InSAR-detected deformation were
recently located near it (Finzi, 2005). Subsurface data
show that the vertical offset of the Barak Fault is much
smaller than that of other faults in the Arava (Frieslander,
2000), indicating either very low slip rate or very short
activity time. Similar features are exhibited by the Zihor,
Uvda, and Halamish faults (Fig. 7).

Inactive N-striking faults east of the Arava exhibit
sinistral displacements of Precambrian igneous units. A
sinistral offset of 40 km along the Al Quweira Fault was
deduced from the displacement of distinctive andesitic
rocks found on both sides of the fault (Barjous and
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Mikbel, 1990). Field survey of the surface alluvium and
examination of satellite images do not reveal any fresh
fault scarps or other indication of recent faulting.

Hence, the Arava fault zone seems to have changed
from wide (Miocene) to narrow (Plio-Pleistocene) and
then again to wide in the Late Pleistocene.

2. Discussion

Strike–slip fault zones usually include also normal
faults, where releasing bends form pull-apart grabens.
Most pull-apart grabens in the world are shorter than
the total horizontal offset of the main fault. Hence, the
changes in the geometry, which brought about the
formation of the grabens postdated the initiation of
the faulting. Changes in the geometry of plate bound-
aries is also a direct outcome of the kinematics of plate
motions (Garfunkel, 1975). These changes manifest
fundamental properties of the faulting process. They can
be described by comparing the recent fault patterns to
the more ancient ones. The location of recent seismicity
along the DST is largely in agreement with the geo-
logical mapping of active faults (Hofstetter et al., 2007)
but is not readily correlatable with individual strands
within the fault zone. Microseismic activity, which is
recorded within a wide zone (Fig. 8) either reflects the
activity of a wide fault zone with many branches, many
of which are not expressed at the surface (e.g., Basson
et al., 2002) or a large scatter due to uncertainty in the
epicenter locations. I therefore consider active the ones
that offset Pleistocene–Recent units.

Observations in the Dead Sea basin show that it is a
pull-apart graben, bounded by normal faults, whose
activity migrates centerward. Microseismicity and de-
formed Holocene and sub-recent sediments, including
an active fault scarp, are confined to the central part of
the basin (Lazar and Ben-Avraham, 2002; Shamir,
2006). In contrast, the main graben boundary normal
faults are overlain by un-faulted Late Pleistocene
sediments (Garfunkel et al., 1981; Marco and Agnon,
1995). There are two possible scenarios that can explain
this structure. In the first, the entire fault zone is active at
the same time, i.e., all or most of the faults act simul-
taneously but with different rates. The different rates of
the vertical slip components are expressed in the topog-
raphy, the higher the rate the larger the topographic
expression. In the second scenario, activity is limited to
the bounding faults, which becomes inactive as time
goes by while new ones form closer to the center of the
basin. This scenario portrays initially wide pull-apart
grabens. The grabens become narrower and longer as
slip proceeds through time. Ultimately, in the final stage,

strike–slip movement at the center of the basin tears it
apart by the sediments that fill the basin ultimately
burying it completely. Buried inactive basins that have
been documented by seismic reflections below the
Arava Valley resemble Wakabayashi et al.'s (Waka-
bayashi et al., 2004) model F (their Fig. 8).

The second scenario is compatible with the observa-
tion of Late Pleistocene alluvial terraces and lake
deposits that overlay the faults at the margins but are
not faulted, indicating that the faults are currently in-
active. However, there is no evidence that the faults at
the center were not active together with the marginal
faults in earlier stages.

Similar centerward migration of faulting has been
documented in the pull-apart grabens along the DST in
south Sinai–Gulf of Aqaba (Eyal et al., 1981), in the Elat
region (Garfunkel, 1970; Eyal, 1973), and in the central
Arava (Frieslander, 2000). The faulting along these
segments of the DST began over a wide belt and later
became localized. Important exception is the group of
faults in the eastern Negev, which offset Pleistocene
terraces (Fig. 7). These include the Uvda, Zihor,
Halamish, and Barak faults (Avni et al., 2000). This
example shows a recent widening of the fault zone,
perhaps the onset of another cycle of faulting in a wide

Fig. 8. Epicenters in the Middle East, 1904–2006 [www.gii.co.il].
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zone. The small offset in the subsurface of the Barak Fault
(Frieslander, 2000) indicates that it is a new fault and not a
reactivated older one. In that case, the localization is only
a temporary trend in the evolution of the fault zone and
periods of widening may occur intermittently with nar-
rowing. Shamir et al. (2005) suggest that widening
occurred also north of the Dead Sea but they base this
claim on subsurface data, whereas only one fault appears
to offset the Holocene surface (Garfunkel et al., 1981;
Reches and Hoexter, 1981; Gardosh et al., 1990).

The width of the initial stages is hard to determine for
the whole fault. The Precambrian basement exposures in
the Sinai and east of the Gulf of Aqaba–Arava section
exhibit about a 25-km-wide belt with abundant fault
branches. Other sections where mostly Cretaceous
sedimentary units are exposed exhibit narrower zones.
However, this difference might be misleading because
the sedimentary sequence is capable of dissipating
significant amount of displacement. Exposed example
for this is observed in sections in the Elat region that
show disharmonic structures, where faults in the
crystalline basement become folds in the overlying
sediments (Garfunkel, 1970).

The precise timing of shifts in activity is poorly
constrained. A significant reorganization of the plate
motions is manifested in a shift of Sinai–Arabia Euler
poles from 32.7°N/19.9°E for the total motion (since
early Miocene) to 32.8°N/22.6°E for Pliocene to Recent
faults and pre-Pliocene (Joffe and Garfunkel, 1987).
Plio-Pleistocene alluvial fans in the Arava are displaced
sinistrally 15–30 km (Ginat et al., 1998), whereas the Al
Queira fault east of the Arava accumulated 40 km of
displacement. These data are compatible with a major
shift the location of faulting that occurred approximately
at the end of the Miocene or the early Pliocene. The
activation of a wider fault zone in the Negev took place
in the Pleistocene (Avni et al., 2000).

Processes of plate subduction, collision, and accretion
are associated with changes in plate motions and plate
shapes. These changes alter the stress field near plate
boundaries, which drive changes in the geometry of the
plate boundary faults. In the West Antarctic Rift system
the transition from broad to focused extension was
suggested to be the result of a changes in plate motions
and/or thermal regime (Huerta and Harry, 2007). Similar
reasoning is also advocated by ten Brink et al. (1999) for
explaining the multiple fault structure of the Dead Sea
basin. A plausible mechanism for slip-dependent change
in the detailed shape of a fault zone is work hardening,
i.e., the strength of the crust increases as fault slip grows.
The result is localization of faulting in narrow belts until
another change occurs in the plate motions and another

cycle begins. A 3-D model that fits the spatial and tem-
poral features of several rift systems shows diffuse
stretching at the onset of rifting that is followed by local
necking (Agnon and Eidelman, 1991). Cowgill et al.
(2004b) suggest that changes in the topography due to
thrust faulting in restraining bends along strike–slip
faults affect the evolution of the fault zone. Although the
examples in the present study refer primarily to releasing
bends this hypothesis may be examined when data on
subsidence rates as well as detailed accurate plate motion
records are available. A significant correlation exists
between major events at the collision zone of Arabia and
Eurasia and the DST. The continental collision and
suturing of Arabia with the Turkish terrains in the middle
Miocene resulted in the complete annihilation of sub-
duction of the Neo Tethys ocean in eastern Turkey
and at the same time the DST was formed (Bozkurt and
Mittwede, 2001). The collision between Arabia and
Africa has accelerated the convergence of Arabia
and Eurasia in the early Pliocene time (Bozkurt and
Mittwede, 2001). This apparently led to the development
of the North and the East Anatolian faults in the early
Pliocene (Bozkurt and Mittwede, 2001; Kocyigit et al.,
2001). The northernmost segment of the Dead Sea fault
joined the East Anatolian fault in southern Turkey
forming the Anatolian–Arabian–African triple junction
(Karig and Kozlu, 1990). Between the late Miocene
when continent–continent collision began and the Early
Pliocene changes occurred in the tectonic regime, basin
type and deformation pattern, e.g., from folding and
thrusting to strike–slip faulting (Kocyigit et al., 2001).
The development of these fault systems provided the
mechanism for the tectonic escape of the Anatolian block
toward the Aegean arc. Hence, the relative plate motions
about the new DST post-Miocene faults were associated
with a new Euler pole of rotation (Joffe and Garfunkel,
1987) and also correlate with major rearrangement of the
adjacent plate boundaries.

3. Conclusions

The faulting along the DST began in the early–
middle Miocene over a wide zone of up to 50 km and
later by the end of the Miocene became localized. The
subsidence of fault-controlled basins, which were active
in the early stage, stopped. New faults were formed in
the Negev west of the main transform during the
Pleistocene. They indicate that another cycle has begun
involving widening of the fault zone.

It is suggested that the localization of faulting takes
place as long as there is no change in the stress field.
When the geometry of the plates changes due to their
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movements, the stresses change, the localization stage
ends, and the fault zone is rearranged. It becomes wide
and a new localization process develops as slip
accumulates.
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