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Symplectic and contact homeomorphisms

C 0-topology on the group of compactly supported homeomorphisms on a
manifold M is induced by a metric dC0(�, ) = supx2M d(�(x), (x)),
where d is a Riemannian distance on M (topology doesn’t depend on d).

Theorem (Gromov-Eliashberg rigidity)

A di↵eomorphism which is a C 0-limit of symplectomorphisms is itslef
symplectic. In other words, Symp(M,!) is C 0-closed inside Di↵ (M).

Remark. Contact version of Gromov-Eliashberg theorem holds as well.

Definition (symplectic and contact homeomorphisms)

Let M be a symplectic or a contact manifold. A homeomorphism
f : M ! M is called symplectic/contact if it is a C 0-limit of a sequence
of symplectic/contact di↵eomorphisms.

Gromov-Eliashberg =) smooth symplectic/contact homeomorphisms
preserve symplectic/contact structure.
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Hamiltonian homeomorphisms

Definition (weak Hamiltonian homeomorphisms)

Let (M,!) be a symplectic manifold. A homeomorphism f : M ! M is
called weak Hamiltonian homeomorphism if it can be written as a C 0

limit of a Hamiltonian di↵eomorphisms.

Definition (Oh, Muller)

Let (�t)t2[0,1] be a compactly supported isotopy of M. We say that �t is a
hameotopy if there exists a sequence of smooth and compactly supported
Hamiltonians Hi , and a continious function H : [0, 1]⇥M ! R such that:

maxt2[0,1] dC0(�tHi
,�t) ! 0 as i ! 1,

||Hi � H||1 ! 0 as i ! 1.

We say that H generates hameotopy �t , and call its time-1 map �1 a
Hamiltonian homeomorphism or Hameomorphism.

If �tH = �tG , then H � G is a function of time.
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Example

Let D2 be a standard 2-disc with symplectic form ! = rdr ^ d✓ in
polar coordinates. For a smooth f : (0, 1] ! R define �f : D2 ! D2

�f (0) = 0, �f (r , ✓) = (r , ✓ + f (r)).

Note that ��f � �f = Id , thus �f is a homeomorphism. Moreover
�f |D2\{0} is a symplectomorphism of D2 \ {0}.
If f can be smoothly extended to 0, then �f is a time-1 map of a
Hamiltonian isotopy t 7! �tf generated by a Hamiltonian

Hf (r , ✓) =

Z
1

r
sf (s)ds.

Let f (r) = 1p
r
near 0, and fi any sequence of functions regular at 0

that uniformly converge to f . Then �f = limi!1 �fn is a Hamiltonian
homeomorphism which is not di↵erentiable at 0.
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Contact manifolds

A contact structure on an odd dimensional manifold V 2n+1 is given
by a smooth hyperplane distribution ⇠ in the tangent bundle satisfying
a complete non-integrability condition.

Locally ⇠ is given by a kernel of a 1-form ↵, and non-integrability
condition can be written as ↵ ^ (d↵)n 6= 0. A cooriented contact
structures are those induced by kernels of a global 1-forms.

Standard contact structure (R2n+1, ker(dz +
Pn

i=1
xidyi )).

Submanifold L ⇢ (V , ⇠) is called isotropic if TL ⇢ ⇠. If ⇠ = ker ↵
one can equivalently say ↵|TL ⌘ 0.

An isotropic submanifold of dimension n is called Legendrian,
otherwise if dimension is less than n we call it subcritical isotropic.
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Questions

Question 1
What can contact homeomorphism do that contact di↵eomorphism
cannot?

Obviously it can map smooth submanifold to a non-smooth one.

Question 2

Let (V , ⇠) be a contact manifold, L ⇢ V isotropic submanifold, and
� : V ! V contact homeomorphism. If �(L) is smooth submanifold, does
it have to be isotropic?

Theorem (Usher 2020)

Let L ⇢ (V , ⇠) be a Legendrian submanifold, and let ' : V ! V be a
contact homemorphism that have positive local lower bounds on the
conformal factors of the approximating contactomorphisms. If '(L) is
smooth, then it must be Legendrian.
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h-principle for subcritical isotropic embeddings

Let (W , ⇠) be contact manifold and V compact manifold of subcritical
dimension 2 · dimV + 1  dimW .

Definition

A formal isotropic embedding is a pair (f ,Fs) where f : V ! W is an
embedding, and Fs : TV ! TW is a homotopy of monomorphisms which
cover f , such that F0 = df and F1(TV ) ⇢ ⇠.

Theorem (Relative, 1-parametric h-principle for isotropic embeddings)

Let V0 ⇢ V be a compact subset and f0, f1 : V ! (W , ⇠) isotropic
embeddings such that f0|Op(V0)

= f1|Op(V0)
. Assume f0 and f1 are isotopic

through formal isotropic embeddings (ft ,Ft,s) such that ft |Op(V0)
= f0.

Then there exists an isotopy of isotropic embeddings eft : V ! (W , ⇠)
between f0 and f1, such that eft |Op(V0)

= f0.
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Extension of h-principle for isotropic discs

Let W ⇢ R2n+1 be a contact manifold with the contact structure ⇠.
Then every embedding f : Dk ! W is formally isotropic.
Let ft : Dk ! W be an isotopy of isotropic embeddings. Then, there
exists a contact isotopy �t : W ! W , such that �t � f0 = ft .

Proposition

Let A ⇢ Dk be closed subset and u0, u1 : Dk ! W isotropic embeddings
which coincide on Op(A). Assume u0 is isotopic to u1 relative to Op(A).
Then there exists contact isotopy �t such that �1 � u0 = u1, �t |Op(A) = Id .

Theorem (Quantitative h-principle for isotropic discs)

Let W ⇢ R2n+1 be an open subset, k < n, u0, u1 : Dk ! W be isotropic
embeddings of closed discs. We assume there exists a homotopy
F : Dk ⇥ [0, 1] ! W between u0 and u1 of size less than "
(diamF ({z}⇥ [0, 1]) < " for all z 2 Dk). Then there exists a contact
isotopy ( t)t2[0,1] such that  1 � u0 = u1, of size less than ".
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Proof for k = 1

Lemma
Let ⌃1,⌃2 ⇢ W be smooth submanifolds which are transverse in the
neighbourhood of @W . Then there exists an arbitrarily small contact
isotopy �t such that �1(⌃1) t ⌃2.

Let u0, u1 : [0, 1] ! W and assume u0([0, 1]) \ u1([0, 1]) = ;. Let eF be
approximation of F which is embedding, such that size( eF ) < ". Extend eF
to a smooth embedding

eF : [�µ, 1 + µ]⇥ [�µ, 1 + µ]⇥ [�µ, µ]2n�1 ,! W
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Proof

Let ⌘ > 2� > 0. Consider grid �0 = [0, 1] \ ⌘Z and for each x 2 �0 let Ux

be �-neighbourhood of {x}⇥ [0, 1]⇥ {0}2n�1 and define Wx := eF (Ux).

For each 1-cell I = [xi , xi+1] let UI be �-neighbourhood of
I ⇥ [0, 1]⇥ {0}2n�1, and put WI := eF (UI ).
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Proof

For each x 2 �0 let I (x) = [x � ⇢, x + ⇢]. Then eF gives isotopy between
u0|I (x) and u1|I (x) inside Wx =) 9 contact isotopy �tx supported inside
Wx such that �1x � u0|I (x) = u1|I (x).

Let �t
0
:= � t

x , then  
t
0
� u0|Op(�0) = u1|Op(�0). Using transversality

lemma, let e�t be contact isotopy which achieves

e�1 � �10 � u0(I ) t u1(I
0),

for every pair of distinct 1-cells I , I 0. Let �t = e�t#�t
0
and v0 = �1 � u0.
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Proof

For each 1-cell I we have v0(I ), u1(I ) ⇢ WI and v0|Op(@I ) = u1|Op(@I ).

Consider now slightly smaller I ⇢ I and pick any homotopy

�I : I ⇥ [0, 1] ! WI , �I (·, 0) = v0, �I (·, 1) = u1.

General position argument implies that we can moreover assume that the
images Im �I are disjoint for all 1-cells.
Relative (w.r.t. boundary @I ) h-principle gives contact isotopies  t

I
supported in Op(Im �I ) such that  1

I � v0|I = u1|I .
Let  t = � t

I , where composition runs over all 1-faces I . Finally we define

 t =  t#�t .
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Flexibility of subcritical isotropic curves

Theorem (Flexibility of isotropic curves)

Let (V 2n+1, ⇠) be a contact manifold and n � 2. Then there exists an
isotropic curve � : [0, 1] ! V and a contact homeomorphism  : V ! V
such that  � � is transverse to ⇠.

Proof. Let v : [0, 1] ! V be any transverse curve. Contact neighbourhood
theorem implies that Op v([0, 1]) can be contactly embedded to

(R2n+1, ker(dz +
nX

i=1

(xidyi � yidxi ))),

such that v(t) maps to ev(t) := (t, 0, . . . , 0). Define isotropic curves

�k : [0, 1] ! R2n+1, t 7!
✓
t,

1

k
sin(k2t),

1

k
cos(k2t), 0, . . . , 0

◆
.

Note that �k
C0

�! ev as k ! 1.
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Proof

Lemma (Stretching the neighbourhood)

Let U � �k([0, 1]) be an open neighbourhood, and let ⌃k : [0, 1]2 ! R2n+1

be embedded surface defined as ⌃k(s, t) = (1� s)�k(t) + sev(t). Then
there exists a contactomorphism � supported in Op⌃k([0, 1]2) such that
� � �k = �k , ⌃k([0, 1]2) ⇢ �(U) and dC0(�, Id) < 3

k .
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Proof

Let {Ui}i�1 be decreasing sequence of open sets and
T

i�1
Ui = �k1([0, 1]).

We inductively construct increasing sequence {ki}i�1 with ki � 2i , and
sequence of contactomorphisms  i with support in 'i�1(Ui ) such that

 i � �ki = �ki+1
, dC0( i , Id) <

5

2i
,

where 'i :=  i �  i�1 � · · · �  1.
{'i} is a Cauchy sequence, hence it converges to a continuous map '.
Moreover we have ' � �k1 = ev . Any x 62 �k1([0, 1]) satisfies 'i (x) = '(x)
for i large enough =) ' is injective, hence homeomorphism.
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Induction step

Let U := 'i�1(Ui+1). Apply stretching Lemma to �ki and U to get a
contactomorphism  0

i . Let r > 0 such that [0, 1]⇥ B2n(r) ⇢  0
i (U).

Pick kn+1 large enough such that �kn+1
([0, 1]) ⇢ [0, 1]⇥ B2n(r).

Composition of homotopy ⌃i (s, ·), s 2 [0, r ] and linear homotopy
between ⌃i (r , ·) and �kn+1

gives homotopy between �ki and �ki+1
of

size less than 1

2i
. Now apply quantitative h-principle to get  00

i , and
finally define  i :=  00

i �  0
i .
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