# Homotopy principle for subcritical isotropic embeddings

#### Maksim Stokic

Tel Aviv University

23 May 2021

Maksim Stokic (Tel Aviv University) Homotopy principle for subcritical isotropic er

# Symplectic and contact homeomorphisms

 $C^{0}$ -topology on the group of compactly supported homeomorphisms on a manifold M is induced by a metric  $d_{C^{0}}(\phi, \psi) = \sup_{x \in M} d(\phi(x), \psi(x))$ , where d is a Riemannian distance on M (topology doesn't depend on d).

# Symplectic and contact homeomorphisms

 $C^{0}$ -topology on the group of compactly supported homeomorphisms on a manifold M is induced by a metric  $d_{C^{0}}(\phi, \psi) = \sup_{x \in M} d(\phi(x), \psi(x))$ , where d is a Riemannian distance on M (topology doesn't depend on d).

### Theorem (Gromov-Eliashberg rigidity)

A diffeomorphism which is a  $C^0$ -limit of symplectomorphisms is itslef symplectic. In other words,  $Symp(M, \omega)$  is  $C^0$ -closed inside Diff(M).

Remark. Contact version of Gromov-Eliashberg theorem holds as well.

# Symplectic and contact homeomorphisms

 $C^{0}$ -topology on the group of compactly supported homeomorphisms on a manifold M is induced by a metric  $d_{C^{0}}(\phi, \psi) = \sup_{x \in M} d(\phi(x), \psi(x))$ , where d is a Riemannian distance on M (topology doesn't depend on d).

#### Theorem (Gromov-Eliashberg rigidity)

A diffeomorphism which is a  $C^0$ -limit of symplectomorphisms is itslef symplectic. In other words,  $Symp(M, \omega)$  is  $C^0$ -closed inside Diff(M).

Remark. Contact version of Gromov-Eliashberg theorem holds as well.

#### Definition (symplectic and contact homeomorphisms)

Let M be a symplectic or a contact manifold. A homeomorphism  $f: M \to M$  is called **symplectic/contact** if it is a  $C^0$ -limit of a sequence of symplectic/contact diffeomorphisms.

## Definition (weak Hamiltonian homeomorphisms)

Let  $(M, \omega)$  be a symplectic manifold. A homeomorphism  $f : M \to M$  is called **weak Hamiltonian homeomorphism** if it can be written as a  $C^0$  limit of a Hamiltonian diffeomorphisms.

## Definition (weak Hamiltonian homeomorphisms)

Let  $(M, \omega)$  be a symplectic manifold. A homeomorphism  $f : M \to M$  is called **weak Hamiltonian homeomorphism** if it can be written as a  $C^0$  limit of a Hamiltonian diffeomorphisms.

### Definition (Oh, Muller)

Let  $(\phi^t)_{t \in [0,1]}$  be a compactly supported isotopy of M. We say that  $\phi^t$  is a **hameotopy** if there exists a sequence of smooth and compactly supported Hamiltonians  $H_i$ , and a continious function  $H : [0,1] \times M \to \mathbb{R}$  such that:

• 
$$\max_{t\in [0,1]} d_{\mathcal{C}^0}(\phi^t_{H_i},\phi^t) o 0$$
 as  $i o\infty$ ,

• 
$$||H_i - H||_{\infty} \to 0$$
 as  $i \to \infty$ .

We say that H generates hameotopy  $\phi^t$ , and call its time-1 map  $\phi^1$  a Hamiltonian homeomorphism or **Hameomorphism**.

If 
$$\phi_H^t = \phi_G^t$$
, then  $H - G$  is a function of time.

ヘロト 人間ト 人間ト 人間ト

• Let  $D^2$  be a standard 2-disc with symplectic form  $\omega = rdr \wedge d\theta$  in polar coordinates. For a smooth  $f : (0, 1] \rightarrow \mathbb{R}$  define  $\phi_f : D^2 \rightarrow D^2$ 

$$\phi_f(0) = 0, \quad \phi_f(r,\theta) = (r,\theta+f(r)).$$

• Let  $D^2$  be a standard 2-disc with symplectic form  $\omega = rdr \wedge d\theta$  in polar coordinates. For a smooth  $f : (0, 1] \rightarrow \mathbb{R}$  define  $\phi_f : D^2 \rightarrow D^2$ 

$$\phi_f(0) = 0, \quad \phi_f(r,\theta) = (r,\theta+f(r)).$$

• Note that  $\phi_{-f} \circ \phi_f = Id$ , thus  $\phi_f$  is a homeomorphism. Moreover  $\phi_f|_{D^2 \setminus \{0\}}$  is a symplectomorphism of  $D^2 \setminus \{0\}$ .

• Let  $D^2$  be a standard 2-disc with symplectic form  $\omega = rdr \wedge d\theta$  in polar coordinates. For a smooth  $f : (0, 1] \rightarrow \mathbb{R}$  define  $\phi_f : D^2 \rightarrow D^2$ 

$$\phi_f(0) = 0, \quad \phi_f(r,\theta) = (r,\theta+f(r)).$$

- Note that  $\phi_{-f} \circ \phi_f = Id$ , thus  $\phi_f$  is a homeomorphism. Moreover  $\phi_f|_{D^2 \setminus \{0\}}$  is a symplectomorphism of  $D^2 \setminus \{0\}$ .
- If f can be smoothly extended to 0, then  $\phi_f$  is a time-1 map of a Hamiltonian isotopy  $t \mapsto \phi_{tf}$  generated by a Hamiltonian

$$H_f(r, heta) = \int_r^1 sf(s)ds$$

• Let  $D^2$  be a standard 2-disc with symplectic form  $\omega = rdr \wedge d\theta$  in polar coordinates. For a smooth  $f : (0, 1] \to \mathbb{R}$  define  $\phi_f : D^2 \to D^2$ 

$$\phi_f(0) = 0, \quad \phi_f(r,\theta) = (r,\theta+f(r)).$$

- Note that  $\phi_{-f} \circ \phi_f = Id$ , thus  $\phi_f$  is a homeomorphism. Moreover  $\phi_f|_{D^2 \setminus \{0\}}$  is a symplectomorphism of  $D^2 \setminus \{0\}$ .
- If f can be smoothly extended to 0, then  $\phi_f$  is a time-1 map of a Hamiltonian isotopy  $t \mapsto \phi_{tf}$  generated by a Hamiltonian

$$H_f(r, heta)=\int_r^1 sf(s)ds.$$

• Let  $f(r) = \frac{1}{\sqrt{r}}$  near 0, and  $f_i$  any sequence of functions regular at 0 that uniformly converge to f. Then  $\phi_f = \lim_{i \to \infty} \phi_{f_n}$  is a Hamiltonian homeomorphism which is not differentiable at 0.

 A contact structure on an odd dimensional manifold V<sup>2n+1</sup> is given by a smooth hyperplane distribution ξ in the tangent bundle satisfying a complete non-integrability condition.

- A contact structure on an odd dimensional manifold V<sup>2n+1</sup> is given by a smooth hyperplane distribution ξ in the tangent bundle satisfying a complete non-integrability condition.
- Locally ξ is given by a kernel of a 1-form α, and non-integrability condition can be written as α ∧ (dα)<sup>n</sup> ≠ 0. A cooriented contact structures are those induced by kernels of a global 1-forms.

- A contact structure on an odd dimensional manifold V<sup>2n+1</sup> is given by a smooth hyperplane distribution ξ in the tangent bundle satisfying a complete non-integrability condition.
- Locally ξ is given by a kernel of a 1-form α, and non-integrability condition can be written as α ∧ (dα)<sup>n</sup> ≠ 0. A cooriented contact structures are those induced by kernels of a global 1-forms.
- Standard contact structure  $(\mathbb{R}^{2n+1}, ker(dz + \sum_{i=1}^{n} x_i dy_i)).$

- A contact structure on an odd dimensional manifold V<sup>2n+1</sup> is given by a smooth hyperplane distribution ξ in the tangent bundle satisfying a complete non-integrability condition.
- Locally ξ is given by a kernel of a 1-form α, and non-integrability condition can be written as α ∧ (dα)<sup>n</sup> ≠ 0. A cooriented contact structures are those induced by kernels of a global 1-forms.
- Standard contact structure  $(\mathbb{R}^{2n+1}, ker(dz + \sum_{i=1}^{n} x_i dy_i)).$
- Submanifold L ⊂ (V, ξ) is called isotropic if TL ⊂ ξ. If ξ = ker α one can equivalently say α|<sub>TL</sub> ≡ 0.

- A contact structure on an odd dimensional manifold V<sup>2n+1</sup> is given by a smooth hyperplane distribution ξ in the tangent bundle satisfying a complete non-integrability condition.
- Locally ξ is given by a kernel of a 1-form α, and non-integrability condition can be written as α ∧ (dα)<sup>n</sup> ≠ 0. A cooriented contact structures are those induced by kernels of a global 1-forms.
- Standard contact structure  $(\mathbb{R}^{2n+1}, ker(dz + \sum_{i=1}^{n} x_i dy_i)).$
- Submanifold L ⊂ (V, ξ) is called isotropic if TL ⊂ ξ. If ξ = ker α one can equivalently say α|<sub>TL</sub> ≡ 0.
- An isotropic submanifold of dimension *n* is called **Legendrian**, otherwise if dimension is less than *n* we call it **subcritical isotropic**.

## Question 1

What can contact homeomorphism do that contact diffeomorphism cannot?

## Question 1

What can contact homeomorphism do that contact diffeomorphism cannot?

Obviously it can map smooth submanifold to a non-smooth one.

#### Question 2

Let  $(V, \xi)$  be a contact manifold,  $L \subset V$  isotropic submanifold, and  $\phi : V \to V$  contact homeomorphism. If  $\phi(L)$  is smooth submanifold, does it have to be isotropic?

## Question 1

What can contact homeomorphism do that contact diffeomorphism cannot?

Obviously it can map smooth submanifold to a non-smooth one.

#### Question 2

Let  $(V, \xi)$  be a contact manifold,  $L \subset V$  isotropic submanifold, and  $\phi: V \to V$  contact homeomorphism. If  $\phi(L)$  is smooth submanifold, does it have to be isotropic?

#### Theorem (Usher 2020)

Let  $L \subset (V,\xi)$  be a Legendrian submanifold, and let  $\varphi : V \to V$  be a contact homemorphism that have positive local lower bounds on the conformal factors of the approximating contactomorphisms. If  $\varphi(L)$  is smooth, then it must be Legendrian.

# h-principle for subcritical isotropic embeddings

Let  $(W, \xi)$  be contact manifold and V compact manifold of subcritical dimension  $2 \cdot \dim V + 1 \leq \dim W$ .

#### Definition

A formal isotropic embedding is a pair  $(f, F_s)$  where  $f : V \to W$  is an embedding, and  $F_s : TV \to TW$  is a homotopy of monomorphisms which cover f, such that  $F_0 = df$  and  $F_1(TV) \subset \xi$ .

# h-principle for subcritical isotropic embeddings

Let  $(W, \xi)$  be contact manifold and V compact manifold of subcritical dimension  $2 \cdot \dim V + 1 \leq \dim W$ .

#### Definition

A formal isotropic embedding is a pair  $(f, F_s)$  where  $f : V \to W$  is an embedding, and  $F_s : TV \to TW$  is a homotopy of monomorphisms which cover f, such that  $F_0 = df$  and  $F_1(TV) \subset \xi$ .

### Theorem (Relative, 1-parametric *h*-principle for isotropic embeddings)

Let  $V_0 \subset V$  be a compact subset and  $f_0, f_1 : V \to (W, \xi)$  isotropic embeddings such that  $f_0|_{Op(V_0)} = f_1|_{Op(V_0)}$ . Assume  $f_0$  and  $f_1$  are isotopic through formal isotropic embeddings  $(f_t, F_{t,s})$  such that  $f_t|_{Op(V_0)} = f_0$ . Then there exists an isotopy of isotropic embeddings  $\tilde{f}_t : V \to (W, \xi)$ between  $f_0$  and  $f_1$ , such that  $\tilde{f}_t|_{Op(V_0)} = f_0$ .

< ロ > < 同 > < 回 > < 回 > < 回 > <

## Extension of h-principle for isotropic discs

- Let W ⊂ ℝ<sup>2n+1</sup> be a contact manifold with the contact structure ξ. Then every embedding f : D<sup>k</sup> → W is formally isotropic.
- Let  $f_t : D^k \to W$  be an isotopy of isotropic embeddings. Then, there exists a contact isotopy  $\phi_t : W \to W$ , such that  $\phi_t \circ f_0 = f_t$ .

#### Proposition

Let  $A \subset D^k$  be closed subset and  $u_0, u_1 : D^k \to W$  isotropic embeddings which coincide on Op(A). Assume  $u_0$  is isotopic to  $u_1$  relative to Op(A). Then there exists contact isotopy  $\phi^t$  such that  $\phi^1 \circ u_0 = u_1, \phi^t|_{Op(A)} = Id$ .

# Extension of h-principle for isotropic discs

- Let W ⊂ ℝ<sup>2n+1</sup> be a contact manifold with the contact structure ξ. Then every embedding f : D<sup>k</sup> → W is formally isotropic.
- Let  $f_t : D^k \to W$  be an isotopy of isotropic embeddings. Then, there exists a contact isotopy  $\phi_t : W \to W$ , such that  $\phi_t \circ f_0 = f_t$ .

#### Proposition

Let  $A \subset D^k$  be closed subset and  $u_0, u_1 : D^k \to W$  isotropic embeddings which coincide on Op(A). Assume  $u_0$  is isotopic to  $u_1$  relative to Op(A). Then there exists contact isotopy  $\phi^t$  such that  $\phi^1 \circ u_0 = u_1, \phi^t|_{Op(A)} = Id$ .

#### Theorem (Quantitative h-principle for isotropic discs)

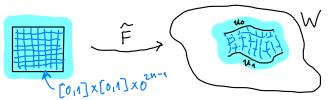
Let  $W \subset \mathbb{R}^{2n+1}$  be an open subset, k < n,  $u_0, u_1 : D^k \to W$  be isotropic embeddings of closed discs. We assume there exists a homotopy  $F : D^k \times [0,1] \to W$  between  $u_0$  and  $u_1$  of size less than  $\varepsilon$  $(\operatorname{diam} F(\{z\} \times [0,1]) < \varepsilon$  for all  $z \in D^k$ ). Then there exists a contact isotopy  $(\Psi^t)_{t \in [0,1]}$  such that  $\Psi^1 \circ u_0 = u_1$ , of size less than  $\varepsilon$ .

#### Lemma

Let  $\Sigma_1, \Sigma_2 \subset W$  be smooth submanifolds which are transverse in the neighbourhood of  $\partial W$ . Then there exists an arbitrarily small contact isotopy  $\phi^t$  such that  $\phi^1(\Sigma_1) \pitchfork \Sigma_2$ .

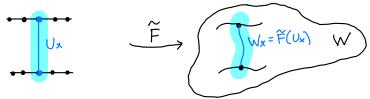
Let  $u_0, u_1 : [0, 1] \to W$  and assume  $u_0([0, 1]) \cap u_1([0, 1]) = \emptyset$ . Let  $\widetilde{F}$  be approximation of F which is embedding, such that  $size(\widetilde{F}) < \varepsilon$ . Extend  $\widetilde{F}$  to a smooth embedding

$$\widetilde{F}: [-\mu, 1+\mu] \times [-\mu, 1+\mu] \times [-\mu, \mu]^{2n-1} \hookrightarrow W$$

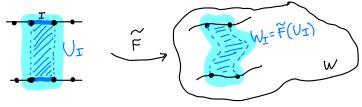


## Proof

Let  $\eta > 2\delta > 0$ . Consider grid  $\Gamma_0 = [0, 1] \cap \eta \mathbb{Z}$  and for each  $x \in \Gamma_0$  let  $U_x$  be  $\delta$ -neighbourhood of  $\{x\} \times [0, 1] \times \{0\}^{2n-1}$  and define  $W_x := \widetilde{F}(U_x)$ .



For each 1-cell  $I = [x_i, x_{i+1}]$  let  $U_I$  be  $\delta$ -neighbourhood of  $I \times [0, 1] \times \{0\}^{2n-1}$ , and put  $W_I := \widetilde{F}(U_I)$ .



## Proof

For each  $x \in \Gamma_0$  let  $I(x) = [x - \rho, x + \rho]$ . Then  $\widetilde{F}$  gives isotopy between  $u_0|_{I(x)}$  and  $u_1|_{I(x)}$  inside  $W_x \implies \exists$  contact isotopy  $\phi_x^t$  supported inside  $W_x$  such that  $\phi_x^1 \circ u_0|_{I(x)} = u_1|_{I(x)}$ .

Let  $\phi_0^t := \circ \psi_x^t$ , then  $\psi_0^t \circ u_0|_{Op(\Gamma_0)} = u_1|_{Op(\Gamma_0)}$ . Using transversality lemma, let  $\tilde{\phi}^t$  be contact isotopy which achieves

$$\widetilde{\phi}^1 \circ \phi_0^1 \circ u_0(I) \pitchfork u_1(I'),$$

for every pair of distinct 1-cells I, I'. Let  $\Phi^t = \widetilde{\phi}^t \# \phi_0^t$  and  $v_0 = \Phi^1 \circ u_0$ .



For each 1-cell I we have  $v_0(I), u_1(I) \subset W_I$  and  $v_0|_{Op(\partial I)} = u_1|_{Op(\partial I)}$ . Consider now slightly smaller  $\overline{I} \subset I$  and pick any homotopy

$$\sigma_I: \overline{I} \times [0,1] \to W_I, \quad \sigma_I(\cdot,0) = v_0, \, \sigma_I(\cdot,1) = u_1.$$

General position argument implies that we can moreover assume that the images  $Im \sigma_I$  are disjoint for all 1-cells.

Relative (w.r.t. boundary  $\partial I$ ) *h*-principle gives contact isotopies  $\psi_I^t$  supported in  $Op(Im \sigma_I)$  such that  $\psi_I^1 \circ v_0|_{\overline{I}} = u_1|_{\overline{I}}$ .

Let  $\psi^t = \circ \psi^t_I$ , where composition runs over all 1-faces *I*. Finally we define

$$\Psi^t = \psi^t \# \Phi^t.$$

#### Theorem (Flexibility of isotropic curves)

Let  $(V^{2n+1},\xi)$  be a contact manifold and  $n \ge 2$ . Then there exists an isotropic curve  $\gamma : [0,1] \to V$  and a contact homeomorphism  $\psi : V \to V$  such that  $\psi \circ \gamma$  is transverse to  $\xi$ .

*Proof.* Let  $v : [0,1] \to V$  be any transverse curve. Contact neighbourhood theorem implies that Op v([0,1]) can be contactly embedded to

$$(\mathbb{R}^{2n+1}, ker(dz + \sum_{i=1}^n (x_i dy_i - y_i dx_i))),$$

such that v(t) maps to  $\widetilde{v}(t) := (t, 0, \dots, 0)$ . Define isotropic curves

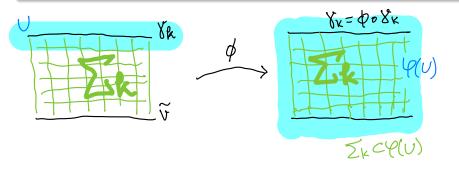
$$\gamma_k: [0,1] \to \mathbb{R}^{2n+1}, \quad t \mapsto \left(t, \frac{1}{k}\sin(k^2t), \frac{1}{k}\cos(k^2t), 0, \dots, 0\right).$$

Note that  $\gamma_k \xrightarrow{C^0} \widetilde{v}$  as  $k \to \infty$ . Maksim Stokic (Tel Aviv University) Homotopy principle for subcritical isotropic er 23 Ma

# Proof

#### Lemma (Stretching the neighbourhood)

Let  $U \supset \gamma_k([0,1])$  be an open neighbourhood, and let  $\Sigma_k : [0,1]^2 \to \mathbb{R}^{2n+1}$ be embedded surface defined as  $\Sigma_k(s,t) = (1-s)\gamma_k(t) + s\tilde{\nu}(t)$ . Then there exists a contactomorphism  $\phi$  supported in  $Op \Sigma_k([0,1]^2)$  such that  $\phi \circ \gamma_k = \gamma_k, \Sigma_k([0,1]^2) \subset \phi(U)$  and  $d_{C^0}(\phi, Id) < \frac{3}{k}$ .



Let  $\{U_i\}_{i\geq 1}$  be decreasing sequence of open sets and  $\bigcap_{i\geq 1} U_i = \gamma_{k_1}([0, 1])$ . We inductively construct increasing sequence  $\{k_i\}_{i\geq 1}$  with  $k_i \geq 2^i$ , and sequence of contactomorphisms  $\psi_i$  with support in  $\varphi_{i-1}(U_i)$  such that

$$\psi_i \circ \gamma_{k_i} = \gamma_{k_{i+1}}, \quad d_{\mathcal{C}^0}(\psi_i, \mathcal{I}d) < \frac{5}{2^i}.$$

where  $\varphi_i := \psi_i \circ \psi_{i-1} \circ \cdots \circ \psi_1$ .  $\{\varphi_i\}$  is a Cauchy sequence, hence it converges to a continuous map  $\varphi$ . Moreover we have  $\varphi \circ \gamma_{k_1} = \tilde{v}$ . Any  $x \notin \gamma_{k_1}([0,1])$  satisfies  $\varphi_i(x) = \varphi(x)$  for *i* large enough  $\implies \varphi$  is injective, hence homeomorphism.

## Induction step

- Let U := φ<sub>i-1</sub>(U<sub>i+1</sub>). Apply stretching Lemma to γ<sub>ki</sub> and U to get a contactomorphism ψ'<sub>i</sub>. Let r > 0 such that [0, 1] × B<sup>2n</sup>(r) ⊂ ψ'<sub>i</sub>(U).
- Pick  $k_{n+1}$  large enough such that  $\gamma_{k_{n+1}}([0,1]) \subset [0,1] \times B^{2n}(r)$ .
- Composition of homotopy  $\Sigma_i(s, \cdot)$ ,  $s \in [0, r]$  and linear homotopy between  $\Sigma_i(r, \cdot)$  and  $\gamma_{k_{n+1}}$  gives homotopy between  $\gamma_{k_i}$  and  $\gamma_{k_{i+1}}$  of size less than  $\frac{1}{2^i}$ . Now apply quantitative *h*-principle to get  $\psi''_i$ , and finally define  $\psi_i := \psi''_i \circ \psi'_i$ .

