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Abstract: We demonstrate a technique for a single shot mapping of
nonlinear phase shift profiles in spatial solitons that arened during short
pulse propagation through one-dimensional slab AlGaAsegaides, in
the presence of a focusing Kerr nonlinearity. The technigses a single
beam and relies on the introduction of a lithographicallshet reflective
planar mirror surface positioned in proximity to the beainjsut position.
Using this setup we demonstrate nonlinearity-inducedpsketeral phase
variations for certain initial conditions, and creation bigher spatial
harmonics when the beam is in close proximity to the mirror.
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1. Introduction, theoretical and numerical background
1.1. Introduction

Solitons are self-regulating nonlinear excitations, vi@scinating properties that are intermedi-
ate between waves and particles [1]. Nonlinear optics githie most common and elementary
manifestation of solitons [2], including spatial solitoj3. Among the most important quan-
tities that characterize a nonlinear excitation are thesplmofile that is accumulated during
its propagation, and the phase shift with respect to itaalim®unterpart. Traditionally, these
guantities are measured using rather complex two-beamitpeds [4, 5, 6]. In this paper we
demonstrate a simple, single beam technique for measurnghase shift profile of spatial
solitons in 2D slab waveguides. Our method relies on thedhiction of an embedded planar
mirror inside the waveguide, the excitation of a soliton iose proximity to this mirror and
the interference formed by the soliton and the wave reflefrtad the mirror. The paper is
organized as follows: in Sec. 1 we briefly discuss the themiebackground of solitons and
their nonlinear phase evolution. In Sec. 2 the optical expent is described, the geometry of
the sample is introduced, and our sample is compared to asavith shallow-etched barrier
interfaces, of the type that is traditionally useé@, in the study of the interaction of spatial
solitons with micro-structured inhomogeneities [7, 8,I18]Sec. 3 our experimental results are
shown, including the measurement of the nonlinear phasepsbfile of a spatial soliton, the
observation of nonlinearity-induced sharp lateral phasgations, and the creation of higher
spatial harmonics when the soliton is launched near theemitue to proximity effects. In Sec.
4 we summarize our main results and conclusions.

1.2. Theoretical and numerical background

While the intensity properties of spatial solitons in slabveguides have been studied exten-
sively [3], it is interesting to note that several phasexted properties of these solitons are
usually assumed without their explicit measurement. Wgitire electric field associated with

an initial excitation as€(x,z) = |E(x,2z)|d?*?, with x being the lateral waveguide direction

andz being the propagation direction (assuming confinementery direction), o(x, z) is the

phase accumulation an@l(x,Z) = %h:z is the propagation constant. While a linear wave

that traverses the waveguide has a propagation constadrfalisan the allowed region of the
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geometrical waveguide dispersion [10], a nonlinear solitas a higher propagation constant,
corresponding to a bound state penetrating into the seinitangap where no linear guided
modes exist; indeed, this is the key property that enab&esdh-dispersive nature of these non-
linear excitationsi.e. a spatial localization occurring at higher optical intéiesi. Assuming the
slowly varying envelope approximation, the paraxial appration, and energy conservation
for the forward traveling wave, the 2D electromagnetic filfdamics in a slab Kerr waveguide
can be described by the well known nonlinear $dmger equation (NLSE) [23]. The solu-
tion of the NLSE of the fornE (x,z) ~ E(x)€#? leads to an eigenvalue equatit%% ~ —BE,
wheref3 is in the gap.

To illustrate the importance ap and 3 in spatial soliton formation, Figs. 1 and 2 show
solutions of the NLSE obtained from beam propagation me{B&M) simulations [11].
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Fig. 1.(a), (b) Low power (20 W) andc), (d) high power (5.2 kW) simulations of Eq. (1)
atAg = 1.5 umfor a 100um-wide input Gaussian wave packet, with flat phase-front initial
conditions, over a propagation lengthzs6.5 mm in a planar AlGaAs waveguid@), (c).
Intensity evolution [E(x,2)|?). (b) Phase evolutiomp(z) (estimated at a centralposition
indicated by the dashed lines in (a),(€)J) Phase differencA¢(z) between the nonlinear
propagation (c) and the linear propagation (a),(b), at the sgmosition.
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Fig. 2. Simulated phase profiles (left pandk) and(c)) and propagation constant pro-
files (right panels(b) and(d)) at the output following linear (green lines) and nonlinear
(blue/red lines) propagation over a 6.5 mm-long 2D AlGaAs waveguitle.ifiput beam
intensity profile is Gaussian with a width of 1@0n in the top panels(&) and(b)), while

it has the form a square Hyperbolic Secant with a width ofsb8in the bottom panelq¢)
and(d)). In all cases, the excitation wavelength\gg= 1.5 um.
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It is well known that a low-power beam slowly diffracts wheropagating along the di-
rection (Fig. 1(a)). The accumulated phase at the centdreobéam (Fig. 1(b)) is linear with
a slope of approximately unity in the dimensionless units-igf. 1(b). Note that the slope
Bo= % ~ 211/ Ag is approximately the plane-wave propagation constanth@srput power is
increased, a solitary wave is formed (Fig. 1(c)), and theaedated phase is different from the
case presented in Fig. 1(b). The accumulated pHefencerelative to Fig. 1(b) is shown in
Fig. 1(d), and is indeed nonlinear. The positive slope apoeds to a self-focusing nonlinear-
ity n, > 0, with a local increase of the propagation constant, aggativith its penetration into
the semi-infinite gap. Lateral Profiles of the output phasespmopagation constants obtained
from the above simulations are shown in Figs. 2(a),(b) féfledént input powers. Beyond a
certain threshold power, a spatial breakup occurs thatismapanied by a breakup of the phase
profile (Fig. 2(a)) and by the recovery of the linear propamatonstant (Fig. 2(b)).

In the well known special case of input beams with the hypét®ecant intensity form,
while the phase front profile of a low power diffracting beaasta particular pattern (green
line in Fig. 2(c)), as a soliton forms it becomes flat and statry at the beam’s center (blue
line in Fig. 2(c)). In this casg@ is uniform and larger thafiy (Fig. 2(d)).

2. Optical setup and sample composition

2.1. Optical setup

The conventional techniques for measuring nonlinear ptasations are cumbersome, as they
require at leastwo beams: the soliton beam of interest, and a reference lovepbaam not
undergoing the phase change. it linearly diffracts along with the soliton [4, 5, 6]. These
methods are illustrated in Figs. 3(a),(b). One realizatitg. 3(a)) involves coupling the beams
at remote locations of the input facet with separate lenseger similar conditions and with
different input powers. When the beams reach the output,fduet have different linear and
nonlinear phases. As a result, their overlapping on a neaticrystal yields a phase related
cross-correlation signal [4, 5]. In another realizatioa two beams are coupled in close prox-
imity, using the same input lens (Fig. 3(b)). The beams’ipbaverlap and the resulting co-
herent interference pattern recorded by an imaging canweriaios the required information
regarding the soliton’s added phase [6]. In both of theskrigoes the two beams must be
coherent and individually stable following their spliginalso implying that the alignment of
the sample with respect to both of the input beams is critical

(a) S‘ﬁi‘iﬂiﬁm (b) E| (c) |1| Embedded (d) ﬂ
mirror
N N

/ \

00— o i
Fig. 3. Possible nonlinear phase shift measurement s€a)gstwo-beam setup involving
remote coupling with different lenses, following the two beams overlapping nonlinear
crystal.(b) A two-beam setup involving close coupling with the same lens following output

facet imaging. (c) and (d): A single beam setup with a plane mirror sedanbedded in the
waveguide and output facet imagir(g) Low power andd) high power (soliton) beams.

Soliton Wave

Linear Wave

Here we show that by using an embedded mirror surface, edgudrallel to the propaga-
tion direction (Figs. 3(c),(d)), a single beam experimeant gield the spatially resolved phase
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profile, eliminating any need for multiple beams. In patgepa low-power diffracting beam
that is coupled near a mirror (Fig. 3(c)) exhibits interfeze between its central part and the
reflected tails, all having the same wavelength. Even as dheepis increased and a spatial
soliton is formed, there is some weak background underglaiegr diffraction. Some extent
of these diffracting tails then interferes with the soli{®tg. 3(d)). The output phase difference
profile Ag(x) is then directly measured as it results in phase shifts ointlaging interference
pattern. We stress that the interference fringe shift istaxaqual to the nonlinear phase only
in the case ofpatial solitons (which are dispersive in the temporal domain) [2s8ch as in
AlGaAs waveguides. Whespatiotemporabompression is considerede( as self-focusing is
observed in both space and time dimensions) [12, 13], itiegdly accompanied by a shift
of the soliton wavelength [14]. Since this added wavelersiiift is unknown without addi-
tional measurements, neither of the contributions to tresplthange can be extracted from the
proposed experimental technique.

2.2. Sample geometry

3-layer semiconductor AGaAs_x waveguides have been used extensively for nonlinear op-
tics applications [7], as well as for studies of soliton grgation in micro-structured waveguide
arrays [8, 9]. These samples consist of Clad-Core-Clad ishéw deposited on top of a GaAs
substrate with vertical dimensions designed for singlelenpropagation [10] in the near in-
frared (see Figs. 4(a),(c)). The Aluminum doping levetf.18 in the core layer and=0.24 in

the clad layer give rise to a physical vertical refractivéer difference ofAn=0.03 atAp=1.5

pm, with a core index ohp=3.34. A 25um-wide shallow etching applied to the top clad (Fig.
4(a)) effectively decreases the mode area, and therefeedffictive refractive index, of a beam
confined to the core [8, 9]. Therefore, shallow etchingsesasdocal barriers to confined beams.

a) Perturbative barrier (C) Reflective barrier
OOMM AT Clad [15pm  16um] Clad _ ]15um
[Etched Core 1.5 pm Core 1.5 um
micro-
structure| Clad 4 pm Clad 4 um

(b) P @

GaAs Wafer

Strong
perturbation
regime

Sample position P [um]

Outp ac ime [nm] - 550

Fig. 4. (a),(c): Vertical sample cross-sections with local barriennéal by(a) a shallow
0.6 um etching, andc) a deep 1.6um etching. (b),(d): Output facet images as a function
of the sample positiop (along thex direction, with respect to the input beam) in samples
with a barrier that igb) perturbative (as in (a)) and) reflective (as in (b)). Both samples
have the same length (6.5 mm), and are excited by a low power (100 WjtOwide
Gaussian input beam. The left boundaries of the barriers are indicpthbeé dashed white
lines in (b),(d). The same sample position sqale used in subsequent figures.

In contrast, a deeply etched interface that penetratestiatoore layer (Fig. 4(c)), can inhibit
coupled wave transfer from one side of the center to the pfleeving as a reflective barrier.
The corresponding output facet images, as a function ofrtpetibeam position, are shown
in Figs. 4(b),(d). Clearly, the diffracting beam crossanadt completely the shallow etched
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interface, while completely reflecting from the deeply etdhinterface. In the latter case, the
sharp beam cutoff at the barrier interface is evident, akagehe fringe patterns associated with
the interference between the original and reflected beamdsthe increased degree of overlap
between the two beams as the input beam is coupled closetas®t to the barrier. Also note
that at input locations that are distant from the centerfringe spacing changes linearly with
the input position, while at locations that are adjacenhtdenter the fringe spacing changes
parabolically. In the former case only the weak diffractimiggs are reflected by the mirror (as
in Fig. 3(c)), and we therefore refer to this region as thedkvperturbation regime”. In the
latter case, however, both beams are of comparable powpestasf the input beam is already
at the interface, and the interference pattern changegeanly with the input position. To this
region of excitation we will refer below as the "strong pebtation regime”.

3. Experimental results

3.1. Phase shift profile mapping

In order to excite spatial solitons in our 6.5 mm-long AlGasaveguides, which include an
embedded mirror, we use laser pulses of 100 fs duration, Irépktition rate, and peak powers
of up to 5 kW. The input beam is shaped to be elliptical with aight of~ 1.5 um (to enable
efficient coupling to the core layer, see Fig. 4(c)) and anfryidth of ~ 100 umat the beam’s
waist. The formation of a spatial soliton as a function ofitifgut peak power is shown in Fig.
5(a) for a coupling location that is far away from the miriiag, in an homogeneous region.

AT i Input power

Low
High

A A L
—600 —400 200 0 200 -400 300 5
Y lum) % a0

Fig. 5. Experimental results of phase shift profile estimation in the weatrpation
regime:(a), (b) Formation of a spatial soliton as a function of input peak powefajn
an homogeneous regiop ¢ 0 in Fig. 4(d)), andb) in proximity to the mirror p ~ 400
um). (c) Low power (green) and high power (orange) interference fringeepes of the
output beam(d) The soliton’s lateral phase shift profile as extracted from (c).

As the coupling location is in the weak perturbation regithe,spatial soliton that is formed
is accompanied by a positive phase shift in the fringe pafteig. 5(b)). Following integration
along the vertical axis (Fig. 5(c)), the comparison betwdenfringe positions in low power
(green) and in soliton power (orange) yields the relativagatshifts of the interference patterns.
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Note that the fringe movement is gradual between adjacienyes, implying a slowly-varying
phase profile. By the arguments discussed in Sections 1 awé 2an infer that in the first
approximation (that is applicable as long as the mirrorypbegtion is weak) the phase shift is
exactly equal to the soliton’s local phase increase. Theaetdd soliton’s lateral phase shift
profile is shown in Fig. 5(d). This result is in qualitativeragment with the corresponding
numerical simulation (Fig. 2(a)).

3.2. Observation of sharp phase gradients

By applying tilts to the input beam relative to the sampld&edent excitation conditions were
explored,i.e. with initial conditions in which the input phase front is ritdt. An interesting
phenomenon that we have observed in such cases was thesowmiof a series of nonlinearity-
induced sharp phase shifts (larger tham) 2t x separations that are smaller than the fringe
period, even when the excitation is in the weak perturbatigime. An example is shown in
Fig. 6(a). Sharp nonlinear phase gradients, which are égteinx, were observed as local
"blurring” of the interference pattern around these regias shown in Fig. 6(b).

TR e
L ‘U“;
bl ’\‘“ B
,JJ‘J(\/\J\’\/MWJ)\ gl ‘M“Mwhmv
n ‘\ V) UH\‘/H ‘HH\“ “H [Hi
= WV VIV :

' f“‘j ;
fr o H « . el
—600 —400 —200 swsennsptns 200 W

Fig. 6. Experimental results of sharp phase gradients with a non-flatpiase front in the
weak perturbation regiméa) Interference fringe patterns exhibiting sharp phase gradients
(indicated by the red arrows}p) An example of local phase "blurring” as a function of the
power, induced by sharp nonlinear phase gradients.

3.3. Strong perturbation regime

As the beam is coupled in close proximity to the mirror (loywart of Fig. 4(d) withp > 800
um), the power-dependent characteristics of the interfergadtern are substantially different.
As shown in Fig. 7(a), in this case there is an increase in thmber of visible fringes
for a high power input beam, in comparison to a low power exicih. The discrete Fourier
transforms of these scans (Fig. 7(b)) confirms that newaldatiquency componenks appear

in the spectrum of the interference pattern in the interatedand high power cases.

We speculate that these new harmonics are signatures &f ghase modulation and wave
mixing [15—18] between the original and reflected components, as bdtieai now possess
comparable high power. We also note that there are a few pthesibilities, such as the res-
onant scattering of dispersive waves by the soliton [19] mordinearity-induced ground state
selection [20], which can be regarded as a four-wave mixioggss [21]. In any event, phase
retrieval is impossible using simple imaging in the stroegtgrbation regime, as the physical
influence of the mirror becomes substantial rather thamupmative.
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Fig. 7. Experimental results in the strong perturbation regime: (1200 um). (a) Low
power (green), intermediate power (orange) and high power (égtarjerence fringe pat-
terns of the output beanfb) Discrete Fourier transforms of the data in (a) showing the
transverse spatial frequency content of the light emerging from theguide.

4. Conclusion

We have introduced a unique single beam method for the ssigle measurement of phase
shift profiles formed in spatial solitons, following theirgpagation through 2D slab nonlinear
waveguides. The method uses a lithographically etchedctisesurface positioned near the
beam’s launching position. In addition to phase shift peofilapping in spatial solitons, this

setup enabled us to observe nonlinearity-induced shargepdradients, and to record the cre-
ation of high spatial harmonics as the beam is launched inpreaimity to the mirror surface.
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