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Abstract: We demonstrate a technique for a single shot mapping of
nonlinear phase shift profiles in spatial solitons that are formed during short
pulse propagation through one-dimensional slab AlGaAs waveguides, in
the presence of a focusing Kerr nonlinearity. The techniqueuses a single
beam and relies on the introduction of a lithographically etched reflective
planar mirror surface positioned in proximity to the beam’sinput position.
Using this setup we demonstrate nonlinearity-induced sharp lateral phase
variations for certain initial conditions, and creation ofhigher spatial
harmonics when the beam is in close proximity to the mirror.
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1. Introduction, theoretical and numerical background

1.1. Introduction

Solitons are self-regulating nonlinear excitations, withfascinating properties that are intermedi-
ate between waves and particles [1]. Nonlinear optics provide the most common and elementary
manifestation of solitons [2], including spatial solitons[3]. Among the most important quan-
tities that characterize a nonlinear excitation are the phase profile that is accumulated during
its propagation, and the phase shift with respect to its linear counterpart. Traditionally, these
quantities are measured using rather complex two-beam techniques [4, 5, 6]. In this paper we
demonstrate a simple, single beam technique for measuring the phase shift profile of spatial
solitons in 2D slab waveguides. Our method relies on the introduction of an embedded planar
mirror inside the waveguide, the excitation of a soliton in close proximity to this mirror and
the interference formed by the soliton and the wave reflectedfrom the mirror. The paper is
organized as follows: in Sec. 1 we briefly discuss the theoretical background of solitons and
their nonlinear phase evolution. In Sec. 2 the optical experiment is described, the geometry of
the sample is introduced, and our sample is compared to a sample with shallow-etched barrier
interfaces, of the type that is traditionally used,i.e. in the study of the interaction of spatial
solitons with micro-structured inhomogeneities [7, 8, 9].In Sec. 3 our experimental results are
shown, including the measurement of the nonlinear phase shift profile of a spatial soliton, the
observation of nonlinearity-induced sharp lateral phase variations, and the creation of higher
spatial harmonics when the soliton is launched near the mirror, due to proximity effects. In Sec.
4 we summarize our main results and conclusions.

1.2. Theoretical and numerical background

While the intensity properties of spatial solitons in slab waveguides have been studied exten-
sively [3], it is interesting to note that several phase-related properties of these solitons are
usually assumed without their explicit measurement. Writing the electric field associated with
an initial excitation asE(x,z) = |E(x,z)|eiφ(x,z), with x being the lateral waveguide direction
andz being the propagation direction (assuming confinement in the y direction),φ(x,z) is the
phase accumulation andβ (x,Z) = ∂φ

∂z |z=Z is the propagation constant. While a linear wave
that traverses the waveguide has a propagation constant that falls in the allowed region of the
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geometrical waveguide dispersion [10], a nonlinear soliton has a higher propagation constant,
corresponding to a bound state penetrating into the semi-infinite gap where no linear guided
modes exist; indeed, this is the key property that enables the non-dispersive nature of these non-
linear excitations,i.e.a spatial localization occurring at higher optical intensities. Assuming the
slowly varying envelope approximation, the paraxial approximation, and energy conservation
for the forward traveling wave, the 2D electromagnetic fielddynamics in a slab Kerr waveguide
can be described by the well known nonlinear Schrödinger equation (NLSE) [1−3]. The solu-
tion of the NLSE of the formE(x,z) ∼ E(x)eiβz leads to an eigenvalue equationi ∂E

∂z ∼ −βE,
whereβ is in the gap.

To illustrate the importance ofφ and β in spatial soliton formation, Figs. 1 and 2 show
solutions of the NLSE obtained from beam propagation method(BPM) simulations [11].
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Fig. 1.(a), (b) Low power (20 W) and(c), (d) high power (5.2 kW) simulations of Eq. (1)
atλ0 = 1.5µm for a 100µm-wide input Gaussian wave packet, with flat phase-front initial
conditions, over a propagation length ofz=6.5 mm in a planar AlGaAs waveguide.(a), (c):
Intensity evolution (|E(x,z)|2). (b) Phase evolutionφ(z) (estimated at a centralx position
indicated by the dashed lines in (a),(c)).(d) Phase difference∆φ(z) between the nonlinear
propagation (c) and the linear propagation (a),(b), at the samex position.
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Fig. 2. Simulated phase profiles (left panels,(a) and (c)) and propagation constant pro-
files (right panels,(b) and (d)) at the output following linear (green lines) and nonlinear
(blue/red lines) propagation over a 6.5 mm-long 2D AlGaAs waveguide. The input beam
intensity profile is Gaussian with a width of 100µm in the top panels ((a) and(b)), while
it has the form a square Hyperbolic Secant with a width of 13µm in the bottom panels ((c)
and(d)). In all cases, the excitation wavelength isλ0 = 1.5 µm.
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It is well known that a low-power beam slowly diffracts when propagating along thez di-
rection (Fig. 1(a)). The accumulated phase at the center of the beam (Fig. 1(b)) is linear with
a slope of approximately unity in the dimensionless units ofFig. 1(b). Note that the slope
β0 = ∆φ

∆z ≈ 2π/λ0 is approximately the plane-wave propagation constant. As the input power is
increased, a solitary wave is formed (Fig. 1(c)), and the accumulated phase is different from the
case presented in Fig. 1(b). The accumulated phasedifferencerelative to Fig. 1(b) is shown in
Fig. 1(d), and is indeed nonlinear. The positive slope corresponds to a self-focusing nonlinear-
ity n2 > 0, with a local increase of the propagation constant, associated with its penetration into
the semi-infinite gap. Lateral Profiles of the output phases and propagation constants obtained
from the above simulations are shown in Figs. 2(a),(b) for different input powers. Beyond a
certain threshold power, a spatial breakup occurs that is accompanied by a breakup of the phase
profile (Fig. 2(a)) and by the recovery of the linear propagation constant (Fig. 2(b)).

In the well known special case of input beams with the hyperbolic Secant intensity form,
while the phase front profile of a low power diffracting beam has a particular pattern (green
line in Fig. 2(c)), as a soliton forms it becomes flat and stationary at the beam’s center (blue
line in Fig. 2(c)). In this caseβ is uniform and larger thanβ0 (Fig. 2(d)).

2. Optical setup and sample composition

2.1. Optical setup

The conventional techniques for measuring nonlinear phasevariations are cumbersome, as they
require at leasttwo beams: the soliton beam of interest, and a reference low-power beam not
undergoing the phase change,i.e. it linearly diffracts along with the soliton [4, 5, 6]. These
methods are illustrated in Figs. 3(a),(b). One realization(Fig. 3(a)) involves coupling the beams
at remote locations of the input facet with separate lenses,under similar conditions and with
different input powers. When the beams reach the output facet, they have different linear and
nonlinear phases. As a result, their overlapping on a nonlinear crystal yields a phase related
cross-correlation signal [4, 5]. In another realization the two beams are coupled in close prox-
imity, using the same input lens (Fig. 3(b)). The beams’ partial overlap and the resulting co-
herent interference pattern recorded by an imaging camera contains the required information
regarding the soliton’s added phase [6]. In both of these techniques the two beams must be
coherent and individually stable following their splitting, also implying that the alignment of
the sample with respect to both of the input beams is critical.

z

Nonlinear

crystal Embedded

mirror

(a) (b) (c) (d)

x

Fig. 3. Possible nonlinear phase shift measurement setups.(a) A two-beam setup involving
remote coupling with different lenses, following the two beams overlappingon a nonlinear
crystal.(b) A two-beam setup involving close coupling with the same lens following output
facet imaging. (c) and (d): A single beam setup with a plane mirror surface embedded in the
waveguide and output facet imaging:(c) Low power and(d) high power (soliton) beams.

Here we show that by using an embedded mirror surface, oriented parallel to the propaga-
tion direction (Figs. 3(c),(d)), a single beam experiment can yield the spatially resolved phase
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profile, eliminating any need for multiple beams. In particular, a low-power diffracting beam
that is coupled near a mirror (Fig. 3(c)) exhibits interference between its central part and the
reflected tails, all having the same wavelength. Even as the power is increased and a spatial
soliton is formed, there is some weak background undergoinglinear diffraction. Some extent
of these diffracting tails then interferes with the soliton(Fig. 3(d)). The output phase difference
profile ∆φ(x) is then directly measured as it results in phase shifts of theimaging interference
pattern. We stress that the interference fringe shift is exactly equal to the nonlinear phase only
in the case ofspatialsolitons (which are dispersive in the temporal domain) [2, 3], such as in
AlGaAs waveguides. Whenspatiotemporalcompression is considered (i.e. as self-focusing is
observed in both space and time dimensions) [12, 13], it is generally accompanied by a shift
of the soliton wavelength [14]. Since this added wavelengthshift is unknown without addi-
tional measurements, neither of the contributions to the phase change can be extracted from the
proposed experimental technique.

2.2. Sample geometry

3-layer semiconductor AlxGaAs1−x waveguides have been used extensively for nonlinear op-
tics applications [7], as well as for studies of soliton propagation in micro-structured waveguide
arrays [8, 9]. These samples consist of Clad-Core-Clad sadwiches deposited on top of a GaAs
substrate with vertical dimensions designed for single-mode propagation [10] in the near in-
frared (see Figs. 4(a),(c)). The Aluminum doping levelsx=0.18 in the core layer andx=0.24 in
the clad layer give rise to a physical vertical refractive index difference of∆n=0.03 atλ0=1.5
µm, with a core index ofn0=3.34. A 25µm-wide shallow etching applied to the top clad (Fig.
4(a)) effectively decreases the mode area, and therefore the effective refractive index, of a beam
confined to the core [8, 9]. Therefore, shallow etchings serve as local barriers to confined beams.
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Fig. 4. (a),(c): Vertical sample cross-sections with local barriers formed by(a) a shallow
0.6 µm etching, and(c) a deep 1.6µm etching. (b),(d): Output facet images as a function
of the sample positionp (along thex direction, with respect to the input beam) in samples
with a barrier that is(b) perturbative (as in (a)) and(d) reflective (as in (b)). Both samples
have the same length (6.5 mm), and are excited by a low power (100 W) 100 µm-wide
Gaussian input beam. The left boundaries of the barriers are indicatedby the dashed white
lines in (b),(d). The same sample position scalep is used in subsequent figures.

In contrast, a deeply etched interface that penetrates intothe core layer (Fig. 4(c)), can inhibit
coupled wave transfer from one side of the center to the other, serving as a reflective barrier.
The corresponding output facet images, as a function of the input beam position, are shown
in Figs. 4(b),(d). Clearly, the diffracting beam crosses almost completely the shallow etched
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interface, while completely reflecting from the deeply etched interface. In the latter case, the
sharp beam cutoff at the barrier interface is evident, as well as the fringe patterns associated with
the interference between the original and reflected beams, and the increased degree of overlap
between the two beams as the input beam is coupled closer and closer to the barrier. Also note
that at input locations that are distant from the center, thefringe spacing changes linearly with
the input position, while at locations that are adjacent to the center the fringe spacing changes
parabolically. In the former case only the weak diffractingwings are reflected by the mirror (as
in Fig. 3(c)), and we therefore refer to this region as the ”weak perturbation regime”. In the
latter case, however, both beams are of comparable powers aspart of the input beam is already
at the interface, and the interference pattern changes nonlinearly with the input position. To this
region of excitation we will refer below as the ”strong perturbation regime”.

3. Experimental results

3.1. Phase shift profile mapping

In order to excite spatial solitons in our 6.5 mm-long AlGaAswaveguides, which include an
embedded mirror, we use laser pulses of 100 fs duration, 1 kHzrepetition rate, and peak powers
of up to 5 kW. The input beam is shaped to be elliptical with an height of≃ 1.5 µm (to enable
efficient coupling to the core layer, see Fig. 4(c)) and an input width of≃ 100µmat the beam’s
waist. The formation of a spatial soliton as a function of theinput peak power is shown in Fig.
5(a) for a coupling location that is far away from the mirror,i.e. in an homogeneous region.

(c)

(d)

600 400 200 0 200

Input power

x [ m]

[2
]

µmx

High
Low

Fig. 5. Experimental results of phase shift profile estimation in the weak perturbation
regime:(a), (b) Formation of a spatial soliton as a function of input peak power in(a)
an homogeneous region (p ≃ 0 in Fig. 4(d)), and(b) in proximity to the mirror (p ≃ 400
µm). (c) Low power (green) and high power (orange) interference fringe patterns of the
output beam.(d) The soliton’s lateral phase shift profile as extracted from (c).

As the coupling location is in the weak perturbation regime,the spatial soliton that is formed
is accompanied by a positive phase shift in the fringe pattern (Fig. 5(b)). Following integration
along the vertical axis (Fig. 5(c)), the comparison betweenthe fringe positions in low power
(green) and in soliton power (orange) yields the relative phase shifts of the interference patterns.
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Note that the fringe movement is gradual between adjacent fringes, implying a slowly-varying
phase profile. By the arguments discussed in Sections 1 and 2,we can infer that in the first
approximation (that is applicable as long as the mirror perturbation is weak) the phase shift is
exactly equal to the soliton’s local phase increase. The extracted soliton’s lateral phase shift
profile is shown in Fig. 5(d). This result is in qualitative agreement with the corresponding
numerical simulation (Fig. 2(a)).

3.2. Observation of sharp phase gradients

By applying tilts to the input beam relative to the sample, different excitation conditions were
explored,i.e. with initial conditions in which the input phase front is notflat. An interesting
phenomenon that we have observed in such cases was the occurrence of a series of nonlinearity-
induced sharp phase shifts (larger than 2π) at x separations that are smaller than the fringe
period, even when the excitation is in the weak perturbationregime. An example is shown in
Fig. 6(a). Sharp nonlinear phase gradients, which are extended inx, were observed as local
”blurring” of the interference pattern around these regions, as shown in Fig. 6(b).

Input power
          

          

(a)

(b) I

µmx

200 W

2 kW

600 400 200 0 200 400

Low
High

Fig. 6. Experimental results of sharp phase gradients with a non-flat input phase front in the
weak perturbation regime:(a) Interference fringe patterns exhibiting sharp phase gradients
(indicated by the red arrows).(b) An example of local phase ”blurring” as a function of the
power, induced by sharp nonlinear phase gradients.

3.3. Strong perturbation regime

As the beam is coupled in close proximity to the mirror (lowerpart of Fig. 4(d) withp > 800
µm), the power-dependent characteristics of the interference pattern are substantially different.

As shown in Fig. 7(a), in this case there is an increase in the number of visible fringes
for a high power input beam, in comparison to a low power excitation. The discrete Fourier
transforms of these scans (Fig. 7(b)) confirms that new spatial frequency componentskx appear
in the spectrum of the interference pattern in the intermediate and high power cases.

We speculate that these new harmonics are signatures of cross phase modulation and wave
mixing [15−18] between the original and reflected components, as both ofthem now possess
comparable high power. We also note that there are a few otherpossibilities, such as the res-
onant scattering of dispersive waves by the soliton [19] andnonlinearity-induced ground state
selection [20], which can be regarded as a four-wave mixing process [21]. In any event, phase
retrieval is impossible using simple imaging in the strong perturbation regime, as the physical
influence of the mirror becomes substantial rather than perturbative.
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Fig. 7. Experimental results in the strong perturbation regime (p ≃ 1200 µm). (a) Low
power (green), intermediate power (orange) and high power (cyan)interference fringe pat-
terns of the output beam.(b) Discrete Fourier transforms of the data in (a) showing the
transverse spatial frequency content of the light emerging from the waveguide.

4. Conclusion

We have introduced a unique single beam method for the singleshot measurement of phase
shift profiles formed in spatial solitons, following their propagation through 2D slab nonlinear
waveguides. The method uses a lithographically etched reflective surface positioned near the
beam’s launching position. In addition to phase shift profile mapping in spatial solitons, this
setup enabled us to observe nonlinearity-induced sharp phase gradients, and to record the cre-
ation of high spatial harmonics as the beam is launched in near proximity to the mirror surface.
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