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Raman-induced localization in Kerr waveguide
arrays
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We show that during the spatiotemporal compression in a periodic Kerr waveguide array, stimulated Raman
scattering can effectively balance the effects of self-phase modulation, diffraction, and group-velocity disper-
sion, eliminating collapse and breakup over a wide range of input powers and leading to stable propagation
in a single site. © 2007 Optical Society of America
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The stable propagation of localized excitations is a
central and active field of nonlinear optics [1]. Media
with composite structures, such as periodic weakly
coupled waveguide arrays (WGAs), have intriguing
nonlinear localized excitations that have been exten-
sively studied in recent years [2–7]. While low-power
excitations evolve as extended waves in the transmis-
sion spectrum (TS) bands of a structure, high-power
nonlinear localized excitations reside in the TS gaps,
opposing diffraction or group-velocity dispersion
(GVD) and forming spatial or temporal solitons. Mul-
tidimensional 1+d localized excitations, occurring si-
multaneously in d=2,3 dimensions, have also been
extensively studied for both multispatial [2,3,8,9]
and spatiotemporal [4,5,10–13] cases. Importantly,
when time is a canonical dimension, its dynamics are
not analogous to a conjugate space dimension. This
stems from the fact that temporal localization of a
pulse approaching collapse (induced by self-phase
modulation (SPM) in combination with the proper
sign of GVD [1]) is accompanied by higher-order ef-
fects. These effects include high-order dispersion,
saturation of the Kerr nonlinearity, and Stokes Ra-
man shift of the central carrier frequency [14], the
latter making the Kerr nonlinearity kernel time de-
pendent. The resulting changes in the temporal pulse
shape and power density also have direct conse-
quences to the spatial dynamics [11–13].

Recalling our previous experiments on spatiotem-
poral localization (STL) [5,12,13], performed on pla-
nar glass waveguides with anomalous GVD and a fo-
cusing Kerr nonlinearity, Figure 1 shows the output
width as a function of the input peak power, following
propagation of �60 fs input pulses through a 3 cm
long silica slab and through a 3 cm long planar WGA.
The WGA consists of weakly coupled single-mode-
doped channels, buried in a pure silica substrate (for
sample details see [5,13]). In both cases, the input is
a 30 �m wide beam, corresponding to an excitation of
a single site of the WGA. In both geometries, at pow-
ers below a critical value Ic (different in each geom-
etry), both the space and time dimensions exhibit si-
multaneous compression. However, beyond Ic the

dynamics are fundamentally different. In the slab
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case simultaneous spatial, spectral, and temporal
breakup of the beam occurs [11,13,15] as collapse is
being avoided due to high-order effects. In contrast,
the WGA exhibits a localized excitation that locks to
a single site (Fig. 1) [5], evading breakup and collapse
even at powers an order of magnitude higher than Ic.
So far the origin of the strong STL has remained elu-
sive, since (as shown below) this sustained stability
against collapse cannot be explained by the standard
physical picture.

Here we explain how the strong STL results from a
balance between the effects of SPM (which induces
spatiotemporal collapse), stimulated Raman scatter-
ing (SRS, which effectively resists collapse through
the chromatic dispersion of the waveguide mode),
and the linear effects of dispersion and diffraction in
the periodic structure. This is, to the best of our
knowledge, the first demonstration of Raman-
induced localization in WGAs.

The 1+2 spatiotemporal dynamics of the electric
field E�x , t ,z� in the WGA is modeled using the non-
linear Schrödinger equation (NLSE),
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Fig. 1. (Color online) Experimental results for 60 fs pulses
focused into glass waveguides with anomalous GVD and a
focusing Kerr nonlinearity. Squares, 3 cm long waveguide
array; circles, 3 cm long slab waveguide. The input beam

width corresponds to excitation of a single array site.
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operator, combined with the effect of SRS. n0�x� is an
effective refractive index, taking into account the con-
finement in the vertical �y� direction. The Raman
time-kernel R�t�� consists of the sum of instanta-
neous (electronic) and delayed (vibrational) re-
sponses [14], R�t��= finst��t��+ �1− finst�hR�t��, where
finst is the fraction of the response that is electronic,
and hR�t��is an oscillatory function that decays with a
picosecond time constant [14]. In the 1+1 case, where
the GVD is normal ��2�0�, there is broadening of the
pulse during propagation. The noninstantaneous
part of the Kerr nonlinearity can then be neglected,
and a separation of variables is possible, the tempo-
ral dynamics being unimportant for nonlinear pro-
cesses. Moreover, when considering weakly coupled
WGAs, a discrete nearest-neighbor version of the
spatial NLSE is usually sufficient, and provides good
approximations for the dynamics [6,7]. However,
temporal compression is expected to produce collapse
[5] (or at least self-focusing within a single wave-
guide), features that do not exist in the discrete
model where maximum focusing means that all the
power is localized in a single site. In this case, the
continuous Eq. (1) must be employed.

We first solve the standard NLSE that does not in-
clude variation of parameters [Eq. (1)]. Our numeri-
cal code, implemented on a CRAY supercomputer,
uses the split-step technique [14]. The domain is a
1024�1024 grid with total sizes of 500 �m in x and
500 fs in t. This corresponds to a space domain reso-
lution of four points within a single site and eight
points between adjacent sites of the WGA in the n0�x�
grid. For numerical convergence, particularly in the
sensitive region of maximum STL, z is propagated in
subwavelength resolution. The initial excitation is
taken as a Gaussian of the form E�x , t ,z=0�
=E0 exp�−x2 /2w0

2− t2 /2t0
2�, with w0=25 �m and t0

=60 fs. The values for GVD ��2�0� and high-order
dispersion ��3 ,�4��2� are taken from the literature
[14] for 	0=1520 nm. Figure 2 shows the output x– t
profiles for different input power densities �I= �E0�2�,
following 3.5 cm long propagation (slightly longer
than the experimental value, chosen in order to
monitor the dynamics in the vicinity of the output
facet). The well-known discrete diffraction pattern
[6,7] is obtained at low powers [Fig. 2(a)], and a local-

Fig. 2. (Color online) Simulated spatiotemporal contour
plots for 3.5 cm propagation of Eq. (1) with different input
power densities. IC=0.3 MW. The colorbars next to each

2
panel indicate the fluence in MW/m units.
ized excitation forms as Ic is approached [Figs. 2(b)
and 2(c)]. While the localization is sustained at
slightly higher powers, a further increase of power
results in an abrupt breakup of the beam [Fig. 2(d)],
in contradiction to the data of Fig. 1. This spatial
breakup is accompanied by a splitting of the original
pulse to several pulses in the time domain. Therefore
the basic model presented above cannot account for
the strong STL that is sustained over an order of
magnitude of optical power levels. Figure 3 illus-
trates the high-power propagation maps in space (in-
tegrated over time) [Fig. 3(a)], in time (integrated
over space) [Fig. 3(b)], and in the spectral domain
[Fig. 3(c)]. It is evident that the breakup occurs at the
same distance where the redshift of the spectrum is
most pronounced.

The spectral redshift during STL is a key feature of
the dynamics, which generally affects all other pa-
rameters in Eq. (1), including the dispersion coeffi-
cients and the Raman time kernel. We have found
that the most important contribution arises from the
fact that the single-waveguide mode is wavelength
dependent and is less localized for longer wave-
lengths. This modal change occurs in the WGA di-
mension x, and also in the vertical (confined) dimen-
sion y, which imposes a change of the effective
propagation constant and thus the effective refrac-
tive index. The broadening of the single-waveguide
mode results in an increased nearest-neighbor cou-
pling, equivalent to increased diffraction. These
changes are effectively introduced into the simula-
tion through a modification of the refractive index
during propagation n0�x�→n0�x ,z�. An unrelated ef-
fect, not captured in Eq. (1), is a lower effective power
density between the waveguides, resulting from a
weaker vertical mode confinement. This affects only
the nonlinear term in Eq. (1), and cancels in the oth-
ers. To take this into account, �E�x��2 in the nonlinear
term can be replaced with �Ẽ�x��2, where Ẽ is an ef-
fective amplitude. The two corrections can be incor-
porated into the following, modified, NLSE:
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Equation (2) is difficult to solve, since it requires a 3D
simulation. However, note that in the spirit of the 2D
approximation, the modulation of the effective ampli-
tude Ẽ can be imitated by introducing an
x-dependent nonlinear index, n2�x�. In our imple-
mentation the variation of n2�x� is taken to be sinu-
soidal with a 33% modulation depth: n2�x�
=n2�0� /4�cos�2
x /d�+3�, where d is the waveguide’s

Fig. 3. (Color online) Propagation maps of the (a) spatial,
(b) temporal, and (c) spectral dimensions for the basic

simulation with a I=1.6 IC excitation [see Fig. 2(d)].
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width. The final simulation, which includes both ef-
fects, is represented by the following equation:

i
�E

�z
= ¯ + k

n2�x�

n0�x,z�
Er̂��E�2�. �3�

Equation (3) is implemented in steps, such that in
each step the index profile n0�x� is modified according
to the spectral shift of the beam in the preceding
step, and the values of n0�x� correspond to the propa-
gation constants of the single-waveguide mode (cal-
culated using the known spectral dispersion of silica
[14]). The results are summarized in Fig. 4. Panel (a)
shows a spatial propagation map of a high-power
beam obtained with the basic simulation, Eq. (1). In
this case the beam breaks up at z	0.7 cm. Applica-
tion of the n0�x ,z� correction greatly stabilizes the
beam [Fig. 4(b)]. When the n2�x� correction is also ap-
plied, the beam is stabilized to a single site [Fig. 4(c),
Eq. (3)]. The variation of the mode index that we ob-
tained from the simulation is plotted in Fig. 4(d). We
have also verified that when only the nonlinear cor-
rection is applied, the beam breaks up. Thus our
simulations show that the combination of the two ef-
fects extends the regime of stability well beyond Ic.
While computer resources limited our ability to simu-
late propagation at intensities above 2IC, we expect
this stability to be sustained even at higher powers,
provided that the corrections are applied in suffi-
ciently small steps. These results can be interpreted
as follows: at a single-site excitation there are two
competing nonlinearities, the Kerr nonlinearity (that
tends to squeeze the waveguide mode through self-
focusing), and the Raman nonlinearity (that expands
the waveguide mode, and is therefore equivalent to
self-broadening) [Fig. 4(e)]. The balance of these non-
linearities leads to stable propagation without
breakup, and is robust as both effects grow with

Fig. 4. (Color online) (a)–(c) Spatial propagation maps and
output spatiotemporal profiles (insets) of a I=2IC beam: (a)
basic simulation [Eq. (1)]; (b) with a n0�x ,z� dynamic cor-
rection; (c) with both n0�x ,z� and n2�x� corrections [Eq. (3)];
(d) single-waveguide refractive index as a function of z ob-
tained from (b); (e) illustration of the Raman-assisted local-
ization in a single site.
power. We conclude that in the presence of the peri-
odic modulation of the WGA, the Raman effect and
high-order GVD stabilize the soliton in the spatial di-
mension. It is known that the same effects usually
have the opposite result, i.e., fission of the soliton
[15]. Indications of such fission in the temporal di-
mension are indeed observed [see the insets of Figs.
4(a)–4(c)].

In conclusion, we have demonstrated that a strong
spatiotemporal localization, robust with increasing
input power, cannot be explained using the standard
NLSE, but originates from the Raman-induced
Stokes redshift of the spectrum, which causes self-
broadening. This counteracts the Kerr-induced self-
focusing of the waveguide mode that individually
leads to the breakup of the beam. Inhomogeneity of
the vertical confinement further enhances the local-
ization.
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