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Abstract

Towards a Theory of Learning Inductive Invariants

Yotam M. Y. Feldman
Doctor of Philosophy

School of Computer Science
Tel Aviv University

SAT-based invariant inference is a prominent approach to automatic safety verification, with

algorithms that are successful in practice, but not well-understood. In this thesis we investigate

conceptual questions about SAT-based invariant inference algorithms through a theoretical

study of their complexity, inspired and influenced by learning theory. The results shed light on

the design choices and principles underlying modern SAT-based invariant inference algorithms,

and situate invariant inference as a new domain of interest for learning theory.

We develop query-based models that are suitable for learning inductive invariants that

can model algorithms of interest, compare the hardness of the query-based invariant inference

to classical exact concept learning with queries, prove information-based lower bounds, and

study the power of models with rich queries compared to previously-studied models. We derive

complexity upper bounds for a variant of interpolation-based inference on an expressive class of

inductive invariants, and, borrowing ideas from exact concept learning, construct new algorithms

with complexity results for more appealing syntactic forms of invariants, including decision trees.

We utilize Bshouty’s monotone theory from exact concept learning to cast property-directed

reachability as a form of abstract interpretation in a new domain, thereby illuminating how

over-approximation is systematically achieved in this technique.
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Chapter 1

Introduction

Science may be described as the art of systematic
over-simplification.

— Karl Popper

Automatic program verification requires of its creators to write algorithms that can reason
about programs and mathematically certify their correctness. The need is pressing and unrelent-
ing: as software systems increasingly permeate day-to-day functions, as well as safety-critical
operations, confidence in their correctness is a part of life, to our occasional dismay when
that confidence is unjustified; verification’s goal is to bring about systems that do merit this
confidence, by verifying that it holds. However, those who enjoyed a classical computer science
education are likely to protest: the objective of automatic verification makes absolutely no
sense, because, theoretically, this is a hopeless endeavor; it can be shown that there is no way to
decide whether a program is correct that is more efficient than exhaustively checking all program
executions, which is bad when the possible executions are very many (PSPACE-complete),
and infinitely bad when their number is infinite (undecidable). Why not do machine learning
instead?

However, what is in general impossible may still be possible in many practical cases. System-
atic, rigorous, and well-reasoned over-simplification is now a cornerstone of how we automatically
verify programs despite the theoretical impossibility. How this over-simplification is performed,
and why it is performed this way, is the subject matter of this thesis.

Many verification problems boil down to a form of over-simplification called an inductive
invariant, used to prove safety. When an inductive invariant is discovered by the algorithm, it
is still unknown exactly which states the program can reach and which states it cannot, but
it is certainly known that the program cannot reach a state it should not. The problem of
automatically finding such inductive invariants is called invariant inference.

In the last two decades, the spectacular achievements of a new approach to invariant inference,
called SAT-based invariant inference, took the research community (and industry practitioners)
by storm. The theory—understanding the complexity and principles of SAT-based invariant

1



2 Chapter 1. Introduction

inference algorithms—fell behind.
This thesis undertakes this challenge by linking invariant inference algorithms to another

branch of computer science: learning theory. As previously observed, inductive invariants
are not unlike data classifiers [SNA12, SGH+13b], yet differ in significant ways [GLMN14],
and this has motivated many works that adapt and apply learning techniques to invariant
inference [e.g. GLMN14, NMS+20, END+18, JGST10, GNMR16, SGH+13b, SNA12, SGH+13a,
SA16, KPIA20, JS17]. This thesis is the first study of invariant inference and learning that

• addresses fundamental questions of complexity and expressive-power for the problem of
invariant learning with different kinds of SAT queries, and

• sheds light on some of the central invariant inference algorithms in existence—interpolation-
based inference [McM03] and property-directed reachability [Bra11, EMB11]—by viewing
them through the lens of learning, even though these algorithms were not inspired by
learning, nor widely-understood as such.

Our contributions break new ground in both invariant inference and learning theory:

• From the perspective of invariant inference, we launch a theoretical investigation into how
algorithms handle invariants with complex syntactic forms, take on transition systems
with challenging reachability patterns, and which invariants they manage to find.

• From the perspective of learning, we introduce models of learning with queries with
complexity results that are inherently different from classical concept learning problems,
calling for adaptations of existing techniques as well as new ideas that are appropriate for
invariant learning.

This is a story of an over-simplification of invariant inference algorithms, and what it can
teach us.

1.1 Background

Let us be more precise about the two key players in this thesis—invariant inference and exact
concept learning.

1.1.1 Inductive Invariant Inference

We begin with how programs are modeled as transition systems and how they are proven safe
using inductive invariant inference.
Transition systems. A program is modeled as transitioning throughout its execution between
states, as expressed by a transition relation δ(σ, σ′), which indicates that when the program
performs a single step starting from state σ it may arrive at the state σ′. From a set of initial
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states Init, the executions of the system are (finite or infinite) sequences of states σ0, σ1, . . . such
that σ0 ∈ Init and (σi, σi+1) ∈ δ for every i.

We focus on the fundamental setting of propositional systems, which also applies to infinite-
state systems using predicate abstraction [FQ02, GS97], wherein each state σ is a valuation
mapping the n Boolean variables of the vocabulary Σ to true/false. We represent sets of states
using formulas—a formula ϕ represents the set of states satisfying it, {σ |σ |= ϕ}. We further
represent a transition relation using a formula δ, over two copies of the vocabulary Σ,Σ′, where
Σ denotes the pre-state of the transition and Σ′ the post-state, so that (σ, σ′) |= δ indicates that
the system may transition from the state σ to the state σ′.

Safety verification. Safety verification is about proving that the system never reaches a bad
state. (This is in contrast to liveness verification, which is about proving that something good
eventually happens.) Given a set of initial states Init, a transition relation δ, and a set of bad
states Bad, the goal is to prove that there is no execution σ0, σ1, . . . of δ from Init such that
σi ∈ Bad for some i. In pure theoretical computer science terms, safety verification is a graph
(un)reachability problem, where the graph is over an exponential number of vertices (valuations
to the Boolean variables), and the edges are expressed succinctly (through the transition relation
δ).

Inductive invariant inference. The inference of inductive invariants is a fundamental
technique in safety verification, and the focus of many works [e.g. McM03, Bra11, EMB11,
CC77, SGF13, ABD+15, FB18, DDLM13]. The task is to find a formula I that holds in the
initial states of the system (as sets of states, Init ⊆ I), excludes all bad states (I ∩ Bad = ∅),
and is closed under transitions of the system, namely, if (σ, σ′) ∈ δ and σ ∈ I then also σ′ ∈ I. If
the latter property does not hold, there is counterexample to induction: a transition (σ, σ′) ∈ δ
such that σ ∈ I but σ′ 6∈ I. In propositional systems, an inductive invariant exists iff the system
is safe. (In infinite-state systems this is not always the case, due to the restricted expressive
power of the languages used for invariants, but inductive invariants are still paramount.) In
pure theoretical computer science terms, an inductive invariant forms a vertex cut (I,¬I) in the
reachability graph that disconnects Init,Bad.

SAT-based invariant inference. Over the years, many algorithmic ideas have been proposed
to address the challenge of automatic invariant inference. The advance of SAT-based reasoning
in the last decades has led to the development of successful algorithms that use a SAT solver to
check the satisfiability and validity of formulas, obtain satisfying models, and use the results in
the search for an inductive invariant. Two prominent SAT-based algorithms are interpolation-
based invariant inference [McM03] and IC3/PDR [Bra11, EMB11]. These algorithms have led
to a significant improvement in the ability to verify realistic hardware systems, and have also
been extended and generalized to software systems [e.g. CGS10, ALGC12, KW11, AM13, DA16,
BGKL13, HB12, KGC14, BG15, KBI+17, CGMT14].

Understanding SAT-based invariant inference. Successful SAT-based inference algorithms
are typically tricky and employ many clever heuristics. This is in line with the inherent asymptotic
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complexity of invariant inference, which is hard even with access to a SAT solver [LQ09]. However,
the practical success of inference algorithms calls for a more refined complexity analysis, with
the objective of understanding the principles on which these algorithms are based.

1.1.2 Exact Concept Learning

Cut to a (seemingly) very different scenario.
Concept learning. In this setting, a learner ’s goal is to identify a concept—an unknown
set—based on partial information. We assume that the concept is specified by an unknown
propositional formula ψ (a set of satisfying valuations). Other representations of the concept
have also been studied and influenced verification (see §3.7), but our focus in this thesis is on
SAT-based verification, where formulas are natural.

Probably the most familiar learning setting is when the partial information available to the
learner consists of labeled examples: the learner has access to valuations v1, v2, . . . that it knows
for each one whether vi |= ψ or not. In PAC learning [Val84], examples are drawn at random,
and the learner tries to find a concept that has small expected classification error. In exact
concept learning, in contrast, the learner tries to identify ψ exactly (zero classification error)
while using queries it can choose.
Exact learning using queries. In this setting, pioneered by Angluin [Ang87b], the learner
iteratively presents queries—questions about ψ—to a teacher, and uses the teacher’s answers
to reproduce ψ. Which questions the learner can ask brings about different learning models.
The most studied forms of queries are equivalence queries (is θ the unknown formula, and if not,
what is a differentiating counterexample, a valuation where θ, ψ disagree?) and membership
queries (is v a model of the unknown formula?). In all cases the formulas/valuations in the
queries are chosen by the learner, based on the teacher’s responses to previous queries.1

Query complexity. A central question in exact learning theory is query complexity: how many
queries are required for the learner in the worst case to identify any ψ from a certain class of
concepts and with certain queries. For example, how many equivalence and membership queries
are required to correctly identify a formula out of the class of all formulas that have a short
DNF representation? What if the formulas are all monotone, that is, where variables appear
only positively? What if only equivalence queries are allowed? Such questions are studied
in many works [e.g. Ang87b, Ang90, Gav93, AP95, Bsh95, HPRW96, Bsh96, Bsh97, BCG02,
Ang04, HKSS12].
The monotone theory. One particular avenue of work that we will use extensively in this thesis
is the monotone theory of Bshouty [Bsh95]. The monotone theory provides an understanding of
how formulas can be represented as conjunctions of monotone DNF formulas, and how these
can be computed efficiently as a way to perform exact concept learning for classes such as the
short almost-monotone DNF formulas, and the formulas that have both short CNF and DNF

1Bring exact concept learning to your next party instead of the old “Twenty Questions”!
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representations (but are not necessarily monotone). At its core, the monotone theory studies the
monotonization of a formula ϕ w.r.t. a state b,Mb(ϕ), which is an approximation of the formula
ϕ such that each variable appears inMb(ϕ) only in one polarity (with or without negation) in
a way specified by b.

Exact concept learning with queries is the inspiration for this thesis’ invariant learning
with queries. We prosper on both the similarities—employing algorithms and techniques from
exact learning to the study of invariant learning—and the differences, establishing the unique
challenges of invariant learning.

1.2 Research Challenges

We now outline the major research challenges this thesis addresses.

1.2.1 Invariant Learning and its Relation to Concept Learning

Approaching the goal of understanding invariant inference by thinking about it as a learning
problem first turns the spotlight on how inferring invariants and learning concepts compare.
The questions asked, and the answers, clarify the connections between inference and learning,
and highlight the unique characters of invariant inference, which we also scrutinize using ideas
and tools from learning theory. The apparent similarities and perplexing differences are outlines
in the challenges here.

The target of both invariant learning and concept learning is a separator set between good
and bad states. The set could be complex to represent in a formula, depending on how the
states are “aligned” in the state space. Both invariant inference and concept learning need to
address this and efficiently learn a representation of the desired. However, invariant inference
and concept learning are different in that in invariant inference, the algorithm does not probe the
invariant directly, but rather explores the transition relation, which reflects on the invariant only
indirectly. For instance, if a state is neither reachable from the initial states in a small number
of steps, nor reaches a bad state in a small number of steps, then in general it is unclear whether
that state should be included in the invariant or not. Indeed, this point was the motivation of
Garg et al. [GLMN14] for defining the ICE learning model, the first learning model tailored to
invariant inference.

The comparison between invariant inference and concept learning suggests that it may
be fruitful to view invariant inference as a learning problem and that adaptations are neces-
sary [GLMN14]. This raises several questions:

1. Learning models: What theoretical models would allow to phrase invariant inference as
a learning problem, and existing invariant inference algorithms as learning algorithms?
(As we will show, ICE learning cannot model invariant inference algorithms such as
interpolation-based inference and PDR.)
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2. Fundamental limits: What is the complexity of learning invariants? Is the complexity
of learning an invariant I the same as the complexity of learning I as a concept?

3. Using concept learning algorithms: Can the powerful learning algorithms developed
over time be used to create new, powerful invariant inference algorithms? Do existing
results in concept learning in fact explain invariant inference algorithms that were developed
without attentiveness to techniques in concept learning?

1.2.2 Understanding Invariant Inference Algorithms

The invariant learning viewpoint allows us to tackle some of the most fundamental questions
about existing, powerful invariant inference approaches. These include:

1. Which invariants: In the space of possible invariants, do algorithms tend to converge to
some inductive invariants rather than others? How can algorithms be biased towards a
short invariant, and not be led astray towards other, longer invariants?

2. Syntactic structure: What syntactic features of the invariant enable the algorithm to
find it efficiently, through its short representation, rather than finding the same invariant
but through a long equivalent representation?

3. Overapproximation: How and when do inference algorithms refrain from the pitfall of
computing the set of states reachable in a bounded number of steps and simply increasing
the bound? This simple approach is not without merit, but fails in the likely case that
some states in the invariant are reachable in only a large number of steps (or not at all).

4. SAT queries: What are the requirements from the SAT solver for efficiently implementing
algorithms’ mitigations for the challenges of invariant inference?

We study these questions for interpolation-based invariant inference in Chapter 4, and for
property-directed reachability in Chapter 5, with Chapter 3 studying the the power of rich SAT
queries as well as the fundamental complexity limits.

1.3 Contributions

The results in this thesis were published in [FISS20, FSSW21, FSSW22, FS22].2

1.3.1 Learning Models and Lower Bounds for Invariant Inference (Chapter 3)

This thesis starts with the investigation of the problem of invariant inference from a complexity-
theoretic perspective of learning with queries, its fundamental limits and expressive power with
different queries used by invariant inference algorithms.

2Not included, yet much cherished, are the results of [FWSS19], as well as [FEM+18, FKE+20].



1.3. Contributions 7

Query-Based Learning Models for Invariant Inference

Problem formulation: inference of polynomial-length CNF. We introduce the study
of polynomial-length inference, in which the algorithm is provided with (Init, δ,Bad), and is
required to decide whether there exists an inductive invariant I for the given system, with the
additional restriction that I is expressible in a formula of polynomial length in conjunctive
normal form (CNF, e.g. (p1 ∨ ¬p2 ∨ p3) ∧ (¬p1 ∨ p3 ∨ ¬p4)). All our results apply equally to
inferring invariants in disjunctive normal form (DNF, e.g. (p1 ∧ p2 ∧ p3)∨ (¬p1 ∧ p3 ∧¬p4)). (We
prefer one form over the other depending on which is natural for the algorithm in consideration.)

The motivation for this definition is that inference algorithms can only succeed when the
invariant they infer is not too long. We are most interested in how efficient the search is when it
is not “hopeless”, when such a short inductive invariant actually exists. The class of polynomial
CNF invariants is richer than usually considered in template-based invariant inference [e.g.
JSS14, CSS03, SSM04, SG09, SGF13, ABD+15], in line with how recent invariant inference
algorithms employ richer syntactical forms of invariants [McM03, Bra11], the motivation being
generality of the verification method and potential improvement of the success rate.

We provide a computational hardness result for this problem, showing that polynomial-length
invariant inference is complete for ΣP

2 , the second level of the polynomial-hierarchy. This means
that the problem is NP-hard even with access to a SAT solver. (Without the polynomial-length
restriction, it is much harder, PSPACE-complete [LQ09].) This strengthens the hardness result
of template-based abstraction by Lahiri and Qadeer [LQ09].

Having established computational lower bounds, we move on to analyze the hardness of the
problem from a different perspective, that distills the role of how algorithms make progress
through answers to SAT queries. We do this by studying query-based learning models and
information-based lower bounds.
The Hoare-query model. We introduce a query-based learning model for invariant inference
called the Hoare-query model. The idea is that the algorithm attempts to learn an inductive
invariant while not given direct access to the most interesting part of the input to the problem,
the transition relation δ. (It can access Init,Bad freely.) Instead, the algorithm accumulates
information of δ by performing a series of queries. In the Hoare-query model, algorithms
repeatedly choose α, β and query for the validity of the Hoare triple {α}δ{β}, which is valid
iff every transition (σ, σ′) ∈ δ where σ ∈ α is guaranteed to have σ′ ∈ β. An oracle H(δ, α, β)
answers the queries, and in practice this is implemented using a SAT solver. This is a significant
point—the need to define special learning models for invariant inference is that it seems that the
classical queries of exact concept learning cannot be answered about the invariant in practice
without a-priori knowledge of the invariant [GLMN14]. In contrast, Hoare queries do not require
such foresight, and are readily implemented.

The Hoare-query model is general enough to capture algorithms such as PDR and many of
its variants, and leaves room for other interesting design choices. For example, PDR maintains a
sequence of formulas (frames) Fpdr

0 ,Fpdr
1 , . . .. When the algorithm executes, it checks if a frame
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Fpdr
i is inductive, which can be implemented by a Hoare query with α = Fpdr

i , β = Fpdr
i ; and it

checks whether a generalization clause c is inductive relative to the previous frame Fpdr
i , which

amounts to the query α = Fpdr
i , β = c. As we will see, it is of utmost importance that in the

last query, α 6= β.

In contrast, the Hoare-query model does not capture white-box approaches, such as any
program analyses that operate at the level of the code, such as the sort of abstract interpretation
that we are most used to, generating abstract transformers for each instruction in the program’s
code; but it does capture forms of abstract interpretation such as symbolic abstraction [RSY04,
TLLR15].

Queries to capture interpolation-based algorithms. We extend the Hoare-query model
to incorporate bounded model checking operations, which are useful for algorithms based on
interpolation. In this model, algorithms repeatedly choose α, β and a bound k, and query for
whether every state that δ can reach in at most k steps starting from α necessarily satisfies β. The
Hoare-query model is obtained by k = 1. In order not to grant the queries unreasonable power,
k is restricted to be polynomially-bounded by the complexity parameters of the problem. This
model captures a model-based interpolation algorithm that we study extensively in Chapter 4.

Alternatively, the original interpolation-based algorithm by McMillan [McM03] uses a
procedure that relies on the internals of the SAT solver, without theoretical guarantees on the
resulting form of the resulting interpolant. To capture this we extend the model with a query in
which it is the responsibility of the oracle to generate an interpolant (but this interpolant could
be of exponential CNF size). (This is potentially stronger than the extended Hoare-query model
when the model-based interpolation algorithm cannot produce an interpolant in a polynomial
number of extended-Hoare queries.)

Complexity of Hoare-query algorithms. The complexity of an invariant inference algorithm
in our models is measured by the number of queries it needs to perform in the worst-case to
decide whether an invariant I ∈ C exists for the given transition system, where C is a (syntactic)
class of formulas.3 In polynomial-length inference as defined above, C is the class of CNF
formulas of polynomial length.

This complexity measure is information-theoretic, disregarding the computational effort the
algorithm spends to compute the queries, which has several benefits for analysis and proving
unconditional lower bounds. When proving upper bounds, we consider in addition to the number
of queries also the number of time steps the algorithm performs in between the queries.

3This might seem different from the identification problem in concept learning, finding I ∈ C, provided that
one exists; the decision formulation is easier—because it is always possible to execute an identification algorithm
under the assumption that an invariant exists and verify the result—thereby making the lower bounds more
significant. Our upper bounds are all based on algorithms that do find an invariant when one exists.
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Lower Bound for the Hoare-Query Model

Lower bound. We establish an exponential lower bound on the number of queries required for
an algorithm in the Hoare-query model to solve polynomial-length inference. This lower bound
is information-based, and holds regardless of how the algorithm computes the next query. We
extend the lower bound to the other query-based models for invariant inference discussed above,
including the interpolation-query model. This result is expected, but technically interesting and
non-trivial, and forms the foundation for our separation results, which are discussed later.

All generalizations are wrong. Conceptually, this impossibility result shows that the
problem of generalization from counterexamples in invariant inference is prominently a problem
of information; there is no “correct” way to generalize from a counterexample without deeper
understanding of the transition relation. In our theoretical learning setting, this information is
obtained solely through queries, giving rise to the lower bound; in practice, more information is
available, through the syntactic representation of δ, but usually not much is made of it, which
points to an interesting direction for future work on SAT-based invariant inference.

Hoare Queries Are Powerful for Learning Invariants: Separation From the ICE
Model

When explaining how PDR can be implemented as in the Hoare-query model, we highlighted
the fact that PDR uses queries H(δ, α, β) where α 6= β. Is this an important characteristic of
PDR’s generalization procedure? If SAT solvers were not able to answer such queries, would
PDR be impossible? Bradley’s original explanation, that the basis of PDR is its incremental
nature [Bra11, Bra12], certainly asserts that this is important. For the first time, we can justify
this intuition theoretically.

From a learning perspective, it is interesting whether general Hoare queries, with α 6= β,
provide additional power to the model. Can some inference problems be solved with a polynomial
number of general Hoare queries, or can the same always be achieved using more restricted
queries, H(δ, α, α)? The latter form of queries is captured by the inductiveness-query model, in
which algorithms repeatedly choose α and query for the validity of the Hoare triple {α}δ{α};
if it is not valid, the oracle returns a counterexample to induction, which is a pair of states
(σ, σ′) ∈ δ such that σ |= α but σ′ 6|= α. The inductiveness-query model is a reformulation of
Garg et al.’s ICE learning model [GLMN14], in which the algorithm presents a series of candidate
inductive invariants, and learns from the counterexamples. (Our emphasis in our formulation is
on how the algorithm chooses candidates, whereas Garg et al. focused on how the algorithm
can efficiently find some candidate that is consistent with all the examples.) An inductiveness
query is a special case of a Hoare query (a linear number of Hoare queries can also generate a
counterexample). But is the Hoare-query model stronger than the inductiveness-query model?

We prove that it is. We construct a class of transition systems and invariants for which there
is an efficient algorithm in the Hoare-query model, but prove that every algorithm that only
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uses inductiveness queries requires an exponential number to find an inductive invariant in the
worst case.

The Hoare-query algorithm that achieves the upper bound is PDR with just one frame;
this proves that general Hoare queries are inherent to PDR, which cannot be implemented
as an algorithm in the ICE model. Indeed, in order to capture PDR, Vizel et al. [VGSM17]
extended the ICE model with additional checks, and our result proves that an extension is
indeed necessary. (This of course does not prove that PDR is always better than any ICE
algorithm; the exponential complexity of the problem in the general case largely excludes the
possibility of such a “silver-bullet” algorithm.)

Invariant Learning Cannot Be Reduced to Concept Learning

We introduced the Hoare-query model because such queries can be implemented in practice,
whereas equivalence and membership queries from concept learning cannot. This is somewhat
disheartening; it would have been much nicer to apply an algorithm for learning a class of
formulas C to the problem of inferring invariants from C. Can such queries and algorithms
nonetheless be implemented on top of the Hoare-query model (which, as we have seen, is very
rich)?

We prove that in general the answer is no. We show that neither equivalence nor membership
queries can be simulated by a polynomial number of Hoare queries. The proof considers a
class C for which (1) there are efficient concept learning algorithms that use a polynomial (or
subexponential) number of equivalence queries, or a polynomial number of both equivalence
and membership queries, to learn formulas from C, whereas (2) an exponential lower bound for
Hoare-query model exists. The class C is the set of short CNF formulas that are antimonotone,
namely, where variables appear only negated. The upper bounds in exact concept learning are
due to Angluin [Ang87b], and the lower bound for the Hoare-query model is the same lower
bound discussed above, with the extra observation that the proof uses transition systems that
use only monotone invariants.

These results stem from the challenge of complex reachability of the transition system, which
is unique to invariant inference. Indeed, our result separating the Hoare-query model from the
ICE model, which involves an upper bound on (a very simple) invariant inference algorithm,
depends on “neutralizing” reachability-related complications by considering the very special case
where every reachable state is reachable in only one step. The topic of how invariant inference
algorithms can cope with more complex reachability is the subject of Chapters 4 and 5.

Counterexamples in Invariant Learning Are Inherently Ambiguous

Another conclusion that we can draw from the impossibility of implementing concept-learning
queries focuses on the forms of counterexamples that these use, compared to invariant inference.
Classically, learning uses examples labelled positive or negative, and seeks to find the correct
classifier that distinguishes them. In exact learning, this manifests in that when the learner
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receives the differentiating counterexample σ, the learner knows whether σ is a model of the
unknown concept (by checking whether σ is a model of the proposed candidate, and negating
the answer). In contrast, the natural counterexample to a candidate inductive invariant, a
counterexample to induction, is a pair of states, (σ, σ′), such that σ is a negative example or σ′

is a positive example, and the learner cannot tell which is the case. Indeed, this is Garg et al.’s
motivation for ICE Learning [GLMN14]—it is unclear how to implement the teacher if it is to
return just one example. Our results prove that indeed there is no way to efficiently implement
such a teacher using Hoare queries.

This result can also be cast in terms of pure learning: counterexamples to induction are
harder for concept learning. For a moment, let us forget all about verification, and focus on the
problem of learning, specifically learning from equivalence queries. Recall that in this setting,
there is an unknown formula ψ, the learner iteratively proposes candidate formulas θ, and the
teacher responds with a counterexample until the learner succeeds in producing θ ≡ ψ. Now
suppose that instead of the differentiating counterexamples studied in the classical learning
literature, which always constitute a single example σ such that σ 6|= ψ, σ |= θ or σ |= ψ, σ 6|= θ,
the form of counterexamples that the teacher provides are implication examples [GLMN14]:
pairs (σ, σ′) such that σ 6|= ψ, σ |= θ or σ′ |= ψ, σ′ 6|= θ. Our results imply that this form of
counterexamples is weaker, namely, it is harder to learn from such counterexamples: there is a
class of formulas for which the number of queries a learner requires when the teacher provides
implication examples is asymptotically larger than the number of queries that suffice when the
learner provides classical differentiating examples. As implication examples are the concept-
learning incarnation of counterexamples to induction, this attests to the inherent ambiguity of a
counterexample to induction: it is ever unclear whether the candidate should be strengthened
to exclude the pre-state (since the case is σ 6|= ψ, σ |= θ), or weakened to include the post-state
(since the case is σ′ |= ψ, σ′ 6|= θ)—unless more information is available, as is the case in our
results in Chapter 4.

More generally, this result demonstrates that the convergence rate of learning in Counterexample-
Guided Inductive Synthesis [e.g. STB+06, JGST10, JS17] depends on the form of examples.

1.3.2 Upper Bounds for Interpolation-Based Invariant Inference (Chapter 4)

As the above lower bounds demonstrate, to infer inductive invariants, it is not enough to
know that an invariant of manageable syntactic form exists for the given transition system;
algorithms must rely on some additional properties of the transition system to find this invariant.
In Chapter 4 we focus on conditions that shed light on how this is achieved in interpolation-based
invariant inference, the first—and extraordinarily influential—approach to SAT-based invariant
inference, which was pioneered by McMillan [McM03].

Essentially, an interpolant generalizes a proof of bounded unreachability—that the system
cannot reach a bad state in k steps (invoking bounded model checking [BCCZ99])—into (what
is hopefully) a proof of unbounded unreachability, namely, a part of the inductive invariant.



12 Chapter 1. Introduction

Figure 1.1: The (outer) boundary of an in-
variant I = x ∧ y ∧ z, denoting the singleton
set containing the far-top-right vertex of the 3-
dimensional Boolean hypercube, {(1, 1, 1)}. Its
neighbors are I’s boundary (depicted in red):
{(1, 1, 0), (1, 0, 1), (0, 1, 1)}. The rest of the ver-
tices are in ¬I but not in the boundary (de-
picted in gray). (Illustration inspired by [O’D14,
Fig. 2.1].)

Figure 1.2: An illustration of the fence condi-
tion. The boundary ∂−(I) of the invariant (the
states in ¬I nearest to I, in red) are backwards
k-reachable (reach a bad state in k steps, for
example by the transitions depicted by the ar-
rows), but not all states in ¬I are backwards
k-reachable (or even backwards reachable at all,
in the dotted area).

The present view is that interpolants strive to abstract away from irrelevant aspects, which
is “heuristic in nature” [McM18]. This remark alludes to the fact that each bounded proof
may allow several interpolants, which greatly differ from the perspective of invariant inference.
Perhaps for this reason, there is currently no theoretical understanding of the efficiency of
interpolation-based algorithms. In contrast to this view, we identify conditions that facilitate a
theoretical complexity analysis of this algorithmic approach.

We target the line of work of interpolation-based inference that is based on a model-based
computation of interpolants [SNA12, CIM12, BGKL13, DA16], whose propositional version was
inspired by PDR [CIM12]. We show how a condition on transition systems and invariants, called
the fence condition, (partially) bridges the gap between exact learning and invariant inference,
which allows us to derive efficient upper bounds for the existing algorithm [CIM12, BGKL13] in
inferring monotone DNF invariants. This is the first result showing a polynomial upper bound
on the complexity with access to a SAT solver as an oracle of an interpolation-based invariant
inference algorithm. The same fence condition also allows us to devise new inference algorithms,
based on more advanced exact learning algorithms, with efficient complexity results for even
larger syntactic classes of invariants.

The Fence Condition

The fence condition relates reachability in the transition system and the geometric notion of the
boundary of the invariant. Recall that invariants denote sets of states. The boundary of the
invariant I, denoted ∂−(I), is the set of states whose Hamming distance from I is one—states
in ¬I where flipping just a single bit results in a state that belongs to I. (See Fig. 1.1 for an
illustration.) The k-fence condition requires that all the states in I’s boundary ∂−(I) reach
a bad state in at most k steps. (See Fig. 1.2.) Intuitively, the states in the boundary are
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important, because “perturbing” a single bit is the difference between being included in I and
being excluded by it (somewhat analogously to error-correcting codes). Through their backwards
reachability in k steps, the fence condition guarantees that the interpolation algorithm, when it
uses k for the model checking bound, never “overshoots” to invariants that are weaker than I
(even though I itself is unknown to the algorithm). Every safe propositional system admits an
invariant that is k-fenced for some finite k, but this is most useful when (1) k is not prohibitively
large, and (2) the invariant has a short representation. The central insight of the fence condition
is that invariant inference behaves well when the reachability of a particular set of states, ∂−(I),
behaves well, and that this set is smaller than the entire ¬I.

Upper Bound for the Algorithm By Chockler et al., Bjørner et al. [CIM12, BGKL13]

The fence condition opens up the possibility to obtain efficiency results for invariant inference.
We prove that if the fence condition holds and the invariant has a short disjunctive normal
form (DNF) representation that is monotone (all variables appear only positively), then the
interpolation algorithm by Chockler et al. and Bjørner et al. [CIM12, BGKL13] converges in
a linear number of iterations. These results also imply that a dual model-based interpolation
algorithm can efficiently infer invariants that have a short conjunctive normal form (CNF) that
is antimonotone (all variables appear only negatively) under a dual version of the fence condition.
This dual algorithm is of special interest, because it is reminiscent of simplifying PDR’s frames
into accurate bounded model checking (we pick up on the comparison between this and PDR
when we study overapproximation in PDR later).

Our upper bound for model-based interpolation is inspired by the upper bound for exact
learning monotone DNF formulas by Angluin [Ang87b], and uses a key technical property of
monotone formulas that goes back to Quine [Qui54], which was also used in Valiant’s famous
paper [Val84]. In fact, the mechanics of generalization in the learning algorithms involve the
minimization of a term by repeatedly dropping literals (see the exposition by Aizenstein and
Pitt [AP95]), which is very similar to how the interpolation-based algorithm operates (as well
as PDR). The difference, of course, is the criterion for when a literal can be dropped: in
learning, as long as a subset/membership query holds; in interpolation, as long as a bounded
model checking query holds. The similarities between the learning and interpolation algorithm
prompt us to investigate whether there is a systematic method to convert learning algorithms
to interpolation-based invariant inference algorithms, based on the fence condition. As we show
next, such a method exists; applied to a learning algorithm for DNF formulas (essentially as
formulated in Figure 2 of [AP95]), it produces exactly the inference algorithm by Chockler et al.
and Bjørner et al. [CIM12, BGKL13].

Efficient Inference from Exact Learning and the Fence Condition

Trying to implement an exact learning algorithm as an invariant inference algorithm runs into the
problem, explained above in §1.3.1, that this is impossible to do—in general. However, when the
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fence condition holds, we show that some forms of membership and equivalence queries can be
implemented in invariant inference. If the exact learning algorithm is guaranteed to query only
on examples that are positive or have Hamming distance one from a positive example, and the
fence condition holds, then membership to the invariant can be answered by checking whether a
bad state can be reached in k steps (as done in the model-based interpolation algorithm discussed
above). The result is an invariant inference algorithm with similar complexity guarantees on the
number of queries, albeit different queries—extended Hoare queries. Using this transformation,
we obtain an algorithm that efficiently infers inductive invariants beyond the previous result,
from the class of almost-monotone DNF: formulas where at most O(1) of terms contain negated
variables. This is achieved by the transformation of Bshouty’s Λ-algorithm for exact learning a
formula with a known monotone basis [Bsh95].

Bshouty’s paper goes on to perform exact learning to an appealing class of formulas:
those that can be expressed using both a short DNF formula and as a (different) short CNF
formula (CDNF). Unfortunately, this algorithm’s queries do not satisfy the requirements for the
transformation discussed above. We show a different transformation that can implement any
exact learning algorithm from equivalence and membership queries—without restrictions on its
queries to query only on specific candidates or examples—at the cost of a stronger condition
on the transition system and the invariant, a double-sided version of the fence condition: that
if σ+ ∈ I, σ− ∈ ¬I are of Hamming distance one, then both σ− can reach a bad state in k

steps (this is the fence condition) and also σ+ is reachable from an initial state in k steps.
When the invariant satisfies this, every membership query can be implemented (by walking from
an initial state to a bad state while performing bounded model checking in both directions).
Unfortunately, this condition seems overly restrictive—for example, at most one invariant can
satisfy the double-sided fence condition—and so we proceed to invent a specialized algorithm
for inferring CDNF invariants.

Efficient Inference of CDNF Invariants

To achieve efficient inference of CDNF invariants that relies on the (one-sided) fence condition,
rather than the two-sided fence condition as needed for the translation of Bshouty’s learning
algorithm to invariant inference, we need to devise a specialized inference algorithm, that is
inspired by the CDNF learning algorithm, but differs from it in significant ways. We present an
algorithm that is guaranteed to infer an inductive invariant whenever there exists an invariant I
that satisfies the fence condition, in a number of queries polynomial in the DNF- and CNF-size
of I. In essence, the algorithm is similar to the algorithm by Chockler et al. and Bjørner
et al. [CIM12, BGKL13], except that in each iteration our algorithm uses all valid minimal
terms, instead of just one as in the original algorithm. This makes the candidate invariant grow
more quickly, potentially converging faster to an invariant, while relying on the fence condition
to ensure that this does not overshoot beyond I. (The idea of taking all generalizations is
central in Chapter 5.) We use the ideas from Bshouty’s Λ-algorithm [Bsh95] in order to find a
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compact representation of the disjunction of all valid terms that result from a counterexample
to induction.

The algorithm is inspired by Bshouty’s CDNF algorithm, but its structure is significantly
different, and itself relies on the fence condition. Indeed, it seems that our algorithm cannot
be explained as a concept learning algorithm translated to invariant inference; targeting the
invariant inference problem directly enables us to prove stronger results about CDNF inference.

The central technical innovation we use in our CDNF inference is an algorithm that performs
super-efficient monotonization. Bshouty [Bsh95] provided an algorithm to compute the mono-
tonizationMb(ϕ), but the complexity of this algorithm depends on the DNF size of the original
formula ϕ; this stands in contrast to the DNF size of the outputMb(ϕ), which is the quantity
that controls our algorithm’s efficiency, which which may be much smaller (and never larger).
To use the super-efficient monotonization procedure for invariant inference, the key idea is that
the monotonization of an invariant satisfying the fence condition can be computed through the
monotonization of the set of states reachable in at most k steps, and our new monotonization
algorithm allows to do this efficiently even when the latter set is complex to represent exactly.

Robustness of the Fence Condition

A significant open problem in formal verification is the robustness of a method with respect
to revisions in the code. For example, suppose the inference algorithm succeeds in inferring
an invariant—will this hold after a simple change? This problem is very difficult in general;
we address it in the context of the model-based interpolation algorithm, and study whether
the fence condition holds after a transformation of the program. We show that very simple
transformations preserve the fence condition: variable renaming, and taking conjunctions and
disjunctions of properties. In contrast, after a new variable is introduced to capture some
meaning over the existing variables (in the hope of aiding inference), an invariant that does not
refer to the new variable cannot satisfy the fence condition. Similarly, a natural transformation
that attempts to reduce non-monotone invariants to monotone ones is unsuccessful.

1.3.3 Overapproximation in Property-Directed Reachability From the Mono-
tone Theory (Chapter 5)

The fence condition teaches us that to successfully find an invariant, it is enough that reachability
behaves well with respect to only a subset of the states. However, the fence condition does
not go far enough, because those states still need to be reachable in a small number of steps.
This seems in line with the basic idea of interpolation-based invariant inference: check exact
reachability in a small number of steps, then generalize. In Chapter 5 we argue that this is not
the case for PDR: this algorithm mitigates the challenge of reachability in what is fundamentally
a non-exact way. The idea is that in PDR there is latent abstraction of reachability in each
step; applied successfully this is a form of abstract interpretation. The analogy to the fence
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condition is when the reachability of the boundary may involve “jumps”, between states that
are not actually reachable, yet are connected when viewed through the abstraction.

This is a new way to think about PDR. The theory of abstract interpretation [CC77] provides
a rich framework to devise invariant inference algorithms, but the research community views PDR
and abstract interpretation as mostly unrelated techniques. In particular, a previous investigation
of PDR using the theory of abstract interpretation [RS16] had to employ abstractions that are
both far from the usual practice of abstract interpreters, and are also too rich in that they
can accommodate many algorithms that are unrelated to PDR (see §5.9). As a result, there is
currently no conceptual framework that explains how and when PDR is able to overapproximate
beyond exact reachability, which is a key challenge to every invariant inference algorithm.
We achieve a surprising result: the monotone theory from exact concept learning [Bsh95]
enables viewing PDR as classical abstract interpretation (in a new domain). This draws a deep
connection between these techniques, and identifies a form of abstraction performed by PDR
that distinguishes it both from explicit enumeration and from other algorithmic approaches.

Λ-PDR: Lower Bounding the Overapproximation of PDR

PDR constructs a sequence of formulas, called frames, by blocking counterexamples (states
that can reach bad states). Given a counterexample, the algorithm conjoins to the frame a
generalization clause that blocks the counterexample and also additional states, but not states
reachable in one step from the previous frame (we explain PDR in detail in §5.1.2). Theoretically
analyzing the behavior of the algorithm is complicated by its highly nondeterministic nature—it
depends on the choices of counterexamples and generalization clauses (many of them affected in
practice by idiosyncrasies of the underlying SAT solver), and different choices may lead PDR
down radically different paths. To ameliorate this, we present an algorithm, called Λ-PDR,
which resolves this nondeterminism by using all possible answers to these queries, blocking
all counterexamples with all admissible generalizations. The resulting frames are tighter than
those of PDR, as they include all lemmas that PDR could learn in any execution (§5.1.3). This
provides a theoretical handhold to study PDR: whatever overpproximation we can show is
performed in Λ-PDR, is also present in standard PDR’s frames.

Overapproximation in Subsequent Frames of Λ-PDR Is Characterized by the Mono-
tone Theory

Λ-PDR uncovers a key aspect of the generalization performed by standard PDR. The frames
are usually viewed as a sequence of overapproximations that prove bounded safety with an
increasing bound. While correct, this does not capture the full essence of generalization in
PDR. In particular, naive exact forward reachability also computes such a sequence, albeit a
trivial one. We show that in Λ-PDR—and hence, in PDR—there is an inherent abstraction that
includes additional states in each frame beyond exact forward reachability.
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We show that the relation between successive frames in Λ-PDR is characterized by an
operation from Bshouty’s monotone theory [Bsh95]. The idea is that taking all the generalizations
that block a state b amounts to computing the least b-monotone overapproximation of the post-
image of the previous frame (§5.2). The result of this operation always contains the post-image,
and can include many more states, depending on the Hamming-geometrical alignment of the
post-image and the backward reachable states.

Λ-PDR as Abstract Interpretation

Applied successively, the overapproximation that Λ-PDR performs results in a form of abstract
interpretation. To capture this, we introduce a new abstract domain, of the formulas for which
backward reachable states form a monotone basis. We show that Λ-PDR can be viewed as
computing Kleene iterations with the best abstract transformer in this domain. Standard PDR
also operates in the same domain, and its frames overapproximate the Kleene iterations that
Λ-PDR performs. This is the first time that the theory of state abstraction is able to explain
property-directed generalization (§5.3).

Gaps Between Λ-PDR and Exact Forward Reachability

The abstract interpretation procedure of Λ-PDR leads to exponential gaps from algorithms
that do not perform such overapproximation (§5.7). We first show an exponential gap between
the number of frames in Λ-PDR and the number of iterations of exact forward reachability,
establishing the importance of frames for faster convergence. We then show an exponential gap
between the number of frames in Λ-PDR and the unrolling depth in the dual interpolation-based
algorithm studied in Chapter 4, showing how the successive overapproximation of Λ-PDR can go
beyond the fence condition in tackling the problem of taming the transition system’s reachability.

Bounds on the Number of Frames in Λ-PDR

When does the abstract interpretation procedure of Λ-PDR converge in few iterations? We
prove an upper bound on the number of frames in Λ-PDR in terms of the DNF size of certain
“monotonizations” of the transition relation. Although not always tight, this result sheds light
on the benefit of the abstraction in certain cases. The proof brings together results from the
monotone theory, abstract interpretation, and diameter bounds for transitions systems. This is
done by constructing a (hyper)transition system where the states reachable in i steps correspond
to the ith Kleene iteration, and bounding the system’s diameter (§5.4–§5.5).

Complexity Results for Λ-PDR

We show complexity results for Λ-PDR by combining our bound on the number of iterations
with our super-efficient monotonization algorithm (discussed above in §1.3.2), yielding a bound
on the number of SAT calls that is not much worse than the bound on number of iterations.
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The key idea is that the DNF size of an abstract iterate is bounded by a quantity related to
monotonizations of the transition relation, and our super-efficient monotonization algorithm
allows to compute it efficiently w.r.t. the same quantity even though the DNF size of the exact
post-image of the previous iterate may be larger.

PDR’s Looser Frames Can Be Beneficial

PDR differs from Λ-PDR in that it does not perform the best abstraction in our abstract domain
(its frames are still elements of the abstract domain, but potentially less precise). We show that
in some cases the abstraction of Λ-PDR is overly precise, whereas the looser frames of standard
PDR converge in fewer and smaller frames (§5.8).

1.4 Unifying Threads

A new learning domain, with familiar themes. This thesis casts invariant inference as
a form of learning, and many of the results draw on comparisons with exact concept learning.
Chapter 3 sets up algorithmic models for invariant learning inspired by concept learning, proves
separation results between such models, and further expands on lower bounds showing the
fundamental differences between invariant learning and concept learning. The similarities
between invariants and concepts bring about the upper bounds of Chapter 4, using concept
learning algorithms to understand and derive invariant learning algorithms. Chapter 5 builds
extensively on latent similarities between the mechanisms of property-directed reachability and
the monotone theory from concept learning.
Principles of SAT-Based invariant inference. Our examination of the principles of invari-
ant inference was provoked by the tantalizing intricacy of PDR. In a sense, this thesis is organized
around trying to understand PDR through increasingly sophisticated over-simplifications of
PDR:

• In Chapter 3, we study a version of PDR with only one frame that incrementally infers
invariants that are completely reachable in one step.

• In Chapter 4, we study a version of PDR that replaces the use of a sequence of frames by
bounded model checking (the dual model-based interpolation algorithm we study), with
invariants that satisfy the fence condition.

• In Chapter 5, we study a version of PDR that does employ frames for generalization, which
goes beyond the fence condition, but sacrifices efficiency due to the use of all possible
generalizations.

We hope that further work will eventually lead to efficient complexity results for PDR itself.
As we have seen, this attempt to untangle PDR has led to insights about invariant learning

in general.



Chapter 2

Background

This chapter presents background and notation for invariant inference and exact concept learning,
both in the realm of propositional logic. This includes background on algorithms—for both
problems—that are studied in length in subsequent chapters.

2.1 Propositional Logic

Let Σ be a propositional vocabulary, a finite set of Boolean variables {p1, . . . , pn}. The well-
formed formulas, wff(Σ), are defined in the usual way, by structural induction, with the unary
connective of negation (¬) and the binary connectives of conjunction (∧), disjunction (∨), and
implication →. Formally, an atom is well-formed formula, pi ∈ wff(Σ); if ϕ ∈ wff(Σ), then
¬ϕ ∈ wff(Σ); if ϕ1, ϕ2 ∈ wff(Σ), then ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ϕ1 → ϕ2 ∈ wff(Σ); the set wff(Σ) is the
minimal set of formulas that satisfies these properties.

A valuation x is a mapping from Σ to true or false (or 1/0). We denote the value that x
assigns to p by x[p]. We write x[p 7→ z] for the valuation obtained from x by mapping the value
z to p and leaving other variables unchanged. The semantics of the satisfaction relation x |= ϕ

for a valuation x and a formula ϕ ∈ wff(Σ) are defined classically. A formula ϕ is satisfiable
is there is at least one valuation x s.t. x |= ϕ, and is valid if x |= ϕ for every valuation x. We
write ϕ =⇒ ψ to denote that the formula ϕ→ ψ is valid.

Literals, Cubes, Clauses, CNF, DNF. A literal ` is a variable p (positive literal) or its
negation ¬p (negative literal). A clause is a disjunction of literals. A term, or cube, is a
conjunction of literals; at times, we also refer to it as a set of literals. The domain of a cube d,
denoted dom(d), is the set of variables that appear in it (positively or negatively). The cube of
a valuation x, denoted cube(x), is the (full—with domain Σ) cube that is the conjunction of all
the literals that are satisfied in x. The only satisfying assignment of cube(x) is x.

A formula is in disjunctive normal form (DNF) if it is a disjunction of terms. DNFm is the
set of all DNF formulas with at most m terms. A formula is in conjunctive normal norm (CNF)
if it is a conjunction of clauses. CNFm is the set of all CNF formulas with at most m clauses.
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2.2 Invariant Inference

2.2.1 States, Transitions Systems, and Inductive Invariants

We consider safety problems defined via formulas in propositional logic. Throughout, fix a
propositional vocabulary Σ of n propositional variables (|Σ| = n).
States. A state is a valuation to Σ. The set of all possible states is denoted States[Σ].
Transition systems. A transition system is a triple TS = (Init, δ,Bad) where Init,Bad ∈ wff(Σ)
define the initial states and the bad states, respectively, and δ ∈ wff(Σ ] Σ′) defines the transition
relation, where Σ′ = {x′ | x ∈ Σ} is a copy of the vocabulary used to describe the post-state
of a transition. A transition is a pair of states σ, σ′ such that (σ, σ′) |= δ, where in the latter
equation the interpretation of Σ is according to σ and Σ′ according to σ′. Given a ϕ ∈ wff(Σ), we
denote by ϕ′ the formula obtained from ϕ by replacing each variable p ∈ Σ with its counterpart
p′ ∈ Σ′. If Σ̃, Σ̃′ are distinct copies of Σ, δ[Σ̃, Σ̃′] denotes the substitution in δ of each p ∈ Σ by
its corresponding variable in Σ̃ and likewise for Σ′, Σ̃′. A class of transition systems, denoted P,
is a set of transition systems.
Safety. An execution is a sequence σ0, σ1, . . . (finite or infinite) of states such that σ0 |= Init
and (σi, σi+1) |= δ. A state is reachable (from the initial states) if it belongs to some execution
of the system. A transition system TS is safe if all the states that are reachable from the initial
states satisfy ¬Bad.
Inductive invariants. An inductive invariant for TS is a formula I ∈ wff(Σ) such that
(i) Init =⇒ I, (ii) I ∧ δ =⇒ I ′, and (iii) I =⇒ ¬Bad. In the context of propositional logic, a
transition system is safe if and only if it has an inductive invariant.
Counterexamples to induction. When I is not inductive, a counterexample to induction is a
transition σ, σ′ such that (σ, σ′) |= I ∧ δ ∧ ¬I ′.
Post-image. Given a set of states S ⊆ States[Σ], the post-image is δ(S) = {σ′ | ∃σ ∈ S. (σ, σ′) |= δ}.
The reflexive post-image is δ(S) = δ(S) ∪ S. We extend this notation from sets of states to
formulas in the natural way, so that δ(ψ) is δ(S) where S is the set of satisfying valuations of ψ,
etc.
Bounded reachability and bounded model checking. Given a transition system (Init, δ,Bad)
and a bound k ∈ N, the set of k-forward reachable states—the states σ such that there is an
execution of δ of length at most k starting from a state in Init and ending at σ—are δk(Init).
The set of k-backward reachable states—those that can reach a state in Bad along some execution
of length at most k—are

(
δ−1)k (Bad) = {σ | δk({σ}) ∩ Bad 6= ∅}. Bounded model checking

(BMC) [BCCZ99] checks whether a set of states described by a formula ψ is

• forwards unreachable, checking δk(Init) ∩ ψ ?= ∅. As a SAT query, this is implemented by
checking whether Init(Σ0) ∧∧k−1

i=0 δ(Σi,Σi+1) ∧
(∨k

i=0 ψ(Σi)
)
is unsatisfiable; or

• backwards unreachable, checking δk(ψ) ∩ Bad ?= ∅. As a SAT query, this is implemented
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by checking whether ψ(Σ0) ∧∧k−1
i=0 δ(Σi,Σi+1) ∧

(∨k
i=0 Bad(Σi)

)
is unsatisfiable.

(Σ0, . . . ,Σk are distinct copies of the vocabulary Σ.) A k-BMC check is either one, with bound
k. With similar notation, the set of (forward-) reachable states as δω(Bad) = ⋃∞

i=0 δ
i(Init), and

the set of backward-reachable states is
(
δ−1)ω (Bad) = ⋃∞

i=0
(
δ−1)i (Bad).

Duality of Backward- & Forward- Reachability. Invariant inference algorithms often
employ forms of forward- and backward- reachability analysis in sophisticated ways. Their roles
in the algorithm can always be reversed, giving rise to the dual (or reverse) algorithm.1 This
is obtained by executing the original algorithm on a dual of the transition system: The dual
transition system is (Init, δ,Bad)∗ def= (Bad, δ−1, Init) where δ−1 is the inverse (between pre- and
post-states) of the transition relation, obtained from δ by switching the roles of Σ and Σ′. The
dual of a class of transition systems is the class of dual transition systems. The dual of a formula
is ϕ∗ def= ¬ϕ. The dual of a class of formulas is the class of dual formulas. We have that I is
an inductive invariant w.r.t. (Init, δ,Bad) iff I∗ is an inductive invariant w.r.t. (Init, δ,Bad)∗.
For an algorithm A, The dual algorithm A∗ is the algorithm that, given as input (Init, δ,Bad),
executes A on (Init, δ,Bad)∗ and returns the dual invariant. For this thesis, the dual algorithm
is useful to translate complexity results from the inference of CNF invariants to the inference of
DNF invariants and vice versa (see Lemma 3.2.5).

2.2.2 Invariant Inference Algorithms

This section provides very brief technical introductions to the invariant inference algorithms
that we study in depth later in the thesis.

Exact Forward- and Backward-Reachability

Exact forward reachability computes the set of states reachable in i steps, Ri = δi(Init), with
increasing values of i, until convergence Ri = Ri+1, in which case Ri is the set of all reachable
states (in any number of steps), and in particular an inductive invariant (the so-called least
fixed-point). The dual algorithm, exact backward reachability, computes Bi =

(
δ−1)i (Bad) with

increasing values of i, until convergence Bi = Bi+1, in which case Bi is the set of states that can
reach a bad state (in any number of steps), and ¬Bi is an inductive invariant (the so-called
greatest fixed-point).

Another way to express these algorithms—which in itself is not efficient, but inspires more
efficient algorithms—is when the computation of the exact post-image (or exact pre-image) is
done by enumerating states one by one. In that case, a simpler presentation of these algorithms
(blurring somewhat the distinction between intermediate iterations but converging to the same
invariants) is as follows: Exact forward reachability operates by starting from the candidate

1This is true when the transition relation is expressed as by a formula, as we assume here, and as is standard
in software model-checking. When the algorithm operates with a different representation of the transition relation,
complications arise; thus for example ternary simulation in PDR [EMB11] uses a netlist repsentation of the
hardware circuit, necessitating new ideas for implementing the reverse algorithm [SS17].
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ϕ = Init, iteratively sampling counterexamples to induction of, (σ, σ′) |= ϕ∧δ∧ϕ′, and updating
the candidate to ϕ∨ cube(σ′). Likewise, backward forward reachability operates by starting from
the candidate ϕ = ¬Bad, iteratively sampling counterexamples to induction, (σ, σ′) |= ϕ∧ δ ∧ϕ′,
and updating the candidate to ϕ ∧ ¬cube(σ′).

More advanced algorithms are often informally referred to as some mix of forward and
backward reachability.

IC3/PDR

Algorithm 1 PDR [Bra11, EMB11]
1: procedure PDR(Init, δ, Bad)
2: Fpdr

0 ← Init
3: N ← 0
4: while ∀1 ≤ i ≤ N. Fpdr

i 6=⇒ Fpdr
i−1 do

5: Fpdr
N+1 ← true

6: while Fpdr
N+1 6=⇒ ¬Bad do

7: for σb ∈ Fpdr
N+1 ∧ Bad do

8: block(σb, N + 1)

9: N ← N + 1
10: return Fpdr

i such that Fpdr
i =⇒ Fpdr

i−1

11: procedure block(σb, i)
12: if i = 0 then
13: unsafe
14: while δ(Fpdr

i−1) 6=⇒ ¬σb do
15: take σ s.t. σ |= Fpdr

i−1, (σ, σb) |= δ

16: block(σ, i− 1)

17: take c minimal s.t. c ⊆ ¬σb and δ(Fpdr
i−1) =⇒ c

18: and Init =⇒ c

19: for 1 ≤ j ≤ i do
20: Fpdr

j ← Fpdr
j ∧ c

IC3/PDR [Bra11, EMB11] maintains a sequence of formulas Fpdr
0 ,Fpdr

1 , . . ., called frames, each
of which can be understood as a candidate inductive invariant. The sequence is gradually
modified and extended throughout the algorithm’s run. It is maintained as an approximate
reachability sequence, meaning that (1) Init =⇒ Fpdr

0 , (2) Fpdr
i =⇒ Fpdr

i+1, (3) δ(F
pdr
i ) =⇒ Fpdr

i+1,
and (4) Fpdr

i =⇒ ¬Bad. These properties ensure that Fpdr
i contains the set of states reachable

in i steps. (But Fpdr
i =⇒ ¬Bad does not imply that a bad state is unreachable in any number

of states.) The algorithm terminates when one of the frames implies its preceding frame
(Fpdr

i =⇒ Fpdr
i−1), in which case it constitutes an inductive invariant, or when a counterexample

trace is found. A simple variant of how the frames are constructed appears in Alg. 1, and
explained in Chapter 5 (§5.1.2). Essentially, the algorithm produces counterexamples, which
are bad states or states that can reach a bad state, and refines the frames to exclude them.
Aiming for efficient convergence, PDR chooses to generalize and exclude more states with every
counterexample. A basic form of generalization starts with cube(σ) and drops literals as long as
the result is still unreachable from the previous frame. (As we will show, this procedure links
exact learning and invariant inference, and will play an important role in all chapters of the
thesis.)

For a more complete presentation of PDR and its variants as a set of abstract rules that may
be applied nondeterministically see e.g. [HB12, GI15]. The validity of implications is checked
using a SAT solver. For example, checking whether δ(Fpdr

i−1) =⇒ c in line 17 is implemented by
checking the satisfiability of the formula Fpdr

i−1 ∧ δ ∧ ¬c′.
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Interpolation-Based Inference

Algorithm 2 Interpolation-based invariant inference [McM03]
1: procedure Itp-Inference(Init, δ, Bad, k)
2: ϕ← Init
3: while ϕ not inductive do
4: if δk(ϕ) ∩ Bad 6= ∅ then
5: restart with larger k
6: find χ such that δ(ϕ) =⇒ χ, δk−1(χ) ∩ Bad = ∅
7: ϕ← I ∨ χ
8: return ϕ

The idea of interpolation-based algorithms, first introduced by McMillan [McM03], is to generalize
proofs of bounded unreachability into elements of a proof of unbounded reachability, utilizing
Craig interpolation. Briefly, this works as follows: encode a bounded reachability from a set
of states ϕ in k steps, and use a SAT solver to find that this cannot reach Bad. In that
case the SAT solver can produce an interpolant χ: a formula representing a set of states that
(i) overapproximates the set of states reachable from ϕ in k1 steps, and still (ii) cannot reach Bad
in k2 steps (any choice k1 + k2 = k is possible). Thus χ overapproximates concrete reachability
from ϕ without reaching a bad state, although both these facts are known in only a bounded
number of steps. The hope is that χ would be a useful generalization to include as part of
the invariant. The original algorithm [McM03], displayed in Alg. 2, sets some k as the current
unrolling bound, starts with ϕ = Init, obtains an interpolant χ with k1 = 1, k2 = k − 1, disjoins
the interpolant to ϕ, and continues in this fashion, until an inductive invariant is found, or
Bad becomes reachable in k steps from ϕ, in which case k is incremented and the algorithm is
restarted. The use of interpolation and generalization from bounded unreachability has been
used in many works since [e.g. VG09, McM06, JM07, HJMM04, VGS13]. Combining ideas from
interpolation and PDR has also been studied [e.g. VG14]. In Chapter 4 we study in detail a
variant of this algorithm that computes interpolants by sampling post-states of the current
candidate [CIM12, BGKL13].

ICE

The ICE framework [GLMN14, GNMR16] is a learning framework for inferring invariants from
positive, negative and implication counterexamples. (It was later extended to general Constrained-
Horn Clauses [END+18].) Here we review the framework using the original terminology and
notation; in Chapter 3 (§3.5.1) we use a related formulation that emphasizes the choice of
candidates.

In ICE learning, the teacher holds an unknown target (P,N,R), where P,N ⊆ D,R ⊆ D×D
are sets of examples. The learner’s goal is to find a hypothesis H ∈ C s.t. P ⊆ H,N ∩H = ∅,
and for each (x, y) ∈ R, x ∈ H =⇒ y ∈ H. The natural way to cast inference in this framework
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is, given a transition system (Init, δ,Bad) and a set of candidate invariants L, to take D as the
set of program states, P a set of reachable states including Init, N a set of states including
Bad from which a safety violation is reachable, R the set of transitions of δ, and C = L.
Iterative ICE learning operates in rounds. In each round, the learner is provided with a
sample—(E,B, I) s.t. E ⊆ P,B ⊆ N, I ⊆ R—and outputs an hypothesis H ∈ C. The teacher
returns that the hypothesis is correct, or extends the sample with an example showing that H
is incorrect. The importance of implication counterexamples is that they allow implementing
a teacher using a SAT/SMT solver without “guessing” what a counterexample to induction
indicates [GLMN14, LMN16]. Examples of ICE learning algorithms include Houdini [FL01] and
symbolic abstraction [RSY04, TLLR15], as well as designated algorithms [GLMN14, GNMR16].

Theoretically, the analysis of Garg et al. [GLMN14] focuses on strong convergence of the
learner, namely, that the learner can always reach a correct concept, regardless of how the teacher
chooses to extend samples between rounds. We will say that the learner is strongly-convergent
with round-complexity r if for every ICE teacher, the learner finds a correct hypothesis in at most
r rounds, provided that one exists. We extend this definition to a class of target descriptions in
the natural way.

Abstract Interpretation

A pillar of verification and static analysis, pioneered by Cousot and Cousot [CC77], the central
idea of abstract interpretation is to infer inductive invariants by “interpreting” the program
over “abstract” semantics induced by the use of an abstract domain. In a nutshell, whereas the
reachable states of the system can be accumulated by repeatedly applying the post-image operator,
R0 = Init, Ri+1 = δ(Ri), until convergence, abstract interpretation works by repeatedly applying
an abstract transformer ξi+1 = δ](ξi) over an algebraic lattice, with the property that the abstract
element ξ0 represents a set of states that includes at least R0, and δ](·) yields an abstract
element that includes at least the original, exact post-image δ(·). (Chapter 5 provides a more
technical introduction to abstract interpretation (§5.3.1).)

Take, for example, the technique of conjunctive predicate abstraction [FQ02, GS97]. Each
abstract element is a subset of predicates, and it represents the set of states that satisfy all the
predicates in the subset. We take ξ0 to be the set of all predicates that hold in every initial state.
δ] takes an abstract element ξ, and returns the set of predicates that hold in all the states in
the post-image of the set of states represented by ξ. Then it can be shown that this procedure
converges to the strongest inductive invariant that is expressible in this abstract domain, namely,
the conjunction of the predicates that hold in every reachable state of the system.

In predicate abstraction, δ](ξ) is typically computed using a series of SAT queries. Another
notable SAT-based abstract interpretation procedure is symbolic abstraction [RSY04, TLLR15].
Abstract interpretation in richer logics has also been widely studied: with arithmetic [e.g.
CH78, Min06] and quantifiers [e.g. FQ02, LB07, AHH13, AHH15].
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2.3 Exact Concept Learning With Queries

2.3.1 Model and Queries

In exact concept learning [Ang87b], the algorithm’s task is to identify an unknown formula2 ψ

using queries it poses to a teacher. The most studied queries are:

• Membership: The algorithm chooses a state σ, and the teacher answers whether σ |= ψ;
and

• Equivalence: The algorithm chooses a candidate θ, and the teacher returns true if θ ≡ ψ
or a differentiating counterexample otherwise: a σ s.t. σ 6|= θ, σ |= ψ or σ |= θ, σ 6|= ψ.

The prototypical question studied is how many equivalence and membership queries suffice to
correctly identify an unknown ψ from a certain (syntactical) class L.

Another type of query that is less common but will be useful in this thesis is

• Subset: The algorithm chooses a formula θ, and the teacher answers whether θ =⇒ ψ.

Again, the question is how many queries the algorithm requires.
We are also interested in the total number of computational steps the algorithm takes

between queries, to which we refer as the algorithm’s running time.

2.3.2 Exact Learning Monotone Formulas

One of the first classes of formulas to be shown efficiently learnable is the class of monotone
DNF formulas.

Definition 2.3.1 (Monotone DNF). A formula ψ ∈ Mon-DNFm if it is in DNF with m terms,
and variables appear only positively.

For example, (p1 ∧ p3) ∨ (p1 ∧ p2 ∧ p4) is monotone, while (¬p1 ∧ p3) ∨ (p1 ∧ p2 ∧ p4) is not.
The classical property of monotone formulas that make them amenable to efficient learning

concerns their prime implicants:

Definition 2.3.2 (Prime Implicant). A term ∧s, where s is a set of literals, is a prime
implicant of a formula ψ if (∧s) =⇒ ψ, but for every ` ∈ s, (∧ (s \ {`})) 6=⇒ ψ. It is non-trivial
if ∧s 6≡ false.

The virtue of monotone formulas is that their prime implicants are all syntactic terms of the
formula:

Theorem 2.3.3 ([Qui54]). Let s be an non-trivial implicant term of a monotone DNF formula
ψ. Then there is a term ŝ of ψ such that

2In general, a concept is a set of elements; here we focus on logical concepts.
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1. ŝ ⊆ s (as sets of literals).

2. If s is prime, then s = ŝ (as sets of literals). Namely, s is a syntactic term of ψ.

Proof. Let v be the valuation that assigns true to the literals in ψ and false to others; it is
well-defined because p,¬p cannot both appear in s. Then v |= s. Since s is an implicant of ψ,
also v |= ψ. This is a disjunction, so there is some term ŝ of ψ such that v |= ψ. Since ŝ is a
conjunction, v |= ` for every ` ∈ ŝ, and this occurs only when ŝ ⊆ s.

For the second part, if s 6= ŝ, then it is impossible for s to be a prime implicant, since
dropping any ` ∈ s \ ŝ would also yield an implicant of ŝ (since is a conjunction of literals) and
thus of ψ (since it is a disjunction of terms). Hence s = ŝ.

Unate DNF. A similar property holds for the generalization of monotone formulas to unate
formulas:

Definition 2.3.4 (Unate). A formula ψ in DNF/CNF is unate if each variable appears with a
single polarity, that is, every p ∈ Σ is either always negated or always un-negated in terms/clauses
of ψ where p appears.

Corollary 2.3.5. Let s be an non-trivial implicant term of a unate DNF formula ψ. Then there
is a term ŝ of ψ such that

1. ŝ ⊆ s (as sets of literals).

2. If s is prime, then s = ŝ (as sets of literals). Namely, s is a syntactic term of ψ.

Proof. Consider a variable renaming η that maps each p ∈ Σ either to p or to ¬p. Extend η to
formulas in the natural way (by structural induction). Then η(s) is a (prime) implicant of η(ψ)
for every such translation. Choose a translation η that makes η(ψ) monotone. Let s′ be a term
as guaranteed from Thm. 2.3.3 applied to η(ψ), η(s). Choose ŝ such that η(ŝ) = s′.

Results about monotone formulas can sometimes be extended to unate ones, and we indicate
where this can be achieved through essentially the same arguments.

Algorithms

Angluin [Ang87b] proved that there is an algorithm for learning monotone DNF formulas
that uses a polynomial number of equivalence and membership queries. For the purpose
of Chapter 4, we first show a somewhat more intuitive algorithm that also achieves efficient
learning of monotone DNF, albeit uses stronger subset queries instead of membership (and in
addition to equivalence queries); this algorithm’s benefit is that it is appropriate for learning
any DNF formula, although it is provably efficient only when the formula is monotone. Our
presentation is based on Figure 23 in Aizenstein and Pitt [AP95] In the code, SubsetQuery (θ)
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Algorithm 3 DNF learning [Val84, Ang87b,
AP95]
1: procedure Learn-DNF
2: ϕ← false
3: while σ′ ← EquivalenceQuery (ϕ) is not ⊥ do
4: d ← cube(σ′)
5: for ` in d do
6: // (intentionally left blank)
7: // (intentionally left blank)
8: if SubsetQuery (d \ {`}) = true then
9: d ← d \ {`}

10: ϕ← ϕ ∨ d
11: return ϕ

Algorithm 4 Monotone DNF learning
[Ang87b]
1: procedure Learn-Monotone-DNF
2: ϕ← false
3: while σ′ ← EquivalenceQuery (ϕ) is not ⊥ do
4: d ← ∧{pi | σ′[pi] = true}
5: for ` in d do
6: let x be the state s.t.
7: x[pi] = true iff pi ∈ d \ {`}
8: if MembershipQuery (x) = true then
9: d ← d \ {`}

10: ϕ← ϕ ∨ d
11: return ϕ

returns true iff θ =⇒ ψ where ψ the unknown formula. EquivalenceQuery (H) returns ⊥ if
H ≡ ψ and a differentiating counterexample otherwise.

Theorem 2.3.6. Alg. 3 successfully learns every ψ, and if ψ ∈ Mon-DNFm then it does so with
at most m+ 1 equivalence queries, mn subset queries, and O(nm) time.

Proof. First, always ϕ =⇒ ψ, by induction on iterations of the loop in line 4; initially this holds
trivially, and continues to hold because the algorithm always adds to ϕ a disjunct that is either
σ′, which is a positive example (σ′ |= ψ) by the induction hypothesis, or some set obtained from
it that is still contained in ψ thanks to the subset query. ϕ strictly increases in each iteration,
so it must converge to ψ after finitely many steps.

Assume now that ψ ∈ Mon-DNFm. Then in each iteration, by construction (in line 8), the
added to ϕ is a prime implicant of ψ. By Thm. 2.3.3 this is a syntactic term of ψ, of which
there are at most m. Each iteration uses one equivalence query and n subset queries; the last,
successful equivalence query adds another one.

The algorithm by Angluin [Ang87b] replaces the subset query by a clever membership query.
A similar pattern appears in Bshouty’s algorithms in the monotone theory, discussed in §2.4, so
it is worth discussing it here as a preview. (The algorithm is presented in Alg. 4; in the code,
MembershipQuery (x) returns true iff x |= ψ where ψ the unknown formula.)

In Angluin’s algorithm, each iteration produces a term that is monotone by construction, by
dropping all the negative literals in cube(σ′) in line 8, resulting in a monotone initial d. Then,
to check whether another literal can be dropped while satisfying the subset query of line 8, the
algorithm constructs an example x where x[p] = true iff p ∈ d \ {`}; because ψ is assumed to be
monotone, indeed x |= ψ iff d\{`} ⊆ ψ. In this way the algorithm can generate a prime implicant
of ψ through standard membership queries rather than subset queries. Bshouty’s work employs
a similar procedure but with a slightly different objective and justification—see Lemma 2.4.7.

3Replacing random examples by examples from equivalence queries.
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Dual notions for CNF

Definition 2.3.7 (Antimonotone CNF). A formula ψ ∈ Mon-CNFm if it is in CNF with m
clauses, and variables appear only negatively.

Definition 2.3.8 (Prime Consequence). A clause c is a consequence of ψ if ψ =⇒ c. A prime
consequence, c, of ψ is a minimal consequence of ψ, i.e., no proper subset of c is a consequence
of ψ.

Theorem 2.3.9. Let c be an non-trivial consequence clause of an antimonotone CNF formula
ψ. Then there is a clause ĉ of ψ such that

1. ĉ ⊆ s (as sets of literals).

2. If c is prime, c = ĉ (as sets of literals). Namely, c is a syntactic clause of ψ.

Proof. c is a consequence clause of ψ iff ¬c is a prime implicant of ¬ψ. Apply Thm. 2.3.3.

Corollary 2.3.10. Let c be an non-trivial consequence clause of unate CNF formula ψ. Then
there is a clause ĉ of ψ such that

1. ĉ ⊆ s (as sets of literals).

2. If c is prime, c = ĉ (as sets of literals). Namely, c is a syntactic clause of ψ.

Proof. c is a consequence clause of ψ iff ¬c is a prime implicant of ¬ψ. Apply Corollary 2.3.5.

Algorithms for exact learning antimonotone CNF can be obtained by learning the negation
of the formula, which is a monotone DNF.

2.4 The Monotone Theory

In this section, we present the monotone theory by Bshouty [Bsh95]. In exact learning, the
overarching motivation for the monotone theory is to facilitate learning of formulas beyond
monotone. Clearly, a DNF formula where each variable appears only once can be made monotone
by a translation, replacing some variables with their negations, but this cannot be done in
general. In learning based on the monotone theory, a formula is derived from a conjunction of
such formulas, each can become monotone by a different translation.

§2.4.1 considers what happens when we “monotonize” a formula to use each variable in one,
specified polarity; §2.4.2 studies the conjunction of several such monotonizations, through the
monotone hull operator; and §2.4.3 discusses when such a conjunction reconstructs the original
formula. §2.4.4 outlines how these constructs are used for exact learning.

In this thesis, we employ the monotone theory in Chapter 4 to infer invariants beyond
monotone formulas, and in Chapter 5 to analyze overapproximation in PDR. The latter has
quite a different flavor from the original application of the monotone theory, yet uses the
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same technical material. In light of this, our presentation (which differs somewhat from the
original) emphasizes two complementary viewpoints of the monotone’s theory main elements:
the syntactic view, useful for Chapter 4, where the monotonization is perceived as deleting
literals with the wrong polarity; and the semantic-geometric view, useful for Chapter 5, where
monotonization is a form of closure operator originating from visibility-like [e.g. O’R04] questions
in the Hamming cube.

2.4.1 Least b-Monotone Overapproximations

Our definitions and claims concerning b-monotone overapproximations generalize Bshouty [Bsh95]
by considering a partial cube b, and coincide with the original in the case of a full cube. Let us
first define the relevant concepts, and then discuss intuitions.

Definition 2.4.1 (b-Monotone Order [Bsh95]). Let b be a cube. We define a partial order over
states where v ≤b x when x, v agree on all variables not present in b, and x disagrees with b on all
variables on which also v disagrees with b: ∀p ∈ Σ. x[p] 6= v[p] implies p ∈ dom(b) ∧ v[p] = b[p].

Intuitively, v ≤b x when x can be obtained from v by flipping bits to the opposite of their
value in b.

Definition 2.4.2 (b-Monotonicity [Bsh95]). A formula ψ is b-monotone for a cube b if ∀v ≤b
x. v |= ψ implies x |= ψ.

That is, if v satisfies ψ, so do all the states that are farther away from b than v. For example,
if ψ is 000-monotone and 100 |= ψ, then because 100 ≤000 111 (starting in 100 and moving away
from 000 can reach 111), also 111 |= ψ. In contrast, 100 6≤000 011 (the same process cannot flip
the 1 bit that already disagrees with 000), so 011 does not necessarily belong to ψ.

Definition 2.4.3 (Least b-Monotone Overapproximation [Bsh95]). Given a formula ϕ and a
cube b, the least b-monotone overapproximation of ϕ is a formulaMb(ϕ) defined by

x |=Mb(ϕ) iff ∃v. v ≤b x ∧ v |= ϕ.

For example, if 100 |= ϕ, then 100 |=M000(ϕ) becauseM000(ϕ) is an overapproximation,
and hence 111 |=M000(ϕ) because it is 000-monotone, as above. Here, thanks to minimality,
011 does not belong toM000(ϕ), unless 000, 001, 010, or 011 belong to ϕ.

The minimality property ofMb(ϕ) is formalized as follows:

Lemma 2.4.4. Mb(ϕ) (Def. 2.4.3) is the least b-monotone formula ψ (Def. 2.4.2) s.t. ϕ =⇒ ψ

(i.e., for every other b-monotone formula ψ, if ϕ =⇒ ψ thenMb(ϕ) =⇒ ψ).

Proof. ThatMb(ϕ) is b-monotone overapproximation of ϕ is immediate from the definition. For
minimality, let ψ be a b-monotone formula s.t. ϕ =⇒ ψ, we need to show thatMb(ϕ) =⇒ ψ. Let
x |=Mb(ϕ). Then, by definition, there is v |= ϕ s.t. v ≤b x. By the assumption that ϕ =⇒ ψ
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also v |= ψ, and, because ψ is assumed to be b-monotone, it follows that x |= ψ. The claim
follows.

Mb(ϕ) is a well-defined overapproximation of ϕ. Its main significance for learning theory
is that it can be computed efficiently (through the DNF representation we also show below),
obtaining the original ϕ as the conjunction of least b-monotone overapproximations (with
different b’s).

A technical observation that will prove useful several times is that Mb(·) is a monotone
operator:

Lemma 2.4.5. If ϕ1 =⇒ ϕ2 thenMb(ϕ1) =⇒Mb(ϕ2).

Proof. Immediate from the definition ofMb(·).

Geometric intuition. Geometrically, ψ is b-monotone if v |= ψ =⇒ x |= ψ for every states v, x
s.t. v ≤b x; the partial order ≤b indicates that x is “farther away” from b in the Hamming cube
than v from b, namely, that there is a shortest path w.r.t. Hamming distance from b to x (or
from πb(x)—the projection of x onto b—to x, when b is not a full cube) that goes through v. A
formula ψ is b-monotone when it is closed under this operation, of getting farther from b. In
this way,Mb(ϕ) corresponds to the set of states x to which there is a shortest path from b that
intersects ϕ.4

Syntactic intuition. Ordinary monotone formulas are 0-monotone; for general b, a formula ψ
in DNF is b-monotone if interchanging p,¬p whenever b[p] = true results in a formula that is
monotone DNF per the standard definition.5 This is formalized by the following lemma.

Lemma 2.4.6. Suppose that ψ is expressible in DNF such that every variable p ∈ dom(b)
appears in ψ in polarity according to ¬b[p]: p appears only positively if b[p] = false and only
negatively if b[p] = true. (Variables p 6∈ dom(b) are unconstrained, and can appear both positively
and negatively in different terms of the formula.) Then ψ is b-monotone.

Proof. Assume v ≤b x, v |= ψ, let t be an arbitrary term of the DNF representation of ψ from
the premise; it suffices to prove that x |= t. Every literal ` ∈ t is satisfied by v |= `, and hence
includes the variable p in the polarity v[p]. If p 6∈ dom(b), the definition of v ≤b x requires that
v[p] = x[p], and so also x |= `. Otherwise, the premise regarding the polarity of variables in ψ
implies that v[p] = ¬b[p]; in this case, the definition of v ≤b x requires that also x[p] = ¬b[p], in
which case again v[p] = x[p] and so also x |= `. The claim follows.

4This is reminiscent of visibility in Euclidean geometry [e.g. O’R04]: picturing b as a guard, the source of
visibility, thenMb(ϕ) is the set of states that are visible in ¬ϕ, that is, the set of states σ s.t. the “line segment”
[b, σ] is contained in ¬ϕ. Here [b, σ] is the Hamming interval [e.g. Wie87] between b, σ, the union of all the
multiple shortest paths between the states (each path corresponds to a different permutation of the variables on
which the states disagree).

5When b is a full cube, another way to say this is that ψ is b-monotone if it is monotone in the ordinary sense
under the translation [Wie87] specified by b.
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We shall see in Corollary 2.4.11 that the converse also holds, and so this is indeed a syntactic
characterization of when a formula is b-monotone. When this does not hold, the monotonization
operatorMb(ϕ) provides the “closest thing”, in the sense that it is the smallest b-monotone ψ
s.t. ϕ =⇒ ψ. The following result shows that the monotonization can be also be computed based
on the syntactic perspective, andMb(ϕ) can be efficiently obtained from ϕ by deleting literals.
Disjunctive form. The monotone overapproximation can be related to a DNF representation
of the original formula, a fact that we use extensively in §5.4 and also when we analyze Λ-PDR on
specific examples. Starting with a DNF representation of ϕ, we can derive a DNF representation
ofMb(ϕ) by dropping in each term the literals that agree with b. Intuitively, a “constraint”
that σ |= ` in order to have σ |=Mb(t) where ` agrees with b is dropped because if σ |=Mb(t)
then flipping a bit σ to disagree with b results in a state σ̃ such that also σ̃ |=Mb(t), as σ ≤b σ̃.

Lemma 2.4.7 (Generalization of Bshouty [Bsh95], Lemma 1(7)). Let ϕ = t1 ∨ . . . ∨ tm in
DNF. Then the monotonization Mb(ϕ) ≡ Mb(t1) ∨ . . . ∨ Mb(tm) where Mb(ti) ≡ ti \ b =∧
{` ∈ ti ∧ ` 6∈ b}.

Proof. First we argue that for any term t,Mb(t) ≡ t \ b. Denote the rhs by ψ. Let x ∈Mb(t).
Then there is v |= t such that v ≤b x. Let ` ∈ t; v |= `. Consider a literal ` ∈ ψ, then ` ∈ t
and ` 6∈ b. Since v |= t, the former means that in particular v |= `. The latter means that to
satisfy v ≤b x necessarily v, x agree on the variable in `, and hence also x |= `. This proves
Ma(t) =⇒ ψ. For the other direction, let x |= ψ. Let v be obtained from x by setting every
variable pi ∈ dom(b) that does not appear in ψ to disagree with the corresponding value in b;
then v ≤a x. Now v |= ψ (since these variables do not appear in ψ), and, furthermore, v |= ` for
every ` ∈ t that was dropped from t to ψ, because v disagrees with b on those literals, which
are those that appear in b in a negated form compared to `. Overall, v |= t, which implies
x |=Ma(t).

We now claim, more generally, thatMb(ψ1 ∨ ψ2) ≡Mb(ψ1)∨Ma(ψ2): Let x |=Mb(ψ1 ∨ ψ2).
Then there is v |= ψ1 ∨ ψ2 such that x ≤b x. If v |= ψ1, by definition we must have x |=Mb(ψ1)
and in particular x |= Mb(ψ1) ∨ Mb(ψ2); similarly for ψ2. This shows Mb(ψ1 ∨ ψ2) =⇒
Mb(ψ1) ∨Mb(ψ2). As for the other direction, let x |= Mb(ψ1) ∨Mb(ψ2). Without loss of
generality, assume x |=Mb(ψ1). Then there is v |= ψ1, and in particular v |= ψ1 ∨ ψ2, such that
v ≤b x. So we must have x |=Mb(ψ1 ∨ ψ2).

A corollary provides a canonical (inefficient) disjunctive form forMb(ϕ):

Corollary 2.4.8. Given a state v, we denote cubeb(v) def= Mb(v) = ∧
{p | v[p] = true, p 6∈ b} ∧∧

{¬pi | v[p] = false, ¬p 6∈ b}. ThenMb(ϕ) ≡ ∨v|=ϕ cubeb(v).

Proof. Apply Lemma 2.4.7 to the representation of ϕ as the disjunction of all satisfying states.

In particular, if v |= ϕ then cubeb(v) =⇒Mb(ϕ) (follows from Lemma 2.4.7 thinking about
the representation v ∨ ϕ). A similar property holds under the weaker premise that v is known
to belong to the monotonization:
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Lemma 2.4.9. If v |=Mb(ϕ) then cubeb(v) =⇒Mb(ϕ).

Proof. From the premise it follows that cubeb(v) =⇒ Mb(Mb(ϕ)), but by Lemma 2.4.7 and
conversions to DNF,Mb(Mb(ϕ)) ≡Mb(ϕ).

Another corollary of Lemma 2.4.7 is that the DNF size cannot increase from ϕ toMb(ϕ):

Lemma 2.4.10. |Mb(ϕ)|dnf ≤ |ϕ|dnf .

Proof. Applying Lemma 2.4.7 to the minimal DNF of ϕ gives a DNF representation ofMb(ϕ)
with the same number of terms.

As an aside, at this point we can fulfill our promise for a syntactic characterization of
b-monotone formulas:

Corollary 2.4.11. The converse of Lemma 2.4.6 also holds: If ψ is b-monotone, then it is
expressible in DNF such that every variable p ∈ dom(b) appears in ψ in polarity according to
¬b[p]: p appears only positively if b[p] = false and only negatively if b[p] = true. (Variables
p 6∈ dom(b) are unconstrained, and can appear both positively and negatively in different terms
of the formula.)

Proof. When ψ is b-monotone, Mb(ψ) ≡ ψ; the DNF representation of Corollary 2.4.8 is as
desired.

2.4.2 Monotone Hull

We now define the monotone hull, which is a conjunction of b-monotone overapproximations
over all b from a fixed set of states B. We start with the definition that uses a conjunction
over monotone-overapproximations w.r.t. individual states, and then extend this to the union of
(partial) cubes.6

Definition 2.4.12 (Monotone Hull). The monotone hull of a formula ϕ w.r.t. a set of states B
is MHullB(ϕ) = ∧

b∈BMb(ϕ).

The monotone hull can be simplified to use a succinct DNF representation of the basis B
instead of a conjunction over all states. (This is the motivation for generalizingMb(·) to a cube
b in §2.4.)

Lemma 2.4.13. If B = b1 ∨ . . . ∨ bm and b1, . . . , bm are cubes, then MHullB(ϕ) ≡ Mb1(ϕ) ∧
. . . ∧Mbm(ϕ).

Proof. It follows from the definition that MHullB(·) distributes over union in B. Hence,
MHullB(ϕ) ≡ MHullb1(ϕ) ∧ . . . ∧MHullbm(ϕ). Further, MHullbi(ϕ) = ∧

σb∈bi MHull{σb}(ϕ) =∧
σb∈biMσb(ϕ). It remains to argue thatMbi(ϕ) ≡ ∧σb∈biMσb(ϕ).

6The original work [Bsh95] considered only a conjuction w.r.t. individual states; Lemma 2.4.13 is new, and
becomes important in Chapter 5, especially for the results of §5.5.
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⊆: By definition, if σ |= Mbi(ϕ) then there is x |= ϕ s.t. x ≤bi σ. In particular, x ≤σb σ for
every σb |= bi (because σb agrees with all the literals in bi), and hence σ |=Mσb(ϕ) for every
such σb.
⊇: Suppose that σ is a model of the rhs. Let σb be the state obtained from σ by setting the
variables present in bi to be as in bi (geometrically, this the projection of σ onto the cube bi).
We have σb |= bi. Thus σ |=Mσb(ϕ), so there exists x |= ϕ such that x ≤σb σ. But because σb
agrees with σ on all literals except those also present in bi, this implies also that x ≤bi σ. Hence
also σ |=Mbi(ϕ).

Note that when B = b is a single cube, MHullb(ϕ) =Mb(ϕ).
Additional lemmas. Before proceeding, we state a few helpful, simple lemmas that we use
later:

Lemma 2.4.14. ϕ =⇒ MHullB(ϕ).

Proof. ϕ =⇒ Mb(ϕ) for every b ∈ B, from the definition of b-monotone overapproximation.
Hence also ϕ =⇒ ∧

b∈BMb(ϕ).

Lemma 2.4.15. If ϕ1 =⇒ ϕ2 then MHullb(ϕ1) =⇒ MHullb(ϕ2).

Proof. Mb(ϕ1) =⇒ Mb(ϕ2) for every b ∈ B by Lemma 2.4.5, so if σ |= ∧
b∈BMb(ϕ1) it also

satisfies σ |= ∧
b∈BMb(ϕ2).

Lemma 2.4.16. The monotone hull is idempotent, that is, MHullB(MHullB(ϕ)) ≡ MHullB(ϕ).

Proof. We claim that for every b ∈ B,Mb(MHullB(ϕ)) ≡Mb(ϕ), which implies MHullB(MHullB(ϕ)) =∧
b∈BMb(MHullB(ϕ)) ≡ ∧b∈BMb(ϕ) = MHullB(ϕ).
Let b ∈ B. Mb(ϕ) ⊆ Mb(MHullB(ϕ)) because ϕ ⊆ MHullB(ϕ) (Lemma 2.4.14) and

by Lemma 2.4.15. Since from the definition MHullB(ϕ) ⊆ Mb(ϕ), again by Lemma 2.4.16
M⊆(MHullB(ϕ))Mb(Mb(ϕ)) andMb(·) is idempotent from the definition as least b-monotone
overapproximation.

2.4.3 Monotone Basis and Monotone Span

In general, MHullB(ϕ) is not equivalent to ϕ. However, we can always choose B so that
MHullB(ϕ) ≡ ϕ. A set B that suffices for this is called a basis:

Definition 2.4.17 (Monotone Basis [Bsh95]). A monotone basis is a set of states B. It is a
basis for a formula ϕ if ϕ ≡ MHullB(ϕ).

Conversely, given a set B, we are interested in the set of formulas for which B forms a basis:

Definition 2.4.18 (Monotone Span). MSpan(B) = {MHullB(ϕ) | ϕ over Σ}, the set of formu-
las for which B is a monotone basis.
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The following theorem provides a syntactic characterization of MSpan(B), as the set of all
formulas that can be written in CNF using clauses that exclude states from the basis:

Theorem 2.4.19 (Bshouty [Bsh95], Lemma 4). ϕ ∈ MSpan(B) iff there exist clauses c1, . . . , cs

such that ϕ ≡ c1 ∧ . . . ∧ cs and for every 1 ≤ i ≤ s there exists bj ∈ B such that bj 6|= ci.

(We defer the proof to §5.2, where this result is obtained from a conjunctive characterization
of the monotone hull that we obtain in Thm. 5.2.1.)

In particular, every ϕ admits some monotone basis B, that can be constructed by writing a
CNF representation of ϕ and choosing for B a state bj 6|= cj for each clause cj .

A useful consequence of this characterization is that the monotone basis is closed under
conjunction:

Lemma 2.4.20. If ϕ1, ϕ2 ∈ MSpan(B) then also ϕ1 ∧ ϕ2 ∈ MSpan(B).

Proof. By Thm. 2.4.19 and the premise, ϕ1 ≡ c1 ∧ . . . ∧ cs and ϕ ≡ c′1 ∧ . . . ∧ c′s′ where each ci
and c′i excludes some state from B. Hence ϕ1 ∧ ϕ2 ≡ c1 ∧ . . . ∧ cs ∧ c′1 ∧ . . . ∧ c′s′ , which by the
other direction of Thm. 2.4.19 means that ϕ1 ∧ ϕ2 ∈ MSpan(B), as desired.

2.4.4 Exact Learning Using the Monotone Theory

The monotone theory was first developed by Bshouty for the purpose of exact learning formulas
that are not monotone. Essentially, the idea is to reconstruct the formula ϕ by finding a
monotone basis B = {b1, . . . , bt} for it, and constructing MHullB(ϕ) while using equivalence and
membership queries. The original paper [Bsh95] includes two algorithms: 1. The Λ-algorithm
(Alg. 5), which can learn a formula provided that the monotone basis is known a-priori, such
as when the formulas is known to be almost monotone (O(1) of the terms contain negated
variables), and 2. The CDNF algorithm (Alg. 6), which gradually finds a monotone basis, and
is proven efficient for learning CDNF formulas—formulas that have both a short CNF and a
short DNF representation. The code for the algorithms is shown here, but we omit their precise
analysis. The Λ-algorithm is the basis of an algorithm for learning almost-monotone invariants
in §4.4, and the analysis there follows the analysis of the original learning algorithm (while also
factoring reachability considerations). The CDNF algorithm inspires our algorithm for inferring
CDNF invariants in §4.6, but in this case the inference algorithm departs from the learning
algorithm in significant ways that we highlight there.
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Algorithm 5 Λ-algorithm: exact learning with a known monotone basis [Bsh95]
1: Assuming a known basis {b1, . . . , bt} (Def. 2.4.17)
2: procedure Λ-algorithm
3: H1, . . . , Ht ← false
4: while σ′← EquivalenceQuery

(∧t

i=1 Hi
)
is not

⊥ do
5: for i = 1, . . . , t do
6: if σ′ 6|= Hi then
7: d ← MonGenMem(σ′, bi)
8: Hi ← Hi ∨ d
9: return

∧t

i=1 Hi

10:
11:
12:

13: procedure MonGenMem(σ, b)
14: if MembershipQuery (x) 6= true then
15: fail (not a basis)
16: v ← σ
17: walked ← true
18: while walked do
19: walked ← false
20: for j = 1, . . . , n such that b[pj ] 6= v[pj ] do
21: x← v[pj 7→ b[pj ]]
22: if MembershipQuery (x) = true then
23: v ← x
24: walked ← true
25: return cubeb(v)

Algorithm 6 CDNF-algorithm: exact learning CDNF formulas [Bsh95]
1: procedure CDNF-algorithm
2: t← 0
3: while x ← EquivalenceQuery

(∧t

i=1 Hi
)
is not ⊥ do

4: if x |=
∧t

i=1 Hi then
5: Ht+1 ← false; bt+1 ← x; t← t+ 1
6: else
7: σ′ ← x
8: for i = 1, . . . , t do
9: if σ′ 6|= Hi then

10: d ← MonGenMem(σ′, bi)
11: Hi ← Hi ∨ d
12: return

∧t

i=1 Hi

Figure 2.1: Exact learning algorithms using the monotone theory.
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Chapter 3

Learning Models and Lower Bounds
for Invariant Inference

This chapter is based on the results published in [FISS20].

In this chapter we analyze the complexity of polynomial-length invariant inference in a
learning model, called the Hoare-query model, which is general enough to capture algorithms such
as IC3/PDR and its variants. An algorithm in this model learns about the system’s reachable
states by querying the validity of Hoare triples.

We show that in general an algorithm in the Hoare-query model requires an exponential
number of queries. Our lower bound is information-theoretic and applies even to computationally
unrestricted algorithms, showing that no choice of generalization from the partial information
obtained in a polynomial number of Hoare queries can lead to an efficient invariant inference
procedure in this class.

We then show, for the first time, that by utilizing rich Hoare queries, as done in PDR,
inference can be exponentially more efficient than approaches such as ICE learning, which only
utilize inductiveness checks of candidates. We do so by constructing a class of transition systems
for which a simple version of PDR with a single frame infers invariants in a polynomial number of
queries, whereas every algorithm using only inductiveness checks and counterexamples requires
an exponential number of queries.

Our results also shed light on connections and differences with the classical theory of
exact concept learning with queries, and imply that learning from counterexamples to induc-
tion is harder than classical exact learning from labeled examples. This demonstrates that
the convergence rate of Counterexample-Guided Inductive Synthesis depends on the form of
counterexamples.

37



38 Chapter 3. Learning Models and Lower Bounds for Invariant Inference

1 init x1 = . . . = xn = 0
2 axiom ∃!i, 1 ≤ i ≤ n. ci = 1
3

4 function add - double (a,b) = (a + 2 · b) mod 2n
5

6 while *
7 input y1, . . . , yn
8 if c1:
9 (x1, x2, . . . , xn−1, xn) := add - double ((x1, x2, . . . , xn−1, xn),(y1, y2, . . . , yn−1, yn))

10 if c2:
11 (x2, x3, . . . , xn, x1) := add - double ((x2, x3, . . . , xn, x1),(y2, y3, . . . , yn, y1))
12 ...
13 if cn:
14 (xn, x1, . . . , xn−2, xn−1) := add - double ((xn, x1, . . . , xn−2, xn−1),(yn, y1, . . . , yn−2, yn−1))
15 assert ¬(x1 = . . . = xn = 1)

Figure 3.1: An example propositional transition system for which we would like to infer an inductive
invariant. The state is over x1, . . . , xn. The variables y1, . . . , yn are inputs and can change arbitrarily in
each step. c1, . . . , cn are immutable, with the assumption that exactly one is true.

3.1 Overview

Coming up with inductive invariants is one of the most challenging tasks of formal verification—it
is often referred to as the “Eureka!” step. This thesis studies the asymptotic complexity of
automatically inferring CNF invariants of polynomial length, a problem we call polynomial-
length inductive invariant inference, in a SAT-based black-box model.

Consider the dilemmas Abby faces when she attempts to develop an algorithm for this
problem from first principles. Abby is excited about the popularity of SAT-based inference
algorithms. Many such algorithms operate by repeatedly performing checks of Hoare triples
of the form {α}δ{β}, where α, β are a precondition and postcondition (resp.) chosen by the
algorithm in each query, and δ is the given transition relation (loop body). A SAT solver
implements the check. We call such checks Hoare queries, and focus in this chapter on
black-box inference algorithms in the Hoare-query model: algorithms that access the transition
relation solely through Hoare queries.

Fig. 3.1 displays one example program that Abby is interested in inferring an inductive
invariant for. In this program, a number x, represented by n bits, is initialized to zero, and
at each iteration incremented by an even number that is decided by the input variables y (all
computations are mod 2n). The representation of the number x using the bits x1, . . . , xn is
determined by another set of bits c1, . . . , cn, which are all immutable, and only one of them is
true: if c1 = true, the number is represented by x1, x2, . . . , xn, if c2 = true the least-significant bit
(lsb) shifts and the representation is x2, x3, . . . , xn, x1 and so on. The safety property is that x is
never equal to the number with all bits 1. Intuitively, this holds because the number x is always
even. An inductive invariant states this fact, taking into account the differing representations,
by stating that the lsb (as chosen by c) is always 0: I = (c1 → ¬x1)∧ . . . (cn → ¬xn). Of course,
Abby aims to verify many systems, of which Fig. 3.1 is but one example.
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Algorithm 7
Backward reachability
1: procedure Backward-Reach(δ)
2: I ← ¬Bad
3: while {I}δ{I} not valid do
4: σ, σ′ ← cti(δ, I)
5: d← Block(δ,σ)
6: I ← I ∧ ¬dreturn I

Algorithm 8 Exact block
1: procedure Block-Cube(δ,σ)

2:
return

∧
{pi |σ |= pi}∧∧
{¬pi |σ |= ¬pi}

Algorithm 9
Block with generalization from init-step reacha-
bility
1: procedure Block-PDR-1(δ, σ)
2: d← cube(σ)
3: for l ∈ cube(σ) do
4: t← d \ {l}
5: if (Init =⇒ ¬t) ∧ {Init}δ{¬t} then
6: d← t

return d

3.1.1 Example: Backward Reachability with Generalization

How should Abby’s algorithm go about finding inductive invariants? One known strategy is that
of backward reachability, in which the invariant is strengthened to exclude states from which bad
states may be reachable.1 Alg. 7 is an algorithmic backward reachability scheme: it repeatedly
checks for the existence of a counterexample to induction (a transition σ, σ′ of δ from σ |= I

to σ′ 6|= I), and strengthens the invariant to exclude the pre-state σ using the formula Block
returns.

Alg. 7 depends on the choice of Block. The most basic approach is of Alg. 8, which
excludes exactly the pre-state, by conjoining to the invariant the negation of the cube of σ (the
conjunction of all literals that hold in the state; the only state that satisfies cube(σ) is σ itself).
For example, when Alg. 7 needs to block the state x = 011 . . . 1, c = 000 . . . 1 (this state reaches
the bad state x = 111 . . . 1, c = 000 . . . 1), Alg. 8 does so by conjoining to the invariant the
negation of ¬xn ∧ xn−1 ∧ xn−2 ∧ . . . x1 ∧ ¬cn ∧ ¬cn−1 ∧ ¬cn−2 ∧ . . . c1.

Alas, Alg. 7 with blocking by Alg. 8 is not efficient. In essence it operates by enumerating
and excluding the states that are backward-reachable from bad. The number of such states
is potentially exponential, making Alg. 8 unsatisfactory. For instance, the example of Fig. 3.1
requires the exclusion of all states in which x is odd for every choice of lsb, a number of states
exponential in n. The algorithm would thus require an exponential number of queries to arrive
at a (CNF) inductive invariant, even though a CNF invariant with only n clauses exists (as
above).

Efficient inference hence requires Abby to exclude more than a single state at each time,
namely, to generalize from a counterexample—as real algorithms do. What generalization
strategy could Abby choose that would lead to efficient invariant inference?

1Our results are not specific to backward reachability algorithms; we use them here for motivation and
illustration.
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3.1.2 All Generalizations Are Wrong

One simple generalization strategy Abby considers appears in Alg. 9, based on the standard
ideas in IC3/PDR [Bra11, EMB11] and subsequent developments [e.g. HB12, KGC14]. It starts
with the cube of the state (as Alg. 8) and attempts to drop some of the literals, resulting in a
smaller conjunction satisfied by more states; all these states are excluded from the candidate in
line 6 of Alg. 7. Hence with this generalization Alg. 7 can exclude many states in each iteration,
overcoming the problem with the naive algorithm above. Alg. 9 chooses to drop a literal from
the conjunction if no state reachable in at most one step from Init satisfies the conjunction even
when that literal is omitted (line 4 of Alg. 9); we refer to this algorithm as PDR-1, since it
resembles PDR with a single frame.

For example, when in the example of Fig. 3.1 the algorithm attempts to block the state
with x = 011 . . . 1, c = 000 . . . 1, Alg. 9 minimizes the cube to d = x1 ∧ c1, because no state
reachable in at most one step satisfies d, but this is no longer true when another literal is omitted.
Conjoining the invariant with ¬d (in line 6 of Alg. 7) produces a clause of the invariant, c1 → ¬x1.
In fact, our results show that PDR-1 finds the aforementioned invariant in n2 queries.

Yet there is a risk in over-generalization, that is, of dropping too many literals and excluding
too many states. In Alg. 7, generalization must not return a formula that some reachable states
satisfy, or else the candidate I would exclude reachable states, and would not be an inductive
invariant. Alg. 9 chooses to take the strongest conjunction that does not exclude any state
reachable in at most one step; it is of course possible (and plausible) that some states are
reachable in two steps but not in one. Alg. 7 with the generalization in Alg. 9 might fail in such
cases.

The necessity of generalization, on the one hand, and the problem of over-generalization on the
other leads in practice to complex heuristic techniques. Instead of simple backward reachability
with generalization per Alg. 7, PDR never commits to a particular generalization [EMB11]
through a sequence of frames, which are (in some sense) a sequence of candidate invariants.
We study the frames in detail in Chapter 5; Alg. 9 corresponds to generalization in the first
frame.

Overall, the study of backward reachability and the PDR-1 generalization leaves us with
the question: Is there a choice of generalization that can be used—in any way—to
achieve an efficient invariant inference algorithm?

In a non-interesting way, the answer is yes, there is a “good” way to generalize. Use Alg. 7,
with the following generalization strategy: upon blocking a pre-state σ, compute an inductive
invariant of polynomial length, and return the clause of the invariant that excludes σ,2 and this
terminates in a polynomial number of steps, assuming that the invariant has a polynomially-long
CNF representation.

Such generalization is clearly unattainable. It requires (1) perfect information of the transition
system, and (2) solving a computationally hard problem, since we show that polynomial-length

2Such a clause exists because σ is backward reachable from bad states, and thus excluded from the invariant.
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inference is ΣP
2 -hard (Thm. 3.2.3). What happens when generalization is computationally

unbounded (an arbitrary function), but operates based on partial information of the transi-
tion system? Is there a generalization from partial information, be it computationally
intractable, that facilitates efficient inference? If such a generalization exists we may wish to
view invariant inference heuristics as approximating it in a computationally efficient way.

Similar questions arise in interpolation-based algorithms, only that generalization is performed
not from a concrete state, but from a bounded unreachability proof. Still it is challenging to
generalize enough to make progress but not too much as to exclude reachable states (or include
states from which bad is reachable in algorithms that gradually add states to the candidate).

Our Results

Our first main result in this chapter is that in general, there does not exist a generalization
scheme from partial information leading to efficient inference based on Hoare queries.
Technically, we prove that even a computationally unrestricted generalization from information
gathered from Hoare queries requires an exponential number of queries. This result applies
to any generalization strategy (and any algorithm using it) that can be modeled using Hoare
queries, including Alg. 7 as well as more complex algorithms such as PDR. We also extend this
lower bound to a model capturing interpolation-based algorithms (Thm. 3.4.7).

These results are surprising because a-priori it would seem possible, using unrestricted
computational power, to devise queries that repeatedly halve the search space, yielding an
invariant with a polynomial number of queries (the number of candidates is only exponential
because we are interested in invariants up to polynomial length). We show that this is impossible
to achieve using Hoare queries.

3.1.3 Inference Using Rich Queries

So far we have established strong impossibility results for invariant inference based on Hoare
queries in the general case, even with computationally unrestricted generalization. We now turn
to shed some light on the techniques that inference algorithms such as PDR employ in practice.
One of the fundamental principles of PDR is the incremental construction of invariants relying
on rich Hoare queries. PDR-1 demonstrates a simplified realization of this principle. When
PDR-1 considers a clause to strengthen the invariant, it checks the reachability of that individual
clause from Init, rather than the invariant as a whole. This is the Hoare query {Init}δ{¬t} in
line 4 of Alg. 9, in which, crucially, the precondition is different from the postcondition. The
full-fledged PDR is similar in this regard, strengthening a frame according to reachability from
the previous frame via relative induction checks [Bra11] (see also Chapter 5).

The algorithm in Alg. 7 + Alg. 8 is fundamentally different, and uses only inductiveness
queries {I}δ{I}, a specific form of Hoare queries where the precondition and postcondition are
the same. Algorithms performing only inductiveness checks can in fact be very sophisticated,
traversing the domain of candidates in clever ways. This approach was formulated in the ICE



42 Chapter 3. Learning Models and Lower Bounds for Invariant Inference

learning framework for learning inductive invariants [GLMN14, GNMR16], in which algorithms
present new candidates based on positive, negative, and implication examples returned by a
“teacher” in response to incorrect candidate invariants.3 The main point is that such algorithms
do not perform queries other than inductiveness, and choose the next candidate invariant based
solely on the counterexamples to induction showing that the previous candidates were unsuitable.

The contrast between the two approaches raises the question: Is there a benefit to
invariant inference in Hoare queries richer than inductiveness? For instance, to
model PDR in the ICE framework, Vizel et al. [VGSM17] extended the framework with relative
inductiveness checks, but the whether such an extension is necessary remained an open question.

Our Results

Our second significant result in this chapter is showing an exponential gap between the general
Hoare-query model and the more specific inductiveness-query model. To this end, we construct
a class of transition systems, including the example of Fig. 3.1, for which (1) PDR-1, which is a
Hoare-query algorithm, infers an invariant in a polynomial number of queries, but (2) every
inductiveness-query algorithm requires an exponential number of queries, that is, an exponential
number of candidates before it finds a correct inductive invariant. This demonstrates that
analyzing the reachability of clauses separately can offer an exponential advantage in certain
cases. This also proves that PDR cannot be cast in the ICE framework, and that the extension
by Vizel et al. [VGSM17] is necessary and strictly increases the power of inference with a
polynomial number of queries. To the best of our knowledge, this is not only the first lower
bound on ICE learning demonstrating such an exponential gap (also see the discussion in §3.7),
but also the first polynomial upper bound on PDR for a class of systems (see also the discussion
in §5.9).

We show this separation on a class of systems constructed using a technical notion of maximal
systems for antimonotone invariants. These are systems for which there exists an antimonotone
invariant (namely, a CNF invariant where propositional variables appear only negatively) with a
linear number of clauses, and the transition relation includes all the transitions that are allowed
by this invariant. For example, a maximal system can easily be constructed from Fig. 3.1:
this system allows every transition between states satisfying the invariant (namely, between all
even x’s with the same representation), and also every transition between states violating the
invariant (namely, between all odd x’s with the same representation)4; a maximal system also
includes all the transitions from states that violate that invariant to the states that satisfy it
(here, between odd x and even x with the same c). The success of PDR-1 on such systems relies
on the small diameter (every reachable state is reachable in one step) and harnesses properties of
prime consequences of antimonotone formulas. In contrast, we show that for inductiveness-query

3Our formulation focuses on implication examples—counterexamples to inductiveness queries—and strengthens
the algorithm with full information about the set of initial and bad states instead of positive and negative examples
(resp.).

4Transitions violating the c axiom or modifying it are excluded in this modeling.
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algorithms this class is as hard as the class of all programs admitting antimonotone invariants,
whose hardness is established from the results of §3.1.2. For example, from the perspective
of inductiveness-query algorithms, the example of Fig. 3.1, which is a maximal program as
explained above, is as hard as any system that admits its invariant (and also respects the c
axiom and leaves c unchanged). This is because an inductiveness-query algorithm can only
benefit from having fewer transitions and hence fewer counterexamples to induction, whereas
maximal programs include as many transitions as possible. If an inductiveness query algorithm
is to infer an invariant for the example of Fig. 3.1, it must also be able to infer an invariant
for all systems whose transitions are a subset of the transitions of this example. This includes
systems with an exponential diameter, as well as systems admitting other invariants, potentially
exponentially long. This program illustrates our lower bound construction, which takes all
maximal programs for monotone-CNF invariants.

In our lower bound we follow the existing literature on the analysis of inductiveness-query
algorithms, which focuses on the worst-case notion w.r.t. potential examples (strong convergence
in Garg et al. [GLMN14]). An interesting direction is to analyze inductiveness-query algorithms
that exercise some control over the choice of counterexamples to induction, or under probabilistic
assumptions on the distribution of counterexamples.

3.1.4 A Different Perspective: Exact Learning of Invariants with Hoare
Queries

This chapter develops a theory of exact learning of inductive invariants with Hoare queries, akin
to the classical theory of concept learning with queries [Ang87b]. The results outlined above are
consequences of natural questions about this model: The impossibility of generalization from
partial information (§3.1.2) stems from an exponential lower bound on the Hoare-query model.
The power of rich Hoare queries (§3.1.3) is demonstrated by an exponential separation between
the Hoare- and inductiveness-query models, in the spirit of the gap between concept learning
using both equivalence and membership queries and concept learning using equivalence queries
alone [Ang90].

The similarity between invariant inference (and synthesis in general) and exact concept
learning has been observed before [e.g. JGST10, GLMN14, JS17, ABD+15, BDVY17]. Our
work highlights some interesting differences and connections between invariant learning with
Hoare, and concept learning with equivalence and membership queries. This comparison yields
our third significant result in this chapter: the impossibility of translating algorithms from
concept learning with queries to invariant inference with queries. Our fourth significant result
is a proof that learning from counterexamples to induction is inherently harder than learning
from examples labeled as positive or negative, formally corroborating the intuition advocated by
Garg et al. [GLMN14]. More broadly, the complexity difference between learning from labeled
examples and learning from counterexamples to induction demonstrates that the convergence
rate of learning in Counterexample-Guided Inductive Synthesis [e.g. STB+06, JGST10, JS17]
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depends on the form of examples. The proof of this result builds on the lower bounds discussed
earlier, and is discussed in §3.6.5

3.2 Polynomial-Length Invariant Inference

In this section we formally define the problem of polynomial-length invariant inference for
CNF formulas, which is the focus of this chapter, and discuss its complexity. We then relate
the problem to the problem of inferring DNF formulas with polynomially many term via the
forward-backward duality (§2.2.1), and focus on the case of CNF in the rest of the chapter.

Definition 3.2.1 (Inductive Invariant Inference from Class of Invariants). For a class of
transition systems P and a class of invariants L, inductive invariant inference is the problem:
Given a transition system TS ∈ P over Σ, decide whether there exists an inductive invariant
I ∈ L for TS.

Our object of study is the problem of polynomial-length inference, which is invariant inference
with L being the set of CNF formulas of polynomial size:

Definition 3.2.2 (Polynomial-Length Inductive Invariant Inference). The polynomial-length
inductive invariant inference problem for a class of transition systems P and a polynomial
p(n) = Ω(n) is the problem: Given a transition system TS ∈ P over Σ, decide whether there
exists an inductive invariant I ∈ CNFp(n) for TS, where n = |Σ|.

Unless otherwise stated, throughout this chapter, by “invariant inference” we refer to
polynomial-length inductive invariant inference.

Notation. In the sequel, when considering the polynomial-length inductive invariant inference
problem of a transition system TS = (Init, δ,Bad) ∈ P, we denote by Σ the vocabulary of
Init,Bad and δ. Further, we denote n = |Σ|.

Complexity

The complexity of polynomial-length inference is measured in |TS| = |Init|+ |δ|+ |Bad|. Note
that the invariants are required to be polynomial in n = |Σ|.

CNFp(n) is a rich class of invariants. Inference in more restricted classes can be solved
efficiently. For example, when only conjunctive candidate invariants are considered, and P is the
set of all propositional transition systems, the problem can be decided in a polynomial number
of SAT queries through the Houdini algorithm [FL01, LQ09]. Similar results hold also for CNF
formulas with a constant number of literals per clause (by defining a new predicate for each of

5It may also be interesting to note that one potential difference between classical learning and invariant
inference, mentioned by Löding et al. [LMN16], does not seem to manifest in the results discussed in §3.1.2:
the transition systems in the lower bound for inductiveness queries in Corollary 3.5.11 have a unique inductive
invariant, and still the problem is hard.
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the polynomially-many possible clauses and applying Houdini), and for CNF formulas with a
constant number of clauses (by translating them to DNF formulas with a constant number of
literals per term and applying the dual procedure). However, a restricted class of invariants
may miss invariants for some programs and reduces the generality of the verification procedure.
Hence in this thesis we are interested in the richer class of polynomially-long CNF invariants.
In this case the problem is no longer tractable even with a SAT solver:

Theorem 3.2.3. Let P be the set of all propositional transition systems. Then polynomial-length
inference for P is ΣP

2 -complete, where ΣP
2 = NP SAT is the second level of the polynomial-time

hierarchy.

We defer the proof to §3.4.1.
We note that polynomial-length inference can be encoded as specific instances of template-

based inference; the ΣP
2 -hardness proof of Lahiri and Qadeer [LQ09] uses more general templates

and therefore does not directly imply the ΣP
2 -hardness of polynomial-length inference. Lower

bounds on polynomial-length inference entail lower bounds on template-based inference.

Remark 3.2.4. The complexity of inferring DNF invariants can be worked out from the
complexity of CNF invariants.

Lemma 3.2.5. The complexity of the inference of P w.r.t. L = CNFp(n) is the same as P∗

w.r.t. L = DNFp(n).

Proof. Apply the duality of §2.2.1 to the best algorithm in each setting.

Remark 3.2.6. In the above formulation, an efficient procedure for deciding safety does not
imply polynomial-length inference is tractable, since the program may be safe, but all inductive
invariants may be too long. To overcome this technical quirk, we can consider a promise
problem [Gol06] variant of polynomial-length inference:

Given a transition system TS ∈ P,

• (Completeness) If TS has an inductive invariant I ∈ CNFp(n), the algorithm must
return yes.

• (Soundness) If TS is not safe the algorithm must return no.

Other cases, including the case of safety with an invariant outside CNFp(n), are not constrained.
An algorithm deciding safety thus solves also this problem. All the results of this chapter apply
both to the standard version above and the promise problem: upper bounds on the standard
version trivially imply upper bounds on the promise problem, and in our lower bounds we use
transition systems that are either (i) safe and have an invariant in CNFp(n), or (ii) unsafe.
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3.3 Invariant Inference with Queries and the Hoare Query Model

In this chapter we study algorithms for polynomial-length inference through black-box models of
inference with queries. In this setting, the algorithm accesses the transition relation through
(rich) queries, but cannot read the transition relation directly. Our main model is of Hoare-query
algorithms, which query the validity of a postcondition from a precondition in one step of the
system. Hoare-query algorithms faithfully capture a large class of SAT-based invariant inference
algorithms, including PDR and related methods.

A black-box model of inference algorithms facilitates an analysis of the information of
the transition relation the algorithm acquires. The advantage is that such an information-
based analysis sidesteps open computational complexity questions, and therefore results in
unconditional lower bounds on the computational complexity of SAT-based algorithms captured
by the model. An information-based analysis is also necessary for questions involving unbounded
computational power and restricted information, in the context of computationally-unrestricted
bounded-reachability generalization (see §3.4.3).

In this section we define the basic notions of queries and query-based inference algorithms.
We also define the primary query model we study in the chapter: the Hoare-query model. We
introduce and study additional query models in subsequent chapters—the interpolation-query
model in §3.4.2, and the inductiveness-query model in §3.5.1.

Inference with queries

We model queries of the transition relation in the following way: A query oracle Q is an oracle
that accepts a transition relation δ, as well as additional inputs, and returns some output. The
additional inputs and the output, together also called the interface of the oracle, depend on the
query oracle under consideration. A family of query oracles Q is a set of query oracles with
the same interface. We consider several different query oracles, representing different ways of
obtaining information about the transition relation.

Definition 3.3.1 (Inference algorithm in the query model). An inference algorithm from queries,
denoted AQ(Init,Bad, [δ]), is defined w.r.t. a query oracle Q and is given:

• access to the query oracle Q,

• the set of initial states (Init) and bad states (Bad);

• the transition relation δ, encapsulated—hence the notation [δ]—meaning that the algorithm
cannot access δ (not even read it) except for extracting its vocabulary; δ can only be passed
as an argument to the query oracle Q.

AQ(Init,Bad, [δ]) solves the problem of polynomial-length invariant inference for (Init, δ,Bad).



3.3. Invariant Inference with Queries and the Hoare Query Model 47

The Hoare-query model

Our main object of study in this chapter is the Hoare-query model of invariant inference
algorithms. It captures SAT-based invariant inference algorithms querying the behavior of a
single step of the transition relation at a time.

Definition 3.3.2 (Hoare-Query Model). For a transition relation δ and input formulas α, β ∈
wff(Σ), the Hoare-query oracle, H(δ, α, β), returns false if (α ∧ δ ∧ ¬β′) ∈ SAT; otherwise it
returns true.

An algorithm in the Hoare-query model, also called a Hoare-query algorithm, is an inference
from queries algorithm expecting the Hoare query oracle.

Intuitively, a Hoare-query algorithm gains access to the transition relation, δ, exclusively by
repeatedly choosing α, β ∈ wff(Σ), and calling H(δ, α, β).

If we are using a SAT solver to compute the Hoare-query, H(δ, α, β), then when the answer
is false, the SAT solver will also produce a counterexample pair of states σ, σ′ such that
σ, σ′ |= α ∧ δ ∧ ¬β′. We observe that using binary search, a Hoare-query algorithm can do the
same:

Lemma 3.3.3. Whenever H(δ, α, β) = false, a Hoare-query algorithm can find σ, σ′ such that
σ, σ′ |= α ∧ δ ∧ ¬β′ using n = |Σ| Hoare queries.

Proof. For each xi ∈ Σ ] Σ′, if xi ∈ Σ, conjoin it to α, else to β, and check whether H(δ, αi, βi)
is still false. If it is, continue to xi+1; otherwise flip xi and continue to xi+1.

Example: PDR as a Hoare-query algorithm The Hoare-query model captures the
prominent PDR algorithm, facilitating its theoretical analysis. In general, PDR accesses the
transition relation via checks of unreachability in one step and counterexamples to those checks.
These operations are captured in the Hoare query model by checking H(δ, F, α) or H(δ, F ∧ α, α)
(for the algorithm’s choice of F, α ∈ wff(Σ)), and obtaining a counterexample using a polynomial
number of Hoare queries, if one exists (Lemma 3.3.3). Furthemore, the Hoare-query model
is general enough to express a broad range of PDR variants that differ in the way they use
such checks but still access the transition relation only through such queries.6 Alg. 10 casts the
basic variant from Alg. 1 as a Hoare-query algorithm. The call to model invokes the procedure
of Lemma 3.3.3.

6A notable exception is ternary simulation [EMB11], which is not a SAT-based operation. However, see Re-
mark 3.4.4.
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Algorithm 10 PDR as a Hoare-query algorithm
1: procedure PDR(Init, Bad, [δ])
2: Fpdr

0 ← Init
3: N ← 0
4: while ∀1 ≤ i ≤ N. Fpdr

i 6=⇒ Fpdr
i−1 do

5: Fpdr
N+1 ← true

6: while Fpdr
N+1 6=⇒ ¬Bad do

7: for σb ∈ Fpdr
N+1 ∧ Bad do

8: block(σb, N + 1)

9: N ← N + 1
10: return Fpdr

i such that Fpdr
i =⇒ Fpdr

i−1

11: procedure block(σb, i)
12: if i = 0 then
13: unsafe
14: while H(δ,Fpdr

i−1,¬σb) = false or Fpdr
i−1 6=⇒ ¬σb do

15: (σ, σ′)← model([δ],Fpdr
i , σb) or σ ← σb if σb |= Fpdr

i−1

16: block(σ, i− 1)

17: take c minimal s.t. c ⊆ ¬σb and H(δ,Fpdr
i−1, c) = true

18: and Init =⇒ c

19: for 1 ≤ j ≤ i do
20: Fpdr

j ← Fpdr
j ∧ c

The Hoare-query model is not specific to PDR. It also captures algorithms in the ICE
learning model [GLMN14], as we discuss in §3.5.1, and as result can model algorithms captured
by the ICE model (see §2.2.2). In §3.5.2 we show that the Hoare-query model is in fact strictly
more powerful than the ICE model.

Remark 3.3.4. Previous black-box models for invariant inference [GLMN14] encapsulated access
also to Init,Bad. In our model we encapsulate only access to δ, since (1) it is technically simpler,
(2) a simple transformation can make Init,Bad uniform across all programs, embedding the
differences in the transition relation; indeed, our constructions of classes of transition systems in
this chapter are such that Init,Bad are the same in all transition systems that share a vocabulary,
hence Init,Bad may be inferred from the vocabulary. (Unrestricted access to Init,Bad is stronger,
thus lower bounds on our models apply also to models restricting access.)

Complexity.

Focusing on information, we do not impose computational restrictions on the algorithms, and
only count the number of queries the algorithm performs to reveal information of the transition
relation. In particular, when establishing lower bounds on the query complexity, we even consider
algorithms that may compute non-computable functions. However, whenever we construct
algorithms demonstrating upper bounds on query complexity, these algorithms in fact have
polynomial time complexity, and we note this when relevant.

Given a query oracle and an inference algorithm that uses it, we analyze the number of
queries the algorithm performs as a function of n = |Σ|, in a worst-case model w.r.t. to possible
transition systems in the class of interest (over Σ).

The definition is slightly complicated by considering, as we do later in the chapter, query-
models in which more than one oracle exists, i.e., an algorithm may use any oracle from a family
of query oracles. In this case, we analyze the query complexity of an algorithm in a worst-case
model w.r.t. the possible query oracles in the family as well.

Formally, the query complexity is defined as follows:
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Definition 3.3.5 (Query Complexity). For a class of transitions systems P, the query complexity
of (a possibly computationally unrestricted) A w.r.t. a query oracle family Q is defined as

qQA(n) = sup
Q∈Q

sup
(Init,δ,Bad)∈P,

|Σ|=n

#query(AQ(Init,Bad, [δ])) (3.1)

where #query(AQ(Init,Bad, [δ])) is the number of times the algorithm accesses Q given this
oracle and the input. (These numbers might be infinite.)

The query complexity in the Hoare-query model is q{H}A (n).

Remark 3.3.6. In our definition, query complexity is a function of the size of the vocabulary
n = |Σ|, but not of the size of the representation of the transition relation |δ|. This reflects the
fact that an algorithm in the black-box model does not access δ directly. In the open questions
listed in Chapter 6 we discuss taking |δ| as an additional complexity parameter. The drawback is
that learning δ itself becomes feasible, undermining the black-box model. Efficiently learning δ is
possible when using unlimited computational power and exponentially-long queries. However,
whether the same holds when using unlimited computational power with only polynomially-long
queries is related to open problems in classical concept learning.

3.4 The Information Complexity of Hoare-Query Algorithms

In this section we prove an information-based lower bound on Hoare-query invariant inference
algorithms, and also extend the results to algorithms using interpolation, another SAT-based
operation. We then apply these results to study the role of information in generalization as part
of inference algorithms.

3.4.1 Information Lower Bound for Hoare-Query Inference

We show that a Hoare-query inference algorithm requires 2Ω(n) Hoare-queries in the worst
case to decide whether a CNF invariant of length polynomial in n exists. (Recall that n is a
shorthand for |Σ|, the size of the vocabulary of the input transition system.) This result applies
even when allowing the choice of queries to be inefficient, and when allowing the queries to
use exponentially-long formulas. It provides a lower bound on the time complexity of actual
algorithms, such as PDR, that are captured by the model. Formally:

Theorem 3.4.1. Every Hoare-query inference algorithm AH deciding polynomial-length inference
for the class of all propositional transition systems has query complexity of 2Ω(n).

The rest of this section proves a strengthening of this theorem, for a specific class of transition
systems (which we construct next), for any class of invariants that includes antimonotone CNF
(Def. 2.3.7), and for computationally-unrestricted algorithms:
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Theorem 3.4.2. Every Hoare-query inference algorithm AH, even computationally-unrestricted,
deciding invariant inference for the class of transition systems PΣP2

(§3.4.1) and for any class
of target invariants L s.t. Mon-CNFn ⊆ L. has query complexity of 2Ω(n).

(That classes containing Mon-CNFn are already hard becomes important later, in §3.5.)

A Hard Class of Transition Systems

In this section we construct a PΣP2
, a hard class of transition systems, on which we prove

hardness results.

The QBF2 problem The construction of PΣP2
is based on the prototypical ΣP

2 -complete
problem of QBF2 from classical computational complexity theory. In essence, this is a proposi-
tional satisfiability problem, except that instead of checking whether there exists a satisfying
assignment as in the classical satisfiability problem, we are interested whether there is an
exists-forall assignment. Formally, in this problem, the input is a quantified Boolean formula
∃y.∀x. φ(x, y) where φ is a Boolean (quantifier-free) formula, and the problem of QBF2 is to
decide whether the quantified formula is true, namely, whether there exists a Boolean assignment
to y s.t. φ(x, y) is true for every Boolean assignment to x.

The class PΣP2
. We shall now use the QBF2 problem to construct a set of transition systems.

The idea is that each transition system in the class is a program that solves the QBF2 problem
for a specific formula, by iterating through the solutions one by one. Invariant inference for such
systems boils down to solving the same problem, which is comptuationally hard, and, as we
shall see, also hard in an information-theoretical way. Let us begin:

For each k ∈ N, we define PkΣP2 , and finally take PΣP2
= ⋃

k∈N PkΣP2 .
Let k ∈ N. For each formula ∃y.∀x. φ(y, x), where y = y1, . . . , yk, x = x1, . . . , xk are

variables and φ is a quantifier-free formula over the variables x∪ y, we define a transition system
TSφ = (Initk, δPφ ,Badk). Intuitively, it iterates through y lexicographically, and for each y it
iterates lexicographically through x and checks if all assignments to x satisfy φ(y, x). If no such
y is found, this is an error. More precisely,

1. Σk = {y1, . . . , yk, x1, . . . , xk, a, b, e}.

2. Initk = y = 0 ∧ x = 0 ∧ ¬a ∧ b ∧ ¬e.

3. Badk = e.

4. δPφ : evaluate φ(y, x), and perform the following changes (at a single step): If the result
is false, set a to true. If x = 1 and a is still false, set b to false. If in the pre-state
x = 1, increment y lexicographically, reset a to false, and set x = 0; otherwise increment x
lexicographically. If in the pre-state y = 1, set e to b. (Intuitively, a is false as long as no



3.4. The Information Complexity of Hoare-Query Algorithms 51

falsifying assignment to x has been encountered for the current y, b is true as long as we
have not yet encountered a y for which there is no falsifying assignment.)

We denote the resulting class of transition systems PkΣP2 = {TSφ | φ = φ(y1, . . . , yk, x1, . . . , xk)}.
The following lemma relates the QBF2 problem for φ to the inference problem of TSφ:

Lemma 3.4.3. Let TSφ ∈ PkΣP2 . Then TSφ is safe iff it has an inductive invariant in
Mon-CNF2k+1 iff the formula ∃y.∀x. φ(y, x) is true.

Proof. There are two cases:

• If ∃y.∀x. φ(y, x) is true, let v be the first valuation for y that realizes the existential
quantifiers. Then the following is an inductive invariant for TSφ:

I = ¬e ∧ (b→ y ≤ v) ∧ ((b ∧ a)→ y < v) (3.2)

where the lexicographic constraint is expressed by the following recursive definition on
y[d] = (y1, . . . , yd), v[d] = (v1, . . . , vd):

y[d] < v[d]
def=

¬yd ∨ (y[d−1] < v[d−1]) vd = true

¬yd ∧ (y[d−1] < v[d−1]) vd = false

and y ≤ v 4= y < (v + 1) (or true if v = 1).

I ∈ Mon-CNF2k+1: Note that y[k] < v[k] can be written in CNF with at most n clauses:
in the first case a literal is added to each clause, and in the second another clause is added.
Thus I can be written in CNF with at most 2k + 1 clauses. Further, the literals of y
appear only negatively in y[k] < v[k], and hence also in I. The other literals (¬e,¬a,¬b)
also appear only negatively in I. Hence, I is antimonotone.

I is indeed an inductive invariant: it is straightforward that I includes the initial states
and excluded the bad states. To see that it is inductive, consider a valuation to y in a
pre-state satisfying the invariant. (We abuse notation and refer to the valuation by y.)
There are three cases:

– If y < v, then (i) ¬e is retained by a step, (ii) y ≤ v holds after a step, (iii) y < v

still holds unless the transition is from the last evaluation for y = v− 1 to v, in which
case a is turned to false.

– If y > v, the invariant guarantees that in the pre-state b is false, and thus e remains
false after a step. b also remains false and thus the rest of the invariant also holds in
the post-state.

– If y = v, the invariant guarantees that in the pre-state either b is false or a is false. If
b is false the same reasoning of the previous case applies. Otherwise, we have that
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a is false. By the definition of v all valuations for x results in φ(v, x) = true, so a
remains false after a step, and once we finish iterating through x we set b to false
immediately.

The claim follows.

• If ∃y.∀x. φ(y, x) is not true, then TSφ is not safe (and thus does not have an inductive
invariant of any length). This is because for every valuation of y a violating x is found,
turning a to true, and b never turns to false, so after iterating through all possible y’s e
will become true.

Before we turn to prove Thm. 3.4.2 and establish a lower bound on the query complexity
in the Hoare model, we note that this construction also yields the computational hardness
mentioned in §3.2:

Proof of Thm. 3.2.3. The upper bound is straightforward: guess an invariant in CNFp(n) and
check it. For the lower bound, use the reduction outlined above: given φ(y1, . . . , yk, x1, . . . , xk),
construct TSφ. Note that the vocabulary size, n, is 2k + 3, and the invariant, when exists, is of
length at most 2k + 1 ≤ n.7 The reduction is polynomial as the construction of TSφ (and n)
from φ is polynomial in k and |φ|: note that lexicographic incrementation can be performed
with a propositional formula of polynomial size.

Lower Bound’s Proof

We now turn to prove Thm. 3.4.2. Given an algorithm with polynomial query complexity, the
proof constructs two transition system: one that has a polynomial-length invariant and one that
does not, and yet all the queries the algorithm performs do not distinguish between them. The
construction uses the path the algorithm takes when all Hoare queries return false as much as
possible. Intuitively, such responses are less informative and rule out less transition relations,
because they merely indicate the existence of a single counterexample to a Hoare triple, as
opposed to the result true which indicates that all transitions satisfy a property.

Proof of Thm. 3.4.2. Let A be a computationally unbounded Hoare-query algorithm. We show
that the number of Hoare queries performed by A on transition systems from PΣP2

with |Σ| = n

is at least 2n−1
2 . To this end, we show that if A over |Σ| = 2n+ 3 performs less than 2n queries,

then there exist two formulas ψ1, ψ2 over y1, . . . , yn, x1, . . . , xn such that

• all the Hoare queries performed by A on δPψ1
and δPψ2

(the transition relations of TSψ1 and
TSψ2 , respectively) return the same result, even though

7For an arbitrary polynomial p(n) = Ω(n), e.g., p(n) = c · n with 0 < c < 1, enlarge Σ, e.g., by adding to Init
initialization of fresh variables that are not used elsewhere, to ensure existence of an invariant of length ≤ p(n).



3.4. The Information Complexity of Hoare-Query Algorithms 53

• A should return different results when run on TSψ1 ∈ PnΣP2 and TSψ2 ∈ PnΣP2 , since TSψ1

has an invariant in Mon-CNF2n+1 and TSψ2 does not have an invariant (of any length).

We begin with some notation. Running on input TSφ, we abbreviate H(δPφ , ·, ·) by H(φ, ·, ·).
Denote the queries A performs and their results by H(φ, α1, β1) = b1, . . . ,H(φ, αm, βm) = bm.
We call an index i sat if bi = false. We say that ψ query-agrees with φ if H(ψ, αi, βi) = bi for
all i. We say that ψ sat-query-agrees with φ if for every i such that bi = false it holds that
H(ψ, αi, βi) = false.

We first find a formula φ over y1, . . . , yn, x1, . . . , xn such that the sequence of queries A
performs when executing on TSφ is maximally satisfiable: if ψ sat-query-agrees with φ, then ψ
(completely) query-agrees with φ on the queries, that is,

∀ψ. (∀i. bi = false⇒ H(ψ, αi, βi) = bi) =⇒ (∀i. H(ψ, αi, βi) = bi) (3.3)

We construct this sequence iteratively (and define φ accordingly) by always taking φ so
that the result of the next query is false as long as this is possible while remaining consistent
with the results of the previous queries: Initially, choose some arbitrary φ0. At each point i,
consider the first i queries A performs on φi, H(φi, α1, β1) = b1, . . . ,H(φi, αi, βi) = bi. If A
terminates without performing another query, we are done: the desired φ is φi. Otherwise let
(αi+1, βi+1) be the next query. Amongst formulas φi+1 that query-agree on the first i queries,
namely, H(φi+1, αj , βj) = bj for all j ≤ i, choose one such that H(φi+1, αi+1, βi+1) = false if
possible; if such φi+1 does not exist take e.g. φi+1 = φi. The dependency of A on φi is solely
through the results of the queries to H(δPφ , ·, ·), so A performs the same i initial queries when
given φi+1. The result is a maximally satisfiable sequence, for if a formula ψ differs in query
i+ 1 in which the result is false instead of true we would have taken such a ψ as φi+1.

Let φ be such a formula with a maximally satisfiable sequence of queries A performs
on φ, H(φ, α1, β1) = b1, . . . ,H(φ, αm, βm) = bm. For every sat i, take a counterexample
σi, σ

′
i |= αi ∧ δPφ ∧ ¬β′i. The single transition (σi, σ′i) of δPφ depends on the value of φ on at most

one assignment to x, y, so there exists a valuation vi : y ∪ x→ {true, false} such that

∀ψ. ψ(vi) = φ(vi) =⇒ σi, σ
′
i |= αi ∧ δPψ ∧ ¬β′i (3.4)

as well. It follows that

∀ψ. ψ(vi) = φ(vi) =⇒ H(ψ, αi, βi) = H(φ, αi, βi) = false. (3.5)

Let vi1 , . . . , vit be the valuations derived from the sat queries (concerning indexing, bi = false
iff bi = bij for some j). We say that a formula ψ valuation-agrees with φ on vi1 , . . . , vit if
ψ(vij ) = φ(vij ) for all j’s. Since the sequence of queries is maximally satisfiable, if ψ valuation-
agrees with φ on vi1 , . . . , vit then ψ query-agrees with φ, namely, H(ψ, αi, βi) = H(φ, αi, βi) for
all i = 1, . . . ,m. As the dependency of A on φ is solely through the results b1, . . . , bm, it follows
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that A performs the same queries on ψ as it does on φ and returns the same answer.
It remains to argue that if m < 2n then there exist two formulas ψ1, ψ2 that valuation-agree

with φ on vi1 , . . . , vit but differ in the correct result A should return: ∃y.∀x. ψ1(y, x) is true,
and so TSψ1 has an invariant in Mon-CNF2n+1 (Lemma 3.4.3), whereas ∃y.∀x. ψ2(y, x) is not,
and so TSψ2 does not have an invariant of any length or form (Lemma 3.4.3). This is possible
because the number of constraints imposed by valuation-agreeing with φ on vi1 , . . . , vit is less
than the number of possible valuations of x for every valuation of y and vice versa:

ψ1(y, x) =
∧
i=1..t

θ(vij )=false

(y, x) 6= vij (3.6)

is true on all valuations except for some of vi1 , . . . , vit , and since t ≤ m < 2n there exists some y
such that for all x, (y, x) is not one of these valuations (recall that |y| = n bits). Dually,

ψ2(y, x) =
∨
i=1..t

θ(vij )=true

(y, x) = vij (3.7)

is false on all valuations except for some of vi1 , . . . , vit , and since t ≤ m < 2n for every y there
exists x such that (y, x) is not one of these valuations (recall that |y| = n bits). This concludes
the proof.

Remark 3.4.4 (Extension to Ternary Simulation). The lower bound of Thm. 3.4.2 continues
to hold when the algorithm is equipped with a query oracle that can implement ternary simula-
tion [EMB11]: for a transition relation δ and input formulas α, β ∈ wff(Σ), the Proof obligation
extension oracle, T (α, β), returns true if ∀σ ∈ α.∃σ′ ∈ β. (σ, σ′) ∈ δ; otherwise it returns false.
Intuitively, T (α, β) = true means that if β must be excluded from the invariant (e.g., because all
the states in β reach Bad), then so must α.

The proof argument for Thm. 3.4.2 described in this section can be extended to algorithms
that use H as well as T in the same way. The reason is that T (α, β) = false follows from the
existence of a single transition (σ, σ′) ∈ δ s.t. σ |= α, σ′ 6|= β in the transition systems in PΣP2
(which are deterministic). Hence, choosing such a transition and including it in both TSψ1 ,TSψ2

suffices for them to agree on T (α, β) = false, and the rest of the proof is without change.

3.4.2 Extension to Interpolation-Based Algorithms

We now consider inference algorithms based on interpolation, another operation supported by
SAT solvers. Interpolation has been introduced to invariant inference by McMillan [McM03],
and extended in many works since (see §2.2.2).

Interpolation algorithms infer invariants from facts obtained with Bounded Model Checking
(BMC), which we formalize as follows:
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Definition 3.4.5 (Bounded Reachabilitiy Check). The k-bounded reachability check returns

H(k)(δ, α, β) def= α(Σ0) ∧ δ(Σ0,Σ1) ∧ . . . ∧ δ(Σk−1,Σk) =⇒ β(Σk) (3.8)

for α, β ∈ wff(Σ), where Σ0, . . . ,Σk are k + 1 distinct copies of the vocabulary.

An inference from queries algorithm that uses H(k)(·, ·, ·) is called an extended Hoare-query
algorithm. Such algorithms are studied in depth in Chapter 4. Here, we use BMC to define the
interpolation-query oracles:

Definition 3.4.6 (Interpolation-Query Model). An interpolation-query oracle is a query oracle
Q such that for every δ, α, β ∈ wff(Σ), and k1, k2 ∈ N,

• Q(k1,k2)(δ, α, β) = ⊥ if H(k1+k2)(δ, α, β) = false, and

• Q(k1,k2)(δ, α, β) = ρ for ρ ∈ wff(Σ) such that H(k1)(δ, α, ρ) = true and H(k2)(δ, ρ, β) = true
otherwise.

We define itp to be the family of all interpolation-query oracles.
An algorithm in the interpolation-query model, also called an interpolation-query algorithm,

is an inference from queries algorithm expecting any interpolation query oracle, where k1, k2 are
bounded by a polynomial in n in all queries. The query complexity in this model is qitp

A (n).

Interpolation-query oracles form a family of oracles since different oracles can choose different
ρ for every δ, α, β, k1, k2. Note that ρ may be exponentially long.

Lower Bound on Interpolation-Query Algorithms

We show an exponential lower bound on query complexity for interpolation-query algorithms.
To this end we prove the following adaptation of Thm. 3.4.2:

Theorem 3.4.7. Every interpolation-query inference algorithm, even computationally-unrestricted,
deciding polynomial-length inference for the class of transition systems PΣP2

(§3.4.1) has query
complexity of 2Ω(n).

We remark that the lower bound on the interpolation-query model does not follow directly
from the result for the Hoare-query model: an interpolant for H(k1+k2)(δ, α, β) = true depends
on all traces of length k1 + k2 starting from states satisfying α, which may be an exponential
number, so it cannot be computed simply by performing a polynomial number of Hoare queries
to find these traces and computing an interpolant based on them. In principle, then, an
interpolant can convey information beyond a polynomial number of Hoare queries. Our proof
argument is therefore more subtle: we show that there exists a choice of an interpolant that is
not more informative than the existence of some interpolant (i.e., only reveals information on
H(k1+k2)(·, ·, ·)), in the special case of systems in PΣP2

, in the maximally satisfiable branch of an
algorithm’s execution as used in the proof of Thm. 3.4.2.
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Proof. Let A be a computationally unbounded algorithm using bounded reachability queries
with bounds k1, k2 < r(n) for some polynomial r(n) (here n = (|Σ| − 1)/2, as in the proof of
Thm. 3.4.2), with query complexity m < 2n

r(n) .
To prove the theorem it is convenient to first consider the algorithmic model which performs

bounded-reachability queries of polynomial depth but not interpolation queries, intuitively
performing BMC but without obtaining interpolants from the SAT solver. Formally we consider
Def. 3.4.5 as a query-oracle and first prove the lower bound for algorithms using this query
oracle. The proof follows the argument from the proof of Thm. 3.4.2, relying on the fact that
the BMC bounds k1, k2 < r(n)

Assume that A performs only bounded reachability queries (without obtaining inter-
polants). In what follows, we abbreviate H(k)(δPφ , ·, ·) by H(k)(φ, ·, ·). We start the same
as the proof of Thm. 3.4.2 to obtain a formula φ such that the sequence of bounded reachability
queries A performs when executing on TSφ is maximally satisfiable. In this proof this reads,
∀ψ.

(
∀i. bi = false⇒ H(ki)(φ, αi, βi) = bi

)
=⇒

(
∀i. H(ki)(φ, αi, βi) = bi

)
.

The main difference is that every sat query produces a counterexample trace rather than a
counterexample transition as in Thm. 3.4.2. For every sat query i, we take a counterexample trace
σi1, . . . , σ

i
ki
, namely, σi1 |= α, σiki |= ¬β, and σ

i
j , σ

i
j+1 |= δPφ . Every such transition σij , σij+1 |= δPφ

depends on at most one valuation of φ. Thus there exists valuations vi1, . . . , viki so that every ψ
that valuation-agrees with φ on these valuations also allows the aforementioned counterexample
trace, and thus H(ki)(ψ, αi, βi) = false as well. As in the proof of Thm. 3.4.2, it follows that if
ψ valuation-agrees with φ on all valuations v1

1, . . . , v
1
k1
, . . . , vm1 , . . . , v

m
km

, then all queries on ψ
give that same result as those on φ. Since k1, . . . , km < r(n), the number of these valuations
is less that r(n) ·m < 2n. The rest of the proof is exactly as in Thm. 3.4.2, constructing two
formulas ψ1, ψ2 valuation-agreeing with φ on all valuations, but one is true (in the QBF2 sense)
and the other is not.

We now turn to interpolation queries. Assume without loss of generality that every interpo-
lation query is preceded by a bounded reachability query with the same bound, and that if the
result is false the algorithm skips the interpolation query.

Consider the algorithm’s execution on φ constructed above. We show that there exists
an interpolation-query oracle that returns the same interpolants on the queries performed by
the algorithm for both ψ1, ψ2 from above, and thus the algorithm’s execution still does not
distinguish between them.

Consider a point when the algorithms seeks an interpolant based on H(k1+k2)(φ, α, β) = true.
Let S be the set of all formulas consistent with φ on all the valuations vi from above. In
particular, H(k1+k2)(θ, α, β) = true for all θ ∈ S. We construct a single interpolant valid for all
θ ∈ S, that is, a formula ρ s.t. for every θ ∈ S, H(k1)(θ, α, ρ) = true and H(k2)(θ, ρ, β) = true.
In particular, ψ1, ψ2 ∈ S, so this gives the desired interpolant for them.

Take δ̂ = ∨
θ∈S δ

P
θ . We argue that H(k1+k2)(δ̂, α, β) = true. For otherwise, there exists a

trace (σ0, . . . , σk1+k2) of δ̂ such with σ0 |= α and σk1+k2 6|= β. By the definition of δ̂, each
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transition (σj , σj+1) originates from δPθj for some θj ∈ S. As before, this transition depends
on the truth value of θj at one valuation v̂j at the most. Furthermore, v̂1, . . . , v̂k1+k2−1 are
successive valuations, because all the transition systems in the class increment the valuation
in the same way. Thus v̂j1 6= v̂j2 . Take a formula θ̂ ∈ S that agrees with θj on v̂j for all
j = 1, . . . , k1 + k2 − 1; one exists because

1. θj(v̂j) cannot contradict the valuations φ(vi), because θi ∈ S, and

2. θj1(v̂j1) does not contradict θj2(v̂j2) for v̂j1 6= v̂j2 for j1 6= j2.

Thus (σ0, . . . , σk1+k2) is also a valid trace of θ̂ ∈ S, which is a contradiction to H(k1+k2)(θ̂, α, β) =
true.

Thus there exists some ρ an interpolant for δ̂, α, β, k1, k2. We choose the interpolation query
oracle so that

Q(k1,k2)(θ, α, β) = ρ

for all θ ∈ S. This is a valid choice of interpolant: H(k1)(θ, α, ρ) = true and H(k2)(θ, ρ, β) = true
because H(k1)(δ̂, α, ρ) = true and H(k2)(δ̂, ρ, β) = true and δ̂ includes all the transitions of δPθ .

The claim follows.

3.4.3 Impossibility of Generalization from Partial Information

Algorithms such as PDR use generalization schemes to generalize from specific states to clauses
(see §3.1.2 and §2.2.2). It is folklore that “good” generalization is the key to successful invariant
inference. In this section, we apply the results of §3.4.1 to shed light on the question of
generalization. Technically, this is a discussion of the results in §3.4.1.

Clearly, if the generalization procedure has full information, that is, has unrestricted access to
the input—including the transition relation—then unrestricted computational power makes the
problem of generalization trivial (as is every other problem!). For example, “efficient” inference
can be achieved by a backward reachability algorithm (see §3.1.1) that blocks counterexamples
through a generalization that uses clauses from a target invariant it can compute. This setting of
full-information, computationally-unrestricted generalization was used by Padon et al. [PMP+16]
in an interactive invariant inference scenario.

Our analysis in §3.4.1 implies that the situation is drastically different when generalization
possesses partial information: the algorithm does not know the transition relation exactly, and
only knows the results of a polynomial number of Hoare queries. By Thm. 3.4.2, no choice
of generalization made on the basis on this information can in general achieve inference in a
polynomial number of steps. This impossibility holds even when generalization uses unrestricted
computational power, and thus it is a problem of information. To further illustrate the idea of
partial information, we note that the problem remains hard even when generalization is equipped
with information beyond the results of a polynomial number of Hoare queries, information of the
reachability of the transition system from Init and backwards from Bad in a polynomial number
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of steps8; in contrast, information of the states reachable in any number of steps constitutes full
information and the problem is again trivial with unrestricted computational power.

Finally, the same challenge of partial information is present in algorithms basing generalization
on a polynomial number of interpolation queries, as follows from Thm. 3.4.7.

3.5 The Power of Hoare-Queries

Hoare queries are rich in the sense that the algorithm can choose a precondition α and post-
condition β and check H(δ, α, β), where α may be different from β. As such, algorithms in the
Hoare-query model can utilize more flexible queries beyond querying for whether a candidate
is inductive. In practice, this richer form of queries facilitates an incremental construction of
invariants in complex syntactic forms. For example, PDR [Bra11, EMB11] incrementally learns
clauses in different frames via relative inductiveness checks, and interpolation learns at each
iteration a term of the invariant from an interpolant [McM03] (see §2.2.2). In this section we
analyze this important aspect of the Hoare-query model and show that it can be strictly stronger
than inference based solely on presenting whole candidate inductive invariants. We formalize
the latter approach by the model of inductiveness-query algorithms, closely related to ICE
learning [GLMN14], and construct a class of transition systems for which a simple Hoare-query
algorithm can infer invariants in polynomial time, but every inductiveness-query algorithm
requires an exponential number of queries.

3.5.1 Inductiveness-Query Algorithms

We define a more restricted model of invariant inference using only inductiveness queries.

Definition 3.5.1 (Inductiveness-Query Model). An inductiveness-query oracle is a query oracle
Q such that for every δ and α ∈ wff(Σ) satisfying Init =⇒ α and α =⇒ ¬Bad,

• Q(δ, α) = true if α ∧ δ =⇒ α′, and

• Q(δ, α) = (σ, σ′) such that (σ, σ′) |= α ∧ δ ∧ ¬α′ otherwise.

We define I to be the family of all inductiveness-query oracles.
An algorithm in the inductiveness-query model, also called an inductiveness-query algorithm,

is an inference from queries algorithm expecting any inductiveness query oracle. The query
complexity in this model is qIA(n).

Inductiveness-query oracles form a family of oracles since different oracles can choose different
(σ, σ′) for every δ, α. Accordingly, the query complexity of inductiveness-query algorithms is
measured as a worst-case query complexity over all possible choices of an inductiveness-query
oracle in the family.

8This can be shown by noting that in PΣP
2

(used to establish the exponential lower bound) such polynomial-
reachability information can be obtained from a polynomial number of Hoare queries, reducing this scenario to
the original setting.
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ICE learning and inductiveness-queries The inductiveness-query model is closely related
to ICE learning [GLMN14], except here the learner is provided with full information on Init,Bad
instead of positive and negative examples (and the algorithm refrains from querying on candidates
that do not include Init or do not exclude Bad). This model captures several interesting
algorithms (see §2.2.2). Our complexity definition in the inductiveness-query model being the
worst-case among all possible oracle responses is in line with the analysis of strong convergence
in Garg et al. [GLMN14]. Hence, lower bounds on the query complexity in the inductiveness
query model imply lower bounds for the strong convergence of ICE learning. We formalize this
in the following lemma, using terminology borrowed from Garg et al. [GLMN14] (see §2.2.2):

Lemma 3.5.2. Let P be a class of transition systems, and L a class of candidate invariants.
Assume that deciding the existence of an invariant in L, given an instance from P, requires at
least r queries in the inductiveness-query model. Then every strongly-convergent ICE-learner
for (P,L) has round complexity at least r.

Proof. Given a strongly-convergent ICE-learner A with round-complexity at most r, we construct
an inductiveness-query algorithm for deciding (P, C) in at most r queries, in the following way.
Simulate at most r rounds of A, and implement a teacher as follow: When A produces a
candidate θ ∈ C,

• Check that Init =⇒ θ, otherwise produce a positive example, a σ s.t. σ |= Init, σ 6|= θ;

• Check that θ =⇒ ¬Bad, otherwise produce a negative example, a σ s.t. σ |= Bad, σ |= θ;

• Perform an inductiveness query for θ. If θ is inductive, we are done—return true. Otherwise,
the inductiveness-query oracle produces a counterexample—pass it to A.

If r rounds did not produce an inductive invariant, return false.
The teacher we implement always extends the learner’s sample with an example that actually

is an example in the target description (see §2.2.2), and that rules out the current candidate.
Thus, if there exists a correct h ∈ C, A finds one after at most r iterations, and we return true.
Otherwise, we terminate after at most r with the last candidate not an inductive invariant, and
we return false.

Inductiveness queries vs. Hoare queries Inductiveness queries are specific instances of
Hoare queries, where the precondition and postcondition are the same. Since Hoare queries can
also find a counterexample in a polynomial number of queries (Lemma 3.3.3), inductiveness-query
algorithms can be simulated by Hoare-query algorithms. Our results in the rest of this section
establish that the converse is not true.

3.5.2 Separating Inductiveness-Queries from Hoare-Queries

In this section we show that the Hoare query model (Def. 3.3.2) is strictly stronger than the
inductiveness query model (Def. 3.5.1). We will prove the following main theorem:
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Theorem 3.5.3. There exists a class of systemsME for which

• polynomial-length invariant inference has polynomial query complexity in the Hoare-query
model (in fact, also polynomial time complexity modulo the query oracle), but

• every algorithm in the inductiveness-query model requires an exponential number of
queries.

The upper bound is proved in Corollary 3.5.8, and the lower bound in Corollary 3.5.11.
Building on this theorem’s proof, we also obtain the following:

Theorem 3.5.4. PDR (Alg. 10) cannot be efficiently simulated in the inductiveness-query
model: there is no inductiveness-query algorithm A that solves polynomial-length inference on
every TS = (Init, δ,Bad) with a number of inductiveness queries that has at most polynomial
overhead on the number of Hoare queries performed by PDR—query complexity bounded by
p(n) ·#query(PDRH(Init,Bad, [δ])) where n = |Σ|, and p(·) is some polynomial.

Maximal Transition Systems for Antimonotone Invariants

We first define the transition systems with which we will prove Thm. 3.5.3. The idea is to
construct systems that are very simple, in a way that PDR can take advantage of, but ICE
algorithms cannot. Specifically, these systems will have the simplest reachability pattern: all
reachable states are reachable in one step from the initial states, and all other states reach a
bad state in one step. Such a system has exactly one inductive invariant ϕ—the set of reachable
states—and so can be associated with it. Since this system includes all the transitions that can
be possibly occur without violating the invariant ϕ, we call this system the maximal system
w.r.t. ϕ. Formally, this is defined as follows:

Definition 3.5.5 (Maximal System). Let Init,Bad 6≡ false and let ϕ be a formula such that
Init =⇒ ϕ and ϕ =⇒ ¬Bad. The maximal transition system w.r.t. ϕ is (Init, δMϕ ,Bad) where

δMϕ = ϕ→ ϕ′.

A maximal transition system is illustrated as follows:

Note that δMϕ goes from any state satisfying ϕ to any state satisfying ϕ, and from any state
satisfying ¬ϕ to all states, good or bad. δMϕ is maximal in the sense that it allows all transitions
that do not violate ϕ being an inductive invariant: any transition relation δ̃ for which ϕ is an
inductive invariant has δ̃ =⇒ δMϕ .



3.5. The Power of Hoare-Queries 61

Lemma 3.5.6. A maximal transition system (Init, δMϕ ,Bad) has a unique inductive invariant,
ϕ.

Proof. Let I be any invariant of (Init, δMϕ ,Bad). By the definition of δMϕ and the fact that
Init =⇒ ϕ, the set of states reachable from Init is exactly the set of states satisfying ϕ. Thus
ϕ =⇒ I.

Since δMϕ allows transitions from any state satisfying ¬ϕ to Bad, I =⇒ ϕ.

The class of transition systems on which we focus,ME , is the class of maximal systems for
antimonotone invariants,M, together with certain unsafe systems.

Formally, for each k ∈ N, we defineMk as the class of all transition systems (Initk, δMϕ ,Badk)
for Initk,Badk from PkΣP2 (§3.4.1) and ϕ ∈ Mon-CNF2k+1 such that Initk =⇒ ϕ and ϕ =⇒
¬Badk. We then define M = ⋃

k∈NMk. Further, for each k we take the unsafe program
Ek = (Initk, true,Badk), and define the classME =M∪ {Ek | k ∈ N}. Below we abbreviate
and refer to the classME as “antimonotone maximal systems”.

Note that for each k, only a single transition system, Ek, inME does not have an invariant,
and the others have an antimonotone invariant. Still, Corollary 3.5.11 establishes a lower bound
on polynomial-length inference for ME using inductiveness queries. This means that using
inductiveness queries alone, it is hard to distinguish between antimonotone invariants (otherwise
decision would have been feasible via search). On the other hand, with Hoare queries, search
becomes feasible (establishing the upper bound).

Upper Bound for Hoare-Query Algorithms for Antimonotone Maximal Systems

A simple algorithm can find inductive invariants of antimonotone maximal systems with a
polynomial number of queries. It is essentially PDR with a single frame. The ability to find
invariants forME (and check invariants) shows that it is possible to decide polynomial-length
inference forME .

We now present the PDR-1 algorithm (which was also discussed in §3.1.2, and is cast here
formally as a Hoare-query algorithm). This is a backward reachability algorithm, operating
by repeatedly checking for the existence of a counterexample to induction, and obtaining a
concrete example by the method discussed in Lemma 3.3.3. The invariant is then strengthened
by conjoining the candidate invariant with the negation of the formula Block returns. This
formula is a subset of the cube of the pre-state. In PDR-1, Block performs generalization by
dropping a literal from the cube whenever the remaining conjunction does not hold for any state
reachable in at most one step from Init. The result is the strongest conjunction whose negation
does not exclude any state reachable in at most one step. (This might exclude reachable states in
general transition systems, but not in antimonotone maximal systems, since maximality ensures
that their diameter is one.)

The main property of antimonotone CNF formulas we exploit in the upper bound is the
ability to reconstruct them from prime consequences, as discussed in §2.3.2. We use this property
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Algorithm 11 PDR-1 in the Hoare-query model
1: procedure PDR-1(Init, [δ], Bad) // Backward reachability with PDR-1 generalization
2: I ← ¬Bad
3: while H(δ, I, I) = false do // I not inductive
4: (σ, σ′) ← model([δ], I,¬I ′) // counterexample to induction of I. implemented using

Lemma 3.3.3
5: d← Block-PDR-1(Init, [δ], σ)
6: I ← I ∧ ¬dreturn I
7:
8: procedure Block-PDR-1(Init, [δ], σ) // Generalization according to one-step reachability
9: d← cube(σ)

10: for l ∈ cube(σ) do
11: t← d \ {l}
12: if Init =⇒ ¬t ∧H(δ, Init,¬t) then // Init =⇒ t ∧ Init ∧ δ =⇒ ¬t′
13: d← t

return d

to show that PDR-1 efficiently finds the invariants of the safe maximal monotone systemsM,
as implied by the following, slightly more general, lemma:

Lemma 3.5.7. Let TS = (Init, δ,Bad) be a transition system over Σ, n = |Σ|, and m ∈ N such
that

1. TS is safe,

2. every reachable state in TS is reachable in at most one step from Init,

3. this set can be described by a Mon-CNFm formula, namely, there is ϕ ∈ Mon-CNFm such
that σ |= ϕ iff σ |= Init or ∃σ0 ∈ Init s.t. (σ0, σ) |= δ.

Then PDR-1(Init,Bad, [δ]) returns the inductive invariant ϕ for TS with at most n ·m Hoare
queries.

Proof. Let ϕ be as in the premise. We show that I of Alg. 11 (1) always overapproximates ϕ,
(2) is strengthened with a new clause from ϕ in every iteration.

(1) We claim by induction on the number of iterations in Alg. 11 that ϕ =⇒ I. Clearly
this holds initially. In line 4, σ 6|= ϕ, otherwise σ′ |= ϕ, and ϕ =⇒ I gives σ′ |= I which
is a contradiction to (σ, σ′) being a CTI. Now, for every σ 6|= ϕ, its minimization ¬d is a
consequence of ϕ, namely, ϕ =⇒ ¬d, because ¬d holds for all states reachable in at most one
step (Init =⇒ ¬d, Init ∧ δ =⇒ ¬d′) and those are states satisfying ϕ. Thus also ϕ =⇒ I ∧ ¬d.

(2) As we have argued earlier, ¬d in line 5 is a consequence of ϕ. We refer to it as the clause
c = ¬d. We argue that c is a clause of ϕ. By Thm. 2.3.9, is suffices to show that c is a prime
consequence of ϕ, seeing that ϕ is antimonotone. Assume (for the sake of contradiction) that
c̃ ( c is a consequence of ϕ. Consider the minimization procedure as it attempts to remove a
literal l̃ ∈ (¬c) \ (¬c̃) (line 11). This literal is not removed, so Init∧ t or Init∧ δ ∧ t′ is satisfiable
at this point. So there is a state reachable in at most one step that satisfies t, which means
that ϕ ∧ t is satisfiable. From this point onwards, literals are only omitted from t, apart from l̃
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that is resurrected; thus ¬c ⊆ t ∪ {l̃}. These are conjunctions, so ϕ ∧ (¬c \ {l̃}) is satisfiable.
But this means that ϕ 6=⇒ (c \ {¬l̃}). In particular, it follows that ϕ 6=⇒ c̃ since c̃ ⊆ c \ {¬l̃}.
Thus c̃ is not a consequence of ϕ, which is a contradiction to the premise. Therefore c must be
a prime consequence of ϕ.

It remains to argue that s in line 5 is not already present in I. But this is true because
σ |= s, and s 6|= I.

Overall, after at most m such iterations, I =⇒ ϕ from (2), and also ϕ =⇒ I from (1).
Thus I ≡ ϕ, which is indeed an inductive invariant (it captures exactly the reachable states).
Minimization performs n = |Σ| queries, and so the total number of queries is at most nm.

From this lemma and the uniqueness of the invariants (Lemma 3.5.6) the upper bound for
ME follows easily:

Corollary 3.5.8. Polynomial-length invariant inference ofME can be decided in a polynomial
number of Hoare queries.

Proof. Let p(·) be the polynomial dictating the target length in Def. 3.2.2. The Hoare-query
algorithm runs PDR-1 for p(n) · n queries. If PDR-1 does not terminate, return no. Otherwise,
it produces a candidate invariant ψ. If ψ 6∈ CNFp(n), return no. Perform another check for
whether ψ is indeed inductive: if it is inductive, return yes, otherwise no.

Correctness: let (Init, δ,Bad) ∈ME . If there exists an inductive invariant in CNFp(n), it is
unique, and is the formula ϕ ∈ Mon-CNFp(n) that characterizes the set of states reachable in
at most one step. By Lemma 3.5.7 PDR-1 finds ϕ in a polynomial number of Hoare queries.
Otherwise, (Init, δ,Bad) is not safe, or its unique inductive invariant ϕ 6∈ CNFp(n). In both
cases PDR-1 cannot produce an inductive invariant in CNFp(n), and terminates/is prematurely
terminated after p(n) · n Hoare queries.

Remark 3.5.9. The condition that the invariant is antimonotone in Lemma 3.5.7 can be relaxed
to unate CNF (Def. 2.3.4): PDR-1 successfully finds an invariant in a polynomial number of
Hoare queries also for the class of maximal systems for unate invariants. The proof is the same,
using Corollary 2.3.10 instead of Thm. 2.3.9.

Lower Bound for Inductiveness-Query Algorithms for Antimonotone Maximal
Systems

We now prove that every inductiveness-query algorithm for the class of antimonotone maximal
systems requires exponential query complexity. The main idea of the proof is that inductiveness-
query algorithms are oblivious to adding transitions:

Theorem 3.5.10. Let X,Y be sets of transition systems, such that Y covers the transition
relations of X, that is, for every (Init, δ,Bad) ∈ X there exists (Init, δ̂,Bad) ∈ Y over the same
vocabulary s.t.
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1. δ =⇒ δ̂, and

2. if (Init, δ,Bad) has an inductive invariant in CNFp(n), then so does (Init, δ̂,Bad).

Then if A is an inductiveness-query algorithm for Y with query complexity t, then A is also an
inductiveness-query algorithm for X with query complexity t.

Proof. Let A be an algorithm for Y as in the premise. We show that A also solves the problem
for X. Let (Init, δ,Bad) ∈ X and analyze AQ(Init,Bad, [δ]), where Q is some inductiveness-query
oracle. Consider the first t candidates, α1, . . . , αt. If one of them is an inductive invariant for
(Init, δ,Bad), we are done (recall that the inductiveness query is only defined for queries with αi
s.t. Init =⇒ αi and αi =⇒ ¬Bad). If we are not done, let (Init, δ̂,Bad) ∈ Y as in the premise for
the given (Init, δ,Bad). We show that in this case AQ(Init,Bad, [δ]) simulates AQ′(Init,Bad, [δ̂])
where Q′ is an inductiveness-query oracle derived from Q by Q′(δ̂, αi) = Q(δ, αi) for all
i = 1, . . . , t. Note that Q′(δ̂, ·) is a valid inductiveness-query oracle: by the assumption that αi is
not inductive for δ, Q(δ, α) = (σ, σ′), that is, σ, σ′ |= α∧ δ∧¬α′. From condition 1, δ =⇒ δ̂, and
so we deduce that also σ, σ′ |= α ∧ δ̂ ∧¬α′. Therefore, after at most t queries, AQ′(Init,Bad, [δ̂])
terminates, returning either (i) an inductive invariant ϕ ∈ CNFp(n) for (Init, δ̂,Bad), which is
also an inductive invariant for (Init, δ,Bad), by condition 1; or (ii) no inductive invariant in
CNFp(n) for (Init, δ̂,Bad), in which case this is also true for (Init, δ,Bad), by condition 2. Either
way AQ(Init,Bad, [δ]) is correct and uses ≤ t queries.

The lower bound for antimonotone maximal systems results from Thm. 3.5.10 together with
the hardness previously obtained in Thm. 3.4.2:

Corollary 3.5.11. Every inductiveness-query algorithm, even computationally-unrestricted,
deciding polynomial-length inference forME has query complexity of 2Ω(n).

Proof. For PΣP2
with invariant class Mon-CNFn, an exponential number of Hoare queries is

necessary, by Thm. 3.4.2. It follows that in the inductiveness-query model, an exponential query
complexity is also required (since a Hoare-query algorithm can implement a valid inductiveness-
query oracle). By arguing thatME covers PΣP2

we can apply Thm. 3.5.10 to deduce thatME

with invariant class Mon-CNFn also necessitates an exponential number of inductiveness queries:
Let (Initk, δ,Badk) ∈ PΣP2

. Recall that in these systems, n = 2k+ 3 (the vocabulary size). If
the system does not have an inductive invariant in Mon-CNFn, then Ek = (Initk, true,Badk) ∈
ME satisfies the conditions of Thm. 3.5.10 (condition 1 holds as evidently δ =⇒ true, and
condition 2 holds vacuously). Otherwise, there exists an inductive invariant ϕ ∈ Mon-CNFn for
(Initk, δ,Badk). In this case, the system (Initk, δMϕ ,Badk) satisfies the conditions of Thm. 3.5.10:
condition 1 is due to the maximality of δMϕ , and 2 holds as ϕ is an inductive invariant.

ThusME with the class Mon-CNFn requires an exponential number of inductiveness queries.
Since ME has a monotone invariant or none at all, it follows that an exponential number
inductiveness queries is also required forME with CNFn, as desired.
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We note that the transition relations inME are themselves polynomial in |Σ|. Hence the query
complexity in this lower bound is exponential not only in |Σ| but also in |δ| (see Remark 3.3.6).

Finally, it is interesting to notice that the safe systems in ME have a unique inductive
invariant, and still the problem is hard.

PDR Is Not an Inductiveness-Query Algorithm

We now turn to prove Thm. 3.5.4. The results above yield almost that: no inductiveness-query
algorithm can simulate PDR-1 on the classME of maximal transitions systems for monotone
invariants (with an additional unsafe instance) and PDR-1 is essentially PDR with a single
frame; it remains to close the gap between PDR-1 and PDR. The differences are not great: in
PDR, counterexamples are states that reach a bad state, whereas PDR-1 uses counterexamples
to induction;9 these coincide in maximal systems. Additionally, PDR as written in Alg. 1 opens
two or three frames before it finds an invariant in the first frame; the second frame is used
to generate counterexamples of depth one, and the third possibly to detect convergence (if no
optimizations are employed).

Proof of Thm. 3.5.4. We show that Alg. 10—the formulation of PDR as a Hoare-query algorithm—
solves the classME with a polynomial number of Hoare queries, namely, that it also achieves
the upper bound of Corollary 3.5.8. The claim follows because no inductiveness-query algorithm
can solve the same class with polynomial number of queries (Corollary 3.5.11).

To construct the first frame Fpdr
1 , PDR samples states from Bad (line 7). If the given

transition system is the unsafe instance, then the first state sampled from Bad is reachable
in one step from Init, and this is inferred by the algorithm in line 13. Otherwise, we are
analyzing a maximal system for ϕ. In this case, PDR learns lemmas for Fpdr

1 , generalizing the
counterexample w.r.t. δ(Init) by dropping literals, just like PDR-1; as in Lemma 3.5.7, this
generates a prime consequence of ϕ, and a new one each time, so Fpdr

1 consists of at most m
clauses when it excludes Bad. At this point PDR opens Fpdr

2 and again starts sampling states
Bad. If Fpdr

1 ⊆ ϕ then δ(Fpdr
1 ) = ϕ, and as in the first frame, Fpdr

2 is strengthened with a
prime consequence of ϕ. If Fpdr

1 6⊆ ϕ, then δ(Fpdr
1 ) = true, and to block the counterexample in

Fpdr
2 the algorithm samples predecessors in Fpdr

1 and generalizes them w.r.t. δ(Init) = ϕ—again
yielding prime consequences of ϕ—until no such predecessors exist, which is when we have
sufficiently strengthened the first frame so that Fpdr

1 ⊆ ϕ. Since always ϕ = δ(Init) ⊆ Fpdr
1 ,

we have at this point that Fpdr
1 ≡ ϕ, which is an inductive invariant. When pushing lemmas

forward, all the lemmas in Fpdr
1 will be pushed to Fpdr

2 , leading to Fpdr
1 ≡ Fpdr

2 and convergence;
without this optimization, PDR opens Fpdr

3 and in the same way strengthens Fpdr
2 until also

Fpdr
2 ≡ ϕ and converge. In any case, the algorithm uses O(1) frames, each frame consists

of at most m clauses, and generating each clause uses O(n) queries, including sampling the
counterexample and generalization, a polynomial number of Hoare queries in total.

9PDR-1 (Alg. 11) is more accurately described as dual model-based interpolation-based inference (see Chapter 4)
with a reachability bound of k = 1.
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Table 3.1: Concept vs. invariant learning: query complexity of learning Mon-CNFn
Invariant Inference Concept Learning
Maximal Systems General Systems

Inductiveness Exponential
(Corollary 3.5.11)

Exponential
(Thm. 3.4.2) Equivalence Subexponential1 / Polynomial2

[HKSS12, Ang87b]

Hoare Polynomial
(Corollary 3.5.8)

Exponential
(Thm. 3.4.2)

Equivalence+
Membership

Polynomial
[Ang87b]

1 proper learning
2 with exponentially long candidates

3.6 Invariant Learning & Concept Learning with Queries

What are the connections and differences between concept learning formulas in L and learning
invariants in L? Can concept learning algorithms be translated to inference algorithms? These
questions have spurred much research [e.g. GLMN14, JS17]. In this section we study these
questions with the tool of query complexity and our aforementioned results. (Background on
exact concept learning with queries appears in §2.3.1.) We prove results in two categories:
(1) that classical queries in exact concept learning cannot be efficiently implemented in as queries
to an unknown inductive invariant, and (2) that ICE-learning is provably harder than classical
learning: namely, that, as advocated by Garg et al. [GLMN14], learning from counterexamples
to induction is inherently harder than learning from examples labeled positive or negative.

3.6.1 Complexity Comparison

Table 3.1 collects our complexity results for invariant inference thus far, and compares them
with complexity results for exact concept learning. The results of this section stem from this
comparison.

In this chapter we have studied the complexity of inferring L = Mon-CNFn invariants using
Hoare/inductiveness queries in two settings: for general systems (in §3.4.1), and for maximal
systems in §3.5. The results for exact concept learning displayed in Table 3.1 are for identifying
the same class of formulas. For the sake of the comparison, the table maps inductiveness queries
to equivalence queries (as these are similar at first sight) and maps the more powerful setting of
Hoare queries to the more powerful setting of equivalence together with membership queries.

The comparison in the table of the complexity of inference with that of learning demonstrates
that invariant inference in general systems is harder than exact learning; an inference algorithm
needs to overcome not only the challenge of space, the complex syntactic structure of the
invariant, but also the challenge of time, stemming from reachability in the transition system
(see §1.2.1). The implications of the complexity gaps are elaborated in §3.6.2.

The complexity gap is eliminated when considering only maximal systems, alleviating the
challenge of time. However, that is true only for the Hoare-query model, and gaps remain when
considering only inductiveness queries; this is elaborated in §3.6.3.
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Table 3.2: Concept vs. invariant learning: implementability of concept learning queries

Maximal Systems General Systems
Inductiveness Hoare Inductiveness Hoare

Equivalence 7 3 7 7

Membership 7 3 7 7

3.6.2 Invariant Learning Cannot Be Reduced to Concept Learning

Table 3.2 summarizes our results for the possibility and impossibility of simulating concept
learning algorithms in invariant learning. This table depicts implementability (3) or unim-
plementability (7) of membership and equivalence queries used in concept learning a class of
formulas L through inductiveness and Hoare queries used in learning invariants for maximal
systems over L, and for general systems with candidate invariants in L.

Formally, the implementability of query in a class of transition systems P and invariants L
means that there is an algorithm that with a polynomial number of queries (in the respective
model), given a transition system TS ∈ P that admits some (unknown) invariant I ∈ L, correctly
answers the query w.r.t. I:

– Equivalence: given a formula θ it is possible to answer whether θ is an inductive invariant,
or provide a counterexample σ such that σ |= θ, σ 6|= I or σ 6|= θ, σ |= I.

– Membership: given a state σ, return true if σ |= I and false otherwise.

The proofs of impossibilities are based on the differences in complexity from Table 3.2. that
neither equivalence nor membership queries can be simulated over general systems using even
Hoare queries is implied by the hardness of general systems:

Corollary 3.6.1. Equivalence queries cannot be efficiently implemented in the Hoare- or
inductivenss-query model for general systems and L = Mon-CNFn.

Proof. If it were, we could have simulate the algorithm for learning Mon-CNFn which is subex-
ponential [HKSS12] (or polynomial, with exponentially-long queries [Ang87b]), contradicting
the exponential lower bound of Thm. 3.4.2.

Corollary 3.6.2. Membership queries cannot be efficiently implemented in the Hoare- or
inductivenss-query model for general systems and L = Mon-CNFn.

Proof. It it were, we could have efficiently implemented equivalence queries, which is impossible
per Corollary 3.6.1: Perform an inductiveness check of θ. If there is a counterexample (σ, σ′)
perform a membership query on σ using Lemma 4.5.2: if the result is true, return σ′ (a positive
counterexample); otherwise return σ (a negative counterexample).

When using only inductiveness queries, equivalence and membership queries cannot be
implemented even over maximal systems:
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Corollary 3.6.3. Equivalence queries cannot be efficiently implemented in inductivenss-query
model for maximal systems and L = Mon-CNFn.

Proof. Similarly to the proof of Corollary 3.6.1, contradicting the exponential lower bound
of Corollary 3.5.11.

Corollary 3.6.4. Membership queries cannot be efficiently implemented in the inductivenss-
query model for maximal systems and L = Mon-CNFn.

Proof. Follows from Corollary 3.6.3 similarly to how Corollary 3.6.2 follows from Corollary 3.6.1.

The only possibility result in the table is of simulating inductiveness and membership queries
using Hoare queries over maximal systems; the idea is that a Hoare queryH(δMϕ , Init,¬cube(σ)) ?=
false implements a membership query on σ, thanks to fact that the inductive invariant is exactly
the set of states reachable in one step. Such a membership query can be used to turn an
inductiveness query into an implementation of an equivalence query, as explained in the proof
of Corollary 3.6.2. Interestingly, the algorithm we use to show the polynomial upper bound
on Hoare queries for maximal systems, PDR-1, is very similar to such a translation of an
algorithm by Angluin [Ang87b] performing concept learning of Mon-CNFn using equivalence
and membership queries; we pick up on this idea in §4.5 of Chapter 4, with more sophisticated
translations that are related to more realistic algorithms.

3.6.3 Counterexamples in Invariant Learning Are Inherently Ambiguous

As we have seen, equivalence queries cannot be implemented using inductiveness queries, even
in the simple case of maximal systems (Corollary 3.6.3). The reason is that when the query
fails—returns “not inductive” or “not equivalent”—then the counterexample provided to the
inference algorithm is inherently weaker than the counterexample for the learning algorithm. In
inference, the result is a counterexample to induction (an implication example, in the terminology
of Garg et al. [GLMN14]), which is a pair of examples (σ, σ′), where σ is a negative example
or σ′ is a positive example, but there is no indication in the query itself of which is the case.
In contrast, in classical equivalence queries, the counterexample is a single state σ, and it is in
effect labelled—by checking whether the proposed candidate is satisfied by σ or not the learner
can tell whether σ is a positive or negative example.

This discrepancy can be reformulated in the context of concept learning, as the difference
between classical learning from equivalence queries (using labeled examples) and ICE learn-
ing [GLMN14], in which (essentially) the result of an equivalence query is an implication example.
We have thus obtained a complexity result separating the two:

Corollary 3.6.5. There exists a class of formulas L that can be learned using a subexponential
number of equivalence queries, but requires an exponential number of ICE-equivalence queries.
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This result quantitatively corroborates the difference between counterexamples to induction
and examples labeled positive or negative, a distinction advocated by Garg et al. [GLMN14].

3.7 Related Work for Chapter 3

Complexity of invariant inference. The fundamental question of the complexity of invariant
inference in propositional logic has been studied by Lahiri and Qadeer [LQ09]. They show
that deciding whether an invariant exists is PSPACE-complete. This includes systems with
only exponentially-long invariants, which are inherently beyond reach for algorithms aiming to
construct an invariant. In this thesis we focus on the search for polynomially-long invariants.
Lahiri and Qadeer [LQ09] study the related problem of template-based inference, and show
it is ΣP

2 -complete. Polynomial-length inference for CNF formulas can be encoded as specific
instances of template-based inference; the ΣP

2 -hardness proof of Lahiri and Qadeer [LQ09] uses
more general templates and therefore does not directly imply the same hardness for polynomial-
length inference. The same work also shows that inference is only Πp

1 = coNP-complete when
candidates are only conjunctions (or, dually, disjunctions). In this thesis we focus on the richer
classes of CNF or DNF invariants.
Black-box invariant inference. Black-box access to the program in its analysis is widespread
in research on testing [e.g. ND12]. In invariant inference, Daikon [ECGN01] initiated the
black-box learning of likely program invariants [see e.g. CTS08, SCIG08]. In this thesis we
are interested in inferring necessarily correct inductive invariants. The ICE learning model,
introduced by Garg et al. [GLMN14, GNMR16], and extended to general Constrained Horn
Clauses in later work [END+18], pioneered a black-box view of inference algorithms such as
Houdini [FL01] and symbolic abstraction [RSY04, TLLR15]. The inductiveness model in our
work is inspired by this work, focusing on black-box access to the transition relation while
providing the learner with full knowledge of the set of initial and bad states. Capturing PDR in
a black-box model was achieved by extending ICE with relative-inductiveness queries [VGSM17].
Our work shows that an extension is necessary, and applies to any Hoare-query algorithm.
Lower bounds for black-box inference. To the best of our knowledge, our work provides
the first unconditional exponential lower bound for rich black-box inference models such as the
Hoare-query model. An impossibility result for ICE learning in polynomial time in the setting
of quantified invariants was obtained by Garg et al. [GLMN14], based on the lower bound of
Angluin [Ang90] for concept learning DFAs with equivalence queries. Our lower bound for
monotone maximal systems (i) demonstrates an exponential gap between ICE learning and
Hoare-query algorithms such as PDR (§3.5), and (ii) separates ICE learning from concept learning
(§3.6); in particular, it holds even when candidates may be exponentially long (see Corollary 3.5.11
and [GLMN13, Appendix B]).
Learning and synthesis with queries. The lens of synthesis has inspired many works
applying ideas from machine learning to invariant inference [e.g. JGST10, SGH+13b, SNA12,
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SGH+13a, GLMN14, SA16]. The role of learning with queries is recognized in prominent
synthesis approaches such as Counterexample-Guided Inductive Synthesis (CEGIS) [STB+06]
and synthesizer-driven approaches [e.g. Gul12, JGST10, LPP+17], which learn from equivalence
and membership queries [JS17, ABD+15, BDVY17, DSY17]. The theory of oracle-guided
inductive synthesis [JS17] theoretically studies the convergence of CEGIS in infinite concept
classes using different types of counterexamples-oracles, and relates the finite case to the teaching
dimension [GK95]. In this work we study inference based on a different form of queries, and
prove lower bounds on the convergence rate in finite classes. Additional notable applications
in formal methods of exact concept learning include the use of the L∗ algorithm [Ang87a] for
synthesizing assumptions and guarantees in compositional reasoning [AMN05, ACMN05].
Proof complexity. Proof complexity studies the power of polynomially-long proofs in different
proof systems. A seminal result is that a propositional encoding of the pigeonhole principle
has no polynomial resolution proofs [Hak85]. Ideas and tools from proof complexity have been
applied to study SAT solvers [e.g. PD11] and recently also SMT [RKG18]. Proof complexity
is an alternative technical approach to study the complexity of proof search algorithms, by
showing that some instances do not have a short proof, showing a lower bound regardless of how
search is conducted. Our work, inspired by learning theory, provides exponential lower bounds
on query-based search even when the proof system is sufficiently strong to admit short proofs:
in our setting, there is always a short derivation of an inductive invariant by generalization in
backward reachability, blocking counterexamples with the optimal choice, using clauses from a
target invariant (see §3.4.3). We expect that proof complexity methods would prove valuable in
further study of inference.



Chapter 4

Upper Bounds for
Interpolation-Based Invariant
Inference

This chapter is based on the results published in [FSSW21, FS22].

In this chapter we study the complexity of learning invariants in the interpolation-based
approach and its connections to exact concept learning. We define a condition on invariants and
their geometry, called the fence condition, by which it is possible to apply theoretical results from
exact concept learning to answer open problems in invariant inference theory. The condition
requires the invariant’s boundary—the states whose Hamming distance from the invariant is one—
to be backwards reachable from the bad states in a small number of steps. Using this condition,
we obtain the first polynomial complexity result for an interpolation-based invariant inference
algorithm, efficiently inferring monotone DNF invariants with access to a SAT solver as an oracle.
We further harness Bshouty’s seminal results in concept learning to efficiently infer invariants of
larger syntactic classes of invariants beyond monotone DNF, through general transformations
from exact concept learning algorithms, as well as specially-crafted invariant inference algorithms
that employ Bshouty’s monotone theory, including a novel algorithm for efficiently computing
monotonization. Lastly, we consider the robustness of inference under program transformations.
We show that some simple transformations preserve the fence condition, and that it is sensitive
to more complex transformations.

The upper bounds of this chapter go beyond the class of antimonotone maximal system for
which an upper bound (Corollary 3.5.8) was shown in Chapter 3, in that in the results of this
chapter, the diameter of the system need not be one, not all states in the invariant need to be
k-reachable, and the invariant can be richer than antimonotone CNF or monotone DNF.

4.1 Overview

71
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init x1 = . . . = xn = true

repeat :
| hot_potato ()
| turn_two_on ()
| havoc_others ()

assert ¬(x1 = false, x2 = . . . = xn = true)

havoc_others ():
forall xi 6∈ J:

xi := *

hot_potato ():
let xi 6= xj ∈ J
if xi = false ∧ xj = true:

xi := true
xj := false

turn_two_on ():
let xi 6= xj ∈ J
if xi = false ∧ xj = false:

xi := true
xj := true

Figure 4.1: An example propositional transition system for which we would like to infer an inductive
invariant. The state is over x1, . . . , xn. J ⊆ {x1, . . . , xn}, and we assume x1 ∈ J . In each iteration, one
of the actions (after repeat) is invoked, chosen nondeterministically. forall is executed in a single step
of the system. x := ∗ means that x is updated to either true or false nondeterministically.

Suppose we would like to automatically prove the safety of the transition system in Fig. 4.1.
In this simple example, there are n propositional variables x1, . . . , xn, and J is a subset of
the variables so that x1 ∈ J . The transition system starts with all variables true, and in each
iteration either (1) moves a false value from one xi ∈ J to a different xj ∈ J that is not already
false, (2) turns two xi, xj ∈ J that are false to true, or (3) assigns arbitrary true/false values to
all variables not in J . The safety property is that the system can never reach the state where
x1 = false and x2, . . . , xn are true. Given the transition system and safety property, we would
like to find an inductive invariant that establishes the safety of the transition system. One
inductive invariant here is that the variables in J are always true:

I =
∧
xi∈J

xi. (4.1)

(For other variables, xi 6∈ J , this is not true, as xi can become false in havoc_others.)
In invariant inference, the goal is to find such inductive invariants completely automatically.

The main motivation of our investigation is the theoretical understanding of when invariant
inference algorithms are successful. To this end, we study the complexity of invariant
inference algorithms stemming from the seminal interpolation-based approach to inference
by McMillan [McM03]. Our formal setting is the problem of finding invariants for propositional
transition systems, a fundamental setting which is also relevant for infinite-state systems through
predicate abstraction [FQ02, GS97].

4.1.1 Interpolation-Based Invariant Inference

We start our investigation with the pioneering interpolation-based algorithm [McM03], depicted
in Alg. 2. The algorithm operates by forward exploration, in each iteration weakening (adding
more states) to the current candidate ϕ, starting from ϕ = Init. The algorithm chooses an
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unrolling bound k, and asserts that ϕ cannot reach Bad in k steps (line 4). If the check fails, ϕ is
too weak—it includes states that cannot be part of any inductive invariant—and the algorithm
restarts, with a larger unrolling bound. (Unless this happens already when ϕ = Init, indicating
that the system is unsafe; we omit this case here for brevity.) Otherwise, the algorithm computes
an interpolant χ: a formula ranging over program states that 1. overapproximates the post-image
of ϕ, namely, includes all states that are reachable in one step from ϕ; and 2. does not include
any state that can reach Bad in k − 1 steps. In the original work, χ is obtained from a Craig
interpolant [Cra57] of a bounded model checking (BMC) query, which can be computed from
the SAT solver’s proof [McM03]. The candidate invariant is weakened by taking a disjunction
with the interpolant. In this way, each iteration adds to the invariant at least all the states
that are reachable in one step from the current candidate but are not part of it (which are
counterexamples to its induction), guided by BMC.

Algorithm 2 Interpolation-based invariant infer-
ence [McM03]
1: procedure Itp-Inference(Init, δ, Bad, k)
2: ϕ← Init
3: while ϕ not inductive do
4: if δk(ϕ) ∩ Bad 6= ∅ then
5: restart with larger k
6: find χ such that δ(ϕ) =⇒ χ, δk−1(χ) ∩ Bad = ∅
7: ϕ← I ∨ χ
8: return ϕ

Algorithm 12 Interpolation by term mini-
mization [CIM12, BGKL13]
1: procedure TermMinItp(ϕ, δ, Bad, k − 1)
2: χ ← false
3: while δ(ϕ) 6=⇒ χ do
4: let σ′ such that σ′ ∈ δ(ϕ), σ′ 6|= χ

5: if δk−1(σ′) ∩ Bad 6= ∅ then fail

6: d ← cube(σ′)
7: for ` in d do
8: if δk−1(d \ {`}) ∩ Bad = ∅ then
9: d ← d \ {`}

10: χ← χ ∨ d
11: return χ

As the original paper shows, with a sufficiently large k, the algorithm is guaranteed to converge
to an inductive invariant. However, this may take exponentially many iterations [McM03]. From
a complexity-theoretic perspective, this guarantee can also be achieved by a simple naive search.
Clearly, the answer as to why interpolation-based inference is better lies with the virtue of
interpolants. However, each bounded proof may allow several interpolants, all satisfying the
requirements from χ above, which nonetheless greatly differ from the perspective of invariant
inference. Some may be desired parts of the inductive invariant, others might include also states
that can reach Bad and should not be used. Still other interpolants are safe, but using them
would lead to very slow convergence to an inductive invariant. Choosing “good” interpolants is
the problem of generalization: how should the algorithm choose interpolants so that it finds
an invariant quickly? The present view is that generalization strives to abstract away from
irrelevant aspects, which is “heuristic in nature” [McM18]. Perhaps for this reason, there is
currently no theoretical understanding of the efficiency of interpolation-based algorithms. In
contrast, we identify certain conditions that facilitate a theoretical complexity analysis of this
algorithmic approach.

The challenges in a theoretical complexity analysis of this approach are best understood by
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considering the (termination) analysis of Alg. 2 by McMillan [McM03], which is essentially as
follows. Suppose k was increased sufficiently to match the co-reachability-diameter of the system:
the maximal number of steps required for a state to reach a bad state, if it can reach any bad
state.1 Then any choice of interpolant χ as above is a safe overapproximation in the sense that
no state in χ can reach Bad in any number of steps (even greater than k). The candidate ϕ
thus never includes states that can reach Bad; put differently, it is below the greatest fixed-point
(gfp)—the weakest invariant, consisting of all states that cannot reach Bad. Because ϕ is always
strictly increasing (becoming strictly weaker) and there is only a finite (albeit exponential)
number of strictly increasing formulas, Alg. 2 must converge, and at that point ϕ is an inductive
invariant.

From the perspective of complexity, this termination analysis has several shortcomings:

1. Short invariants: Are there cases where the algorithm is guaranteed to find invariants
that are not the gfp? The gfp captures the set of backwards-reachable state in an exact
way, but often this is too costly, and unnecessary. For example, in the system of Fig. 4.1,
the states that can reach Bad are the states where there is an odd number of false variables
in J . The gfp is thus the invariant saying that the number of false variables in J is
even, whose minimal DNF representation is exponentially long [CH11, Theorem 3.19].
Indeed, invariant inference typically strives to achieve an invariant which is “just right”
for establishing the safety property of interest, but this is not reflected by the existing
theoretical analysis. Can the algorithm benefit from the existence of an invariant that has
a short representation (whether or not it is the gfp)?

2. Number of iterations: If the invariant the algorithm finds has a short representation,
does the algorithm find it in a small number of iterations? As an illustration, the algorithm
could, in principle, resort to inefficiently enumerating the states in the invariant one by
one, even though there are more compact ways to represent the invariant.

3. Unrolling depth: Is it actually necessary to use the BMC bound k that is as large as the
co-diameter? For example, in the system of Fig. 4.1, the co-diameter is Θ (n).2 This BMC
bound could be prohibitively large for the SAT solver. Worse still, the co-diameter can
be exponential in general [McM03]. Can the algorithm always succeed even when using
smaller k?

In this work we develop a theoretical analysis of an interpolation-based algorithm
that addresses all these points. The analysis of this algorithm characterizes the invariants that
it finds, the number of iterations until convergence, and how large the unrolling bound must
be. In this analysis, the inference problem is “well-behaved” if there exists a short invariant

1McMillan [McM03] calls this number the “reverse-depth”.
2The state with a maximal odd number of variables in J except x1 having value false requires

⌊ |J|−2
2

⌋
iterations

of turn_two_on to turn two such variables to true until only one is left false, an iteration of hot_potato to
move it to x1, and another to turn the variables not in J to true.
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of certain syntactic forms whose Hamming-geometric boundary is backwards k-reachable from
Bad, where k is a bound which can be smaller than the co-diameter. If this is the case, we show
algorithms that construct and maintain generalizations in specific ways—connected to exact
learning theory—which are guaranteed to find inductive invariants efficiently with a SAT oracle.

Interpolation by covering and term minimization. The algorithmic scheme of Alg. 2
itself is not amenable to such an analysis, because valid choices for χ range between the exact
post-image δ(ϕ) and the set of states that cannot reach Bad in k steps, potentially leading to very
different outcomes over the algorithm’s run. We thus examine a specific method of interpolant
construction displayed in Alg. 12, due to Chockler et al. and Bjørner et al. [CIM12, BGKL13]
and inspired by IC3/PDR [Bra11, EMB11]. The procedure iteratively samples states from
the post-image of ϕ that should be added to the interpolant χ. Adding a single state exactly,
by disjoining the cube of the state cube(σ′)—the conjunction of all literals that hold in the
state—would converge slowly. Instead, the procedure drops literals from cube(σ′) (thereby
including more states) as long as no state that satisfies the remaining conjunction can reach
Bad in k − 1 steps,3 and then disjoins the result to the interpolant. By construction, all the
states in χ cannot reach Bad in k − 1 steps, and the procedure terminates when all of δ(ϕ) is
covered by χ. It may seem inefficient to overapproximate from a single state in each iteration,
compared to proof-based methods; however, our results show that under certain conditions each
such iteration makes significant progress.

4.1.2 The Complexity of Interpolation-Based Inference

The interpolation-based inference of Alg. 2 with the interpolation procedure of Alg. 12 produce
invariants in disjunctive normal form (DNF). (For example, the invariant in Equation (4.1) is a
DNF formula with one term.) If the shortest invariant in DNF is exponentially long, clearly an
exponential number of iterations is necessary. Suppose that the system admits a short
DNF invariant I. When is the interpolation-based inference algorithm guaranteed
to be efficient? By efficient we mean that the number of steps the algorithms performs is
polynomial in the number of variables and the length of I, where each k-BMC query is counted
as a single step of calling a SAT oracle. This is a difficult question, because even if an invariant
with a short representation exists, the algorithm might miss it or learn a longer representation.
Our solution is based on two ingredients: (1) the boundary of the invariant, which a condition we
call the fence condition ties to reachability, and (2) utilizing the syntactic shape of the invariant,
an aspect in which, as we show, ideas from exact learning are extremely relevant.

3In practice, this can be made more efficient by first obtaining an unsat core of the unsat BMC query, and
then explicitly dropping literals one by one. Empirically, Chockler et al. [CIM12] found that the extra time spent
in explicit minimization after the unsat core is compensated by fewer iterations of the overall algorithm.
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The Boundary of Inductive Invariants

Our algorithm makes decisions using BMC: whether or not a literal is to be dropped, whether
or not some states are to be added to the invariant, is a choice made on the basis of bounded
reachability information (because unbounded reachability is unknown). This is why the algorithm
might fail and restart with a larger k (line 5). The fence condition’s guarantees that this would
not happen. The idea is to require that BMC finds useful information when it is invoked on
sets that have a special role: the states on the boundary of the inductive invariant I. The
(outer) boundary ∂−(I) is the set of states σ that do not belong to I, but are “almost” in I:
flipping just one bit in σ yields a state that does belong to I. Put differently, the boundary is the
set of states in ¬I that have a Hamming neighbor (Hamming distance 1) in I. For example, the
boundary of the invariant in Equation (4.1) consists of the states where |{i ∈ J |xi = false}| = 1:
such states are not in I, but flipping the single false variable in J results in a state that does
belong to I. (See Fig. 1.1 for an illustration of the boundary of this invariant with n = 3 and
J = {x1, x2, x3}.) Note that not all states in ¬I are on the boundary: states with more than
one false variable in J also belong to ¬I, but their Hamming distance from I is larger than 1.

The fence condition requires that the states in the boundary ∂−(I) reach Bad in at
most k steps. For example, in the system of Fig. 4.1, the invariant in Equation (4.1) satisfies
the fence condition with k = 2; in at most two steps every state in its boundary reaches Bad (one
step to move the false value to x1, and another to turn off variables not in J). This property
is key for the interpolation algorithm to successfully and consistently find an invariant. We
formally define the boundary and the fence condition in §4.2. (See Fig. 1.2 for an illustration.)

It should be noted that the fence condition is a property of a specific invariant. Some
invariants may not satisfy the fence condition for a given k or even for any k, depending on
whether and how quickly states outside the invariant can reach Bad. Intuitively, this reflects
natural differences between invariants: some invariants are well suited to be discovered by the
algorithm, while others are such that the algorithm might overshoot and miss them in some of
its executions.

Every safe system admits an invariant that is k-fenced, because the gfp if k-fenced for k that
is the co-diameter (Lemma 4.2.4). The power of the fence condition is in that it allows to prove
convergence even with k that is strictly smaller than the co-diameter, and based on invariants
that need not be the gfp, which is an important ingredient of our efficiency results.4

The fence condition is a property of transition systems that does not hold in general, and
thus allows to evade the lower bounds of Chapter 3 (§3.4).

Convergence With the Fence Condition and a Sufficient BMC Bound

Intuitively, when the fence condition does not hold, if Alg. 12 discovers a state σ+ |= I and
checks whether it can drop a literal on which its Hamming neighbor σ− |= ¬I disagrees, if

4Even for the co-diameter, the existing analysis by McMillan [McM03] does not derive complexity bounds,
while we are able to do so using techniques from exact concept learning.



4.1. Overview 77

σ− does not reach Bad in k steps we could include σ− in the candidate even though it is not
in I. In §4.3.2, we prove that the fence condition ensures that the candidate invariant our
algorithm constructs is always below I, and therefore converges to I itself or a stronger invariant,
whichever counterexamples to induction the solver returns, and regardless of the order in which
Alg. 12 attempts to drop literals (Lemma 4.3.1)—although, without further assumptions which
we explore next, this convergence may happen only after many iterations of the algorithm. But
before we elaborate on this, two points merit emphasis:

First, not all the states in ¬I need to reach Bad in k steps, and k can be smaller than the
co-diameter (which addresses question (3) above). For example, in Fig. 4.1, our results show
that k = 2 suffices, whereas the co-diameter is linear in the number of variables. Further, this
deviates from the original termination argument above, and facilitates an analysis where the
invariant to which the algorithm converges is not the gfp. (The latter point already addresses
question (1) above.)

Second, the algorithm does not posses any a-priori knowledge of the invariant I; the existence
of an invariant as mandated by the fence condition suffices to guarantee convergence.

We are now ready to tackle the question of efficient convergence when I is not only k-fenced
but also belongs to syntactic class of “manageable” formulas.

Efficient Inference of Short Monotone Invariants

The fence condition guarantees that the generated interpolants underapproximate an invariant I.
How many interpolants must the algorithm find before it converges to an invariant? We prove
in §4.3.3 that if I is in monotone DNF, that is, all variables appear positively, then the number
of iterations of Alg. 2 is bounded by the number of terms in I if I is k-fenced (Thm. 4.3.5)—thus
addressing question (2) above. Overall, this is a theorem of efficient invariant inference
by Alg. 2. For example, the system in Fig. 4.1 admits the short monotone DNF invariant
in Equation (4.1), hence by our results the algorithm efficiently infers an invariant for this
system.

An intriguing consequence of formal efficiency results for an algorithm is that when the
algorithm fails to converge, this is a witness that an invariant of a certain type does not
exist. Thus, if the algorithm continues to execute beyond the number of steps mandated by our
upper bound, this means that there is no monotone DNF k-fenced invariant with a specified
number of terms. This may indicate a bug rendering the system unsafe, or perhaps that an
invariant exists but it is not k-fenced, not monotone, or too long.

We also derive a dual efficiency result: a dual-interpolation algorithm achieves efficient
inference for short antimonotone CNF (Corollary 4.3.9)—which are CNF invariants where all
variables appear negatively—when a dual fence condition holds: the inner boundary ∂+(I) is
the set of states in I that have a Hamming neighbor in ¬I, and it must be k-reachable from Init.
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4.1.3 Efficient Inference Beyond Monotone Invariants and Exact Learning
Theory

The interpolation-based algorithm is not guaranteed to perform a small number of iterations
when I is not monotone. Is provably efficient inference beyond monotone invariants
possible? In §4.4, we obtain an efficient inference algorithm for the wider class of almost-
monotone DNF invariants, which are DNF formulas that have at most O(1) terms that include
negative literals, provided that the fence condition is satisfied (Corollary 4.4.3). This upper
bound is achieved by a different, yet related algorithm, which is based on the celebrated work of
Bshouty [Bsh95] in machine learning. Roughly, the algorithm uses several instances of Alg. 2
that learn several overapproximations of I, each of them monotone under a different translation
of the variables. A dual result holds for almost-antimonotone CNF invariants and the dual fence
condition (Corollary 4.4.4).

Underlying this development is the realization that efficient inference based on the fence
condition has close connections to efficient exact concept learning [Ang87b]. In exact concept
learning, the goal is to learn an unknown formula ϕ through a sequence of queries to a teacher.
The most prominent types of queries are (1) equivalence, in which the learner suggests a
candidate θ, and the teacher returns whether θ ≡ ϕ, or a differentiating counterexample; and
(2) membership, in which the learner chooses a valuation v and the teacher responds whether
v |= ϕ. These queries are hard to implement in an invariant inference setting [GLMN14, FISS20].
Nevertheless, we show that the algorithm which achieves Corollary 4.4.3 can be obtained directly
from the exact concept learning algorithm by Bshouty [Bsh95] through a transformation which,
when the fence condition holds, can implement certain equivalence and membership queries
using BMC (§4.5.1). This is surprising because in invariant inference, unlike classical concept
learning, the “teacher” (SAT solver) does not know the target “concept” I. (We also provide
a self-contained analysis of this algorithm, based on the monotone theory [Bsh95], in §4.4.1.)
It is interesting to note that applying this transformation to an existing concept learning
algorithm [Val84, Ang87b, AP95] produces an algorithm that matches Alg. 2+Alg. 12.

Our transformation from exact concept learning to invariant inference places restriction on
the learning algorithm. A particularly interesting class of invariants are those that have both
a short CNF and a short DNF representation (not necessarily monotonic), including formulas
that can be expressed by small Boolean decision trees, but Bshouty’s algorithm for efficiently
learning such formulas [Bsh95] does not satisfy the premise of our transformation. Another
translation we provide does apply more broadly, to every learning algorithm, but the resulting
invariant inference algorithm requires a stronger condition, a two-sided fence condition (§4.5.2).
To this end, we develop a novel invariant inference algorithm that efficiently infers invariants
with short CNF and DNF representations based on the standard, one-sided fence condition, in
a way that is inspired by the learning algorithm but deviates from it in significant ways (§4.6).
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4.1.4 Robustness and Non-Robustness

One of the most interesting questions for invariant inference as a practical methodology is
robustness: How do modifications to the program affect invariant inference? On the
one hand, it is desirable that if an invariant can be found before, and the program undergoes an
“inconsequential” transformation, then the algorithm would successfully find the invariant also
after the transformation. On the other, when the algorithm does not manage to find an invariant,
altering the program can be a successful strategy to achieve convergence [SRW02, FWSS19,
SDDA11, BBL+17, Nam07, CBKR19]. The effect of program transformations on inference
depends on the inference algorithm.5 In §4.7 we study this question from the perspective
of the fence condition: if an invariant is k-fenced before the transformation, does this still
hold after the transformation (thereby making our efficiency results applicable)? We show
simple transformations that are robust, ensuring that the invariant is k-fenced also after the
transformation: variable renaming and translation, and strengthening safety properties. We then
show that interesting transformations that add new variables are not robust: instrumentation
with a derived relation, and “monotonization” of an invariant using new variables that track
negations.

For example, suppose we add a bit q to the example of Fig. 4.1 to represent the parity of
the variables in J : the xor ⊕xi∈Jxi. We initialize q to the correct initial value (which is |J |
(mod 2)). The motivation is to use q to prove that the system avoids the bad state, so we
consider an error when x1 = false, x2 = . . . = xn = true, and q correctly matches the parity of
the variables in J in the error state (i.e. q = |J | − 1 (mod 2)). The parity is not changed by any
of the actions, so q is not modified in any action. Under this transformation, Equation (4.1)
is still an inductive invariant, but it is no longer backwards k-fenced (for any k): a state with
exactly one variable true out of J but with the incorrect parity in q cannot reach the bad state.
This suggests that the algorithm cannot be guaranteed to converge to the original invariant.
(Indeed, the motivation for the transformation is the different invariant q = |J | (mod 2); alas,
in this case, this invariant is also not backwards k-fenced: its boundary consists of all states
with q 6= |J | (mod 2), but this includes states with an even number of true variables from J ,
which cannot reach the bad state.)

This non-robustness result matches the way invariant inference behaves in practice and the
butterfly effect of introducing a derived relation, which indicates that our theoretical analysis
can reproduce some realistic phenomena. The non-robustness result means that the algorithm
is not guaranteed to converge to an invariant that does not use the new variable; nonetheless,
invariants that use the new variable may or may not satisfy the fence condition, and this depends
on the example. Also in practice, the inference algorithm learns properties that use the new
variable, and the transformation may help inference to converge to a new invariant, but might
not.

5For example, the inference of conjunctive invariants via Houdini [FL01] is robust, and always finds an invariant
if one exists in a polynomial number of SAT calls.
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Notation. In this chapter measure the complexity of a SAT-based inference algorithm by
(i) the number of inductiveness checks, (ii) the number of k-BMC checks, and (iii) the number
of other steps, when each SAT call is considered one step (an oracle call). The complexity
parameters are the number of variables n = |Σ| and syntactic measures of the length of the
target invariant.

4.2 The Boundary of Inductive Invariants

In this section we present the backwards k-fenced condition, which is the foundation of our
analysis of inference algorithms and all our convergence results.

Definition 4.2.1 (Neighborhood, Boundary). Two states σ1, σ2 are neighbors if their Hamming
distance is one, namely, |{p ∈ Σ |σ1 |= p, σ2 6|= p or σ1 6|= p, σ2 |= p}| = 1. The neighborhood
of a state σ, denoted N(σ), is the set of neighbors of σ. The inner-boundary of a set of
states S is ∂+(S) = {σ ∈ S | N(σ) ∩ S̄ 6= ∅} (where S̄ is the complement of S). Note that
∂+(S) ⊆ S, and the inclusion may be strict (when some σ ∈ S has no neighbors outside of S).
The outer-boundary is ∂−(S) = ∂+(S̄). That is, ∂−(S) = {σ 6∈ S | N(σ) ∩ S 6= ∅}.

Definition 4.2.2 (Backwards k-Fenced). For a transition system (Init, δ,Bad), an inductive
invariant I is backwards k-fenced for k ∈ N if ∂−(I) ⊆

(
δ−1)k (Bad).

More explicitly, an invariant I is backwards k-fenced if every state in ¬I that has a Hamming
neighbor in I can reach Bad in at most k steps.

Example 4.2.3. Consider a program that manipulates two numbers represented in binary by
x = x1, . . . , xn and y = y1, . . . , yn. Initially, x is odd (xn = 1), and y is even (yn = 0). In each
iteration, y is incremented by an even number and x is incremented by y (all computations
are mod 2n). The bad states are those where x is even. An inductive invariant I states that
odd(x) ∧ even(y).

Every state in ¬I—and in particular, in ∂−(I)—reaches a bad state in at most one step.
This is because every state where even(x) holds is bad, and every state where odd(y) holds is
either bad, or the step that adds y to x leads to a bad state. Hence, I is 1-backwards fenced.

Now consider the same system except there is a flag z that decides whether x is modified;
the system takes a step only if z = false. The same invariant from before applies, but it is no
longer backwards 1-fenced. This is because the state in ∂−(I) where x is odd, y is odd, and
z = false cannot reach a bad state (nor perform any transition). However, a different invariant,
odd(x) ∧ (even(y) ∨ ¬z) is 1-backwards fenced in this system.

In every system, this condition holds for at least one inductive invariant and for some finite
k: the gfp—the weakest invariant, that allows all states but those that can reach Bad in any
number of steps—satisfies the condition with the co-diameter, the number of steps that takes
for all states that can reach Bad to do so.
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Lemma 4.2.4. Every safe transition system TS = (Init, δ,Bad) admits an inductive invariant
gfp = ¬

((
δ−1)ω (Bad)

)
that is backwards k-fenced for k that is the co-diameter: the minimal k

such that
(
δ−1)k (Bad) =

(
δ−1)ω (Bad).

Proof. First, note that such a k exists because for every σ ∈
(
δ−1)ω (Bad) there is a finite r

such that σ ∈
(
δ−1)r (Bad), and k is the maximum over these r’s, and there are finitely many of

these because the number of states is finite.) By the choice of I it holds that ¬I ⊆
(
δ−1)ω (Bad).

Seeing that ∂−(I) ⊆ ¬I, we have obtained ∂−(I) ⊆
(
δ−1)k (Bad), as desired.

While this lemma shows the existence of a backwards fenced invariant through the gfp
and co-diameter, the k-fence condition is more liberal: it can hold also for an invariant when
not every state in ¬I reaches Bad in k steps, and only the states in ∂−(I) do. An example
demonstrating this appears in §5.1. An additional example follows.

Example 4.2.5. Consider an example of a (doubly)-linked list traversal, using i to traverse
the list backwards, modeled via predicate abstraction following Itzhaky et al. [IBR+14]. The list
starts at h. Initially, i points to some location that may or may not be part of the list, and in
each step the system goes from i to its predecessor, until that would reach x. We write s ; r to
denote that r is reachable from s by following zero or more links. Consider the initial assumption
h ; x, but i 6; x (it may be that x ; i, or that i is not at all in the list). The bad states are
those where i = h.

An inductive invariant for this system is h ; x ∧ ¬i ; x. In predicate abstraction, we may
take the predicates ph,x = h ; x, pi,x = i ; x, and write I = ph,x ∧ ¬pi,x, which is a DNF
invariant with one term. Hence ¬I ≡ ¬ph,x ∨ pi,x. The outer boundary ∂−(I) consists of the
states (1) ph,x = false, pi,x = false and (2) ph,x = true, pi,x = true. Both states are in fact bad
states under the abstraction: both include a state where i = h, from which x is unreachable (in
(1)) or reachable (in (2)). Thus, I is backwards k-fenced for every k ≥ 0.

In contrast, not all the states in ¬I reach bad states (in particular, I is not the gfp): the
state ph,x = false, pi,x = true abstracts only states where h 6; i, and this remains true after
going to the predecessor of i. This shows that the fence condition may hold even though I is not
the gfp, and not all states in ¬I reach bad states (in k steps or at all).

4.3 Efficient Interpolation With the Fence Condition

In this section we prove that the interpolation-based invariant inference algorithm that computes
interpolants using sampling and term minimization is efficient for short monotone DNF invariants.
§4.3.1 describes the algorithm. §4.3.2 derives the algorithm’s basic properties and its convergence
from the fence condition. §4.3.3 builds on this to obtain the efficiency result.
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4.3.1 Interpolation by Term Minimization

We begin with a formal presentation of the algorithm we will be analyzing in this section,
Alg. 13. It is a simplification of the one presented in §5.1, “merging” the two loops formed when
Alg. 2 uses Alg. 12; instead of first computing an overapproximation χ of the post-image of
the entire previous candidate and only then disjoining χ, Alg. 13 disjoins the generalization
d to the candidate immediately, so the next counterexample to induction may use pre-states
from this generalization, rather from the previous candidate. Our results apply equally also to
Alg. 2+Alg. 12.

Algorithm 13 Interpolation-based inference by
term minimization
1: procedure ITP-Inference-TermMin(Init, δ, Bad, k)
2: ϕ← Init
3: while ϕ not inductive do
4: let σ, σ′ |= ϕ ∧ δ ∧ ¬ϕ′

5: if δk(σ′) ∩ Bad 6= ∅ then
6: restart with larger k

d ← cube(σ′)
7: for ` in d do
8: if δk(d \ {`}) ∩ Bad = ∅ then
9: d ← d \ {`}

10: ϕ← ϕ ∨ d
11: return I

Alg. 13 starts with the candidate invari-
ant ϕ = Init, which is gradually increased to
include more states. In each iteration, the algo-
rithm performs an inductiveness check (lines 3
and 4), implemented by SAT calls, and termi-
nates if an inductive invariant has been found.
If a counterexample to induction (σ, σ′) ex-
ists, the algorithm generates a term d which
includes the post-state σ′, and disjoins d to
ϕ to obtain the new candidate (line 10). We
refer to d as the generalization obtained from
σ′. Starting with cube(σ′)—the conjunction

that exactly captures σ′—the algorithm drops literals as long as no state in d can reach a bad
state in k steps or less (line 8). These checks invoke the SAT solver with BMC queries. If
σ′ itself reaches a bad state in k steps, no invariant weaker than ϕ exists, and the algorithm
restarts with a larger bound k (line 6). The soundness of this algorithm is immediate: ϕ always
includes Init, excludes Bad (otherwise the algorithm restarts at line 6), and stops when there is
no counterexample to induction.

4.3.2 Interpolation Confined in the Boundary

We now show how the fence condition ensures that Alg. 13 does not “overshoot” beyond the
inductive invariant when it uses a large enough BMC bound. We use this to derive a termination
property, which we use in §4.3.3 to obtain the efficiency result.

“Not overshooting” beyond I is formalized in the following lemma:

Lemma 4.3.1. Let (Init, δ,Bad) be a transition system, I an inductive invariant, and k ∈ N. If
I is backwards k-fenced, then throughout the execution of ITP-Inference-TermMin(Init, δ,Bad, k),
every candidate ϕ is an underapproximation of I, namely, ϕ =⇒ I.

Proof. By induction on the algorithm’s iterations: initially, ϕ = Init =⇒ I since I is an inductive
invariant; for later iterations, we show that every d =⇒ I. By induction on the iterations in
generalization: when it starts, d = σ′ satisfies this, because ϕ =⇒ I so σ |= I, hence also
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σ′ |= I because I is inductive. Later, assume there is a point when d =⇒ I stops holding: the
algorithm drops a literal `, obtaining d̃ = d \ {`} where d =⇒ I but d̃ 6=⇒ I, and the check
passes: δk(d̃)∩Bad = ∅. Let σ2 |= d̃∧¬I, and let σ1 a state which differs from σ2 on the variable
in ` alone. Necessarily σ2 6|= ` (because σ2 6|= d as d =⇒ I), so σ1 |= `. The other literals in d̃
are also satisfied by σ1 because they are satisfied by σ2 and σ1, σ2 do not differ there. Thus
σ1 |= d and in particular σ1 |= I. We have thus obtained Hamming neighbors σ1, σ2 such that
σ1 |= I, σ2 6|= I, but δk(d̃) ∩ Bad = ∅ is a contradiction to I being backwards k-fenced, seeing
that σ2 |= d̃.

This lemma implies that when the condition holds, the invariant I acts as a “barrier” from
unsafe overgeneralization, and the algorithm does not fail (line 6 does not execute). This holds
even though k may be smaller than the co-diameter (see §4.1.1), as long as there exists an I
which is backwards k-fenced. (I is not known to the algorithm.) Thus, in such a case, the
algorithm successfully finds an inductive invariant that is an underapproximation of I. (Without
further assumptions, this might take exponentially many steps, a challenge which is the focus
of §4.3.3.)

Lemma 4.3.2. Let (Init, δ,Bad) be a transition system and k ∈ N. If there exists an inductive
invariant I that is backwards k-fenced, then ITP-Inference-TermMin(Init, δ,Bad, k) successfully
(albeit potentially in an exponential number of steps) finds an inductive invariant ϕ such that
ϕ =⇒ I.

Proof. We first claim that no execution fails (line 6 of Alg. 13 does not execute). As in the
proof of Lemma 4.3.1, σ′ |= I as ϕ =⇒ I and I is inductive. Since I is an inductive invariant, σ′

cannot reach Bad in any number of steps, and in particular σ′ 6∈
(
δ−1)k (Bad).

Since ϕ grows monotonically, and there are only finitely many formulas over the fixed
vocabulary, ϕ must converge. When this happens I is inductive invariant, and we have ϕ =⇒ I

by Lemma 4.3.1.

Recalling that the gfp is backwards k-fenced for k which is at most the co-diameter
(Lemma 4.2.4), this yields a completeness result, akin to the completeness result by McMil-
lan [McM03].

Corollary 4.3.3. Let (Init, δ,Bad) be a safe transition system. Then there is a bound k ∈ N
such that ITP-Inference-TermMin(Init, δ,Bad, k) successfully finds an inductive invariant (albeit
potentially in an exponential number of steps).

So far we have provided an upper bound on the k needed for convergence which may be
smaller than the co-diameter. (Even the gfp can be k-fenced with k that is smaller than the
co-diameter!) The real power of the approach, however, lies in the complexity analysis the fence
condition facilitates beyond this completeness result, which we carry out in the next sections.
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Remark 4.3.4. What happens to Alg. 13 when the fence condition does not hold? Suppose there
are two states σ− |= ¬I, σ+ |= I that differ in a single variable pi. The backwards fence condition
requires that σ− reaches Bad in k steps. Suppose that this is violated, and σ+ is found as the
post-state of a counterexample to induction (line 4). Then, should the algorithm attempt to drop
the literal corresponding to pi in line 8, the BMC check would pass: neither σ+ nor σ− can reach
Bad in k steps. This would lead to inadvertently adding σ− to the candidate invariant, violating
ϕ =⇒ I (in contrast to the guarantee of Lemma 4.3.1), which may hinder convergence. σ+ may
happen not to be a possible counterexample to induction in any intermediate iteration and such
a problematic scenario could not materialize. We note however that due to generalization, the
counterexamples to induction the algorithm finds can be states that are not reachable in a small
number of steps, or indeed at all reachable; in essence, the idea behind the fence condition is to
ensure that all the discovered counterexamples continue to come from I (Lemma 4.3.1) even
when assuming that any σ+ |= I can be discovered this way.

4.3.3 Inference of Monotone Invariants

In this section we prove that Alg. 13 converges in m iterations when a backwards k-fenced,
monotone DNF invariant with m terms exists. Monotonicity is essential: even if a short DNF
invariant exists, the fence condition guarantees that each iterations learns an underapproximation
of the invariant (Lemma 4.3.1), but exponentially many iterations could be required before the
algorithm converges; we show that this cannot happen with monotone DNF invariants.

We now leverage this for the analysis of Alg. 13. The idea is that the generalizations d the
algorithm produces (lines 6 to 9) are prime implicants of I, hence each produces a new term of
I when I is monotone.

Theorem 4.3.5. Let (Init, δ,Bad) be a transition system and k ∈ N. If there is an inductive in-
variant I ∈ Mon-DNFm that is backwards k-fenced, then ITP-Inference-TermMin(Init, δ,Bad, k)
converges to an inductive invariant in O(m) inductiveness checks, O(mn) k-BMC checks, and
O(mn) time.

Proof. We first show the generalizations d are prime implicants of I (this holds even when I is
not monotone). That d =⇒ I was established in the proof of Lemma 4.3.1. Suppose, for the
sake of contradiction, that for some literal ` ∈ d it holds that d \ {`} =⇒ I as well. At some
point the algorithm attempted to drop `; let d̃ be the term the algorithm considered at that
point. Since we only drop literals afterwards, d ⊆ d̃, and hence d \ {`} ⊆ d̃ \ {`}; since these
are conjunctions, this means that d̃ \ {`} =⇒ d \ {`}. Since no state in I reaches Bad in any
number of steps, δk(d \ {`}) ∩ Bad = ∅, and in particular δk(d̃ \ {`}) ∩ Bad = ∅. But according
to this check, the algorithm would have dropped `, which is a contradiction to ` ∈ d.

We turn to the overall analysis. By Lemma 4.3.2 the algorithm does not need to restart, and
converges to an inductive invariant ϕ =⇒ I. In every iteration the algorithm disjoins to ϕ a term
of I, because it is a prime implicant of I and I is monotone and by Thm. 2.3.3. Furthermore,
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each iteration produces a new term of I, since before it, σ′ 6|= ϕ, but σ′ |= d. Thus, after at
most m iterations the algorithm must have added to ϕ all the terms of I, so I =⇒ ϕ. At this
point, from Lemma 4.3.1, I ≡ ϕ and the algorithm terminates. Each iteration performs one
inductiveness check in lines 3 and 4, one k-BMC in line 5, and another k-BMC checks in line 8
for each of the n literals.

Remark 4.3.6. Thm. 4.3.5 has implications also for systems that do not satisfy its requirements.
If the algorithm has not converged to an invariant in the number of steps specified in Thm. 4.3.5,
this is a witness that an invariant satisfying the theorem’s conditions does not exist. This may
indicate a bug rendering the system unsafe, or that an invariant exists but is not k-fenced, not
monotone, or is too long.

Remark 4.3.7. What happens when Alg. 13 uses a bound k′ that is too small, even though a
k-fenced invariant, with k > k′, exists? When using the smaller bound k′ naively, the algorithm
might overgeneralize to beyond the gfp and fail to find an invariant, or converge to a different
invariant that does not admit a short representation in an exponential number of steps. The
polynomial bound guaranteed from the larger k can be recovered by increasing the bound once the
number of steps surpasses a predefined polynomial, or by running all possible bounds in parallel
/ diagonally until one instance finds an invariant.

Inference of antimonotone CNF invariants. An efficiency result for inferring anti-
monotone CNF invariants that satisfy the forward fence condition follows, through the duality
discussed in §2.2.1. The definition of antimonotone CNF formulas appears in Def. 2.3.7.

Definition 4.3.8 (Forwards k-Fenced). For a transition system (Init, δ,Bad), an inductive
invariant I is forwards k-fenced for k ∈ N if ∂+(I) ⊆ δk(Init).

More explicitly, an invariant I is forwards k-fenced if every state in I that has a Hamming
neighbor in ¬I is reachable from Init in at most k steps. From Thm. 4.3.5 we obtain:

Corollary 4.3.9. Let (Init, δ,Bad) be a transition system and k ∈ N. If there exists an inductive
invariant I ∈ Mon-CNFm that is forwards k-fenced, then Dual-MB-ITP = ITP-Inference-TermMin∗(Init, δ,Bad, k)
converges to an inductive invariant in O(m) inductiveness checks, O(mn) k-BMC checks, and
O(mn) time.

The code of the dual algorithm appears in §4.6.2.

Remark 4.3.10. Thm. 4.3.5 and Corollary 4.3.9 can be extended to the case of unate DNF
(Def. 2.3.4) when the backwards/forwards fence condition holds, using essentially the same proof
as in Thms. 2.3.3 and 4.3.5, replacing Thm. 2.3.3 by Corollary 2.3.5.

Alg. 13 beyond monotone invariants. What happens when we try to apply Alg. 13 to infer
invariants that satisfy the fence condition but are not monotone (or unate)? By Lemma 4.3.1, the
algorithm would converge to an inductive invariant—but this make take an exponential number
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of iterations. In Thm. 4.3.5 we have shown that each iteration produces a prime implicant of
I. Unfortunately, the number of prime implicants can be exponential [CM78, SST08]. Worse,
Aizenstein and Pitt [AP95] have shown, in the context of exact learning, that there are cases
when there is a unique, short representation of I as a disjunction of prime implicants, but
greedily collecting prime implicants cannot escape sifting through exponentially many additional
prime implicants (which are subsumed by the prime implicants in the “right” representation).

4.4 Inference Beyond Monotone Invariants

In this section we transcend the class of monotone invariants, and obtain efficiency results for
inferring inductive invariants in almost-monotone DNF (as well as additional classes that admit
a small monotone basis), based on the Λ-learning algorithm by Bshouty [Bsh95] (see §2.4.4). We
first present the invariant inference algorithm and a self-contained proof of efficient convergence
relying on the fence condition. In §4.5.1 we obtain an alternative proof by a transformation
that can “simulate” the original algorithm through the fence condition. The goal of the
explicit exposition in this section is twofold: first, highlighting “family resemblance” between
this algorithm and the model-based interpolation-based algorithm from the previous sections;
second, serving as a first step towards the algorithm for CDNF invariants in §4.6, that expands
on the same ideas in new ways.

Algorithm 14 Interpolation-based inference using a known monotone basis (building on [Bsh95])
1: Assuming a known basis {b1, . . . , bt} (Def. 2.4.17)
2: procedure ITP-KnownMBasis(Init, δ, Bad, k)
3: H1, . . . , Ht ← false
4: while H =

∧t

i=1 Hi not an inductive inductive
do

5: let σ′ s.t. (σ, σ′) |= H ∧ δ ∧ ¬H ′

6: or σ′ |= Init ∧ ¬H
7: for i = 1, . . . , t do
8: if σ′ 6|= Hi then
9: d ← MonGenBmc(σ′, bi, δ, Bad, k)
10: Hi ← Hi ∨ d
11: return

∧t

i=1 Hi

12: procedure MonGenBmc(σ, b, δ, Bad, k)
13: if δk(σ) ∩ Bad 6= ∅ then
14: restart with larger k
15: v ← σ; walked ← true
16: while walked do
17: walked ← false
18: for j = 1, . . . , n such that b[pj ] 6= v[pj ] do
19: x← v[pj 7→ b[pj ]]
20: if δk(x) ∩ Bad = ∅ then
21: v ← x; walked ← true
22: return cubeb(v)

4.4.1 Inference with a Monotone Basis

In this section we present Alg. 14, an algorithm for inferring inductive invariants with a known
monotone basis. Choosing an appropriate basis produces the algorithm for almost-monotone
DNF, and is described below in §4.4.2. We use, and recall along the way, notions from the
monotone theory [Bsh95]; see §2.4 for a detailed exposition.

Recall that a formula is b-monotone (Def. 2.4.2), where b is a state, if it can be written in
DNF so that every variable p appears in polarity ¬b[p] (Lemma 2.4.6 and Corollary 2.4.11).
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In general, a formula may not be b-monotone for any b; but it can always be expressed as a
conjunction of formulas, each monotone w.r.t. some valuation. A set of states that suffices for
this is called a basis (Def. 2.4.17).

Alg. 14 infers an invariant under the assumption that a known set of states is a basis for
the invariant. (We address the choice of the basis in §4.4.2.) The main idea of Alg. 14 is to
think about the desired invariant I as a conjunction ∧ti=1Hi where each Hi is bi-monotone, and
infer the Hi formulas. The first concern is to whether such Hi always exist in a way that can be
represented compactly; the first insight is thatMbi(I), the least bi-monotone overapproximation
of I (Def. 2.4.3), is a good choice: by Lemma 2.4.7,Mbi(I) has a DNF representation that is
not larger than the shortest DNF representation of I.

Our goal now is to gradually infer Mbi(I), despite I being unknown. This is done by
iteratively obtaining states that ought to be added to the current hypothesis ∧ti=1Hi (line 6).
Such a state σ′ must be added to every Hi that does not yet include it. To do so, we add
(disjoin) a bi-monotone term to Hi. The term we add (ignoring generalization at this point) is
the monotone cube (see Corollary 2.4.8), the least bi-overapproximation of σ′ (as a full cube),
which explicitly is

cubebi(σ′) =
∧
{p | σ′[p] = true, σ′[p] 6= bi[p]} ∧

∧
{¬p | σ′[p] = false, σ′[p] 6= bi[p]}.

The monotone cube includes more states than the original σ′, but by Corollary 2.4.8 this cannot
overgeneralize beyondMbi(ϕ), and cubebi(σ′) =⇒Mbi(I) provided that σ′ |= I.

Adding the monotone cube is thus “safe”, but may converge toMbi(I) too slowly. Lemma 2.4.7
guarantees the existence of a short DNF representation, but the monotone cube might be too
large (include too few states) and not be a term in this representation. To achieve fast conver-
gence we want to learn an actual, syntactic, term of Mbi(I) whenever we add a term to Hi.
The mechanism that produces such terms is generalization, in line 20, by means of minimization.
The idea is that the more literals on which the state v we will be adding to Hi agrees with bi,
the smaller the conjunction in the cubebi(v) is. In fact, this minimization successfully achieves
an actual term of Mbi(I). This is established in the next lemma, akin to Thm. 2.3.3 in the
purely monotone case.

Lemma 4.4.1 ([Bsh95], Proposition A + Lemma 1(1)). A state x is b-minimal positive for
ϕ if x |= ϕ and for every i such that x[p] 6= b[p] it holds x[p 7→ b[p]] 6|= ϕ. Let x be b-minimal
positive for a formula ϕ in DNF. Then there is a term t of ϕ such thatMb(t) ≡ cubeb(x).

Proof. Since x |= ϕ which is in DNF, there is a term t of ϕ such that x |= t. From Corollary 2.4.8,
cubeb(x) =⇒ Mb(t). For the other direction, we need to show that the Mb(t), which is a
conjunction by Lemma 2.4.7, includes all the conjuncts in cubeb(x). To this end, let p be
such that x[p] 6= b[p]; we need to show that p is a literal of t if x[p] = true, and ¬p is a
literal of t if x[p] = false. Suppose otherwise. Then x[p 7→ ¬x[p]] also satisfies t. But then
x[p 7→ b[p]] = x[p 7→ ¬x[p]] |= ϕ, in contradiction to the premise.
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The algorithm: ITP-KnownMBasis. We now collect the ideas from above and describe
the algorithm (Alg. 14) for inferring invariants that admit a known monotone basis, based on
the backwards fence condition. Assuming a known basis {b1, . . . , bt} for the target (unknown)
invariant I, the algorithm maintains a sequence H1, . . . ,Ht, where each Hi is an bi-monotone
DNF formula. Each Hi is gradually increased until it isMbi(I) (unless an invariant is found
earlier). When each Hi attains this limit, I ≡ ∧t

i=1Hi and we are done. In a sense, the
algorithm combines multiple instances of the inference procedure appropriate for the monotone
case (Alg. 13), each for learning an bi-monotonization of I.

Each Hi starts from false. When a state that ought to be added to the current hypothesis∧t
i=1Hi is found (line 6), each Hi that does not include it is increased by adding a new term. In

order to learn an actual, syntactic term ofMbi(I), the algorithm gradually flips bits in the state
that disagree with bi, and heuristically checks whether the new state should still be included in
the invariant by performing bounded model checking (line 20). When the fence condition holds,
this mimics the procedure from Lemma 4.4.1; this is important for the algorithm’s efficiency,
below.

Before embarking on efficiency guarantees of this algorithm, we note that the algorithm is
always sound (even when I is not k-fenced or {b1, . . . , bt} is not a basis for I), because it checks
that H is inductive before returning; if H is not inductive, the algorithm continues to increase
Hi’s until H includes a state that reaches Bad and the algorithm reaches failure.

Our main theorem for this algorithm is that when the k-fenced condition holds, the algorithm
can efficiently learn every formula for which {b1, . . . , bt} is a basis:

Theorem 4.4.2. Let (Init, δ,Bad) be a transition system, and k ∈ N. If there exists an inductive
invariant I that is backwards k-fenced, I ∈ DNFm, and {b1, . . . , bt} is a monotone basis for
I (Def. 2.4.17), then ITP-KnownMBasis(Init, δ,Bad, k) converges to an inductive invariant in
O(m · t) inductiveness checks, O(m · t · n2) k-BMC checks, and O(m · t · n2) time.

Proof. Our main claim is that Hi =⇒ Mbi(I) and Hi is bi-monotone (for every i). From
this it would follow that ∧ti=1Hi =⇒ I, because I = ∧t

i=1Mbi(I) from the basis assumption
and Thm. 2.4.19. From this it would follow that the counterexample is always positive, σ′ |= I.
This implies that δk(σ′) ∩ Bad = ∅, so the algorithm does not fail (line 14).

Initially, the claim holds trivially. Consider an iteration. From the induction hypothesis,
and as above, σ′ |= I. Thus generalization begins with x = σ′ |= I. We argue by induction on
the steps of generalization that x |= I. In each step, we move from a state x to a Hamming
neighbor state x′ s.t. δk(x′) ∩ Bad = ∅. By the induction hypothesis and the premise that I is
k-backwards fenced, also x′ |= I, which concludes this induction. The final x in generalization
thus has x |= I. Therefore, by Corollary 2.4.8, cubebi(x) =⇒ Mbi(I) for every i. The claim
follows.

It remains to argue that after at most m · t iterations the algorithm converges to ∧ti=1Hi ≡ I
(unless it terminates earlier with an inductive invariant), because every call to generalization
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takes at most O(n2) k-BMC queries. Indeed, every iteration adds at least one term to at least
one Hi. For the x that produces the term, x |= I, as above, but for every p where x[p] 6= bi[p]
we have δk(x[p 7→ bi[p]]) ∩ Bad 6= ∅, and in particular x[p 7→ bi[p]] 6|= I. Using Lemma 4.4.1,
cubebi(x) is a term of the DNF representation ofMbi(I) from Lemma 2.4.7. By Lemma 2.4.7
this representation has m terms. Overall we need at most t ·m iterations.

Between Algs. 13 and 14. Alg. 14 has the same backbone as the model-based interpolation-
based algorithm we studied earlier. Both algorithms iteratively obtain counterexamples to
induction and use the post-states as positive examples, to be included in the next candidate
invariant. Both algorithm generalize the counterexample and include not just the positive
example itself but also many other related states, relying on a BMC heuristic, of adding as
many states as possible—within a predefined space of viable possibilities—without adding states
that reach Bad in k steps. In Alg. 13, the space of possible generalizations is the set of terms
that are derived from the example state. Alg. 14 manipulates terms, but more than one—the
algorithm computes a generalization term for each element in the monotone basis. In both
algorithms, generalizing a term amounts to dropping literals while the BMC criterion still holds.
The query in Alg. 14 is slightly different, performing BMC on a single state rather than a set of
states (and similar to how this is performed in Angluin’s algorithm for exact learning monotone
formulas, see §2.3.2); the reason is that each bi-monotone hypothesis Hi might actually include
states that can reach Bad in k steps (they will be excluded by other Hi’s).

4.4.2 Choosing a Monotone Basis

Some important classes of formulas have a known basis that the algorithm can use. The class
of r-almost-monotone DNF is the class of DNF formulas with at most r terms which include
negative literals. The set of all states with at most r variables assigned true is a basis for this
class [Bsh95]. When r = O(1), the size of this basis is polynomial in n. This is a basis because,
when converting an almost-monotone DNF formula to CNF form, every clause has at most r
negative literals, which is b-monotone for the state b which assigns true to these variables only.
Another interesting class with a known base of size polynomial in n is the class of (arbitrary)
DNF formulas with O(logn) terms, although the construction is less elementary [Bsh95].

Applying Thm. 4.4.2 with the known basis for r-almost-monotone DNF yields:

Corollary 4.4.3. Let (Init, δ,Bad) be a transition system, k ∈ N, and r = O(1). If there
exists an inductive invariant I that is backwards k-fenced, and I is r-almost-monotone DNF
with m terms, then ITP-KnownMBasis(Init, δ,Bad, k) with an appropriate basis converges to an
inductive invariant in poly(m ·n) inductiveness checks, poly(m ·n) k-BMC checks, and poly(m ·n)
time.

A dual result for r-almost antimonotone CNF invariants, which are CNF formulas with at
most r clauses that include positive literals, is as follows:
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Corollary 4.4.4. Let (Init, δ,Bad) be a transition system, k ∈ N, and r = O(1). If there
exists an inductive invariant I that is forwards k-fenced, I is r-almost-antimonotone CNF with
m clauses, then ITP-KnownMBasis∗(Init, δ,Bad, k) with an appropriate basis converges to an
inductive invariant in poly(m ·n) inductiveness checks, poly(m ·n) k-BMC checks, and poly(m ·n)
time.

4.5 From Exact Learning to Invariant Inference via the Fence
Condition

Exact learning with queries [Ang87b] is one of the fundamental fields of theoretical machine
learning. In this section we show how efficient inference based on the fence condition can be
understood as a manifestation of special forms of exact learning algorithms. In §4.5.1 we obtain
Algs. 13 and 14 by a translation from exact learning algorithms that satisfy certain restrictions.
In particular, this provides an alternative proof of Thm. 4.4.2. In §4.5.2 we show that when both
the backwards and the forwards fence condition hold, then every algorithm for exact learning
from equivalence and membership queries can be transformed to an inference algorithm. These
transformations implement the learning algorithm’s queries even though the target invariants
are not known to the algorithm or to the SAT solver. Such transformations are impossible in
general, as we showed in Chapter 3 (§3.6), and here rely on the fence condition. (Background
on exact concept learning with queries appears in §2.3.1.)

4.5.1 Inference From One-Sided Fence and Exact Learning With Restricted
Queries

The challenge in harnessing exact learning algorithms for invariant inference is the need to
also implement the teacher, which is problematic because the algorithm does not know any
inductive invariant in advance [GLMN14], and, as we have shown in §3.6.2, is unable to efficiently
implement a classical teacher. In this section we overcome this problem using the fence condition,
provided that the learning algorithm satisfies some conditions.

Membership queries to an (unknown) target invariant are in general impossible to implement
(Corollary 3.6.2). Even if we target the clearly-defined gfp specifically, then the query amounts
to asking whether σ can reach Bad in an unbounded number of steps, but this question is not an
easier than the safety problem. If the desired I is not the gfp (say, because the gfp is a complex
formula), then it is even less clear how to answer the query.

Equivalence queries are also hard to implement in general (Corollary 3.6.1): while we can
determine inductiveness or find a counterexample, this may be counterexample to induction
(σ, σ′), which is a transition, not a single state; deciding whether to return to the learner σ
or σ′ as a differentiating example depends on whether σ |= I, which has all the problems of a
membership query above. We will circumvent the problem of equivalence queries by considering
algorithms that query only on candidates which are underapproximations of the target I:
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Lemma 4.5.1 (Implementing positive equivalence queries). Let (Init, δ,Bad) be a transition
system and I an inductive invariant. Given θ such that θ =⇒ I, it is possible to decide whether
θ is an inductive invariant or provide a counterexample σ |= I, σ 6|= θ, by

• checking whether there is a counterexample σ′ |= Init, σ′ 6|= θ and returning σ′ if one exists;
and

• checking whether there is a counterexample (σ, σ′) |= θ ∧ δ ∧ ¬θ′, and returning σ′ if one
exists.

Otherwise, θ is an inductive invariant.

Note that θ 6≡ I could be an inductive invariant, which does not amount to an equivalence
query per se, but then the algorithm has already found an inductive invariant and can stop.

Our main observation here is about implementing membership queries: that if the fence
condition holds for I, then it is possible to efficiently implement restricted versions of membership
queries:

Lemma 4.5.2 (Implementing positive-adjacent membership queries). Let (Init, δ,Bad) be a
transition system and I an inductive invariant that is backwards k-fenced. Given σ s.t. σ |= I

or σ ∈ ∂−(I), it is possible to decide whether σ |= I using a single k-BMC check of whether
δk(σ) ∩ Bad = ∅.

This is a special case of an implementation of certain subset queries (a membership query is
with θ = {σ}):

Lemma 4.5.3 (Implementing positive-adjacent subset queries). Let (Init, δ,Bad) be a transition
system and I an inductive invariant that is backwards k-fenced. Given θ s.t. θ ⊆ I or θ∩∂−(I) 6=
∅, it is possible to decide whether θ ⊆ I using a single k-BMC check of whether δk(θ) ∩Bad = ∅.

Proof. If θ ⊆ I, no state in θ can reach Bad in any number of steps, k in particular, and we
correctly return true. Otherwise, from the premise, there is σ ∈ θ s.t. σ ∈ ∂−(I) so, by the fence
condition, we must have δk(σ) ∩ Bad 6= ∅, hence also δk(θ) ∩ Bad 6= ∅, and we correctly return
false.

A learning algorithm that only performs such queries induces an invariant inference algorithm.

Corollary 4.5.4. Let C be a class of formulas. Let A be an exact concept learning algorithm
that can identify every ϕ ∈ C in at most s1 equivalence queries and s2 subset queries (including
membership queries). Assume further that when A performs an equivalence query on θ, always
θ =⇒ ϕ, and when A performs a subset query on θ, always θ ⊆ ϕ or θ ∩ ∂−(ϕ) 6= ∅. Then
there exists an invariant inference algorithm that is sound (returns only correct invariants), and,
furthermore, can find an inductive invariant for every transition system that admits an inductive
invariant I ∈ C that is backwards k-fenced using at most s1 + 1 inductiveness checks, s2 k-BMC
checks, and time the same as of A up to a constant factor.
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Proof. We simulate A using the equivalence queries from Lemma 4.5.1 and the subset queries
from Lemma 4.5.3. If the fence condition holds, we answer all queries correctly, perhaps except
for an equivalence query on θ returning true although θ 6≡ I, but then we have already found
an inductive invariant θ and can stop. An additional inductiveness check is used before an
invariant is returned to ensure that the result is a correct inductive invariant even when the
fence condition does not hold. If the latter inductiveness check fails, the algorithm returns
“failure”. The time overhead of performing each inductiveness and subset queries according
to Lemmas 4.5.1 and 4.5.3 is a constant factor.

Note that the resulting algorithm is sound even when the fence condition does not hold,
although in this case successful and efficient convergence is not guaranteed.
Alg. 13 and exact learning. The interpolation algorithm of Alg. 13 and its efficiency
result (Thm. 4.3.5) can be obtained by the transformation of Corollary 4.5.4 from the exact
learning algorithm for DNF formulas as it appears in Alg. 3 in §2.3.2, and its efficiency result for
monotone DNF formulas (Thm. 2.3.6) . The queries performed in Alg. 3 satisfy the conditions
of the transformation: as the algorithm’s analysis shows (see Thm. 2.3.6), the hypothesis is
always below the true formula, as required for equivalence queries; the subset queries are always
positive adjacent, because if d is a term s.t. d ⊂ ψ, and d′ 6⊆ ψ where d′ = d \ {`}, then taking a
state σ− ∈ d′ \ ψ and flipping the variable in ` results in a state σ+ |= d and hence σ+ |= ψ,
hence σ− ∈ ∂−(ψ) and σ− ∈ d′, as required.
Alg. 14 and exact learning. The translation in Corollary 4.5.4 provides an alternative proof
of Thm. 4.4.2.

Proof of Thm. 4.4.2. Alg. 14 is obtained by the transformation in Corollary 4.5.4 applied on
the Λ-algorithm for exact concept learning using a known monotone basis by Bshouty [Bsh95,
§5], whose code is presented in Alg. 5 in §2.4.4. The bounds on the number of inductiveness
and BMC checks in our theorem matches the bounds on equivalence and membership queries
of the original algorithm. It remains to argue that the Λ-algorithm satisfies the conditions
of Corollary 4.5.4. Indeed, the hypothesis is always below the true formula and counterexamples
are always positive [Bsh95, §5.1.1, inductive property 1], and membership queries are always
performed after flipping one bit in a positive example, yielding positive-adjacent membership
queries per the requirement of Lemma 4.5.2.

4.5.2 Inference From Two-Sided Fence and Exact Learning

In this section we simulate arbitrary exact learning algorithms (going beyond the requirements
in Corollary 4.5.4) relying on a two-sided fence condition. An important example of such an
exact learning algorithm is the CDNF algorithm by Bshouty [Bsh95]. The conditions of the
transformation in §4.5.1 do not hold because this algorithm performs equivalence queries that
can return either positive or negative examples. We first exemplify the two-sided fence condition.
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Example 4.5.5. In the example of Fig. 4.1, the invariant in Equation (4.1) is backwards
2-fenced (see §4.1.2). It is also 1 forwards-fenced: every state in ∂+(I) = I is reachable in 1
step by havoc_others.

We now show how to implement queries to the invariant using the two-sided fence condition.

Lemma 4.5.6 (implementing membership queries). Let (Init, δ,Bad) be a transition system and
I an (unknown) inductive invariant that is backwards k1-fenced and forwards k2-fenced. Then
membership queries to I can be implemented in at most n queries of k1-BMC and k2-BMC.6

Proof. Let σ be a state such that we want to check whether σ ∈ I. Choose some known state
σ0 |= Init, and gradually walk from σ to σ0, that is, in each step change one variable in σ to
match σ0, i.e. σ ← σ[p 7→ σ0[p]]. In each step, check:

• If δk1(Init) ∩ {σ} 6= ∅ (namely σ ∈ δk1(Init)), return true. (This is a k1-BMC check.)

• If δk2(σ) ∩ Bad 6= ∅ (namely σ ∈
(
δ−1)k2 (Bad)), return false. (This is a k2-BMC check.)

• Otherwise, step and recheck.

At least one of the queries is true at some point, because σ0 ∈ δk1(Init).
Suppose σ ∈ I. Then in this process, as long as σ stays in I, we cannot return false because

states in I do not reach Bad (in k2 steps or more). Then either σ always stays in I, in which case
we return true when σ becomes σ0, or there is a first crossing point from σ1 ∈ I to σ2 6∈ I, where,
from the premise that I is forwards k1-fenced, σ ∈ δk1(Init) and we return true, as expected.

Suppose σ 6∈ I. Then in this process, as long as σ stays not in I, we cannot return true,
because states in ¬I are not reachable from Init (in k1 steps or more). Because we end the
process with σ0 ∈ I there must be a first crossing point from ¬I to I, where, from the premise
that I is backwards k2-fenced, δk2(σ) ∩ Bad 6= ∅, and we return false, as expected.

An equivalence query can be implemented by an inductiveness check and a membership
query (as was also noted in §3.6.2, in Corollary 3.6.2):

Lemma 4.5.7 (implementing equivalence queries). Let (Init, δ,Bad) be a transition system, and
I an (unknown) inductive invariant that is forwards k1-fenced and backwards k2-fenced. Then
given θ it is possible to answer whether θ is an inductive invariant, or provide a counterexample
σ such that σ |= θ, σ 6|= I or σ 6|= θ, σ |= I, using an inductiveness check, at most n checks of
k1-BMC and n of k2-BMC.

Proof. Perform an inductiveness check of θ. If there is a counterexample (σ, σ′) perform
a membership query on σ using Lemma 4.5.2: if the result is true, return σ′ (a positive
counterexample); otherwise return σ (a negative counterexample).

6The proof of this also implies that an invariant that is both forwards k1-fenced and backwards k2-fenced is
unique, seeing that the implementation of the membership query for both is the same.
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We can use these procedures to implement every exact learning algorithm from (arbitrary)
equivalence and membership queries.

Corollary 4.5.8. Let C be a class of formulas. Let A be an exact concept learning algorithm
that can identify every ϕ ∈ C in at most s1 equivalence queries and s2 membership queries.
Then there exists a sound invariant inference algorithm that can find an inductive invariant for
every transition system that admits an inductive invariant I ∈ C that is forwards k1-fenced and
backwards k2-fenced using at most s1 + 1 inductiveness checks, n(s1 + s2) of k1-BMC checks,
n(s1 + s2) of k2-BMC checks, and time O(n(s1 + s2)tA) where tA is the worst-case time of A
concept-learning I.

Proof. We simulate A using the equivalence queries from Lemma 4.5.7 and the membership
queries from Lemma 4.5.6. We answer all queries correctly, perhaps except for an equivalence
query on θ returning true although θ 6≡ I, but then we have already found an inductive invariant
θ and can stop. For soundness, we always verify the result before returning using an additional
inductiveness check. The time overhead corresponds to the multiple BMC queries required
instead of a single membership or equivalence query.

Next, we demonstrate an application of Corollary 4.5.8 to the inference of a larger class of
invariants.

Inference Beyond Almost-Monotone Invariants

Earlier, we have shown that almost-monotone DNF invariants are efficiently inferrable when the
backwards fence condition holds, and similarly for almost-monotone CNF when the forwards
fence condition holds (Corollaries 4.4.3 and 4.4.4). We now utilize Corollary 4.5.8 to the CDNF
algorithm by Bshouty [Bsh95] to show that the class of invariants that can be succinctly expressed
both in DNF and in CNF (not necessarily in an almost-monotone way) can be efficiently inferred
when the fence condition holds in both directions:

Theorem 4.5.9. There is an algorithm A that for every input transition system (Init, δ,Bad)
and k ∈ N, if the system admits an inductive invariant I such that I ∈ DNFm1, I ∈ CNFm2,
and I is both backwards- and forwards- k-fenced, then A(Init, δ,Bad, k) converges to an inductive
invariant in O(m1 ·m2) inductiveness checks, O(m1 ·m2 ·n3) k-BMC checks, and O(m1 ·m2 ·n3)
time.

As noted by Bshouty [Bsh95], the class of formulas with short DNF and CNF includes the
formulas that can be expressed by a small decision tree: a binary tree in which every internal
node is labeled by a variable and a leaf by true/false, and σ satisfies the formula if the path
defined by starting from the root, turning left when the σ assigns false to the variable labeling
the node and right otherwise, reaches a leaf true. The size of a decision tree is the number of
leaves in the tree.
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Corollary 4.5.10. There is an algorithm A that for every input transition system (Init, δ,Bad)
and k ∈ N, if the system admits an inductive invariant I that can be expressed as a decision tree
of size m, and I is both backwards- and forwards- k-fenced, then A(Init, δ,Bad, k) converges to
an inductive invariant in O(m2) inductiveness checks, O(m2 ·n3) k-BMC checks, and O(m2 ·n3)
time.

Proof. A decision tree of size m has a DNF representation of m terms: a disjunction of terms
representing the paths that reach a leaf true, each is the conjunction of the variables on the
path with polarity according to left/right branch. Similarly, it has a CNF representation of m
clauses: a conjunction of clauses which are the negations of paths that reach a leaf false. Now
apply Thm. 4.5.9.

Similarly, when an r-almost-unate invariant with O(logn) non-unate variables is fenced both
backwards and forwards, it can be inferred by an adaptation of an algorithm by Bshouty [Bsh97].
Whether this is possible based on the one-sided fence condition is an interesting question for
future work.

In the next section we will show that this can be done for CDNF invariants (and, in particular,
decision trees)—infer them based on only the one-sided version of the fence condition. In the
CDNF case, the transformation of Corollary 4.5.4 that uses only the one-sided fence condition
is inapplicable to the Bshouty’s algorithm for learning CDNF (Alg. 6) because it performs
equivalence queries that are not one-sided,7 necessitating a new inference algorithm to target
this class.

4.6 Efficient Interpolation-Based Inference of CDNF Invariants

The goal of this section is to develop an algorithm that can efficiently infer CDNF invariants—
invariants that can be rewritten succinctly in both CNF and DNF forms, but are not necessarily
monotone or almost-monotone—based on the one-sided fence condition (as opposed to Thm. 4.5.9
which uses the two-sided fence condition). It is inspired by Bshouty’s CDNF learning algorithm
but significantly diverges from it. We first develop a key technical component of the algorithm,
whose goal is to compute monotononizations more efficiently. Then, to develop the intuition of
the algorithm’s doings, we start by explicitly describing the dual of Alg. 13, and how it correctness
stems also from slightly different argument than the one in §4.3.2 (§4.3.3). We build on this
intuition to describe our CDNF inference algorithm, using our new efficient monotonization
procedure, and prove the algorithm’s correctness (§4.6.3).

7The candidate in Alg. 6 is an underappxoimation that is increased upon encountering positive examples
(much like Algs. 5 and 14), but a negative example (line 5) indicates that the candidate “overshot”, whereupon
the candidate is subsequently reduced again to an underapproximation.
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4.6.1 Super-Efficient Monotonization

In this section we develop an efficient procedure to computeMb(ϕ), which is a technical enabler
of the results of this section, as well as of §5.6 in Chapter 5. The algorithm, presented in Alg. 15,
satisfies the following:

Theorem 4.6.1. Let ϕ be a formula and b a cube. The algorithm Monotonize(ϕ, b) computes
Mb(ϕ) in O(n2|Mb(ϕ)|dnf) SAT queries and time.

What distinguishes Thm. 4.6.1 is that the complexity bound depends on the DNF size of
the output, the monotonizationMb(ϕ), and not on the size of the input ϕ, in contrast to the
algorithm by Bshouty [Bsh95] (see Remark 4.6.6).

Algorithm 15 Super-Efficient Monotonization
1: procedure Monotonize(ϕ, b)
2: H ← false
3: while SAT(ϕ ∧ ¬H) do
4: let σr |= ϕ ∧ ¬H
5: v ← generalize(ϕ, b, σr)
6: H ← H ∨ cubeb(v)

7: return H

8:
9:

10:
11:

12: procedure generalize(ϕ, b, σr)
13: v ← σr; walked ← true
14: while walked do
15: walked ← false
16: for j = 1, . . . , n do
17: if b[pj ] = v[pj ] then
18: continue
19: x← v[pj 7→ b[pj ]]
20: if SAT(ϕ ∧ x, πb(x) ) then
21: v ← x; walked ← true
22: return v

Starting from the candidate H = false, the algorithm iteratively samples—through satisfying
models of a SAT query—states that belong in ϕ but not yet included in H. Every such state σr
generates a new term in H. Since H is supposed to be b-monotone, the minimal term to include
is cubeb(σr). To be efficient, the algorithm generalizes each example, trying to flip bits to find an
example v that also should be included inMb(ϕ) and is closer in Hamming distance to b, which
would result in a smaller term cubeb(v), thereby including more states in each iteration and
converging faster. The criterion for v is that a bit cannot be flipped if this would result in a state
x where the Hamming interval x, πb(x) does not intersect ϕ. Here, πb(x), the projection [e.g.
Wie87] of x onto the (possibly partial) cube b is the state s.t.

πb(x) =

b[p] p ∈ dom(b)

x[p] otherwise
,

and the Hamming interval σ1, σ2 between two states σ1, σ2 is the smallest cube that contains
both—the conjunction of the literals where these agree. In sum, x, πb(x) is the conjunction of
the literals where x, b agree and the literals of x over variables that are not present in b. As we
will show, x, πb(x) intersecting with ϕ is an indicator for x belonging to the monotonization of
ϕ.
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The use of SAT queries in the algorithm does not necessarily assume that ϕ is given explicitly,
and indeed in §4.6.3 we apply this algorithm with an implicit representation of ϕ (using additional
copies of the vocabulary).

The rest of this section proves Thm. 4.6.1. First, the result v of generalization is so that
when we disjoin the term cubeb(v), we do not “overshoot” to include states that do not belong
to the true monotonization:

Lemma 4.6.2. If σr |= ϕ, then generalize(ϕ, b, σr) returns v s.t. cubeb(v) =⇒Mb(ϕ).

Proof. v is chosen s.t. v, πb(v) ∩ ϕ 6= ∅—note that this holds trivially in the initial choice of v
which is σr |= ϕ. Let σ̃ |= ϕ s.t. σ̃ |= v, πb(v) . The latter means that σ̃ ≤b v, because v, πb(v)
consists of all the literals in v except for those that disagree with b, so σ agrees with v whenever
v, b agree. In more detail, σ̃ agrees with v on all p 6∈ dom(b) (because πb(v)[p] = v[p] on such
variables), and for p ∈ dom(p), if σ̃[p] 6= v[p], if v, b agree on p then likewise σ̃ agrees with them
(because then v[p] = πb(v)[p] and p is retained in the conjunction that forms the Hamming
interval), which satisfies Def. 2.4.2. As also σ̃ |= ϕ, this implies that v |=Mb(ϕ) per Def. 2.4.3.
Hence cubeb(v) =⇒Mb(ϕ), by Lemma 2.4.9.

This shows that it is reasonable to disjoin the term cubeb(v) to H in the hope of eventually
obtaining H = Mb(ϕ). The following lemma argues that the algorithm continues to sample
states until it converges to the true monotonization.

Lemma 4.6.3. Monotonize(ϕ, b) terminates and returnsMb(ϕ).

Proof. First we show that when it terminates, the result is correct. Always H ⊆Mb(ϕ), because
in each iteration we disjoin to H a formula that satisfies the same property, by Lemma 4.6.2. The
algorithm terminates when ϕ ⊆ H, and H is always a b-monotone formula (by Lemma 2.4.7 the
monotonization of H is H itself, which is b-monotone as in Lemma 2.4.4). From the minimality
ofMb(ϕ) (Lemma 2.4.4), necessarily alsoMb(ϕ) ⊆ H.

To show termination it suffices to show that H strictly increases in each iteration (because the
number of non-equivalent propositional formulas is finite). To see this, note that generalize(ϕ,
b, σr) returns v s.t. v ≤b σr, since the procedure starts with σr and only flips literals to agree
with b. This implies that σr |= cubeb(v), so after the iteration σr |= H whereas previously
σr 6|= H.

The novelty of the algorithm is its efficiency, which we now turn to establish. The crucial
point is the generalization is able to produce, term by term, a minimal representation ofMb(ϕ).
To this end, we first show that cubeb(v) that the algorithm computes in lines 5 to 6 is a prime
implicant ofMb(ϕ). Recall that a term t is an implicant of a formula ψ if t =⇒ ψ, and it is
prime if this no longer holds after dropping a literal, that is, for every ` ∈ t (as a set of literals),
(∧ (t \ {`})) 6=⇒ ψ. It is non-trivial if t 6≡ false (not an empty set of literals).

Lemma 4.6.4. If σr |= ϕ, then generalize(ϕ, b, σr) returns v s.t. cubeb(v) is a non-trivial
prime implicant ofMb(ϕ).
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Proof. Lemma 4.6.2 shows that it is an implicant. It is non-trivial because σr is a model of
it, as shown as part of the proof of Lemma 4.6.3. Suppose that cubeb(v) is not prime. Then
there a literal over some variable p that can be dropped. It is present in cubeb(v), which means
that p ∈ dom(b) and v[p] 6= b[p]. Then the cube obtained from dropping the literal can be
written as cubeb(x) where x = v[p 7→ ¬v[p]]. If this cube is an implicant of Mb(ϕ), then,
because x |= cubeb(x), in particular x |= Mb(ϕ). By Def. 2.4.3, there is σ̃ |= ϕ such that
σ̃ ≤b x. But the latter implies that σ̃ ∈ x, πb(x) , because, by Def. 2.4.2, for every p 6∈ dom(b),
σ̃[p] = x[p] = πb(x)[p] and for every p ∈ dom(b) where x, πb(x) agree also σ̃, b agree (because
πb(x)[p] = b[p]). Thus x, πb(x) ∩ ϕ 6= ∅, in contradiction to the choice of v, according to the
check in line 20.

We use the fact thatMb(ϕ) is b-monotone to show that the monotonization is computed in
few iterations:

Lemma 4.6.5. The number of iterations of the loop in line 3 of Monotonize(ϕ, b) is at most
|Mb(ϕ)|dnf .

Proof. Lemma 4.6.4 shows that in each iteration we disjoin a prime implicant. It is a property
of monotone functions that they have a unique DNF representations with irredundant, which
consists of the disjunction of all non-trivial prime implicants [Qui54], and this extends to
b-monotone functions (through a simple renaming of variables to make the function monotone).
Thus the non-trivial prime implicant we disjoin is a term of the minimal DNF representation of
Mb(ϕ). Each additional σr produces a new term, as shown in Lemma 4.6.3.

We are now ready to prove that the algorithm overall is efficient.

Proof of Thm. 4.6.1. By Lemma 4.6.5 the number of iterations of the loop in line 3 is bounded
by |Mb(ϕ)|dnf . Each iteration calls generalize, which performs at most n iterations of the
loop in line 14 because the same variable is never flipped twice. Each iteration of this loop
performs n SAT queries in line 20. Note that the cube x, πb(x) is straightforward to compute
in linear time.

Remark 4.6.6. Bshouty [Bsh95] used an algorithm for computing Mb(ϕ) whose complexity
is bounded by the DNF input size |ϕ|dnf , whereas Alg. 15’s complexity is bounded by the DNF
output size, |Mb(ϕ)|dnf , which is never worse (Lemma 2.4.10), and sometimes significantly
smaller. When considered as learning algorithms, the improved complexity of Alg. 15 comes at
the expense of the need for richer queries: Bshouty’s algorithm is similar to Alg. 15 (using an
equivalence query in line 3 that produces a positive example—see genMQ of Alg. 6), except that
the condition in line 20 is replaced by checking whether x |= ϕ. This is a membership query to
ϕ, whereas our check amounts to a disjointness query [Ang87b].
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Algorithm 16 Dual of model-based
interpolation-based inference [CIM12, BGKL13]
1: procedure Dual-MB-ITP(Init,δ,Bad,s)
2: if δs(Init) ∩ Bad 6= ∅ then
3: unsafe
4: ϕ← ¬Bad
5: while ϕ not inductive do
6: let σ, σ′ |= ϕ ∧ δ ∧ ¬ϕ′
7: if δs(Init) ∩ {σ} 6= ∅ then
8: restart with larger s
9: take minimal clause c ⊆ ¬σ s.t. δs(Init) =⇒ c

10: ϕ← ϕ ∧ c
11: return ϕ

Algorithm 17 Interpolation-based inference
of CDNF invariants
1: procedure CDNF-ITP(Init,δ,Bad,s)
2: if δs(Init) ∩ Bad 6= ∅ then
3: unsafe
4: ϕ← ¬Bad
5: while ϕ not inductive do
6: let σ, σ′ |= ϕ ∧ δ ∧ ¬ϕ′
7: if δs(Init) ∩ {σ} 6= ∅ then
8: restart with larger s
9: H ← Monotonize(δs(Init), σ)
10: ϕ← ϕ ∧H
11: return I

4.6.2 Warmup: Dual Interpolation With Clause Minimization

This algorithm computes invariants in CNF and is the dual of Alg. 13. It is guaranteed to
converge to an overapproximation of I when I is forwards s-fenced, and converges efficiently when
I is a short antimonotone CNF formulas (see Corollary 4.3.9). As usual, the fence condition is
necessary to guarantee the success in finding an invariant, but the algorithm is sound regardless,
and every inductive invariant it may find is correct even when the fence condition does not hold.

For completeness, the algorithm can be understood without reference to Alg. 13 as follows:
After starting the candidate ϕ as ¬Bad, each iteration checks for a counterexample to induction
(line 6), whose pre-state σ is excluded from ϕ at the end of the iteration (line 10). Many states
are excluded in each iteration beyond the counterexample, by conjoining to the candidate a
minimal clause that excludes σ but retains all the states that are reachable in the system in s
steps (line 9—this involves up to n queries of s-BMC, each time dropping a literal and checking
whether the clause is still valid). If the counterexample cannot be blocked, because it is in fact
reachable in s steps, this is an indication that s needs to be larger (line 7) to find a proof or a
safety violation. The algorithm detects that the transition system is unsafe in line 3 when s is
enough to find an execution from Init to Bad with at most s transitions.

We prove the following lemma, a counterpart of Lemma 4.3.2, that the algorithm successfully
infers an inductive invariant based on the forwards fence condition:

Theorem 4.6.7. Let (Init, δ,Bad) be a transition system and s ∈ N. If there exists an inductive
invariant I that is forwards k-fenced, then Dual-MB-ITP(Init, δ,Bad, s) successfully (albeit
potentially in an exponential number of steps) finds an inductive invariant ϕ such that I =⇒ ϕ.

However, our proof this time is slightly different, and uses the following result about the
monotone hull of a boundary set:

Lemma 4.6.8. Let I, S, C be sets of states s.t. ∂+(I) ⊆ S and C ∩ I = ∅. Then I ⊆ MHullC(S).

Proof. Let σ ∈ I and b ∈ C, and show that σ ∈ Mb(S). To this end, we show that there
exists s ∈ S such that s ≤b σ. Consider some shortest path between σ, b in the Hamming cube.



100 Chapter 4. Upper Bounds for Interpolation-Based Invariant Inference

Because σ |= I, b 6|= I, there is some crossing point σ+ ∈ ∂+(I) on that path. Being on the
path, it satisfies σ+ ≤b σ (see the “geometric intuition” discussed in §2.4.1). Having σ+ ∈ S
and σ+ ≤b σ implies σ ∈Mb(S), concluding the proof.

Turning back to the correctness of the algorithm, the argument is that always I ⊆
MHullCi(Rs) ⊆ ϕ, where Rs is the set of s-reachable states δs(Init), and Ci is the set of
counterexamples σ that the algorithm has encountered so far.

Proof of Thm. 4.6.7. Similar to the overall structure of the proof of Thm. 4.6.7 (but dually),
we show that always I ⊆ ϕ, which implies that the counterexample σ in line 6 satisfies σ 6|= I

(because otherwise δ(σ) ⊆ I ⊆ ϕ, in contradiction to the choice of σ), and because Rs ⊆ I this
implies that σ 6∈ Rs and so no restart is required. Because ϕ strictly decreases in each iteration
and the number of non-equivalent formulas is finite, this implies that the algorithm terminates
with an inductive invariant. If we denote ϕ = ψ ∧¬Bad (that is, ψ is the conjunction learned in
iterations of line 5), it suffices to prove that I ⊆ ψ, because I ⊆ ¬Bad always holds (as I is an
inductive invariant).

The fence condition reads that ∂+(I) ⊆ Rs. It is easy to see from how the algorithm
constructs c that always Rs ⊆ ψ (initially this holds trivially, and guaranteed afterwards from
the condition on c in line 9). It follows that ∂+(I) ⊆ ψ. That always in the algorithm σ 6|= I

(as explained above) means that I ∩ Ci = ∅. Hence we can apply Lemma 4.6.8 to obtain that
I ⊆ MHullCi(ψ). Since ψ is constructed as a conjunction of clauses that exclude counterexamples
in Ci, from Thm. 2.4.19 we have that ψ ≡ MHullCi(ψ), so we have obtained that I ⊆ ψ, as
desired.

Towards CDNF inference. According to this proof argument, the important properties
of the candidate ϕ = ψ ∧ ¬Bad are that (i) Rs ⊆ ψ, and (ii) ψ ∈ MSpan(Ci) (equivalently,
ψ ≡ MHullCi(ψ)). These are surprisingly mild requirements; the first can easily be enforced
using bounded model checking, and the latter is also in our control, dictating the form of
formulas that can be used to exclude the counterexample σ. In Alg. 16 the blocking formula is a
clause c, which is σ-monotone, and this is efficient when the k-fenced invariant is antimonotone
(Corollary 4.3.9), but might require many iterations for invariants beyond this class. Our CDNF
inference algorithm (Alg. 17), presented in the next section, aims to speed convergence by
blocking each counterexample using a tighter formula, Mσ(Rs); this is in fact the tightest
possible formula to use while retaining the above two properties.8

Although we can query Rs freely and use Bshouty’s algorithm for computing Mσ(Rs)
similarly to Alg. 14, the challenge is that we do not know that Rs has a short DNF representation,
the premise on which this procedure’s efficiency rests (see Lemmas 2.4.7 and 4.4.1). The trick is
to establish thatMσ(Rs) =Mσ(I) and find a way to query membership in I sufficiently to

8With these blocking formulas, ψ is always MHullCi(Rs), which is the least overapproximation of Rs in
MSpan(Ci) (by Lemma 5.3.1 proven in Chapter 5).
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find minimal terms in the DNF representation of I; this is the heart of the technical innovation
of the next section.

4.6.3 CDNF Inference With the Fence Condition

We now present our new invariant inference algorithm (Alg. 17), that is guaranteed to run in
time polynomial in n, |I|cnf , |I|dnf of a fenced invariant I:

Theorem 4.6.9. Let I be a forwards s-fenced inductive invariant for (Init, δ,Bad). Then
CDNF-ITP(Init, δ,Bad, s) finds an inductive invariant in at most |I|cnf · |I|dnf · n2 of s-BMC
checks, |I|cnf inductiveness checks, and O(|I|cnf · |I|dnf · n2) time.

Example 4.6.10. Let I be the set of all states where at least two bits are 0 and at least two
bits are 1. Then ∂+(I) is the set where exactly two bits are 0 (and at least two bits are 1) or
exactly two bits are 1 (and at least two bits are 0). Note that I \ ∂+(I) contains many (most)
states—those where three or more bits are 0 and three or more bits are 1. The fence condition
requires only from the states in ∂+(I) to be reachable in s steps.

I has poly-size representations in both CNF and DNF. We write:

DNF: there is a choice of four bits with two 0’s and two 1’s,

I ≡
∨

1≤i1 6=i2 6=i3 6=i4≤n
(xi1 = 0 ∧ xi2 = 0 ∧ xi3 = 1 ∧ xi4 = 1).

CNF: it is impossible that n− 1 bits or more are 1, likewise for 0,

I ≡

 n∧
i=1

∨
j 6=i

xj = 0

 ∧
 n∧
i=1

∨
j 6=i

xj = 1

 .
The CNF formula has 2n clauses, and the DNF has

(n
4
)

= Θ(n4) terms. Thm. 4.6.9 shows that
such I satisfying the fence condition can be inferred in a number of queries and time that is
polynomial in n. Note that these formulas fall outside the classes that the previous results of
this thesis can handle efficiently (Thm. 4.3.5 and Corollaries 4.3.9, 4.4.3 and 4.4.4) as they are
not monotone nor almost-monotone (the number of terms/clauses with negated variables is not
constant).

As noted by Bshouty [Bsh95], the class of formulas with short DNF and CNF includes the
formulas that can be expressed by a small decision tree: a binary tree in which every internal
node is labeled by a variable and a leaf by true/false, and σ satisfies the formula if the path
defined by starting from the root, turning left when the σ assigns false to the variable labeling
the node and right otherwise, reaches a leaf true. The size of a decision tree is the number of
leaves in the tree. We conclude that:
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Corollary 4.6.11. Let I be a forwards s-fenced inductive invariant for (Init, δ,Bad), that can
be expressed as a decision tree of size m. Then CDNF-ITP(Init, δ,Bad, s) finds an inductive
invariant in at most m2 · n2 of s-BMC checks, m inductiveness checks, and O(m2 · n2) time.

Proof. As the proof of Corollary 4.5.10 from Thm. 4.5.9.

Applying the duality of §2.2.1 to the algorithm of Alg. 17 yields exactly the same complexity
bounds for CDNF invariants and decision trees under the backwards fence condition, instead of
the forwards fence condition. The reason is that the CDNF class is closed under negation.

Remark 4.6.12. Thm. 4.6.9 is not a generalization of Corollary 4.4.3 because some short
monotone DNF formulas have large CNF size [MRW05]. However, the algorithm we present in
this section can achieve the same result as Alg. 14 if it also uses a known, fix monotone basis
instead of discovering the basis on the fly.

The algorithm CDNF-ITP which attains Thm. 4.6.9 is presented in Alg. 17. Its overall
structure is similar to Alg. 16, except the formula used to block a counterexample is the
monotonization of the s-reachable states. Specifically, starting from the candidate ϕ = true
(line 4, the algorithm iteratively samples counterexamples to induction (line 6) and blocks the
pre-state σ from ϕ by conjoiningMσ(δs(Init)), computed by invoking Alg. 15. The SAT queries
of the form SAT (ϕ ∧ θ) that Alg. 15 performs (see §4.6.1) have ϕ = δs(Init), and they amount
to the BMC checks of whether δs(Init) ∩ θ ?= ∅.

It is important for the efficiency result that Alg. 17 uses Alg. 15 as a subprocedure. Using
Bshouty’s procedure (see Remark 4.6.6) would yield a bound of n · |δs(Init)|dnf checks of s-BMC,
and it is likely that δs(Init) is complex to capture in a formula when s is significant (as common
for sets defined by exact reachability, such as the set of the reachable states).

We now proceed to prove the correctness and efficiency of the algorithm (Thm. 4.6.9).
Throughout, assume that I is an inductive invariant for (Init, δ,Bad). I will be s-forwards
fenced; we state this explicitly in the premise of lemmas where this assumption is used. The idea
behind the correctness and efficiency of Alg. 17 is thatMσ(I) is a stronger formula than the
clauses that are produced in Alg. 16, causing the candidate to converge down to the invariant
in fewer iterations, while never excluding states that belong to I (because I ⊆Mσ(I), as used
in Lemma 4.6.14). As we will show (in Lemma 4.6.15), this strategy results in a number of
iterations that is bounded by the CNF size of I (without further assumptions on the syntactic
structure of I). The trick, however, is to show (in Lemma 4.6.13) that what the algorithm
computes in line 9 is indeed Mσ(I), even though I is unknown. The crucial observation
is that under the fence condition, the monotonization of the s-reachable states matches the
monotonization of the invariant (even though these are different sets!). Note that this holds for
any invariant that satisfies the fence condition.

We relate the monotonizations of δs(Init), I as follows:

Lemma 4.6.13. If I is forwards s-fenced for (Init, δ,Bad), and σ 6|= I, then Mσ(δs(Init)) =
Mσ(I).
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Proof. Since I is an inductive invariant, δs(Init) ⊆ I, soMσ(δs(Init)) ⊆Ms(I) from Lemma 2.4.5.
For the other direction we use Lemma 4.6.8: by the fence condition, ∂+(I) ⊆ δs(Init) and
hence, as σ 6|= I, we obtain I ⊆ Mσ(δs(Init)). By Lemma 2.4.4, this implies that Mσ(I) ⊆
Mσ(δs(Init)).

We use this to characterize the candidate invariant the algorithm constructs:

Lemma 4.6.14. If I is forwards s-fenced for (Init, δ,Bad), then in each step of CDNF-ITP(Init, δ,Bad, k),
ϕ = MHullCi(I) ∧ ¬Bad, where Ci is the set of counterexamples σ the algorithm has observed so
far. In particular, I ⊆ ϕ.

Proof. First, I ⊆ ϕ holds from the rest of the lemma because I ⊆ ¬Bad (it is an inductive
invariant), and I ⊆ MHullCi(I) by Lemma 2.4.14. The proof of ϕ = MHullCi(I) ∧ ¬Bad is
by induction on iterations of the loop in line 5. Initially, C = ∅ and indeed ϕ = ¬Bad. In
each iteration, I ⊆ ϕ using the argument above and the induction hypothesis. Hence, the
counterexample to induction of line 6 has σ 6|= I (otherwise σ′ |= I because I is an inductive
invariant, and this would imply also σ |= ϕ, in contradiction). Then Lemma 4.6.3 ensures that
H =Mσ(δs(Init)). Lemma 4.6.13 shows that this isMσ(I), as required.

Essentially, the algorithm gradually learns a monotone basis (Def. 2.4.17) for I from the
counterexamples to induction, and constructs I via the monotone hull w.r.t. this basis. The
next lemma shows that the size of the basis that the algorithm finds is bounded by |I|cnf .

Lemma 4.6.15. If I is forwards s-fenced for (Init, δ,Bad), then CDNF-ITP(Init, δ,Bad, k)
successfully finds an inductive invariant. Further, the number of iterations of the loop in line 5
is at most |I|cnf .

Proof. Since σ 6|= I, also it is not a model of the monotonization w.r.t. to itself, σ 6|=Mσ(I) (be-
cause the only state x ≤σ σ is x = σ—see Defs. 2.4.1 and 2.4.3). This shows, using Lemma 4.6.14,
that at least one state is excluded from the candidate ϕ in each iteration. By the same lemma
always I =⇒ ϕ, and the algorithm terminates when ϕ is inductive, so this shows that the
algorithm successfully converges to an inductive invariant.

To see that this occurs in at most |I|cnf iterations, consider a minimal CNF representation
of I, I = c1 ∧ . . .∧ c|I|cnf

. We argue that in each iteration produces at least one new clause from
that representation, in the sense that for some i, ϕ∧Mσb(I) =⇒ ci whereas previously ϕ 6=⇒ ci.
Let ci be the clause that σ 6|= ci (recall e.g. that σ 6|= ϕ and I ⊆ ϕ). ThenMσ(I) ⊆ ci, since ci
is σ-monotone (Mσ(ci) = ci, using Lemma 2.4.7, because all the literals disagree with σ) and
I ⊆ ci, andMσ(I) is the smallest such (Lemma 2.4.4). Thus when we conjoin H =Mσ(I) to
ϕ we conjoin at least one new ci that was not present in a CNF representation of ϕ; this can
happen at most |I|cnf times.

Overall:
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Proof of Thm. 4.6.9. The algorithm’s success in finding an invariant is established in Lemma 4.6.15.
As for efficiency, by Lemma 4.6.15, there are at most |I|cnf iterations of the loop in CDNF-
ITP, each performs a single inductiveness query, and calls Monotonize. By Thm. 4.6.1
each such call performs at most O(n2|Mσ(I)|dnf) s-BMC queries. The claim follows because
|Mσ(I)|dnf ≤ |I|dnf (Lemma 2.4.10).

Remark 4.6.16 (Comparison to Bshouty’s CDNF algorithm). Our CDNF algorithm, Alg. 17,
is inspired by Bshouty’s CDNF algorithm (whose code appears in Alg. 6), but diverges from
it in several ways. The reason is the different queries available in each setting. Structurally,
while the candidate in both algorithms is gradually constructed to be MHullCi(I) = ∧

σ∈CiMσ(I)
(I being the unknown invariant/formula, and Ci the set of negative examples so far), Alg. 17
constructs each monotonization separately, one by one, whereas Bshouty’s algorithm increases all
monotonizations simultaneously. Bshouty’s design follows from having the source of examples—
both positive and negative—equivalence queries, checking whether the candidate matches I. A
membership query is necessary to decide whether the differentiating example is positive or negative
for I in order to decide whether to add disjuncts to the existing monotonizations or to add a
new monotonization, respectively. This procedure is problematic in invariant inference, because
we cannot in general decide, for a counterexample (σ, σ′) showing that our candidate is not
inductive, whether σ 6|= I (negative) or σ′ |= I (positive) (see §3.6.3). Our solution in §4.5.2 was
to assume that the invariant satisfies both the forwards and backwards fence condition. Under
this assumption it was possible to decide whether σ |= I for an arbitrary state σ. However, this
condition is much stronger than a one-sided version of the fence condition. Instead, in our
inference algorithm of this section, the candidate is ensured to be an overapproximation of the
true I, so each counterexample to induction in line 6 yields a negative example. Positive examples
are obtained in line 4 from δs(Init) ⊆ I; there is no obvious counterpart to that in exact learning,
because in that setting we have no a-priori knowledge of some set S that underapproximates I,
let alone one where we know—as the fence condition guarantees through Lemma 4.6.8—that
covering S in the monotonization is enough to cover I.

4.7 Robustness and Non-Robustness of the Fence Condition

In this section we study the effect of program transformations on the k-fence condition, reflecting
on the robustness of guaranteed convergence of the algorithms we study.

Suppose (Init, δ,Bad) is a transition system that admits an inductive invariant I which is
backwards or forwards k-fenced (Defs. 4.2.2 and 4.3.8). Suppose that the system is modified in
some way to form a new system (Înit, δ̂, B̂ad) with an inductive invariant Î which is derived from
I (often Î = I itself). The transformation ·̂ is robust if Î is also backwards/forwards k-fenced in
(Înit, δ̂, B̂ad).

We consider several such program transformations and establish their (non)robustness.
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4.7.1 Robustness Under Simple Transformations

Isometries

An isometry with respect to the Hamming distance is a permutation of the variables followed by
variable translation per §4.4.1 [see e.g. Wie87]. The new Înit, δ̂, B̂ad, Î are obtained by renaming
the variables according to the permutation, and replacing variables with their negation according
to the translation. The isometry preserves the Hamming distance between states. Therefore, if
I is backwards/forwards k-fenced, so is Î.

Conjunctions and Disjunctions

If (Init, δ,Bad1) has a backwards (forwards) k-fenced inductive invariant I1 and similarly
(Init, δ,Bad2) has I2, then I1∧ I2 is an inductive invariant for (Init, δ,Bad1∨Bad2), and it is also
backwards (forwards) k-fenced. Similarly, if (Init1, δ,Bad) has a backwards (forwards) k-fenced
inductive invariant I1 and similarly (Init1, δ,Bad) has I2, then I1∨I2 is an inductive invariant for
(Init1 ∨ Init2, δ,Bad), and it is also backwards (forwards) k-fenced. This is because the boundary
of the disjunction/conjunction of invariants is contained in union of the boundaries of the original
invariants—as proven in the following lemma— and backwards (forwards) k-reachability is not
reduced in either case.

Lemma 4.7.1. For any two sets of states S1, S2, the boundary satisfies (much like in usual
topology)

∂+(S1 ∩ S2) ⊆ ∂+(S1) ∪ ∂+(S2) ∂−(S1 ∩ S2) ⊆ ∂−(S1) ∪ ∂−(S2)

∂+(S1 ∪ S2) ⊆ ∂+(S1) ∪ ∂+(S2) ∂−(S1 ∪ S2) ⊆ ∂−(S1) ∪ ∂−(S2)

Proof. Let σ− ∈ ∂−(S1 ∩ S2), so wlog. σ− 6|= S1 and it has a Hamming-neighbor σ+ |= S1 ∩ S2.
in particular σ+ |= S1 and thus σ− ∈ ∂−(S1). Let σ− ∈ ∂−(S1 ∪ S2), it has a Hamming-neighbor
σ+ |= S1 ∪ S2. Assume wlog. that σ+ |= S1. Since σ− 6|= S1 ∪ S2, in particular σ− 6|= S1, and
thus σ− ∈ ∂−(S1). The rest of the cases are through the duality ∂+(S1 ∩ S2) = ∂−(S̄1 ∪ S̄2) ⊆
∂−(S̄1) ∪ ∂−(S̄2) = ∂+(S1) ∪ ∂+(S2) and ∂+(S1 ∪ S2) = ∂−(S̄1 ∩ S̄2) ⊆ ∂−(S̄1) ∪ ∂−(S̄2) =
∂+(S1) ∪ ∂+(S2).

4.7.2 Non-Robustness Under Instrumentation

Instrumentation by a Derived Relation

Instrumentation by a derived relation introduces new ghost variables that have a defined meaning
over the program variables, so as to aid program analysis. (See §4.8 for a discussion of the role
of instrumentation in inference.)

Formally, instrumentation by a derived relation works as follows: The vocabulary is extended
with a new variable, yielding Σ̂ = Σ ] {q}. The transition system is modified to update q
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according to ψ, its intended meaning: Înit ≡ Init∧q ↔ ψ, and δ̂ satisfies δ∧q ↔ ψ =⇒ δ̂∧q′ ↔ ψ′

(reading: if q has the correct interpretation in the pre-state, δ̂ correctly updates it). The bad
states B̂ad are all bad under the old definition (B̂ad =⇒ Bad), and we expect the projection of
B̂ad to Σ to be exactly Bad. The example instrumentation in §4.1.4 introduces q to capture
ψ = ⊕xi∈Jxi; the transitions there do not modify the truth value of ψ, hence in δ̂, they do not
modify q.

We say that σ̂ over Σ̂ is consistent if σ̂ |= q ↔ ψ. Every reachable state of (Înit, δ̂, B̂ad)
is consistent, but ∂+(I) includes inconsistent (thus unreachable) states, and this leads to
non-robustness.

Lemma 4.7.2. Let (Înit, δ̂, B̂ad) be obtained as the instrumentation of (Init, δ,Bad) by the
variable q capturing ψ. Let I be over Σ for (Init, δ,Bad). Then even if I is an inductive
invariant, it is not forwards k-fenced in (Înit, δ̂, B̂ad) for any k ∈ N.

Proof. Let σ+ over Σ where σ+ ∈ ∂+(I).9 We extend σ+ to σ̂+ over Σ̂ by interpreting q

according to whether σ+ |= ¬ψ, that is, q is true iff ψ is evaluated to false in σ+. Note that
σ̂+ |= I but σ̂+ is “inconsistent”, namely, σ̂+ 6|= q ↔ ψ. Therefore, it is unreachable from Înit
through any number of transitions of δ̂. It remains to show that σ̂+ ∈ ∂+(I). Let σ− be a
Hamming-neighbor of σ+ such that σ− |= ¬I, and extend it to σ̂− over Σ̂ by interpreting q the
same way it is interpreted in σ̂+. Then σ̂+, σ̂− are Hamming neighbors (w.r.t. Σ̂), and σ̂− |= ¬I
as well, since I does not mention q and σ− |= ¬I. The claim follows.

For example, the invariant of Equation (4.1) is forwards 1-fenced before the transformation
in §4.1.4 (see Example 4.5.5), but it is no longer forwards k-fenced after the instrumentation.

Of course, there is another inductive invariant, I ∧ q ↔ ψ, that we may set as the target
for convergence in our analysis of the algorithm. Unfortunately, ∂+(I ∧ q ↔ ψ) = I ∧ q ↔ ψ

itself, because flipping q moves to a state outside this invariant. Thus, to satisfy our condition,
this entire invariant must be k-reachable, which is a much stronger requirement than I being
k-fenced (I must be the least fixed-point and k the diameter). Other k-fenced invariants could
also exist.

The discussion in §4.1.4 demonstrates a similar non-robustness of the backwards fence
condition.

Monotonization by Instrumentation

We have shown that the pre-existing invariants are no longer forwards fenced after an instru-
mentation. If we are interested in an invariant that uses the new variable, the effect is rather
idiosyncratic and depends on the new invariant. One class of instrumentations with a clear
target for the new invariant is monotinization by instrumentation, which is of special importance
from the perspective of our results in earlier sections (e.g. Thms. 4.3.5 and 4.4.2). Inspired by

9The boundaries ∂+(I), ∂−(I) are never empty, because I,¬I are both not empty, and the “crossing point”
when walking from one set to the other by gradually flipping bits is in the boundary.
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the importance of the syntactic structure as displayed by our results, it would seem valuable to
“monotonize” invariants: introduce new variables capturing the negation of existing variables,
and using them to rewrite an invariant I into a monotone invariant Î. For example, suppose
that a system admits an inductive invariant I = (¬p1 ∨ ¬p2) ∧ (p1 ∨ ¬p3), in which the variable
p1 appears in I both positively and negatively. We thus introduce a new variable q to be
maintained as ¬p1, and write Î = (¬p1 ∨ ¬p2) ∧ (¬q ∨ ¬p3), which is antimonotone.

Alas, we show that this approach is in general unsuccessful, and does not reduce the
inference of fenced invariants from the general case to the monotone case, because Î is not
forwards/backwards k-fenced in (Înit, δ̂, B̂ad), even if I is forwards/backwards k-fenced in
(Init, δ,Bad).

Formally, let q be a variable aiming to capture the negation of a variable p ∈ Σ. Î is
obtained from I by replacing all occurrences of ¬p by q. We modify the system to maintain the
relationship between q,¬p: take Înit = Init∧ p↔ ¬q, and δ̂ = p↔ ¬q ∧ δ ∧ p′ ↔ ¬q′. Note that
δ̂ does not make a step when q is interpreted not as ¬q, hence Î is indeed an inductive invariant.

We first describe the effect on the forwards fence condition when trying to achieve an
antimonotone invariant (to match Corollary 4.3.9). We show that the transformation above
does not produce a forwards k-fenced invariant in the case that after replacing occurrences p by
¬q, the negative form ¬p must still appear in Î; roughly, this is when I is not unate w.r.t. p, so
using ¬q alone cannot be enough (such as in the example above, in which ¬p1 still appears in Î).

Lemma 4.7.3. Let (Înit, δ̂, B̂ad) be obtained by instrumenting (Init, δ,Bad) with q capturing
¬p, and let I be an inductive invariant for (Init, δ,Bad) in negation normal form (negations
appear only on atomic variables). Let Î be obtained by replacing every occurrence of p in I

with ¬q. Suppose that I is not monotone w.r.t. the variable p: there is σ over Σ such that
σ |= I, σ[p 7→ true] |= ¬I. Then Î is not forwards k-fenced in (Înit, δ̂, B̂ad) for any k ∈ N.

Proof. The reasoning is similar in spirit to §4.7.2, but with Î which is different from I. As
before, a state is called consistent if it indeed interprets q as the negation of the interpretation
of p. All reachable states are consistent; we shall show that ∂+(Î) includes an inconsistent and
hence unreachable state.

First observe that by the construction of I, if σ̂ over Σ̂ is consistent, then πΣ(σ̂) |= I iff
σ̂ |= Î.

Denote σ+ = σ, σ− = σ[p 7→ true], where σ is a state as in the premise of the lemma.
Augment them to obtain σ̂+, σ̂− by interpreting q to false – the value of p in σ+; note that σ̂+ is
inconsistent. In contrast, σ̂− is consistent, and thus σ− |= ¬I, i.e., σ− 6|= I, implies that σ̂− 6|= Î.

Consider now σ̂+. We know that the consistent σ̂+[q 7→ true], which is exactly σ+ with q
interpreted consistently, satisfies I, because σ+ does. Since it is consistent, σ̂+[q 7→ true] |= Î as
well. But Î is antimonotone w.r.t. q, so also σ̂+ |= Î.

Since both states interpret q the same way, σ̂+, σ̂− are Hamming neighbors w.r.t. Σ̂. We have
shown that σ̂+ |= I whereas σ̂− 6|= I while σ̂+ is unreachable, and the proof is concluded.
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The case of the backwards fence condition is completely dual when B̂ad = Bad ∧ p↔ ¬q. If
B̂ad = Bad itself, a similar non-robustness occurs when the critical σ (as in Lemma 4.7.3) is not
in Bad—even though it may reach Bad quickly under δ—because an inconsistent extension of it
cannot reach Bad(the system cannot make any step from an inconsistent state) .

4.8 Related Work for Chapter 4

Interpolant generation. Classically, interpolants are generated from unsatisfiability proofs
of SAT/SMT solvers, a procedure which has been studied extensively [e.g. McM03, McM05,
KW07, CGS10, McM11, VGM15, VNR15]. A relatively recent alternative is to sample states
that the interpolant must separate [SNA12]. By iteratively sampling and combining the resulting
interpolants, it is possible to compute an interpolant of the (entire) formulas [AM13, DA16,
BGKL13, CIM12]. The interpolation procedure in the algorithm we analyze is from Chockler et
al. and Bjørner et al. [BGKL13, CIM12], and inspired by IC3/PDR [Bra11, EMB11]. It samples
from one side—the post image of the previous candidate—and computes an interpolant of the
sample and the set of k-backwards reachable states. The EPR interpolation method by Drews
and Albarghouthi [DA16] is related, with diagrams replacing cubes as the least abstraction of
states.
Inference and learning of CDNF and decision trees. Works in learning theory has
inspired works on the inference of CDNF formulas and decision trees in various ways. A
primary concern has been to overcome the ambiguity of counterexamples to induction, or
implication counterexamples, compared to the classical learning settings where examples are
labeled positive and negative [GLMN14]. We resolve this ambiguity through observations
of one-sidedness of the algorithm (§4.5.1) or special invariants to which membership can be
implemented (§4.5.2), and also curate a designated inference algorithm for CDNF invariants
(§4.6). Garg et al. [GNMR16] target invariants expressed as decision trees over numerical and
Boolean attributes, adapting an algorithm by Quinlan [Qui86]. The result in §4.6 applies to
decision trees in the propositional setting, and leverages the CDNF algorithm, which admits
a bound on the number of hypotheses the learner presents before converging. The CDNF
algorithm has been applied by Jung et al. [JKD+15] to infer quantified invariants through
predicate abstraction. They resolve membership queries by over- and under-approximations to
some invariants, and use a random guess when the these are not conclusive, potentially leading
to failures and restarts. In this work we use bounded model checking to correctly resolve certain
queries under the fence condition, and accomplish efficient overall complexity theorems. Our
CDNF algorithm from §4.6 is unique in that it is not a direct translation of Bshouty’s CDNF
algorithm, nor can its structure be explained as a concept learning algorithm. Finally, The
CDNF algorithm has also been applied to generate contextual assumptions in assume-guarantee
reasoning [CCF+10].
Robustness of program analysis. The drastic consequences of small program changes
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on verification tools is sometimes recognized as verification’s “butterfly effect” [LP16]. Many
program analysis techniques exhibit brittle behaviors [LLFB14, KMW16]. This may be in
line with the inherent hardness; for instance, the class of programs for which an abstract
interpreter is complete is undecidable [GLR15]. A notable exception is the Houdini algorithm,
which efficiently finds the strongest conjunctive invariant without any assumptions on the
program [FL01]. In contrast, efficiently inferring invariants from richer syntactic classes is not
possible in all programs, because the general case is hard (Thms. 3.2.3 and 3.4.1), but the fence
condition allows efficient inference. As we show, the fence condition is sensitive to some program
transformations.

Modifying the program for the sake of verification is emblemed by the practice of ghost
code [see e.g. FGP16]. Improving invariant inference through program transformations has been
applied in many different settings with varying notions of the effect on the underlying inference
technology, including improving accuracy, enriching the syntactic search space, and simplifying
the quantification structure [SRW02, FWSS19, SDDA11, BBL+17, Nam07, CBKR19]. Perhaps
not surprisingly, there is some empirical evidence that instrumentation can also at times
have negative impact on the inference algorithm [FWSS19]. Our results suggest that such
transformations can have a profound effect on the inference algorithm, in the sense that pre-
existing invariants can no longer be the cause of guaranteed convergence after instrumentation
by a derived relation.
Learning with errors in queries. Exact learning has also been studied in models where
the teacher might not respond “unknown” or answer incorrectly; see [Bsh18] for a short survey.
Usually learning is facilitated by bounding the probability of an error or the number of allowed
errors. The fence condition gives rise in §4.5.1 to a different model, which correctly answers
all membership queries to examples that are positive or on the concept’s outer-boundary, yet
can adversarially classify every other example. As we show, several existing algorithms are
applicable in this model.
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Chapter 5

Overapproximation in
Property-Directed Reachability From
the Monotone Theory

This chapter is based on the results published in [FSSW22, FS22].

The theory of abstract interpretation provides a rich framework to devise invariant inference
algorithms. One of the latest breakthroughs in invariant inference is property-directed reachability
(PDR), but the research community views PDR and abstract interpretation as mostly unrelated
techniques.

This chapter shows that, surprisingly, propositional PDR can be formulated as an abstract
interpretation algorithm in a logical domain. More precisely, we define a version of PDR, called
Λ-PDR, in which all generalizations of counterexamples are used to strengthen a frame. In this
way, there is no need to refine frames after their creation, because all the possible supporting
facts are included in advance. We analyze this algorithm using notions from Bshouty’s monotone
theory, originally developed in the context of exact learning. We show that there is an inherent
overapproximation between the algorithm’s frames that is related to the monotone theory.
We then define a new abstract domain in which the best abstract transformer performs this
overapproximation, and show that it captures the invariant inference process, i.e., Λ-PDR
corresponds to Kleene iterations with the best transformer in this abstract domain. We provide
some sufficient conditions for when this process converges in a small number of iterations, with
sometimes an exponential gap from the number of iterations required for naive exact forward
reachability. Furthermore, we show that under the same conditions, there holds a complexity
bound on the number of SAT calls, not just the number of abstract iterations. These results
provide a firm theoretical foundation for the benefits of how PDR tackles forward reachability.

5.1 Overview

111
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init x = (xn, xn−1, . . . , x0) = 0 . . . 0,
y = (yn, yn−1, . . . , y0) = 0 . . . 0,
z = 0

repeat : increase_x () | increase_y ()
assert ¬ (x = 10 . . . 0 ∧ y = 11 . . . 1 ∧ z = 1)

increase_x ():
if z = 0:

x = x+ 1 (mod 2n+1)
if x = 10 . . . 0:

x = x+ 1 (mod 2n+1)

increase_y ():
if z = 1:

y = y + 1 (mod 2n+1)

Figure 5.1: Skip-counter: running example of propositional transition system over the variables
x = xn, . . . , x0. Either increase_x() or increase_y() is executed in each step according to whether
z = 0 or z = 1, incrementing x or y resp., but skipping over the value x = 10 . . . 0.

5.1.1 PDR, the Frames

How does property-directed reachability find inductive invariants? Given a set of initial states
Init, a transition relation δ describing one step of the system, and a set of bad states Bad,
the goal is to find an inductive invariant: a formula I such that Init =⇒ I, I =⇒ ¬Bad, and
δ(I) =⇒ I, where the post-image δ(X) is the set of states that δ reaches in one step from X.1

Such an I proves safety, that no execution of the system can reach a bad state.
The central data structure that PDR uses to find inductive invariants is the frames. These are

a sequence of formulas F0,F1, . . . ,FN that satisfies the following properties, for all 0 ≤ i ≤ N−1:

1. F0 = Init;

2. Fi =⇒ Fi+1;

3. δ(Fi) =⇒ Fi+1;

4. Fi =⇒ ¬Bad.

In words, the frames start with the set of initial states, grow monotonically, always include the
states reachable in one step of δ from the previous frame, and are strong enough to prove safety
(except possibly the last frame which is “under construction”).

These properties ensure that each Fi overapproximates the set of states reachable in at most
i steps, and yet excludes the bad states; this constitutes a proof of bounded safety. However,
the ultimate goal of PDR is unbounded safety, and it is not clear why frames would avoid
“overfitting” to bounded executions, and rather converge to a true inductive invariant. In informal
discussions, this is sometimes phrased as the criticism that the algorithm merely “happens to
find” a bounded safety proof that generalizes to the unbounded case. Indeed, properties 1–4 of
frames do not reflect any bias away from bounded proofs, as they are also satisfied by the exact
forward reachability algorithm, F0 = Init,Fi+1 = δ(Fi), where δ(X) = X ∪ δ(X) denotes the
reflexive closure of the post-image. Exact forward reachability might require many frames to
converge to an unbounded proof if some states are reachable only by very long paths.

Consider, for example, the simple family of propositional systems in Fig. 5.1, parametrized
by n. A bit z chooses between incrementing a counter x or a counter y, represented in binary

1We use a formula and the set of states that satisfy it interchangeably. Unless otherwise stated, the formula to
represent a given set of states is chosen arbitrarily.
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by xn, xn−1, . . . , x0 and yn, yn−1, . . . , y0 respectively. The safety property to prove is that it is
impossible for x to have the value 10 . . . 0 while y is 11 . . . 1. This property is not inductive as is
(for instance, the state x = 10 . . . 0, y = 11 . . . 10, z = 1 satisfies the safety property but reaches
a bad state in one step); one inductive invariant for this system is

x 6= 10 . . . 0 ∧ y = 00 . . . 0 ∧ z = 0, (5.1)

which implies safety and is closed under a step of the system.
In these systems, exact forward reachability requires Ω (2n) iterations before it converges to

an inductive invariant. This is because some states, such as x = 10 . . . 01, y = 00 . . . 00, z = 0,
require an exponential number of steps to reach—the system has an exponential reachability
diameter—so exact forward reachability discovers all reachable states and converges only after
that many iterations.

Clearly, invariant inference algorithms must perform some sort of overapproximation, or
abstraction, to overcome this slow convergence. This raises two important questions:

1. What characterizes the abstraction that PDR performs?

2. How does this abstraction achieve faster convergence than exact forward reachability?

The commonly-stated properties of frames do not provide an answer; to address these questions
we must dive more deeply into how PDR works.

5.1.2 PDR, the Algorithm
Algorithm 1 PDR [Bra11, EMB11]
1: procedure PDR(Init, δ, Bad)
2: Fpdr

0 ← Init
3: N ← 0
4: while ∀1 ≤ i ≤ N. Fpdr

i 6=⇒ Fpdr
i−1 do

5: Fpdr
N+1 ← true

6: while Fpdr
N+1 6=⇒ ¬Bad do

7: for σb ∈ Fpdr
N+1 ∧ Bad do

8: block(σb, N + 1)

9: N ← N + 1
10: return Fpdr

i such that Fpdr
i =⇒ Fpdr

i−1

11: procedure block(σb, i)
12: if i = 0 then
13: unsafe
14: while δ(Fpdr

i−1) 6=⇒ ¬σb do
15: take σ s.t. σ |= Fpdr

i−1, (σ, σb) |= δ

16: block(σ, i− 1)

17: take c minimal s.t. c ⊆ ¬σb and δ(Fpdr
i−1) =⇒ c

18: and Init =⇒ c

19: for 1 ≤ j ≤ i do
20: Fpdr

j ← Fpdr
j ∧ c

Alg. 1 presents a simple version of the basic PDR algorithm. The sequence of frames it
manipulates are denoted Fpdr

0 , . . . ,Fpdr
N , to distinguish between PDR’s frames and frames

of other algorithms in this chapter. Initially, Fpdr
0 is initialized to the set of initial states

(thereby satisfying property 1). The outer loop terminates once one of the frames is inductive
(line 4), which is when Fpdr

i =⇒ Fpdr
i−1 (because then, from the other properties of frames,

δ(Fpdr
i−1) =⇒ Fpdr

i =⇒ Fpdr
i−1). Otherwise, it initializes a new frontier frame to true (line 5), and

samples bad states (line 7) to block (exclude from the frame) until the frontier frame is strong
enough to exclude all bad states (satisfying property 4).
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In order to satisfy property 3, before a state σb is blocked, the previous frame must be
refined it excludes all the pre-states of σb (line 14); this is performed by sampling pre-states
and blocking them recursively (line 15). Once all the pre-states are blocked in the previous
frame, σb can be excluded from the current frame. However, at this point, PDR generalizes
and blocks a set of states; this is done by finding clause c—also called a lemma—that excludes
σb and still does not exclude any state that is reachable in one step or less from the previous
frame (preserving property 3). This is done (in line 18) by starting from all literals (variables or
their negations) that are falsified in σb, and choosing a subset whose disjunction (which is a
clause) satisfies the desired properties. PDR chooses a minimal subset in order to exclude as
many states as possible. (In practice, this involves a linear number of SAT calls.)2 The clause is
conjoined (in line 20) to the frame as well as the preceding ones (thereby satisfying property 2,
relying on Init =⇒ c).

The above is an operational description of how the frames are generated to be overapproxi-
mations, but does not lay bare the principles of why they are computed in this way, and how to
characterize the abstraction that frames perform.

To study this, we introduce Λ-PDR3, an alteration of PDR that is simpler for analysis.
This algorithm is a theoretical device to study the abstraction in PDR’s frames: each frame of
Λ-PDR is tighter than the corresponding frame of PDR, and thus the overapproximation
that Λ-PDR’s frames perform is also performed in usual PDR. We characterize the
abstraction that Λ-PDR performs, and show how it can converge more rapidly than exact
forward reachability, which sheds light on the abstraction in PDR.

5.1.3 Λ-PDR

The Algorithm

Alg. 18 presents Λ-PDR. Briefly, it constructs frames one after the other, by including all possible
lemmas that any execution of PDR might learn; Fi+1 is the conjunction of all clauses that block
a state from Bk—the set of states that can reach a bad state in at most k steps—yet retain
the states reachable in one step from Fi. The algorithm’s essentials are similar to PDR’s, with
important changes.

First, it is useful for our purpose to decouple two roles that frames serve in PDR. One is as a
sequence of approximations to the invariant until the frame where an invariant is found (which is
usually somewhere in the middle of the sequence). The other is a way to find counterexamples—
which are states that can reach a bad state—without unrolling the transition relation [Bra11].
In Λ-PDR we instead imagine that we are provided, through some arbitrary means (such as
unrolling), with Bk, the set of states that can reach a state in Bad along some execution of length
at most k steps (line 4). This allows us to focus on the other role of frames as approximations

2Practical implementations also attempt to push existing lemmas to other frames whenever possible; we omit
this for simplicity. (We discuss inductive generalization below, in §5.1.7.)

3In homage to Bshouty’s Λ-algorithm [Bsh95], not the SARS-CoV-2 variant.
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that converge to the invariant. The number k is chosen in advance, independently of the number
of frames N .4

Algorithm 18 Λ-PDR
1: procedure Λ-PDR(Init, δ, Bad,

k)
2: F−1 ← false
3: F0 ← Init
4: Bk = {σ | δk(σ) ∩ Bad 6= ∅}
5: if Init ∩ Bk 6= ∅ then unsafe
6: i← 0
7: while Fi 6=⇒ Fi−1 do
8: if δ(Fi) ∩ Bk 6= ∅ then
9: restart with larger k

10: Fi+1 ← true
11: for σb ∈ Bk do
12: for c ⊆ ¬σb do
13: if δ(Fi) =⇒ c then
14: Fi+1 ← Fi+1 ∧ c
15: i← i+ 1
16: return Fi

Second, frames are computed without backtracking to
refine previous frames; lemmas to support future frames are
learned eagerly, in advance. In particular, convergence is
always at the last frame.

Third, whereas PDR “samples” k-backward reachable
states and blocks each counterexample in Fi+1 using a single,
arbitrary (minimal) clause that does not exclude states in
δ(Fi), Λ-PDR generates all such clauses—for any counterex-
ample state from Bk (line 11) and any order of dropping
literals (line 12). This “determinization” makes the algorithm
easier to analyze.

Overall, the algorithm computes each frame Fi+1 itera-
tively, from the previous Fi, without ever refining previous
frames. Each frame is the conjunction of all the clauses that
can be obtained as lemmas from blocking any counterex-
ample from Bk while still overapproximating δ(Fi). This
process continues until an inductive invariant is found (line 7)—unless the current frame does
include a counterexample from Bk, which prompts an increase of k (line 8) in order to distinguish
between spurious overapproximation and truly unsafe systems (detected in line 5 by an initial
state that can reach a bad state in k steps).

As an example, this is how Λ-PDR proceeds on the example of Fig. 5.1 with (say) k = 1: The
k-backward reachable states Bk are those where x = 10 . . . 00 ∧ ynyn−1 . . . y1 = 11 . . . 1 ∧ z = 1
(every value of y0 yields a backward reachable state). The frame sequence is initialized with
F0 = Init. As δ(F0) does not intersect Bk, the algorithm proceeds to computing F1. It starts as
true, and the algorithm iterates through the states in Bk to generate clauses. Suppose that the
first counterexample σb is x = 10 . . . 00∧y = 11 . . . 10∧z = 1. We write ¬σb = (xn 6= 1)∨(xn−1 6=
0) ∨ . . . ∨ (x1 6= 0) ∨ (x0 6= 0) ∨ (yn 6= 1) ∨ (yn−1 6= 1) ∨ . . . ∨ (y1 6= 1) ∨ (y0 6= 0) ∨ (z 6= 1), and
consider every possible sub-clause c thereof, checking whether δ(F0) =⇒ c, namely, c includes
both x = 00 . . . 00, y = 00 . . . 00, z = 0 and x = 00 . . . 01, y = 00 . . . 00, z = 0. In this case, there
are several incomparable (and minimal) such c’s: xn 6= 1, yi 6= 1 for every i > 1, and z 6= 1.
In Λ-PDR, all these potential clauses are conjoined to F1. The algorithm performs the same
procedure for all the counterexamples in Bk. Once this is done, F1 never changes again in the
course of the algorithm, and it becomes the basis for constructing F2 in the same way, and so
on until an inductive invariant is found or a restart becomes necessary. (We later show the
resulting F1,F2, . . . in this example.)

4At first sight Fpdr
i consists of clauses that exclude counterexamples from a lower backward reachability bound,

BN−i; but in fact, pushing lemmas forward means that even Fpdr
N can include clauses learned at Fpdr

1 from
counterexamples in BN .
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PDR Overapproximates at Least as Much as Λ-PDR

The importance of Λ-PDR for our investigation of abstraction in PDR stems from the fact that
Fi =⇒ Fpdr

i , when k = N is the final number of frames in PDR (Corollary 5.8.3). This implies
that whatever overapproximation Λ-PDR performs also transfers to PDR: the overapproximation
in Λ-PDR is a lower bound for the overapproximation in PDR. The relationship Fi =⇒ Fpdr

i

holds because every clause c that PDR can use to strengthen Fpdr
i is used to strengthen Fi of

Λ-PDR (roughly, in PDR, for c to added to Fpdr
i , it must block a counterexample from Bk and

overapproximate the post-image of the previous frame; the same properties would hold for c in
Λ-PDR, thus ensuring that c is conjoined to Fi—see Corollary 5.8.3).

Our goal then is to show that Λ-PDR performs significant overapproximation over exact
forward reachability, and thereby establish the same for PDR. Our first step is to characterize
the overapproximation that Λ-PDR performs, and for this we need tools developed in exact
concept learning.

5.1.4 Abstraction from The Monotone Theory

The main technical enabler of our work in this chapter is the observation (Corollary 5.2.2) that
in Λ-PDR, there is a well-defined relation between successive frames, through what we call the
monotone hull:

Fi+1 = MHullBk(δ(Fi))
def=

∧
b∈Bk

Mb(δ(Fi)), (5.2)

where Mb(ϕ) is the central operator in the monotone theory [Bsh95], the least b-monotone
overapproximation of ϕ (“b-monotonization” in short). A Boolean function f is b-monotone,
when b is a state, if whenever f(σ1) = 1 and σ1 ≤b σ2, which means that σ2 is obtained from
σ1 by flipping bits on which σ1, b agree, then also f(σ2) = 1. Mb(ϕ) is the least b-monotone
formula (function) implied by ϕ. (We elaborate on the technical details in §2.4.) The insight
of Equation (5.2) is that, as we show, every lemma in PDR is implied by the monotone hull, and
the conjunction of all possible lemmas is exactly the monotone hull. Technically, the observation
builds on an equivalent formulation ofMb(ϕ) in a conjunctive form, which is not explicit in
Bshouty’s paper (Thm. 5.2.1).

Our central observation is that the monotone hull operator introduces overapproximation to
the sequence of frames—MHullBk(δ(Fi)) can include many more states than δ(Fi). This is an
interesting deviation from Bshouty’s use of monotonizations in exact learning of an unknown
ϕ, where a set B is chosen such that ϕ ≡ MHullB(ϕ); in that case B is said to be a monotone
basis for ϕ, denoted ϕ ∈ MSpan(B) (Def. 2.4.18). In contrast, here the monotone hull is applied
to intermediate frames, and we are interested in the cases that the set Bk is not a monotone
basis for δ(Fi), for then Equation (5.2) indicates a strict overapproximation of exact forward
reachability that Λ-PDR performs.

Consider again the running example (Fig. 5.1). One step of exact forward reachability
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Figure 5.2: (a) σ is “protected” by δ(Fi) from exclusion due to blocking Bk, thus (b) σ is in Fi+1 =
MHullBk

(δ(Fi)).

discovers the state x = 00 . . . 01, y = 00 . . . 00, z = 0 in addition to the initial state. In contrast,
by Equation (5.2), the first frame of Λ-PDR with k = 1 is F1 = MHullBk(δ(Init)), resulting in

F1 = xn = 0 ∧ y = 00 . . . 00 ∧ z = 0; (5.3)

in a single iteration the algorithm has leaped over an exponential number of steps of δ!
To compute MHullBk(δ(Init)), in order to arrive at Equation (5.3), we compute the monotone

overapproximations. In our example, Bk is a single cube:

Bk = (xn = 1 ∧ xn−1 = 0 ∧ . . . ∧ x1 = 0 ∧ x0 = 0 ∧ yn = 1 ∧ . . . ∧ y1 = 1 ∧ z = 1),

in which case MHullBk(δ(F0)) can be calculated by writing δ(F0) in DNF (see Lemmas 2.4.7
and 2.4.13):

δ(F0) = (xn = 0 ∧ xn−1 = 0 ∧ . . . ∧ x1 = 0 ∧ x0 = 0 ∧ yn = 0 ∧ . . . ∧ y1 = 0 ∧ y0 = 0 ∧ z = 0)

∨ (xn = 0 ∧ xn−1 = 0 ∧ . . . ∧ x1 = 0 ∧ x0 = 1 ∧ yn = 0 ∧ . . . ∧ y1 = 0 ∧ y0 = 0 ∧ z = 0),

and in each term omitting every literal that agrees with the cube of Bk (appearing in color).
(When Bk is not a single cube, Fi+1 is computed as a conjunction of the above for each cube in
Bk.)

What is especially significant about this overapproximation in Λ-PDR is that it exists in each
step, as we describe in the next subsection (§5.1.5). But before that, we explain the intuition for
where this overapproximation stems from.

The cause of overapproximation in Λ-PDR is the special constraints on the lemmas the
algorithm can generate. Recall that the states that remain in Fi+1 are those that cannot be
excluded by any lemma starting from any counterexample, due to the need to satisfy property 3.
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Since lemmas are not arbitrary formulas, perhaps surprisingly, such states exist beyond the
exact post-image. We demonstrate what these states are using the running example. Consider a
state σ that satisfies Equation (5.3). Why does no lemma c learned by the algorithm exclude σ,
i.e., σ 6|= c? The reason is that every c excludes some counterexample b ∈ Bk, and, furthermore,
c is a clause—a negation of a cube. A cube is a very rigid geometric shape; if ¬c contains
both σ and b then it necessarily contains many other states—it must include all states that are
within the smallest cube that contains both σ, b, a.k.a. the Hamming interval between σ, b [e.g.
Wie87]. For example, the Hamming interval between σ = (x = 011 . . . 101, y = 00 . . . 00, z = 0)
and b = (x = 10 . . . 00, y = 11 . . . 10, z = 1) is x1 = 0 ∧ y0 = 0—the conjunction of the literals
(or constraints) that hold in both σ, b. However, ¬c must not contain any state in δ(Fi), so the
Hamming interval between σ, b cannot intersect δ(Fi). In our example, the Hamming interval
between σ and b includes the state σ̃ = (x = 00 . . . 00, y = 00 . . . 00, z = 0), and σ̃ ∈ δ(F0), so a
lemma c that excludes σ and originates from blocking b cannot be conjoined to F1.

Put differently, σ̃ ∈ δ(F0) “protects” σ ∈ F1 from being excluded due to b. In general, a
state σ is included in Fi+1 if a protector state σ̃ ∈ Fi exists for every b ∈ Bk, namely, the
Hamming interval between σ, b crosses δ(Fi) for all b’s (Fig. 5.2). In our example, the same σ̃
actually protects every σ ∈ F1 from exclusion due to any b ∈ Bk, but multiple protector states
may be necessary in general.

The idea of protector states explains why Fi+1 is MHullBk(δ(Fi)) (Equation (5.2)). Every
state σ̃ ∈ δ(F0) is a protector state. The states that σ̃ protects from b are the states σ such
that σ̃ is in the Hamming interval between σ and b; these states are “farther away” from b than
σ̃, in the sense of σ̃ ≤b σ as defined above (and formally in Def. 2.4.1). The set protected from
b by δ(Fi) is therefore Mb(δ(Fi)), and the states that are protected from all b ∈ Bk are the
conjunction over all b’s, namely MHullBk(δ(Fi)).

5.1.5 Successive Overapproximation: Abstract Interpretation

The overapproximation of Equation (5.2) is present between each two consecutive frames; it
is thus performed repeatedly, using the previous overapproximation as the starting point of
the next. In §5.3 we show that Λ-PDR can be cast as abstract interpretation in a new
logical domain, of the formulas in MSpan(Bk), the formulas ϕ s.t. MHullBk(ϕ) ≡ ϕ, which
are the formulas expressible by a conjunction of clauses that each excludes a state from Bk
(Def. 2.4.18). The frames of Λ-PDR are completely characterized as Kleene iterations
with the best abstract transformer in this domain (Thm. 5.3.5), when correcting for the
slightly different initial frame (F0 = Init vs. MHullBk(Init); we show that the resulting difference
in the number of frames is at most one).

Repeatedly applying the abstraction can cause Λ-PDR to converge much faster than exact
forward reachability (illustrated schematically in Fig. 5.3). For example, the frames of Λ-
PDR on the running example are displayed in Fig. 5.4 (we perform the calculation in detail
in Example 5.2.3), and F3 is none other than the inductive invariant of Equation (5.1). In this
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Figure 5.3: Repeatedly interleaving the
post-image and monotone hull operators
results in successive overapproximation.
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Figure 5.5: The monotonization of a tran-
sition t1 = (σ1, σ

′
1) ∈ δ subsumes that of

t2 = (σ2, σ
′
2) ∈ δ if σ1 is farther from the back-

ward reachable cube than σ2, and σ′1 is closer
than σ′2. If few transitions subsume the rest,
|δ]|dnf is small, which implies convergence with
few frames for Λ-PDR.
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Figure 5.4: The frames of Λ-PDR on the running example
(only values of x are displayed, always y = 0 . . . 0, z = 0).
The number of frames required for convergence is always 4,
independent of the parameter n.

way, successive overapproximation can lead to convergence in a smaller number of
frames than exact forward reachability; in this example, Λ-PDR converges in 4 frames,
rather than an exponential number as exact forward reachability would use.5 In §5.7, we
show that Λ-PDR holds a similar advantage over the unrolling depth of an interpolation-based
algorithm.

5.1.6 Convergence Bounds via (Hyper)Diameter Bounds

When does the successive overapproximation of Λ-PDR terminate in a small number of iterations?
The lattice height of the abstract domain is exponential in the number of variables (see §5.3),
and rapid convergence depends on properties of the transition system rather than of the abstract
domain.

We prove a convergence bound using one such property: when the DNF size (the number
of terms in the smallest DNF representation) of specific monotone overapproximations of
the transition relation are small, then Λ-PDR terminates after a small number of
iterations (Thms. 5.4.2 and 5.5.2). The central idea is to relate Λ-PDR to exact forward
reachability in an “abstract” transition system, and then bound the number of iterations
using techniques for analyzing the diameter of transition systems.

5The operations in the abstract domain are not efficient; we focus on the number of iterations until convergence.
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Let us consider an example where Thm. 5.4.2 derives an efficient convergence bound (specifi-
cally, a linear bound, as opposed to the potential exponential number of iterations) through a
syntactic analysis of the transition system in question. Consider the same example of Fig. 5.1,
but with additional transitions that “bounce back” from x = 01 . . . 11 to x = 00 . . . 00 and from
x = 11 . . . 11 to any x = 10 . . . 010 . . . 0 (number with msb and other variable 1). (The new
transitions have no effect on the behavior of either exact forward reachability or Λ-PDR;6 we
explain below why this is needed to obtain a good bound through Thm. 5.4.2. )

In this transition system, we bound the number of iterations of Λ-PDR by applying Thm. 5.4.2
to the part of δ restricted to states where y = 0 . . . 0, z = 0 (this is valid because both the
transitions of δ and monotonization w.r.t. Bk, Mx=10...0,y=1...1,z=1(·), leave y = 0 . . . 0, z = 0
unchanged—see Remark 5.5.5). The transition relation δ̃ = δ

∣∣
y←00...00,z←0 can be written in

DNF (as a double-vocabulary formula, with unprimed variables for the pre-state and primed
variables for the post-state) as the disjunction of individual transitions, as appears on the left
hand side here (colors and boxes should be ignored at this point):

δ̃ = (x = 000 . . . 0000 ∧ x′ = 000 . . . 0001) δ
] =Mx=011...11,x′=100...00(δ̃) = (5.4)

∨ (x = 000 . . . 0001 ∧ x′ = 000 . . . 0010) (5.5)

∨ (x = 000 . . . 0010 ∧ x′ = 000 . . . 0011) (5.6)

∨ (x = 000 . . . 0011 ∧ x′ = 000 . . . 0100) (5.7)

∨ . . . (5.8)

∨ (x = 011 . . . 1111 ∧ x′ = 000 . . . 0000) ∨ x′n = 0 (5.9)

∨ (x = 011 . . . 1111 ∧ x′ = 100 . . . 0001) ∨ x′0 = 1 (5.10)

∨ (x = 100 . . . 0001 ∧ x′ = 100 . . . 0010) (5.11)

∨ (x = 100 . . . 0010 ∧ x′ = 100 . . . 0011) (5.12)

∨ . . . (5.13)

∨ (x = 111 . . . 1110 ∧ x′ = 111 . . . 1111) (5.14)

∨ (x = 111 . . . 1111 ∧ x′ = 000 . . . 0000) (5.15)

∨ (x = 111 . . . 1111 ∧ x′ = 100 . . . 0001) (5.16)

∨ (x = 111 . . . 1111 ∧ x′ = 100 . . . 0010) ∨ (xn = 1 ∧ x′1 = 1) (5.17)

∨ (x = 111 . . . 1111 ∧ x′ = 100 . . . 0100) ∨ (xn = 1 ∧ x′2 = 1) (5.18)

∨ (x = 111 . . . 1111 ∧ x′ = 100 . . .1000) ∨ (xn = 1 ∧ x′3 = 1) (5.19)

∨ . . . ∨ . . . (5.20)

To compute a bound for the number of frames in Λ-PDR, we perform a monotonization of the

6The algorithms are affected by the new transitions when they arrive to the transitions’ pre-states, but at this
point both algorithms will have already arrived to the smaller numbers in the post-states of the new transitions,
resulting in the same frames as without these transitions.
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(two-vocabulary) transition relation. Recall that in this example Bk consists of a single cube, in
which case we need only consider one monotonization (the case of more complex syntactic forms
of Bk is discussed later): examine the monotonization that omits literals that agree with Bk
in the post-state, and conversely in the pre-state, δ] =Mx=01...11,x′=10...00(δ̃). The literals in
δ̃ that are omitted in δ] appear colored. As we show in Lemma 5.4.7, the resulting transition
relation captures the behavior of Λ-PDR: the set of i-reachable states of δ] matches the i’th
frame of the Kleene iterations with the best transformer for δ in the MSpan(Bk) domain. Hence,
bounds on the diameter of the abstract system result in bounds on the number of
frames of Λ-PDR.

To bound the diameter, we consider the DNF size δ]. The monotonization term-by-term
from δ̃ creates many redundant terms; the terms that originate from the transitions marked by
boxes above subsume all the others.7 This generates a DNF representation of δ] with linear
number of terms (appearing in the right-hand side above)—even though the original δ̃ has an
exponential number of terms in its DNF representation. By Thm. 5.4.2 we deduce from the
linear DNF size of δ] that Λ-PDR converges in at most a linear number of frames.

One way to think about the difference between δ, δ
] is by the way transitions in δ give

rise to the transitions in δ], illustrated in Fig. 5.5. A transition of δ] can abstract and move
away from Bk, then follow a concrete transition of δ, and from the resulting post-state again
abstract and move in the direction away from Bk. In this way, it may be possible for δ] to use
the transition (σ1, σ

′
1) in order to arrive from σ2 to σ′2, even if (σ2, σ

′
2) were not a transition of

δ (see Fig. 5.5). When this is the case for (σ1, σ
′
1), (σ2, σ

′
2) ∈ δ, the transitions of δ] that use

the concrete transition (σ2, σ
′
2) are also possible using the concrete transition (σ1, σ

′
1); hence

the term generated from (σ2, σ
′
2) can be discarded in the monotonization of δ to obtain δ

],
because it is subsumed by the term generated from (σ1, σ

′
1). Roughly, Thm. 5.4.2 shows that

Λ-PDR converges rapidly whenever there is a small number of transitions that subsume the
others, by going from a pre-state σ that is “very far” from Bk in Hamming distance compared
to the pre-states of other transitions, to the post-state σ′ that is “very close” to Bk compared
to the post-states of other transitions. This is an intuition for how a small |δ]|dnf can arise
from the monotonization of the fully-expanded DNF representation of δ. (The starting point for
monotonization can also be a more succinct DNF representation of δ, in which case the intuition
for an even shorter DNF representation of δ] is similar.)

If we were not to add the “bounce back” transitions to the example of Fig. 5.1, still
monotonization of the transition relation produces an abstract transition system whose reachable
states coincide with Λ-PDR’s frames, and whose diameter corresponds to the number of iterations

7The term arising from the “bounce back” transition with msb 0 in Equation (5.9) subsumes all other terms that
originate from transitions where the msb is 0 in both the pre-state and the post-state (Equations (5.4) to (5.8)),
as well as the term originating from the “wraparound” transition in Equation (5.15); the term arising from the
“skip” transition in Equation (5.10) subsumes the term originating from the transition in Equation (5.16); and the
terms arising from “bounce back” transitions with msb 1 in Equations (5.16) to (5.20) (including Equation (5.16)
which is subsumed by Equation (5.10)) subsume all the terms that arise from transitions where the msb is 1 both
in the pre-state and the post-state (Equations (5.11) to (5.14)).
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in which Λ-PDR converges. However, in that case the bound of Thm. 5.4.2 is poor, because in
this case the DNF-size is a poor estimate of the abstract system’s diameter (see Example 5.4.10).

For when Bk consists of multiple cubes, we generalize Thm. 5.4.2 to Thm. 5.5.2, bounding the
number of frames by a product of monotonizations of δ and Init. In the proof, the construction
involves not an ordinary transition system, but a hypertransition system: the hypertransition
relation δ] arrives through concrete transitions to a set of states, and abstracts from them to a
state “protected” by that set, because the abstraction requires a “protector” state from every
state in Bk (see Fig. 5.2). A similar diameter bound using the DNF size of the hypertransition
relation δ] applies. We show that δ] can be written as a conjunction of per-cube monotonizations,
leading to a bound by the product of DNF sizes of monotonizations of δ and Init (see §5.5).

This technique does not explain rapid convergence of Λ-PDR in full generality, but provides
one explanation for how the abstraction can bring this about.

5.1.7 PDR, Revisited

Through Λ-PDR, we have shown how PDR’s frames perform an abstract interpretation in
a domain founded on the monotone theory, and how such an abstraction can lead to faster
convergence. We observe that these important characteristics of PDR are concealed in a simple
property of PDR’s frames: that they can be written in CNF so that every clause excludes at
least one state from BN (Lemma 5.8.2). In the monotone theory from above this reads that for
every 1 ≤ i ≤ N ,

5. Fi ∈ MSpan(BN ).

The frames of Λ-PDR are the least set of states that satisfy this property together with
properties 1–4 from §5.1.1 (Lemma 5.8.1), and the frames of PDR overapproximate them
(Corollary 5.8.3). Property 5 is the regularization in our abstract domain (§5.3), and we have
shown that it can lead to faster convergence than exact post-image computations—although
PDR does not necessarily converge in the same number of frames as Λ-PDR, due to its additional
overapproximation and heuristics.

The fact that PDR’s frames are not the least to satisfy the above properties can have some
benefits. We show two:

• Faster convergence: In some cases Λ-PDR performs little or no abstraction over exact
forward reachability, but the fact that PDR only samples a subset of the possible lemmas
can guarantee fast convergence. We show an example where Λ-PDR requires an exponential
number of frames, whereas a linear number always suffices for standard PDR.

• Frame size: Λ-PDR’s frames may be (needlessly) complex to represent as a formula. We
show an example where some frames of Λ-PDR necessarily have an exponential DNF or
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CNF size, whereas standard PDR can converge in the same number of frames that include
only a small number of important lemmas.

Discussion: Additional PDR Features

Our study focuses on what is, in our view, the most basic version of PDR. Our approach provides
an interesting starting point to a discussion of two common, more advanced features of PDR.
Other forms of generalization. Inductive generalization [Bra11] minimizes lemmas using a
stronger criterion: a lemma c can be learned in Fpdr

i+1 if it is inductive relative to Fi—whether
δ(Fpdr

i ∧ c) =⇒ c, namely, checking whether c holds in the post-state while also assuming c in
the pre-state. At first sight, this feature is not present in Λ-PDR, which uses the standard check
(Alg. 18, line 13). Surprisingly, lemmas that PDR can generate using inductive generalization
are also present in Λ-PDR (with k = N). This is a consequence of the fact that PDR with
inductive generalization still satisfies properties 1–4 [Bra11, EMB11], as well as property 5. The
optimization of inductive generalization becomes important only when lazily backtracking to
refine previous frames. Other techniques, such as ternary simulation [EMB11], propagate sets
of states to block together. If any of the states is in Bk, the resulting lemma is present also in
Λ-PDR.
May-counterexamples. Some variants of PDR produce lemmas by blocking may counterex-
amples [GI15] that are not necessarily backward reachable, as a way to encourage pushing
existing lemmas to later frames. In Λ-PDR, all admissible lemmas from MSpan(Bk) are always
included, hence may counterexamples are not useful for pushing such lemmas. However, may
counterexamples also mean that lemmas no longer necessarily block states in BN , which could
be beneficial if a large N is required to have an inductive invariant I ∈ MSpan(BN ). (It is a
necessary condition PDR; in Λ-PDR it is both necessary and sufficient, see Corollary 5.3.7.)
This could be thought of as (heuristically) increasing the set Bk. In Λ-PDR, this results in a
richer abstract domain that includes more inductive invariants but leads to tighter frames with
less overapproximation. The theoretical ramifications of this beyond Λ-PDR merit more study.
Notation. For brevity, we denote

(
δ−1)k (Bad) by Bk. In this chapter, the distinction between

syntax and semantics is of lesser importance (because the results are not concerned with an
efficient representation of formulas). Henceforth, we identify a formula with the set of its
valuations, and a set of valuations with an arbitrary formula that represents it, chosen arbitrarily
(which always exists in propositional logic). We further shorten, and identify cube(σ) with σ
(since cube(σ) represents the singelton {σ}).

5.2 The Monotone Theory for Λ-PDR

In this section we recall the monotone theory by Bshouty [Bsh95], extend it with a conjunctive
representation of the least b-monotone overapproximation, and use it to derive the relation
between successive frames in Λ-PDR (Equation (5.2)).
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Recall (from §2.4) that given a cube b, a formula ψ is b-monotone if it is closed under flipping
literals to disagree with b (Def. 2.4.2). The least b-monotone overapproximationMb(ϕ) of a
formula ϕ is the formula that contains ϕ and all the states σ from which there is a shortest path
between σ, b that crosses ϕ (Def. 2.4.3). Given a set of states B, the monotone hull MHullB(ϕ)
is the conjunction of per-cube monotone overapproximations,Mb1(ϕ) ∧ . . . ∧Mbm(ϕ) where
B = b1 ∨ . . . ∨ bm (Def. 2.4.12, Lemma 2.4.13).

The importance of b-monotonicity for us is that if σ |= b, then, as we shall see (in Thm. 5.2.1),
any clause c ⊆ ¬σ is a b-monotone formula. The reason is that if v |= c and we flip variables to
disagree more with b, we can only make v satisfy more literals of c than before: all the variables
in b appear in the opposite polarity in ¬σ and hence also in c, so flipping them in v |= c to
disagree with b makes them agree with c even more, and the result also satisfies c.

Further, the lemmas that PDR learns are not just clauses, but clauses that overapproximate
the post-image of the previous frame, hence they are b-monotone overapproximations of that set.
There are many b-monotone overapproximations, but for our purposesMb(ϕ) is instrumental,
in ways that are quite different from its original use in learning theory (discussed in §2.4.4). We
show thatMb(ϕ) is exactly the conjunction of all the clauses c that overapproximate ϕ and can
arise from blocking a state in b (Thm. 5.2.1), matching generalization in the construction of
frames of Λ-PDR (Corollary 5.8.3).

Our main technical observation, connecting the monotone hull to Λ-PDR, is that the
monotone hull has an equivalent CNF form, as the conjunction of all overapproxmating clauses
that exclude a state in B:

Theorem 5.2.1. MHullB(ϕ) ≡ ∧ {c | c is a clause, ϕ =⇒ c, and ∃b ∈ B. b 6|= c}.

Proof. =⇒: Let c be a clause as in the rhs. Then there exists b ∈ B s.t. b 6|= c. It suffices
to show that Mb(ϕ) =⇒ c. Recall that c is a disjunction of literals; since b 6|= c, all those
literals are falsified in b. Hence, by Lemma 2.4.7,Mb(c) ≡ c. Now ϕ =⇒ c (by the choice of c),
and Lemma 2.4.5 yieldsMb(ϕ) =⇒Mb(c) ≡ c.
⇐=: Let σ be a model of the rhs. We want to prove that σ |=Mb(ϕ) for every b ∈ B. Assume
otherwise. Take d as the conjunction of all literals that hold in both σ and b (if this set is empty,
d = true). Clearly d is a term and b, σ |= d. Take c = ¬d; then c is a clause and b 6|= c. It
remains to show that ϕ =⇒ c, because then c belongs to the rhs but σ 6|= c, in contradiction
to the premise. To see this, note that c = Mb(¬σ) by Lemma 2.4.7—all the literals from
the clause ¬σ on which b disagrees (because b agrees on them with σ). ϕ =⇒ ¬σ because
σ 6|= ϕ (as σ 6|= Mb(ϕ), which is an overapproximation of ϕ). Hence Lemma 2.4.5 implies
Mb(ϕ) =⇒Mb(¬σ) = c, and in particular ϕ =⇒ c. The claim follows.

We can now derive Equation (5.2):

Corollary 5.2.2. In Λ-PDR (Alg. 18), Fi+1 = MHullBk(δ(Fi)).
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Proof. Fi+1 is the conjunction formed by the process that for each σb ∈ Bk (line 11 of Alg. 18)
iterates in line 12 over all clauses that exclude σb, and conjoins c if it overapproximates δ(Fi)
(line 13). By Thm. 5.2.1 this is MHullBk(δ(Fi)).

Example 5.2.3. The above lemmas are the basis for our presentation in §5.1.4 of F1 on Fig. 5.1
as Equation (5.3). Let us now use these lemmas to describe later frames in that execution. Recall
that Bk is the cube x = 10 . . . 0 ∧ ynyn−1 . . . y1 = 11 . . . 1 ∧ z = 1, denote it by b. For the next
frame, δ(F1) = F1 ∨ (x = 10 . . . 01 ∧ y = 0 . . . 0 ∧ z = 0). Then

F2 =
Thm. 5.2.1

MHullBk(δ(F1)) =
Lemma 2.4.13

Mb(δ(F1))

=
Lemma 2.4.7

Mb(F1) ∨Mb(x = 10 . . . 01 ∧ y = 0 . . . 0 ∧ z = 0)

=
Lemma 2.4.7

F1 ∨ (x0 = 1 ∧ y = 0 . . . 0 ∧ z = 0).

For the next frame, δ(F2) = F2∨(x0 = 0∧y = 0 . . . 0∧z = 0)∧¬(x = 1 . . . 0∧y = 0 . . . 0∧z = 0).
This is equivalent to (y = 0 . . . 0∧ z = 0)∧¬(x = 1 . . . 0∧ y = 0 . . . 0∧ z = 0), which is already b-
monotone and hence this is also F3 = MHullb(δ(F2)). δ(F3) = F3, and so MHullBk(δ(F3)) = F3

by Lemma 2.4.16, and the algorithm converges.

Example 5.2.4. In the previous example, Bk consisted of a single cube. To exemplify the more
general case, consider a system over n variables x1, . . . , xn, with Init = (x1 = . . . = xn = 0), Bad
the set of states with exactly one variable 1, and δ that non-deterministically chooses some i 6= j

with xi = xj = 0 and sets xi ← 1 and xj ← 1. Take k = 0. Then Bk = b1∨. . .∨bn where bi is xi =
1 ∧∧j 6=i (xj = 0). After one step, δ(F0) = (0 . . . 0) ∨∨i1 6=i2 (xi1 = xi2 = 1 ∧∧j 6∈{i1,i2}(xj = 0))
is the set of states where there are zero or two variables 1. Then for every bi,

Mbi(δ(F0)) =
Lemma 2.4.7

(xi = 1) ∨

 ∨
i1 6=i2,i 6∈{i1,i2}

xi1 = xi2 = xi = 1

 ∨
 ∨
i1 6=i2,i=i1

xi2 = 1

 =
∨
j

(xj = 1).

Hence, F1 =
Thm. 5.2.1

MHullBk(δ(F0)) = ∨
iMbi(δ(F0)) = ∨

j (xj = 1). After another step,
δ(F1) = F1 and so MHullBk(δ(F1)) = F1 (see Lemma 2.4.16 below), and the algorithm converges.

As an aside, using Thm. 5.2.1 we can prove the syntactic characterization of the monotone
span (Def. 2.4.18), as promised in §2.4:

Proof of Thm. 2.4.19. If MHullB(ϕ) ≡ ϕ then by Thm. 5.2.1 ϕ is equivalent to∧
{c | c is a clause, ϕ =⇒ c, and ∃b ∈ B. b 6|= c}, which is a CNF representation as desired.
Conversely, if ϕ ≡ c1 ∧ . . . ∧ cs where each clause ci 6|= bi for some bi ∈ B, then in

particular ∧ {c | c is a clause, ϕ =⇒ c, and ∃b ∈ B. b 6|= c} ⊆ ϕ, which by Thm. 5.2.1 reads
MHullB(ϕ) ⊆ ϕ, and ϕ ⊆ MHullB(ϕ) from Lemma 2.4.14.



126 Chapter 5. The Monotone Theory for Property-Directed Reachability

5.3 Abstract Interpretation in The Monotone Span of Bk

In this section, we cast Λ-PDR as an abstract interpretation in a new logical abstract domain of
the monotone span of Bk. We first discuss abstract interpretation in general, and then develop
the notion of a monotone span. We then define the abstract domain and show the connection to
Λ-PDR.

5.3.1 Background: Abstract Interpretation

In this section, we review the basics of abstract interpretation [CC77]; see [Urb15, RY20] for
complete and general presentations. A complete join-semilattice is a tuple 〈D,v,t,⊥〉 where D
is partially-ordered by v, ⊔X is the least upper bound of every X ⊆ D (∀x ∈ X. x v ⊔X and
X is the smallest w.r.t. v that satisfies this), and ⊥ is the minimal element (∀x ∈ D. ⊥ v x). A
chain is a sequence of elements from D satisfying x1 v x2 v . . ., and a strictly ascending chain
if additionally xi 6= xi+1 for every i. The lattice’s height is the maximal length of a strictly
ascending chain. We consider finite domains, where in particular the height is also finite.

A function F : D → D is Scott-continuous if for every chain X = x0, x1, . . . ⊆ D it holds
f(⊔x∈X x) = ⊔

x∈X f(x). By the Knaster-Tarski theorem, such F has a least fixed-point (lfp)—
the least x such that f(x) = x—and by Kleene’s theorem it is ⊔i≥0 F

i(⊥). When the domain’s
height is also finite, the sequence {F i(⊥)}i≥0 converges to the lfp.

In our setting, the concrete domain is the join-semilattice powerset domain of the set of states,
C = 〈D = 2States[Σ],⊆,∪, ∅〉. An abstract domain is a join-semilattice A = 〈D],v],t],⊥]〉. An
abstraction function is a monotone function α : D → D], that is, ∀S1 ⊆ S2 ∈ D. α(S1)v]α(S2).
A conretization function is a monotone function γ : D] → D, that is, ∀a1v]a2 ∈ D]. γ(a1) ⊆
γ(a2). There is a Galois connections between (D,⊆) and (D],v]) through (α, γ), denoted
(D,⊆) −−−→←−−−α

γ
(D],v]), if ∀S ∈ D, a ∈ D]. α(S)v]a⇔ S ⊆ γ(a).

Let (Init, δ) be a transition system. Define the concrete transformer FInit,δ : D → D by
FInit,δ(S) = δ(S) ∪ Init. It is Scott-continuous, since for every increasing ⊆-chain X ⊆ D, we
have FInit,δ(

⋃
S∈X S) = ⋃

S∈X FInit,δ(S). Its fixed-point lfp(FInit,δ) is the set of reachable states
of (Init, δ). The corresponding best abstract transformer is given by F ]Init,δ(a) = α(FInit,δ(γ(a))).
F ]Init,δ is also Scott-continuous, and there is a fixed-point transfer from F to F ]: lfp(F ]Init,δ) =
α(lfp(FInit,δ)). It follows that lfp(F ]Init,δ) is the least abstraction of the set of reachable states,
and it is obtained by the chain

⊥] v] (F ]Init,δ)
1(⊥]) v] (F ]Init,δ)

2(⊥]) v] . . .

at its convergence point in a finite i∗ with (F ]Init,δ)i
∗ = (F ]Init,δ)i

∗+1 (due to the finite height of
D]). We call the chain the Kleene iterations with the best transformer, and overall it converges
to the most precise sound inductive invariant in the abstract domain.
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Another way to phrase the same chain, denoting ξi = (F ]Init,δ)i(⊥]), is by

ξ1 = α(Init) ξi+1 = ξi t] α(δ(γ(ξi)) = α(δ(γ(ξi))),

because ξiv]ξi+1 implies that γ(ξi) ⊆ γ(ξi+1) and therefore ξi+1 = F ]Init,δ(ξi) = F ]Init,δ(ξi) t]

α(δ(γ(ξi)) ∪ Init) = α(δ(γ(ξi)) ∪ Init ∪ γ(ξi)) = α(δ(γ(ξi))).

5.3.2 Abstract Interpretation in the Monotone Span

For a set of states B, recall that MSpan(B), the monotone span of B, is the set of formulas ϕ
s.t. ϕ ≡ MHullB(ϕ) (Def. 2.4.18), or, equivalently, ϕ can be represented as a conjunction of
clauses, each of which excludes a state from B (Thm. 2.4.19).

We define the abstract domain M[B] = 〈MSpan(B),=⇒,tB, false〉, a logical abstract do-
main [GMT08] consisting of the monotone span, ordered by logical implication, with bottom
element false. The existence of tB relies on Lemma 2.4.20 (the least upper-bound is the
conjunction of all upper-bounds), and false ∈ MSpan(B) because MHullB(false) = false, seeing
thatMb(false) = false for every b.

To define a Galois connection [CC77] between sets of concrete states and formulas in
MSpan(B), we use the concretization γ(ϕ) = {σ |σ |= ϕ} (in the sequel, we refer to γ as the
identity function, by our convention of equating formulas with the set of states they represent).
The best abstraction is expressed by αB(S) = MHullB(S):

Lemma 5.3.1. Let S ⊆ States[Σ]. Then MHullB(S) is the least overapproximation of S in
MSpan(B), namely, MHullB(S) =⇒ ϕ for every ϕ ∈ MSpan(B) s.t. S =⇒ ϕ.

Proof. Since ϕ ∈ MSpan(B), by Thm. 5.2.1, ϕ ≡ ∧
i ci where each clause ci excludes some

ai ∈ B. If αk(S) 6=⇒ ϕ, then there is some ci and a corresponding ai ∈ B that it excludes such
that αB(S) 6=⇒ ci. This means that Mb(S) 6=⇒ ci for every b ∈ B. But then in particular
Mai(S) 6=⇒ ci, even though S =⇒ ci and ai 6|= ci, which is a contradiction to Corollary 2.4.8
forMai(S).

Lemma 5.3.2. There is a Galois connection (2States[Σ],⊆) −−−−→←−−−−
αB

γ
(MSpan(B),=⇒).8

Proof. αB is monotone by Lemma 2.4.15. γ is also monotone. Let ϕ ∈ MSpan(B) and
S ⊆ States[Σ]. If αB(S) =⇒ ϕ then S ⊆ γ(ϕ) since S ⊆ MHullB(S) (Lemma 2.4.14). If
S ⊆ γ(ϕ) then αB(S) =⇒ ϕ by Lemma 5.3.1.

Remark 5.3.3 (Disjunctive completion). When B = b1 ∨ . . . ∨ bm is a disjunction of multiple
cubes, the domain is not disjunctively-complete [CC79]: if ϕ1, ϕ2 ∈ MSpan(B), it could be that
ϕ1 ∨ ϕ2 6∈ MSpan(B). However, for a single cube b, the join operation of M[b] is disjunction,
as follows from Lemma 2.4.7. In this case, a definition of the abstraction αb through the

8Quotient over logical equivalence, this is a Galois insertion, as αB(γ(ψ)) = MHullB(ψ) ≡ ψ for ψ ∈ MSpan(B).
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representation function βb(σ) = cubeb(σ) is straightforward, since αb(S) = ⊔
σ∈Sβb(σ) reads

as Corollary 2.4.8.

Remark 5.3.4 (As a reduced product domain). One way to understand M[B] when B =
b1 ∨ . . . ∨ bm is as a reduced product [CC79] of the per-cube domains: M[B] (quotient on logical
equivalence) is isomorphic to

⊗
iM[bi]. The Cartesian product domain is over m-tuples of

formulas,×i MSpan(bi), ordered by (ϕ1
1, . . . , ϕ

1
m) v (ϕ2

1, . . . , ϕ
2
m) ⇐⇒ ∧m

i=1 (ϕ1
i =⇒ ϕ2

i ), with
concretization γ×bi(ϕ1, . . . , ϕm) = ⋂m

i=1 γ(ϕi). The reduced product quotients the Cartesian
product w.r.t. having the same concretization. This is isomorphic to M[B] because γ×bi =
γ(∧mi=1 ϕi), and if ϕi ∈ MSpan(bi) then

∧m
i=1 ϕi ∈ MSpan(B).

Algorithm 19 Kleene Itera-
tions in M[Bk]
1: procedure Λ-PDR(Init, δ, Bad,

k)
2: i← 0
3: Fai

−1 ← false
4: Fai

0 ← αBk (Init)
5: while Fai

i 6=⇒ Fai
i−1 do

6: Fai
i+1 = αBk (δ(Fai

i ))
7: i← i+ 1
8: return Fai

i

Λ-PDR as Kleene iterations. Alg. 19 shows Kleene itera-
tions in M[Bk] with the best abstract transformer for (Init, δ).
The next iterate (line 6) is always Fai

i+1 = αBk(δ(Fai
i )), which

exactly matches the relation between successive frames in Λ-
PDR (Corollary 5.2.2). This means that Λ-PDR’s frames
exactly match the Kleene iterates, at least when the initial
states are in MSpan(Bk) themselves (in which case the first
iterate in line 4 is simply Init); otherwise there is a difference
of at most one frame:

Theorem 5.3.5. Fai
i ⊆ Fi+1 ⊆ Fai

i+1 for every i where Fi+1

exists. Further, if Init ∈ MSpan(Bk), then Fi = Fai
i .

Proof. By induction on i, first prove that Fi ⊆ Fai
i for every i where Fi exists. Initially,

F0 = Init ⊆ αBk(Init) = Fai
0 . For the step, assume that Fi ⊆ Fai

i . Using Lemma 2.4.15,
this implies that MHullBk(δ(Fi)) ⊆ MHullBk(δ(Fai

i )), which by Corollary 5.2.2 and the Kleene
iterations means that Fi+1 ⊆ Fai

i+1. For the other inclusion, likewise, since Fai
0 = αBk(Init) =

MHullBk(Init) ⊆ MHullBk(δ(Init)) = F1 (where the inclusion uses Lemma 2.4.15), we have by
induction that Fai

i ⊆ Fi+1 for every i s.t. Fi+1 exists. Similarly, if Init ∈ MSpan(Bk) then
αBk(Init) = Init, and by induction Fi = Fai

i for every i.

We can now relate the number of frames in Λ-PDR and the number of Kleene iterations:

Corollary 5.3.6. Λ-PDR(Init, δ,Bad, k) (Alg. 18) converges or fails (line 8) in a frame whose
index is at most one greater than the number of Kleene iterations in M[Bk] on (Init, δ) (Alg. 19).

Proof. Let i∗ be the iteration where Alg. 19 converges to the least-fixed point, i.e. Fai
i∗+1 = Fai

i∗ .
If Alg. 18 does not terminate with error (line 8) before i = i∗ + 1, by Thm. 5.3.5 Fai

i ⊆ Fi+1 ⊆
Fai
i+1 for every i ≤ i∗, and for i = i∗ we have Fai

i∗ ⊆ Fi+1 ⊆ Fai
i∗+1 = Fai

i∗ , so Fi∗+1 is an
inductive invariant. Therefore, δ(Fi∗+1) = Fi∗+1, and thus, because Fi∗+1 ∈ MSpan(Bk), also
MHullBk(δ(Fi∗+1)) = Fi∗+1 and the algorithm converges.

Further, Λ-PDR converges whenever the Kleene iterations converge to an inductive invariant:
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Corollary 5.3.7. If there exists an inductive invariant I ∈ MSpan(Bk) for (Init, δ,Bad), then
Λ-PDR(Init, δ,Bad, k) (Alg. 18) converges to an inductive invariant.

Proof. Alg. 19 converges from below to the abstract lfp for (Init, δ) in M[Bk], which from the
premise is strong enough to prove safety. Using Thm. 5.3.5, the same is true for Alg. 18.

Increasing k refines M[Bk]. Increasing the backward exploration bound k refines M[Bk] by
increasing MSpan(Bk) (Bk ( Bk′ implies MSpan(Bk) ( MSpan(Bk′): every ϕ ∈ MSpan(Bk) is
also ϕ ∈ MSpan(Bk′), and for instance the clause ¬σb ∈ MSpan(Bk′) \MSpan(Bk) if the state
σb ∈ Bk′ \ Bk). Restarting Λ-PDR with a larger k (line 9 in Alg. 18) thus refines the domain
until it includes an inductive invariant that establishes safety. Such a k always exists because
the set of all backward reachable states (attained by some finite k in the setting of propositional
systems) is sufficient to express the weakest safe inductive invariant.
Efficient convergence. Unfortunately, the lattice height of MSpan(B) is exponential. For
example, all the formulas in the strictly ascending chain of formulas {x ≤ i}0≤i≤2n−1 over n
variables x = xn−1, . . . , x0 are in MSpan({0 . . . 0}) (see §5.8). Therefore, to bound the number
of iterations we need to consider properties of the transition system, a task on which we embark
next.

5.4 Convergence Bounds via Abstract Diameter

In this section and the next, we prove a bound on the number of iterations of Λ-PDR on a given
transition system via the DNF size of a monotonization of the transition relation. In the current
section we assume that Bk can be expressed as a single cube b, and generalize it in §5.5.

To formulate the bound, we define a monotonization of the transition relation, which is a
formula over Σ ∪ Σ′. For cubes c1 and c2 over Σ, we denote byM(c1,c2)(δ) the monotonization
Ma(δ) where a = c1 ∧ c′2 and c′2 is obtained from c2 by substituting each p ∈ Σ by the
corresponding p′ ∈ Σ′.

The monotonization we perform on the pre-state vocabulary Σ uses the reflection of the
backward reachable cube:

Definition 5.4.1 (Reflection). For a cube b = `1∧. . .∧`r, the reflection is Ref(b) = ¬`1∧. . .∧¬`r.

Our main theorem in this section is as follows.

Theorem 5.4.2. Let (Init, δ,Bad) be a transition system, and Bk = b a cube. Then
Λ-PDR(Init, δ,Bad, k) converges or fails in a frame whose index is bounded by

∣∣∣M(Ref(b),b)(δ)
∣∣∣
dnf

+
1.

Example 5.4.3. For an example where Thm. 5.4.2 yields a tight bound, consider a counter
over x = xn, . . . , x0 where Init is x = 00 . . . 00, δ increments even numbers by two, Bad is
x = 10 . . . 01, and k = 0. The monotonization δ

] = Mx=01...10,x′=10...01(δ) is x′0 = 0 (see the
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calculation below), so
∣∣∣Mx=01...10,x′=10...01(δ)

∣∣∣
dnf

= 1. By Thm. 5.4.2, Λ-PDR converges in F2,
and indeed in this example F1 = (xn = 0∧ x0 = 0), and F2 = (x0 = 0) is the inductive invariant
(all the even numbers).

To see that indeed δ
] = (x′0 = 0), note that (01 . . . 10, 10 . . . 0) ∈ δ, the monotonization

cubex=01...10,x′=10...00)(x = 01 . . . 10, x′ = 10 . . . 01) = (x′0 = 0) and use Corollary 2.4.8; for the
other direction, x′0 = 0 holds in every transition of δ and remains in every such monotone cube,
invoking again Corollary 2.4.8.

Example 5.4.4. An example where Thm. 5.4.2 yields a polynomial yet non-tight bound appears
in §5.1.6.

Outline. We prove Thm. 5.4.2 by constructing an “abstract” transition system whose diameter
is the number of iterations required for Alg. 19 to converge (§5.4.1), and bound its diameter
(§5.4.2). Throughout, we fix a transition system (Init, δ,Bad) and a backwards bound k ∈ N,
denoting the cube Bk by b.

5.4.1 Abstract Transition System

Given (Init, δ,Bad), the abstract transition system (Init], δ],Bad]) is defined over the same set
of states as the original, and extends its transitions:

Definition 5.4.5 (Abstract Transition System). The abstract transition system of (Init, δ,Bad)
w.r.t. b is defined as a transition system (Init], δ],Bad]) over States[Σ] with Init] =Mb(Init),
Bad

] = Bad, and δ] =M(Ref(b),b)(δ).

The monotonization in δ] of the pre-image is understood using the following technical lemma
about monotonization w.r.t. a reflection.

Lemma 5.4.6. σ1 |= cubeRef(b)(σ2) ⇐⇒ σ2 |= cubeb(σ1) for every cube b and states σ1, σ2.

Proof. Suppose that σ1 |= cubeRef(b)(σ2). Then for every p present in Ref(b) (equivalently, in
b), σ1,Ref(b) disagree on p whenever σ2,Ref(b) do. Contrapositively, σ2,Ref(b) agree on p

whenever σ1,Ref(b) do. Equivalently, σ2, b disagree on p whenever σ1, b do. This shows that
σ2 |= cubeb(σ1). The other direction of the implication is symmetric because Ref(Ref(b)) = b.

The central property of the abstract transition system is that its i-reachable state capture
executions of iterations in the M[Bk] abstract domain.

Lemma 5.4.7. Let R]i be the set of states reachable in (Init], δ], Bad]) w.r.t. Bk = b (Def. 5.4.5)
in at most i steps. Then R]i ≡ Fai

i where Fai
i is the i’th iterate of Alg. 19 in M[b] on (Init, δ,Bad).

This will imply that the diameter of the abstract transition system—the minimal i where
i-reachability converges to all the reachable states—equals the number of iterations needed for
convergence of the abstract interpretation in M[Bk].
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Before proving this connection, let us explain the intuition for the abstract transition system
and the relation to the algorithm.

Through Corollary 2.4.8 and Lemma 5.4.6 we can see that a transition (σ, σ′) of δ] consists
of three steps:

• monotonization of σ to σ̃ (σ is the “protector” state for σ̃); then

• a concrete transition (σ̃, σ̃′) ∈ δ; and

• the monotonization of σ̃′ to σ′ (σ̃′ is the “protector” state for σ′).

The monotonization after the concrete transition mimics a step of the algorithm, which
computes the post-image and then a monotone overapproximation. A potentially critical
difference between the algorithm and δ] is that the transition system performs this state-by-
state, while the algorithm computes these operations over sets. The insight is that when Bk is a
single cube, the abstraction of Λ-PDR factors to individual states as well, and so can be captured
using an ordinary transition system, so that its i-reachable states correspond to iterations of the
algorithm, which is the objective of the next lemma.

As the proof shows, the monotonization before the concrete transition does not change
reachability, because in execution traces of δ], this monotonization is absorbed by the mono-
tonization at the end of the previous transition (the first step in the trace is handled by taking the
monotonization of the initial states, Init] = Init] =Mb(Init)). Even though the monotonization
of the pre-state does not change the diameter, it can improve (and never worsen) our diameter
bound, which is derived in §5.4.2.

Proof of Lemma 5.4.7. We first prove a similar result for a slightly simpler, “less abstract”
transition system, where monotonization is performed in the post-state but not in the pre-state.
Define a transition system (Init], δ],Bad]) over States[Σ] by Init] =Mb(Init), Bad] = Bad, and

(σ, σ′) ∈ δ] ⇐⇒ ∃σ′′. (σ, σ′′) ∈ δ ∧ σ′ ∈ cubeb(σ′′).

(In fact, δ] =M(true,b)(δ).)
Denote by R]i the set of states reachable in (Init], δ], Bad]) in at most i steps. We argue

that R]i ≡ Fai
i , by induction on i. Initially, R]0 = Init] =Mb(Init) = Fai

0 . For the step, by the
definition of the abstract system, by the induction hypothesis R]i ≡ Fai

i ∈ MSpan(b). Hence,

R]i+1 = δ](R]i) = R]i ∪
∨

σ′′∈δ(R]i)

cubeb(σ′′) =
Corollary 2.4.8

R]i ∪Mb(δ(R]i))

=
R]i∈MSpan(b)

Mb(R]i) ∪Mb(δ(R]i)) =
Lemma 2.4.7

Mb(δ(R]i)) =
ind.
Mb(δ(Fai

i )) = Fai
i+1.

It remains to show that R]i = R]i , i.e., that the i-reachable states of δ], δ] coincide (although
they are not in general bisimilar).
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First, δ] ⊆ δ
]. This is because if (σ, σ′) ∈ δ], then by definition there is σ′′ such that

(σ, σ′′) ∈ δ and σ′ ∈ cubeb(σ′′). Considering the product monotone order, (σ, σ′′) ≤(·,b) (σ, σ′),
and so (σ, σ′′) ∈ δ =⇒ (σ, σ′) ∈M(Ref(b),b)(δ) = δ

], as required.
Second, we show that for any S ∈ MSpan(b) it holds that δ](S) ⊆ δ](S). δ](S) = S ∪ δ](S)

and δ](S) = S ∪ δ](S), so we need to show that δ](S) ⊆ δ](S). Let (σ, σ′) ∈ δ], σ ∈ S. By the
definition of δ] and Corollary 2.4.8, there exists (σ̃, σ̃′) ∈ δ such that σ |= cubeRef(b)(σ̃) and
σ′ |= cubeb(σ̃′). The former implies, by Lemma 5.4.6, that σ̃ |= cubeb(σ), hence σ̃ ∈ S as well
(because S ∈ MSpan(b)). Writing σ′′ = σ̃′ shows that (σ̃, σ′) ∈ δ], and hence σ′ ∈ δ](S), as
required.

The first part of the argument (and induction on i) shows that R]i ⊆ R
]
i . We have shown

that R]i = Fai
i , which in particular implies that always R]i ∈ MSpan(b); therefore, the second

argument above shows that R]i ⊆ R]i . The claim follows.

Corollary 5.4.8. Let (Init], δ],Bad]) be the abstract transition system w.r.t. Bk = b (Def. 5.4.5).
If (Init], δ],Bad]) is safe and its reachability diameter is s, then Λ-PDR(Init, δ,Bad, k) con-
verges in frame at most s + 1. If (Init], δ],Bad]) reaches a bad state in s steps, then
Λ-PDR(Init, δ,Bad, k) fails (line 8) in frame at most s+ 1.

Proof. From Lemma 5.4.7, Fai
s ≡ Fai

s+1 iff R]s ≡ R]s+1, and the least s in which the latter holds
is the diameter. For the unsafe case, Fai

s ∩ Bad 6= ∅ iff R]s ∩ Bad 6= ∅. Apply Corollary 5.3.6 in
both cases to deduce convergence, resp. failure, of Λ-PDR in frame at most s+ 1.

5.4.2 Diameter Bound via Abstract DNF Size

In this section, we bound the diameter of the abstract transition system in order to obtain the
convergence bound of Thm. 5.4.2. We use a simple, general bound on the diameter of transition
systems, by the DNF size of the transition relation:

Lemma 5.4.9. The reachability diameter of a transition system (Init, δ,Bad) is bounded by
|δ|dnf .

Proof. Fix a minimal DNF representation of δ. Thinking about each disjunct of δ as an action
a, every transition can be labeled by at least one action. Whenever in an execution σ1, σ2, . . . an
action a labels two transitions σi1

a→ σi1+1, σi2
a→ σi2+1, the segment between the occurrences,

σi1+1, . . . , σi2 can be dropped and the resulting trace is still valid (and terminates at the same
state)—this is because if (σi1 , σi1+1) |= a and likewise (σi2 , σi2+1) |= a then also (σi1 , σi2+1) |= a,
because a, which is a cube, can be decomposed to apre ∧ apost where all the literals in apre are
in Σ and those in apost are in Σ′. Overall, every state that can be reached from another state
can do so by an execution where each action appears at most once, and thus the diameter is
bounded by |δ|dnf .

Combining the above results yields a proof of this section’s main theorem:
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Proof of Thm. 5.4.2. By Corollary 5.4.8, the number of iterations before convergence or failure of
Λ-PDR is bounded by 1 plus the reachability diameter of (Init], δ],Bad]), which by Lemma 5.4.9
is at most

∣∣∣M(Ref(b),b)(δ)
∣∣∣
dnf

.

Complexity. Finding whether there is an equivalent DNF representation with at most s terms
is complete for the second level of the polynomial hierarchy ΣP

2 [Uma01]. This is on par with
deciding whether the diameter is bounded by s [HHTW10] (see also [SU02]). Thus the bound
in Thm. 5.4.2 is not an efficiently-computable upper bound on the number of frames of Λ-PDR.
Instead, we view the result of Thm. 5.4.2 as a conceptual explanation of how smaller diameters
can originate from the abstraction.

Example 5.4.10. In the running example from §5.1 (without the additional transitions
in §5.1.6), Thm. 5.4.2 yields a trivial, exponential, bound which is not tight. Consider the system
in Fig. 5.1 restricted to the x part (see Remark 5.5.5 and the justification in §5.1.6). Then
δ
] =Mx=01...11,x′=10...00(δ) = (xn = 1 ∧ x′n = 0) ∨ (xn = 0 ∧ x′0 = 1) ∨ (xn = 0 ∧ x′n = 0 ∧ x′ >
x) ∨ (xn = 1 ∧ x′n = 1 ∧ x′ > x), which has an exponential DNF size,9 yielding an exponential
bound on the number of frames of Λ-PDR. However, as Example 5.2.3 shows, Λ-PDR converges
in this case in a constant number of frames.

To see that indeed δ] is as stated above, it is easiest to think about the behavior of δ] as an
abstract transition system (Def. 5.4.5).

• Starting in a state σ with xn = 0, δ] can lead us to any state σ′ with x′n = 0 and x′ > x—to
reach x′ the abstraction step turns all the bits below its leading 1, a concrete step increments
the counter, so the resulting state agrees with the leading 1 and everything else is 0, and
then another abstraction step can generate the other 1’s present in x′.

Additionally, we can reach in the abstraction the state 01 . . . 11, a step then skip and arrives
at 10 . . . 01, which is abstracted to all numbers with x0 = 1.

These are all the states we may reach this way; the first abstract step cannot change xn,
and we cannot arrive at smaller numbers, because both the concrete and abstract steps
(which turn 0’s to 1’s) can only strictly increase the number.

• Starting in a state σ with xn = 1, δ] can lead us to any state with x′n = 1, x′ > x, similarly
to above for the case xn = 0. Additionally, we can abstract to 11 . . . 11, from which a
concrete step wraparounds to 00 . . . 00, which then abstracts to x′n = 0.

9x′ > x is unate (Def. 2.3.4)—it is closed under turning variables in x from 1 to 0, and turning variables in x′
from 0 to 1. Hence its unique and minimal DNF representation consists of the disjunction of all its prime implicants
(Corollary 2.3.5). It suffices to show that there is an exponential number of prime implicants. To see this, let v be
an assignment to all the variables except the least significant, let σ = (v, 0), σ′ = (v′, 1) (so in σ, x = 2v, and in
σ′, x = 2v + 1). Then (σ, σ′) |= x′ > x. The only prime implicant that can be obtained by dropping literals from
(σ, σ′) is the conjunction that includes every xi = 0 when v[xi] = 0 and x′ = 1 when v[xi] = 1—dropping any one
of these variables would result in a term that is satisfied by (v[xi 7→ 1], 0), (v′[xi 7→ 0], 1), which does not satisfy
x′ > x, and so the resulting term would not be an implicant. Thus, the prime implicant associated with v can be
used to reconstruct v, setting v[xi] = 0 when xi = 0 is present in the prime implicant, and v[xi] = 1 when x′i = 1
is present. There are exponentially many choices of v and we have shown that each induces a different prime
implicant, and the claim follows.
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These are all the states that we may reach this way; we cannot reach smaller numbers with
x′n = 1, along a similar argument to the case above of xn = 0.

5.5 Convergence Bounds via Abstract Hypertransition Systems

In this section, we generalize the results of §5.4 to the case that Bk is not expressible as a single
cube. In this case, our bound is the product of monotonizations w.r.t. the different cubes that
comprise Bk = b1 ∨ . . . ∨ bm in the post-state, and w.r.t. (the reflection of) the least cube that
contains all Bk in the pre-state, defined as follows:

Definition 5.5.1. If Bk = b1 ∨ . . .∨ bm, we denote by Bk = ⋂m
i=1 bi (as sets of literals) the cube

that consists of the literals that appear in all b1, . . . , bm.

Fix a representation Bk = b1 ∨ . . . ∨ bm. Our main theorem is as follows:

Theorem 5.5.2. Let (Init, δ,Bad) be a transition system. Then Λ-PDR(Init, δ,Bad, k) converges
or fails in a frame whose index is bounded by

ζ + 1 def=
m∏
i=1

(∣∣∣M(Ref(Bk ),bi)(δ)
∣∣∣
dnf

+ |Mbi(Init)|dnf

)
+ 1.

The reasons forMbi(Init) and Bk will become clear in §5.5.1. Often Init is a cube, in which
case |Mbi(Init)|dnf = 1.

Example 5.5.3. For an example where Thm. 5.5.2 yields a polynomial convergence bound,
consider a counter over x = xn, . . . , x0 (similar in spirit to Fig. 5.1) with Init = x = 0,
Bad = x = 10 . . . 0, and δ that (i) skips every multiple of 2r except 0 = 0 . . . 0; (ii) from every
state with xr = xr−1 = . . . = x1 = x0 = 1 may also “bounce back” to a state with the same upper
bits (i > r) and exactly one lower bit (i ≤ r) is 1, or to x = 0 if the upper bits are already 0;
and (iii) transitions from any multiple of 2r but 0 to any other multiple of 2r (including the bad
state). We call the set of states between consecutive multiples of x = 2r, x = 2r+1 a “segment”.

Assume that r = n− polylog(n) (the counter skips relatively few times). We now compute
the bound resulting from the theorem. For every k ≥ 1, Bk = ∨n

i=s bi where bi = (xr−1 =
0∧ . . .∧ x0 = 0∧ xi = 1) (all multiples of 2r except 0 . . . 0). Bk = (xr−1 = 0∧ . . .∧ x0 = 0) (all
multiples of 2r). We find a DNF representation forM(Ref(Bk ),bi)(δ) using Lemma 2.4.7 similarly
to §5.1.6: The number of segments is 2n−r, and in each segment the abstraction of the “bounce
back” transitions subsume the transitions between numbers in the same segments. This amounts
to O(r2n−r) terms. The number of disjuncts bi is n− r, the number of terms inMbi(Init) is 1
because Init is itself a term, and overall Thm. 5.5.2 yields the bound O(r(n− r)2n−r) = poly(n).

Example 5.5.4. For an example where the theorem yields an exponential convergence bound,
consider the same system as in the previous example (Example 5.5.3) but when r = polylog(n).
The above calculation still yields the same bound but now it is Ω(2n). This exponential bound
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reflects true exponential behavior of the algorithm, because each post-image crosses to at most one
new segment, and the abstraction never produces states in a segment beyond those represented
in the current frame, mandating at least 2n−r frames.10

Remark 5.5.5. There are cases where it is possible to apply Thm. 5.5.2 on a restriction of
δ to specific values to some of the variables, and this produces a better bound. Suppose that
for a set of variables x and some v valuation thereof, x = v is an inductive invariant for the
system, and ∃b ∈ Bk. b[x] = Ref(v). (In §5.1.6, actually Bk =⇒ x = Ref(v).) Then applying
Thm. 5.5.2 to δ

∣∣
x←v = δ[v/x], eliminating x by substituting v for it, also yields an upper bound

on the number of iterations of Λ-PDR. The benefit is that
∣∣∣M(...)(δ

∣∣
x←v)

∣∣∣
dnf

can be smaller than
with the original δ. It is correct to apply the theorem to the restriction and deduce a bound for
the original, because under the above premises, always Fi[δ] = Fi[δ

∣∣
x←v] ∧ x = v, where Fi[τ ] is

the ith frame of Λ-PDR w.r.t. transition relation τ .11

Outline. To prove Thm. 5.5.2, the first step is to define an analog to the abstract transition
system from Def. 5.4.5 that captures Alg. 19 in the general case. If Bk has a DNF form with m
cubes, this can be done using a hypertransition system of width m (§5.5.1). We then proceed to
bound its diameter (§5.5.2).

5.5.1 Abstract Hypertransition System

We consider hypertransition systems that are dual to the classical definition [e.g. LL90], in that
the pre-state, instead of the post-state, of a hypertransition consists of a set of states.

Definition 5.5.6 (Hypertransition System). A hypertransition system (of width m ∈ N) over
States[Σ] is a tuple (Init, δ,Bad) where

• Init ⊆ States[Σ] is the set of initial states,

• Bad ⊆ States[Σ] is the set of bad states, and

• δ ⊆ States[Σ]m × States[Σ] is a hypertransition relation. As a formula, it is defined over
m copies of Σ for the pre-states, Σ1, . . . ,Σm, and a copy Σ′ for the post-state.

An execution of the system is a tree in which the leaves are states from Init, the relationship
between a node σ′ and its children σ1, . . . , σm is that (σ1, . . . , σm, σ

′) |= δ. A state σ is reachable
10To see that MHullBk (Fi) never introduces states in a segment that was not already present in Fi, note

that because always 0 . . . 0 ∈ δ(Fi) (the initial state), M0...0(Fi) = true, and thus MHullBk∪{0...0}(δ(Fi)) =
MHullBk (δ(Fi)) ∧ M0...0(δ(Fi)) = MHullBk (δ(Fi)). Hence, MHullBk (δ(Fi)) = MHullBk∪{0...0}(δ(Fi)) =
Mxr−1=0∧...∧x0=0(δ(Fi)). But the cube xr−1 = 0 ∧ . . . ∧ x0 = 0 does not mention the upper bits, and thus the
monotonization does not alter these bits, and includes only segments that were already present in δ(Fi).

11This is because Fi
def= Fi[δ] =⇒ x = v by induction on i—since x = v is an inductive invariant, this holds

initially, as well as δ(Fi) =⇒ x = v. Now Fi+1 = MHullBk (δ(Fi)) =⇒ x = v as well, because from the assumption
there is b ∈ Bk s.t. b[x] = Ref(v), so cubeb(σ) =⇒ x = v for every σ ∈ δ(Fi) because in σ, x = v, which are
opposite in b and thus retained. HenceMb(δ(Fi)) =

∨
σ∈δ(Fi) cubeb(σ) =⇒ x = v, and thus also the conjunction

MHullBk (δ(Fi)) =⇒ x = v.
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in at most i steps if there is an execution with root σ and height at most i. A state is reachable
if it is reachable in at most i steps for some i ∈ N. The reachability diameter of the system is
the least i such that every reachable state is reachable in i steps.

A standard transition system is a hypertransition system with width m = 1.

Definition 5.5.7 (Abstract Hypertransition System). The abstract hypertransition system
(Init], δ],Bad]) of a (standard) transition system (Init, δ,Bad) w.r.t. Bk = b1∨ . . .∨bm is defined
over States[Σ] by Init] = MHullBk(Init), Bad] = Bad, and

(σ1, . . . , σm, σ
′) ∈ δ] ⇐⇒ (σ1, σ

′) ∈M(Ref(Bk ),b1)(δ ∨ Init′)∧. . .∧(σm, σ′) ∈M(Ref(Bk ),bm)(δ ∨ Init′).

The central property of the abstract hypertransition system is that its i-reachable state
capture the Kleene iterations in the M[Bk] abstract domain.

Lemma 5.5.8. Let R]i be the set of states reachable in (Init], δ], Bad]) w.r.t. Bk (Def. 5.5.7)
in at most i steps. Then R

]
i ≡ Fai

i where Fai
i is the i’th iterate of Alg. 19 on (Init, δ,Bad) in

M[Bk].

This will imply that the diameter of the abstract hypertransition system equals the number
of iterations needed for convergence of the abstract interpretation in M[Bk].

Before proving this connection, let us explain the intuition for the abstract hypertransition
system and the relation to the algorithm.

Through Corollary 2.4.8 and Lemma 5.4.6 we can see that a hypertransition (σ1, . . . , σm, σ
′)

of δ] consists of three segments:

• the monotonization w.r.t. Bk of each σi to σ̃i (σi is the “protector” state for σ̃i); then

• from each resulting state σ̃i, either a concrete transition (σ̃i, σ̃′i) ∈ δ, or going back to an
initial state σ̃′i ∈ Init; and

• application of the monotone hull to arrive at σ′, using σ̃′1, . . . , σ̃′m as “protector” states,
each σ̃′i showing that σ′ is in the monotone overapproximation w.r.t. one of the cubes bi
composing Bk.

The abstraction in the last step connects the reachable states of δ] and the Kleene it-
erations of Alg. 19. The idea is that σ′ ∈ MHullBk({σ̃′1, . . . , σ̃′m}), and if σ̃1, . . . , σ̃m ∈ Fai

i

then by Lemma 2.4.13 this implies that σ′ ∈ MHullBk(δ(Fai
i ) ∪ Init), which, using the results

of §5.3, is the next iterate Fai
i+1. The key point is that the converse also holds—the monotone

hull MHullBk(δ(Fai
i ) ∪ Init) “factors” to MHullBk({σ̃′1, . . . , σ̃′m}) on all m choices of protectors

σ̃′1, . . . , σ̃
′
m ∈ δ(Fai

i ) ∪ Init (this is reminiscent of Carathéodory’s theorem in convex analysis).
Unlike in Def. 5.4.5, in this definition the protector states also come directly from Init, not only
from a transition of δ, and essentially this is the reason forMbi(Init) in the bound of Thm. 5.5.2,
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unlike in Thm. 5.4.2. This is necessary here to “mix” the different protector states, which do
not necessarily all originate from the same frame.

As in Def. 5.4.5, the abstraction in the first step, which uses Bk , does not change reachability
and the diameter, but it can improve our diameter bound, which is derived in §5.5.2. This
is achieved by also allowing a hypertransition from (σ1, . . . , σm) to σ′ if other steps of δ]
(concrete/init, monotone hull) can arrive at σ′ from (σ̃1, . . . , σ̃m) and if we know for certain that
whenever σ1, . . . , σm are reachable, then so are σ̃1, . . . , σ̃m. This is the case when σ̃1, . . . , σ̃m

belong to MHullBk(σ1, . . . , σm), because, as explained above, a monotone hull is performed in the
last step of δ]. Reachability is not extended, because the additional abstraction in the pre-state
could be mimicked by an abstraction in the post-state of the previous (abstract) step. One way to
ensure that σ̃1, . . . , σ̃m belong to MHullBk(σ1, . . . , σm) is that each σ̃i ∈ MHullBk({σi}), namely,
that for every bj , σi ∈ Mbj (σ′i). This is achieved when σi ∈ MBk (σ′i), i.e., σ′i ∈ MRef(Bk )(σi),
which is the reason for using Bk in the monotonization of the pre-states. Yet:

Example 5.5.9. In some cases, the abstraction using Bk is weak, and is another source of
non-tightness in the the bound of Thm. 5.5.2. Consider the system from Example 5.2.4. In
this case Bk = true, resulting in no abstraction of the pre-state vocabulary. The DNF size of
M(true,bi)(δ) is superpolynomial12, leading to a superpolynomial bound on the number of frames.
However, Λ-PDR with k = 0 converges in F1 (see Example 5.2.4).

Remark 5.5.10. At first sight, it would seem that the product of monotonizations in the bound
of Thm. 5.5.2 is unnecessary, and that one could study the convergence of Λ-PDR w.r.t. Bk by
the convergence w.r.t. the simpler (and larger) set Bk . Since Bk ⊆ Bk , the overapproximation is
tighter with Bk (Lemma 2.4.15), so it would seem that the number of iterations with MHullBk(·)
must be less than with MHullBk (·). However, this is not so. The reason is that Λ-PDR with
MHullBk (·) might be converging to an inductive invariant that is not present in MSpan(Bk):
Bk ⊆ Bk implies MSpan(Bk ) ⊆ Bk. Thanks to such “new” invariants, convergence could be
faster with MHullBk (·) than with MHullBk(·).

We now formally prove the connection between reachable states of the abstract transition
system and iterations of the algorithm.

Proof of Lemma 5.5.8. We first prove a similar result for a slightly simpler, “less abstract”
hypertransition system, where abstraction is performed in the post-state but not in the pre-
state. Define a hypertransition system (Init], δ],Bad]) over States[Σ] Init] = MHullBk(Init),

12Let σ be a state xi = 0, and σ′ obtained by applying δ with two xj1 , xj2 6= xi variables that are 0 in σ. A DNF
representation must have a term dσ such that (σ, σ′) |= d. However, d must include all variables xr 6∈ {xi, xj1 , xj2}
that are 0 in σ; otherwise σ̃ where they are turned off also yields (σ̃, σ′) |= dσ. But this can’t be because the
xr’s are also 0 in σ′, andM(true,bi)(δ) doesn’t allow turning 1 bits to 0 (except for xi). Consider now two states
σ1, σ2 with xi = 1, xj1 = xj2 = 0, and each has additional n/2 variables xsr1 , . . . , x

s
rn/2 6∈ {xi, xj1 , xj2} of value

0 (s ∈ {1, 2}), and the rest of the variables are 1. By the above argument, dσ1 requires that all literals x1
rp

are
0, which implies that σ2 6|= dσ1 if {x2

r1 , . . . , x
2
rn/2} 6⊆ {x

1
r1 , . . . , x

1
rn/2}. Therefore, every choice of n/2 variables

yields a non-comparable term, and there are
(
n
n/2

)
= Θ

(
4n/
√
n
)
such choices.
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Bad] = Bad, and

(σ1, . . . , σm, σ
′) ∈ δ] ⇐⇒ ∃σ′′1 , . . . , σ′′m. ((σ1, σ

′′
1) ∈ δ ∨ σ′′1 ∈ Init) ∧ σ′ ∈ cubeb1(σ′′1) ∧

. . .

((σm, σ′′m) ∈ δ ∨ σ′′m ∈ Init) ∧ σ′ ∈ cubebm(σ′′m).

(In fact, δ] = ∧m
i=1 (M(true,bi)(δ ∨ Init′))[Σi,Σ′]).

Denote by R]i the set of states reachable in (Init], δ], Bad]) in at most i steps. We argue
that R]i ≡ Fai

i , by induction on i. Initially, R]0 = Init] = MHullBk(Init) = Fai
0 . For the step, the

set R]i+1 is the set of states reachable in at most i+ 1 steps in the hypertransition system, which
is R]i+1 = R]i ∪ δ(R

]
i) where δ](R]i) is the set of states σ′ so that there are σ1, . . . , σm ∈ R]i such

that (σ1, . . . , σm, σ
′) ∈ δ]. By the definition of δ],

δ](Ri]) =
∨

σ′′1 ,...,σ
′′
m∈δ(R

]
i)∪Init

(
cubeb1(σ′′1) ∧ . . . ∧ cubebm(σ′′m)

)

By distributivity of conjunction over disjunction,

=

 ∨
σ′′1∈δ(R

]
i)∪Init

cubeb1(σ′′1)

 ∧ . . . ∧
 ∨
σ′′m∈δ(R

]
i)∪Init

cubebm(σ′′m)


By Corollary 2.4.8, this is

=Mb1(δ(R]i) ∪ Init) ∧ . . . ∧Mbm(δ(R]i) ∪ Init)

By Lemma 2.4.13, this amounts to

= MHullBk(δ(R]i) ∪ Init)

which by the induction hypothesis is

= MHullBk(δ(Fai
i ) ∪ Init).

In the terminology of §5.3.1, as Fai
i = (F ])i+1(⊥]), we have obtained δ](R]i) =

αBk(δ((F ]Init,δ)i+1(⊥])) ∪ Init) = (F ]Init,δ)i+2(⊥]). Because (F ]Init,δ)i+1(⊥])v](F ]Init,δ)i+2(⊥]), the
result is that R]i ⊆ δ(R

]
i), and R

]
i+1 = δ(R]i) ∪R

]
i = δ(R]i) = Fai

i+1, as required.

It remains to show that R]i = R]i , i.e., that the i-reachable states of δ], δ] coincide.
First, for every set of states S it holds that δ](S) ⊆ δ](S). This is because if (σ1, . . . , σm, σ

′) ∈
δ], then by definition there are σ′′1 , . . . , σ′′m such that (σi, σ′′i ) ∈ δ ∨ Init′ for every i and σ′ ∈
cubebi(σ′′i ). Considering the product monotone order, (σi, σ′′i ) ≤(·,bi) (σi, σ′), and so (σi, σ′′i ) ∈
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δ ∨ Init′ =⇒ (σi, σ′) ∈ M(Ref(Bk ),bi)(δ ∨ Init′). This for every i; by the definition of δ] this
implies that (σ1, . . . , σm, σ

′) ∈ δ]. This means that σ′ ∈ δ](S) since σ1, . . . , σm ∈ S.
Second, we show that for any S ∈ MSpan(Bk) it holds that δ

](S) ⊆ δ](S). Let
(σ1, . . . , σm, σ

′) ∈ δ
], where σ1, . . . , σm ∈ S. By the definition of δ

], (σi, σ′) |=
M(Ref(Bk ),bi)(δ ∨ Init′), and so there exist (σ̃1, σ̃

′
1), . . . , (σ̃m, σ̃′m) ∈ δ ∨ Init′ such that for every i,

• σi |= cubeRef(Bk )(σ̃i)—by Lemma 5.4.6, this means that σ̃i |= cubeBk (σi). Since σi ∈ S,
by Corollary 2.4.8, σ̃i ∈ MBk (S). It follows that σ̃i ∈ MHullBk(S) (because Bk ⊆ Bk
implies MHullBk (S) ⊆ MHullBk(S) and MHullBk (S) ≡MBk (S) by Lemma 2.4.13). From
the premise that S ∈ MSpan(Bk), MHullBk(S) ≡ S, and we have σ̃i ∈ S.

• σ′ |= cubebi(σ̃′i).

Writing σ′′i = σ̃′i shows that (σ̃1, . . . , σ̃m, σ
′) ∈ δ], because for every i we have σ̃i ∈ S, (σ̃i, σ̃′i) ∈

δ ∨ Init′, and σ′ |= cubebi(σ̃′i). This shows that σ′ ∈ δ](S), as required.
The first part of the argument (and induction on i) shows that R]i ⊆ R

]
i . We have shown

that R]i = Fai
i , which in particular implies that always R]i ∈ MSpan(Bk); therefore, the second

argument above shows that R]i ⊆ R]i . The claim follows.

Corollary 5.5.11. Let (Init], δ],Bad]) be the abstract hypertransition system w.r.t.
Bk (Def. 5.5.7). If (Init], δ],Bad]) is safe and its reachability diameter is s, then
Λ-PDR(Init, δ,Bad, k) converges in frame at most s + 1. If (Init], δ],Bad]) reaches a bad
state in s steps, then Λ-PDR(Init, δ,Bad, k) fails (line 8) in frame at most s+ 1.

Proof. Follows from Lemma 5.5.8 similarly to the proof of Corollary 5.4.8 from Lemma 5.4.7.

5.5.2 Hyperdiameter Bounds via a Joint Abstract Cover

In this section, we bound the diameter of the abstract transition in order to obtain the convergence
bound of Thm. 5.5.2. The proof is based on a diameter bound similar to the case of standard
transition systems.

Lemma 5.5.12. The reachability diameter of a hypertransition system (Init, δ,Bad) is bounded
by |δ|dnf .

Proof. Fix a minimal DNF representation of δ. Thinking about each disjunct of δ as an action,
every transition from m children to a parent can be labeled by at least one action. Consider
a path from the root to the leaves in an execution tree. With these actions, if an action a

labels two (hyper)transitions σi1
a→ σi1+1, σi2

a→ σi2+1, the segment of the tree between the
occurrences, σi1+1, . . . , σi2 can be dropped, replacing the and the resulting trace is still valid
(and terminates at the same state)—this is because if (σ1

i1 , . . . , σ
m
i1 , σi1+1) |= a and likewise

(σ1
i2 , . . . , σ

m
i2 , σi2+1) |= a then also (σ1

i1 , . . . , σ
m
i1 , σi2+1) |= a, because a, which is a cube, can be

decomposed to apre1 ∧ . . . ∧ aprem ∧ apost where all the literals in aprei are in the i’th pre-state
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copy Σi and those in apost are in Σ′. Overall, every state that can be reached from a set of leaf
states can do so by an execution where each action appears at most once on each path of the
tree, and thus the diameter is bounded by |δ|dnf .

Proof of Thm. 5.5.2. Denote the bound in the theorem by q + 1. From the distributivity of the
conjunction in δ], |δ]|dnf ≤

∏m
i=1

∣∣∣M(Ref(Bk ),bi)(δ ∨ Init′)
∣∣∣
dnf

, and

∣∣∣M(Ref(Bk ),bi)(δ ∨ Init′)
∣∣∣
dnf

=
Lemma 2.4.7

∣∣∣M(Ref(Bk ),bi)(δ) ∨M(Ref(Bk ),bi)(Init
′)
∣∣∣
dnf

≤
∣∣∣M(Ref(Bk ),bi)(δ)

∣∣∣
dnf

+
∣∣∣M(Ref(Bk ),bi)(Init

′)
∣∣∣
dnf

=
∣∣∣M(Ref(Bk ),bi)(δ)

∣∣∣
dnf

+ |Mbi(Init)|dnf ,

overall yielding that |δ]|dnf ≤ q.
By Corollary 5.5.11, the number of iterations before convergence or failure of Λ-PDR is

bounded by 1 plus the reachability diameter of (Init], δ],Bad]), which by Lemma 5.5.12 is at
most q.

5.6 Complexity Bounds for Λ-PDR

Each iterate in Alg. 19 involves a monotone hull (lines 4 and 6), which is a conjunction of
monotonizations. Using our monotonization algorithm, Alg. 15 from Chapter 4, this can
be computed efficiently. We follow on this idea to prove efficient complexity upper bounds
on Alg. 19, combining the efficiency of this algorithm with the bounds on the number of iterations
from §5.5 to prove a complexity upper bound on Λ-PDR.

Continuing to use the same conventions for the DNF representations of Bk = b1 ∨ . . . ∨ bm
and the abbreviation ζ for the bound on number of iterations. We prove that it is possible to
implement the abstract interpretation form of Λ-PDR, Alg. 19, so that its overall complexity is
polynomial in the same bound on the number of iterations ζ, the number of variables n, and
the number m of terms in the representation of Bk:

Theorem 5.6.1. Alg. 19 can be implemented to terminate in O(n2ζ + (n+m)ζ2) SAT queries
and time.

Example 5.6.2. Continuing the example of Example 5.5.3, where ζ = O(r(n−r)2n−r) = poly(n),
Thm. 5.6.1 shows that Λ-PDR terminates in O(n2r(n− r)2n−r + (n+ 2n−r)r2(n− r)223(n−r)) =
O(n2r2(n− r)222(n−r)) = poly(n) SAT calls and time.

Example 5.6.3. Let n be an odd number. Consider a transition system over x = x1, . . . , xn,
where Init is x = 00 . . . 00, Bad is x = 11 . . . 11 and the transition relation chooses an even
number of variables that are 0 from the initial state and turns them into 1. If we take k = 0,
then Bk is a cube (m = 1), and Lemma 2.4.7 yields thatMx=00...00∧x′=11...11(δ) = ∨n

i=1 (x′i = 0)
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(originating from the transitions from 00 . . . 00 to everything 1 except a single bit, which subsumes
transitions from 00 . . . 00 to states with fewer 1’s) so ζ = |Mx=00...00∧x′=11...11(δ)|dnf + 1 = O(n).
Thm. 5.6.1 shows that Λ-PDR in this case terminates in O(n3) SAT queries and time. This is
significant because a naive implementation of Alg. 19 would start, for the first iteration of line 6,
by computing the exact post-image δ(Init); in our example this is the set of states where the
parity of x is 0, which cannot be represented in polynomial-size DNF nor CNF [e.g. CH11]. Our
implementation is able to compute the abstraction of the post-image without constructing the
post-image and avoids the blowup in complexity.

At this point, the direct approach to implement Alg. 19 is to perform MHullB(ϕ) in lines 4
and 6 through ∧mj=1 Monotonize(ϕ, bj), invoking Alg. 15 on ϕ. Indeed, this achieves a bound
that is only slightly worse than Thm. 5.6.1 (see Remark 5.6.6). In what follows we provide
an implementation that both explicates the connection to ζ, and achieves exactly the bound
of Thm. 5.6.1.

Algorithm 20 Efficient Kleene Iterations in M[Bk]
1: procedure Efficient-Λ-PDR(Init, δ, Bad)
2: i← 0
3: Fai

−1 ← false
4: Fai

0 ←
∧m

j=1 Monotonize(Init, bj)
5: for j = 1..m do
6: δ

]
j ←Monotonize(δ ∨ Init′,Ref(Bk ) ∧ b′j)

7: while Fai
i 6=⇒ Fai

i−1 do
8: Fai

i+1 =
∨
{
(
t1
∣∣
Σ′

)
∧ . . . ∧

(
tm
∣∣
Σ′

) ∣∣∣ tj a term of δ]j , ∃σj ∈ ξi. σj |= (tj∣∣Σ)}
9: i← i+ 1
10: return Fai

i

Our implementation is displayed in Alg. 20. The first iterate is computed as described above
by invoking Alg. 15 on Init (line 4). The SAT queries performed by Alg. 15 are in this case
straightforward, with ϕ = Init.

To compute the next iterates, we first compute monotnizations of the concrete transformer,
δ ∨ Init′ (line 6). This is a two-vocabulary formula, and accordingly the monotonizations are
w.r.t. two-vocabulary cubes. The monotonizations are computed in DNF form and stored in
δ
]
j (see §4.6.1 of Chapter 4). The next iterate Fai

i+1 is formed from the δ]j ’s by taking all the
combinations of terms from δ

]
1, . . . , δ

]
m whose pre-state part is satisfied by at least one state in ξi,

and forming the conjunction of the post-state parts: for a term t = `1 ∨ . . .∨ `i1 ∨ `′i1+1 ∨ . . .∨ `′i2
over Σ ] Σ′, the restriction t

∣∣
Σ = `1 ∨ . . . ∨ `i1 and t

∣∣
Σ′ = `′i1+1 ∨ . . . ∨ `′i2 .

The invocation of Alg. 15 in line 6 is on a double-vocabulary formula; still, the SAT queries
to be performed in the invocation of Alg. 15 are simple SAT queries about two-vocabulary
formulas (and a counterexample is a pair of states).

It is important for the efficiency result that Alg. 17 uses Alg. 15 as a subprocedure. Using
Bshouty’s procedure (see Remark 4.6.6) would yield a bound in terms of the DNF size of the
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original transition relation, which could be significantly larger, especially in cases where the
abstract interpretation procedure terminates faster than exact forward reachability (as in the
running example of Fig. 5.1 or Example 4.2.3).

The rest of this section proves that Alg. 20 realizes Thm. 5.6.1. The correctness of the
algorithm is shown in the following lemma:

Lemma 5.6.4. Fai
i in Alg. 20 is logically equivalent to Fai

i in Alg. 19.

Proof. By induction over i. The correctness of Fai
0 follows from the correctness of Alg. 15

(Thm. 4.6.1). For the same reasons, δ]j of Alg. 20 is equivalent toMRef(Bk )∧b′j (δ ∨ Init′). Now
for some DNF manipulation: for every σ′,

∃σ1, . . . , σm.(σ1, σ
′) |= δ

]
1 ∧ . . . ∧ (σm, σ′) |= δ

]
m

⇐⇒ ∃σ1, . . . , σm. ∃t1 term of δ]1, . . . ,∃tm term of δ]m. (σ1, σ
′) |= t1 ∧ . . . ∧ (σm, σ′) |= tm

⇐⇒ ∃σ1, . . . , σm. ∃t1 term of δ]1, . . . ,∃tm term of δ]m.
σ1 |=

(
t1
∣∣
Σ

)
∧ σ′ |=

(
t1
∣∣
Σ′
)
∧ . . . ∧ σ1 |=

(
tm
∣∣
Σ

)
∧ σ′ |=

(
tm
∣∣
Σ′
)

⇐⇒ ∃σ1, ∃t1 term of δ]1. σ1 |=
(
tm
∣∣
Σ

)
∧ σ′ |=

(
tm
∣∣
Σ′
)

∧ . . .∧

∃σm, ∃tm term of δ]m. σm |=
(
tm
∣∣
Σ

)
∧ σ′ |=

(
tm
∣∣
Σ′
)
.

Hence, σ′ ∈ Fai
i+1 of Alg. 20 iff ∃σ1, . . . , σm ∈ Fai

i of Alg. 20 that with σ′ satisfy

(σ1, σ
′) |=MRef(Bk )∧b′1(δ ∨ Init′) ∧ . . . ∧ (σm, σ′) |=MRef(Bk )∧b′m(δ ∨ Init′).

Notice that this corresponds exactly to σ′ being in the post-image δ](Fai
i ), with the abstract

hypertransition system from §5.5.1. Lemma 5.5.8 shows that this captures exactly Fai
i+1, provided

that Fai
i is correct, which it is thanks to the induction hypothesis. The claim follows.

We can now proceed to prove the complexity bound for Alg. 20.

Lemma 5.6.5. Alg. 20 terminates in O(n2ζ + (n+m)ζ2) SAT queries and time.

Proof. By Thm. 4.6.1, each invocation of Alg. 15 in line 4 takes O
(
n2 · |Mbi(Init)|dnf

)
= O(n2ζ)

queries and time. Similarly, each invocation in line 6 takes O
(
(2n)2 ·

∣∣∣MRef(Bk )∧b′i(δ ∨ Init′)
∣∣∣
dnf

)
queries and time. This quantity is O(n2ζ) through the same calculation as in the proof
of Lemma 5.5.8. In each iteration, the number of combinations of terms in line 8 is at most∏m
i=1

∣∣∣MRef(Bk )∧b′i(δ ∨ Init′)
∣∣∣
dnf

. For each of the m terms in the combination, we split the term
to Σ,Σ′ parts in time linear term size which is at most n, and perform a SAT check for whether
the term intersects Fai

i . Overall this step involves O (m · ζ) queries and O ((n+m) · ζ) time.
This is the cost of each iteration; the number of iterations is bounded by ζ by Thm. 5.5.2. The
claim follows.
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The proof of Thm. 5.6.1 follows from Lemmas 5.6.4 and 5.6.5.

Remark 5.6.6. Lemmas 5.6.4 and 5.6.5 have the consequence that in Alg. 19,
∣∣Fai

i

∣∣
dnf ≤ ζ

(interestingly, this is true in particular for the resulting inductive invariant). This is a proof
that the direct implementation of the monotone hull by m calls to Alg. 15 amounts to O(n2mζ)
SAT queries in each iteration, and O(n2mζ2) time thanks to Thm. 5.5.2. Though asymptotically
inferior, this implementation approach may be more efficient than Alg. 20 when

∣∣Fai
i

∣∣
dnf � ζ.

5.7 Forward Reachability in Λ-PDR and Others

This section highlights the importance of the successive overapproximation embodied in the
Kleene iterations of Λ-PDR by contrasting Λ-PDR with the treatment of forward reachability in
other invariant inference algorithms.
Exact forward reachability. Exact forward reachability iterates R0 = Init, Ri+1 = δ(Ri), so
that Ri is the set of states reachable in at most i steps (without any overapproximation). We
have shown that in some cases Λ-PDR can converge in a significantly lower number of iterations
than exact forward reachability, stated formally in the following lemma.

Lemma 5.7.1. There exists a family of transition systems (Init, δ,Bad) over Σ with |Σ| = n

and k = O(1) such that Λ-PDR(Init, δ,Bad, k) converges in poly(n, k) iterations, whereas exact
forward reachability converges in Ω(2n) iterations.

Proof. See e.g. §5.1.5 and Example 5.2.3.

This gap reflects a gap between the diameter of the original system (Init, δ) and the diameter
of the abstract system (Init], δ]) (Def. 5.4.5 and Corollary 5.4.8).
Dual interpolation. The essence of interpolation-based inference (ITP) [McM03] is generalizing
from proofs of bounded unreachability. We consider the time-dual (§2.2.1) of this approach,
generalizing from bounded unreachabilty from the initial states, rather than unreachability to
the bad states, in line with our focus here on the treatment of forward reachability.

In §4.3.3 of Chapter 4 we analyzed the time-dual of a model-based ITP algorithm [CIM12,
BGKL13] whose generalization procedure was inspired by PDR. The code appears in Alg. 16.
Briefly, the algorithm iteratively samples pre-states σ of counterexamples to induction, and
excludes each counterexample—similarly to PDR—by seeking a minimal clause c over the literals
that are falsified in σ that does not exclude a state from Rs, the set of states that the system
can reach in s steps, and conjoins c to the candidate.

We showed there (Thm. 4.6.7) that the algorithm successfully finds an inductive invariant
when there an invariant I whose inner-boundary ∂+(I) (Def. 4.2.1) is s-reachable, that is,
∂+(I) ⊆ Rs (this is the forwards fence condition of Def. 4.3.8). In the example of Fig. 5.1
(from §5.1), this does not hold for the invariant in Equation (5.1) unless s = Ω(2n) (for example,
x = 110 . . . 0, y = 0 . . . 0, z = 0 ∈ ∂+(I) but reachable only in Ω(2n) steps).
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In contrast, we prove that for Λ-PDR, it is enough that ∂+(I) is s-reachable in the abstract
(hyper)system, which interleaves concrete steps and abstraction (see Def. 5.5.7), and thus can
reach ∂+(I) in fewer steps, which would result in convergence of Λ-PDR with a smaller number
of frames:

Theorem 5.7.2. Let I ∈ MSpan(Bk) be an inductive invariant for (Init, δ,Bad), and R]s the
set of states reachable in at most s steps in (Init], δ],Bad]) (Def. 5.5.7). If ∂+(I) ⊆ R]s, then
s+ 1 frames suffice for Λ-PDR(Init, δ,Bad, k) to successfully find an inductive invariant.

Proof. The proof uses the same property of the monotone hull of the boundary of Lemma 4.6.8
that was also used to prove the result for the model-based dual-ITP algorithm in §4.6.2.

The set of states reachable in s steps in (Init], δ],Bad]) is Fai
s of the Kleene iterations

(Lemma 5.5.8). We can apply Lemma 4.6.8, because δ(Fs−1) of Λ-PDR includes all s-reachable
states (by properties 1–4 in §5.1.1) and I ∩ Bk = ∅ since I is an inductive invariant. We obtain
that Fai

s = MHullBk(δ(Fai
s−1)) contains I. It cannot “overshoot” beyond I due to Corollary 5.3.7.

Apply Corollary 5.3.6 for the connection to Λ-PDR.

In essence, these different criteria for when the forward exploration of the algorithm is
sufficient reflect the difference in how the algorithms generalize: per counterexample, both find
a minimal clause that does not exclude states from some form of forward reachability, but in
Λ-PDR this is an abstraction of forward reachability, whereas model-based dual ITP uses exact
forward reachability.

This difference also manifests in different outcomes of Alg. 18 and Alg. 16 on the running
example of Fig. 5.1. For every s < 2n there is an execution of Alg. 16 that fails (line 7)
because it includes reachable states as counterexamples to exclude (for example, the first
counterexample in the execution of Alg. 16 is σb = (x = 10 . . . 00, y = 11 . . . 10, z = 1), which
can be generalized to c = (xn = 0) that inadvertently excludes also reachable states such as
x = 10 . . . 01, y = 00 . . . 00, z = 0), although s = O(1) suffices for Λ-PDR (Example 5.2.3).

Finally, we remark that Alg. 16 does use a form of successive overapproximation. By
repeatedly generating counterexamples to induction (line 6 of Alg. 16), it in a sense uses reverse
frames that overapproximate backward reachability. While both Alg. 16 and Alg. 18 learn lemmas
by minimizing a term w.r.t. a forward-reachability analysis in order to block a counterexample
from a backward reachability analysis, Alg. 18 employs successive overapproximation is in the
former analysis, and Alg. 16 in the latter. As we have seen, this successive overapproximation in
counterexample generation is not sufficient for Alg. 16 to successfully infer an invariant for the
example of Fig. 5.1. However, it does alleviate the requirement that I ∈ MSpan(Bk), which is
necessary in Thm. 5.7.2 but not in Thm. 4.6.7.13

13The original, non time-dual version of the algorithm is Alg. 13. Its candidates are iteratively increased by
forward exploration, so the sequence of candidates is similar to the frames in PDR. However, the roles of backward-
and forward-reachability in generalization are reversed. Alg. 13 “overshoots” on the example of Fig. 5.1 unless
s = Ω(2n), but we focus here on overapproximations that are too tight (rather than too loose), the direction in
which Λ-PDR is informative of PDR.



5.8. Between Λ-PDR and PDR: Best Abstraction and Even Better 145

5.8 Between Λ-PDR and PDR: Best Abstraction and Even
Better

In each frame, Λ-PDR includes all possible generalizations, which we have shown to amount
in Fi+1 to the the best abstraction of δ(Fi) in the abstract domain M[Bk] (Lemma 5.3.1). Its
frames are thus the strongest (contain fewest states) that satisfy all the properties of frames
listed in §5.1.1—the standard ones as well as the monotone span of backward reachable states:

Lemma 5.8.1. The frames F0,F1, . . . of Λ-PDR are the least (w.r.t. =⇒) s.t. for every i,
1. Init =⇒ F0, 2. Fi =⇒ Fi+1, 3. δ(Fi) =⇒ Fi+1, and 5. Fi ∈ MSpan(Bk).

Proof. That the frames of Λ-PDR satisfy the properties is immediate from the relationship
F0 = Init, Fi+1 = αBk(δ(Fi)). Minimality is from best abstraction (Lemma 5.3.1) and induction
on i = 0, 1, . . .: let F̃0, F̃1, . . . another sequence that satisfies the properties. By property 1,
Init = F0 =⇒ F̃0. For the step, assume that Fi =⇒ F̃i. Then from properties 2 and 3,
δ(F̃i) =⇒ F̃i+1, and in particular also δ(Fi) =⇒ F̃i+1. From property 5, F̃i+1 ∈ MSpan(Bk).
Putting these together, Lemma 5.3.1 implies that Fi+1 = αBk(δ(Fi)) =⇒ F̃i+1, as required.

In contrast to Λ-PDR, standard PDR “samples” counterexamples and generalizations, and
it does not produce in Fpdr

i+1 the least abstraction of δ(Fpdr
i ). Its frames are nevertheless

characterized as abstractions (not necessarily the least abstraction) in the same domain:

Lemma 5.8.2. At any point during the execution of PDR(Init, δ,Bad) (Alg. 1) when it has at
most N frames, Fpdr

i ∈ MSpan(BN ) for every 1 ≤ i ≤ N .

Proof. In a call to block(σb, i+ 1), it holds σb ∈ BN−i, by induction on the recursive calls: The
first call block(σb, N + 1) in line 8 has σb ∈ B0 = Bad, by line 7. In each recursive call from
(σb, i+ 1) to (σ, i+ 1− 1), in line 15 the new counterexample σ reaches the counterexample in
the parent call σb in one step, so σb ∈ BN−i implies σ ∈ BN−i+1 = BN−(i−1) as required. Since
BN−i ⊆ BN , this ensures that σb ∈ BN in every call to block(σb, i+ 1).

Hence, when the algorithm strengthens Fpdr
i in line 20, it is always with a clause c such

that σb 6|= c where σb ∈ BN . This implies that Fpdr
i ∈ MSpan(BN ) (see §2.4.3), completing the

proof.

In particular, this shows that PDR overapproximates the frames that Λ-PDR generates:

Corollary 5.8.3. At any point during the execution of PDR(Init, δ,Bad) (Alg. 1) when it has
at most N frames, its i’th frame, Fpdr

i , satisfies Fi =⇒ Fpdr
i , where Fi is the i’th frame of

Λ-PDR(Init, δ,Bad, N) (Alg. 18).

Proof. The frames of Alg. 1 satisfy the properties in the premise of Lemma 5.8.1—all are
standard except for the one shown in Lemma 5.8.2.

A more direct argument, outlined in §5.1.3, is that every lemma that PDR learns is also a
lemma that Λ-PDR includes in its frames. Formally, to strengthen Fpdr

i , c must block some



146 Chapter 5. The Monotone Theory for Property-Directed Reachability

σb ∈ Bn and after c is conjoined to the previous frame Fpdr
i−1 we must have δ(Fpdr

i−1) =⇒ c;
the latter implies, using an induction hypothesis that Fi−1 =⇒ Fpdr

i−1, that also δ(Fi−1) =⇒ c.
Λ-PDR conjoins all such clauses; thus whenever c is conjoined to Fpdr

i , it is also conjoined to
Fi.

In other words, PDR’s frame also constitute some sort of search in the abstract domain
M[BN ] (though in a complex manner, refining previous frame etc.), and its frames always
generate at least as much overapproximation as Λ-PDR. Hence, our results that show significant
overapproximation in Λ-PDR translate to PDR as well.

Still, the difference between the algorithms is significant—PDR’s frames don’t employ the
best abstraction in this domain. How does this benefit PDR? We show two ways. First,
computing all generalizations may be inefficient. Second, it may not be desirable—it could lead
to too precise abstraction and slow convergence.
Inefficient frame size. Consider a system over n variables x1, . . . , xn, with Init = x1 =
. . . = xn = 0, Bad = x1 = . . . = xn = 1, and δ that non-deterministically chooses some i 6= j

with xi = xj = 0 and sets xi ← 1.
We start with the analysis of Λ-PDR. In this example, Bk = 1 . . . 1 (for every k). We

argue that Fi is exactly the set Ri of states reachable in at most i steps, which is the set of
states with at most i bits 1, denoted {x | #1(x) ≤ i}. This can be seen by induction: initially,
this holds for F0 = Init = {0 . . . 0}. In each step δ(Fi) = Ri ∪ {x | #1(x) = i+ 1}. Then
Fi+1 = MHullBk(δ(Fi)) = M1...1(δ(Fi)) = Ri ∪M1...1({x | #1(x) = i+ 1}) = Ri+1, because
M1...1({x | #1(x) = i+ 1}) adds states that are obtained from a state with #1(x) = i+ 1 by
flipping 1’s to 0’s, resulting in states with smaller values of #1(x) that are already included in
Ri.

Unfortunately, the set Rbn/2c+1 is not expressible in polynomial-size CNF nor DNF.14 This
means that some of Λ-PDR’s frames need an exponential number of clauses, and so construct an
exponential number of generalizations of the bad state. Even an alternative DNF computation
(based on Lemma 2.4.7) would not fare better.

In contrast, Fpdr
i consists of a single clause blocking the bad state, which is short.

Slow convergence. Consider a counter over x = xn, xn−1, . . . , x0 with Init = (x = 0 . . . 0),
Bad = (x = 1 . . . 1), and δ that increments the counter except for when x = 1 . . . 10 which skips
the bad state and wraps-around to 0 . . . 0.

We start with the analysis of Λ-PDR. Similar to the previous example, Bk = 1 . . . 1 (for
every k) and Fi = Ri, except that Ri is now the set of states x ≤ i, because δ(Fi) always adds
the state x = i + 1, and its 1 . . . 1-monotonization adds only states with smaller values of x
which are already included in Ri (the derivation is similar to the previous example).

Therefore, the frames Fi = {x : x ≤ i} do not converge until i = 2n − 1, which means that
Λ-PDR converges after an exponential number of frames.

14It is the majority function, which is not in AC0 [Hås86], a complexity class that includes poly-size CNF and
DNF.
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In contrast, in this example, PDR always converges in a linear number of frames. The proof
uses the fact from Lemma 5.8.2 that the frames of PDR are (1 . . . 1)-monotone, and that Fpdr

i

is always exactly one clause, because it blocks the single backward reachable state using a single
lemma. Since Fpdr

i =⇒ Fpdr
i+1, and F

pdr
i is 1...1-monotone, the clause that is Fpdr

i+1 must be a
syntactic subset of the clause that is Fpdr

i [Qui54]. Until they converge, the difference between
two successive frames must be that some literals are omitted from the clause, which can happen
at most n times.

5.9 Related Work for Chapter 5

PDR as abstract interpretation. This work is not the first to study the relation between
PDR and abstract interpretation. Rinetzky and Shoham [RS16] prove that the reachable
configurations of PDR are in simulation with the reachable states of a non-standard backward
trace semantics. Their work studies standard PDR as non-standard abstract interpretation,
whereas we study non-standard PDR as standard abstract interpretation (in a new domain); our
domain abstracts the simpler collecting states semantics with standard forward iterations. Our
work emphasizes the overapproxmation inherent in the abstraction, where, in particular, the
abstraction forces overapproximation in the sequence of frames, whereas Rinetzky and Shoham’s
property-guided Cartesian trace semantics domain is precise enough to express any sequence
of frames that satisfy properties 1–4 from §5.1.1. In contrast, adding property 5 characterizes
Λ-PDR as Kleene iterations in our M[Bk] domain.
Abstract transition systems. Dams et al. [DGG97] construct, from a transition system
and a Galois connection, abstract transition systems that preserve safety and other temporal
properties. These are defined over a state space of abstract elements (e.g., formulas in the case of
a logical domain), forming abstract edges between abstract elements through ∃∃ or ∀∃ relations
of original transitions between the concretizations. It is important for our diameter bounds
from the DNF representation of the abstract (hyper)transition system that it is defined over
the original state space (Defs. 5.4.5 and 5.5.7), which is possible due to the special structure of
M[B] (see Lemmas 5.4.7 and 5.5.8). In that respect our abstract transition systems are closer
to monotonic abstraction in well-structured transition systems by Abdulla et al. [ADHR09],
the abstract transition systems for universally-quantified uninterpreted domains by Padon et
al. [PIS+16], and the surjective abstraction games of Fecher et al. [FH07].
Diameter bounds. Diameter bounds have been studied in the context of completeness
thresholds for bounded model checking [BCCZ99, KS03]. The recurrence diameter [BCC+99,
KS03], the longest loop-free path, was studied as a more easily-computable upper bound on the
diameter. In our setting, this measure cannot be reduced by the abstraction, which only adds
transitions. There are also works that encode the completeness threshold assumption as another
verification condition [see DKW08, §IV.D]. Another line of work computes diameter bounds by
a composition of diameter bounds of subsystems formed by separating dependencies between
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variables in the system’s actions [ANG18, BKA02, RG13]. Existing works have considered
guarded-update actions, in which variables are either modified to a constant value or remain
unchanged; this is not directly applicable to the actions that arise in our abstract transition
systems, where monotonization in effect “havocs” variables. Havocked variables are different
because in a transition, they can change, but not necessarily; weaker notions of dependence to
capture this may be interesting in future work. We are not aware of a previous application of
the |δ|dnf diameter bound (Lemma 5.4.9). This bound is never worsened by monotonization, as
|M...(δ)|dnf ≤ |δ|dnf [Bsh95, and a corollary of Lemma 2.4.7], and can be exponentially smaller,
as e.g. in §5.1.6. The diameter bounds by Konnov et al. [KLVW17, KVW14] share with our
work the motivation of analyzing the diameter of abstractions of the original system. They rely
on the special structure of counter abstractions of fault-tolerant distributed systems to apply
movers [Lip75] and acceleration.
Complexity of PDR. The work by Seufert and Scholl [SS17] includes a complexity analysis
of all executions of PDR on the case of two synchronized n-bit counters, where PDR requires an
exponential number of SAT calls (this also follows from the fact that the only CNF invariant is
exponentially-large) but an enhanced time-dual version of it converges in one frame. Our earlier
results in the thesis for maximal transition systems with monotone invariants (Corollary 3.5.8)
also involved convergence in essentially one frame. In §5.8 we go beyond this with an analysis of
standard PDR on a simple example where convergence requires multiple frames. Our analysis
of Λ-PDR centered on the number of frames, not the complexity of constructing them, which
is an interesting direction for future work. Although, in the spirit of §5.4, we can bound
|Fi|dnf ≤ |δ

]|dnf =
∣∣∣M(Ref(b),b)(δ)

∣∣∣
dnf

(when b = Bk is a cube), the original Λ-algorithm’s
complexity analysis [Bsh95] for computingMb(ϕ) depends on |ϕ|dnf , not |Mb(ϕ)|dnf , which in
our setting is the difference between the concrete and the significantly reduced abstract diameter.
Complexity of abstract interpretation. The efficiency of the abstract transformers is
crucial to the overall success of abstract interpretation, which is often at odds with the domain
accuracy; a famous example is the octagon abstract domain [Min06], whose motivation is the
prohibitive cost of the expressive polyhedra domain [CH78]. We provide a way to compute
abstract transformers in the monotone span domain that is efficient in terms of the DNF size of
the result (see also Remark 5.6.6). The computation of the abstract transformer in Alg. 20 is
inspired by works in symbolic abstraction [RSY04, TLLR15] about finding representations of the
best abstract transformer, rather than computing it anew per input [ELS+11, TER12, RT16].
The monotone theory in invariant inference. Previous applications of the monotone
theory in invariant inference are discussed in the related work for Chapter 4 (§4.8)
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Conclusion

To paraphrase Valiant [Val84], learning theory became possible once precise models became
available for modeling the commonplace phenomenon of learning—good models which were
interesting to study in their own sake, that promised to be relevant to learning in practice, and
that were able to shed light also on the limits of what can be learned. This thesis was a first
attempt to achieve a similar feat for the (somewhat less commonplace) phenomenon of invariant
inference.

Motivated by the rise of SAT-based invariant inference algorithms, we have attempted to
elucidate some of the principles on which they are based by a theoretical complexity analysis of
algorithms attempting to infer invariants of polynomial size. In Chapter 3 we developed learning
models for invariant inference. Using these we have demonstrated the inherent hardness of the
problem and that it is harder than classical learning with queries, which in particular highlights
the ambiguity of counterexamples to induction, which has not been formally proven established
before. The analysis of different inference models also led us to a surprising result about the
power of rich queries for the success of invariant inference algorithms, and the importance of
learning from valid (unsat) queries.

At the heart of our analysis in Chapter 3 lies the observation that many interesting SAT-
based algorithms can be cast in a black-box model. One avenue for further research is an
information-based analysis of black-box models extended with white-box capabilities, e.g. by
investigating syntactical conditions on the transition relation that simplify generalization. This
is also an interesting question in practice: what additional whitebox analyses can be beneficially
integrated with the largely black-box approaches of state-of-the-art inference algorithms?

In Chapter 4 we applied ideas from exact concept learning to understand the behavior of
interpolation-based invariant inference, achieving the first polynomial complexity result with
access to a SAT oracle for such algorithms, and we extended them to algorithms that can
infer in a provably-efficient manner increasingly expressive syntactic classes of invariants. The
ability to transfer algorithmic ideas between exact concept learning and invariant inference,
and recent results in inferring quantified invariants and invariants over interesting theories [e.g.
KBI+17, GSM16, GNMR16, FWSS19, KPIA20, DDLM13, SA16], suggest that there may be
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an opportunity to develop exact concept learning for infinite domains, which, to the best of our
knowledge, is less explored [see e.g. AAP+13, Ari04]. Conversely, developing exact learning for
richer logics can reap benefits in understanding the complexity of invariant inference algorithms
in such domains.

The focus of Chapter 4 in on worst case complexity. We strived for the weakest possible
conditions, so that the results would be applicable to as many programs as possible. We
believe that the fence condition is the weakest reasonable condition in this setting—we have
not found a graceful way to ensure that the bad examples on the boundary are always avoided
(see Remark 4.3.4). To achieve theoretical guarantees for programs that do not satisfy the fence
condition, it may be useful to go beyond worst case—for example, analyzing convergence with
high probability. This is an exciting direction for future work, in part due to the potential
connections with techniques in learning theory that are based on the analysis of Boolean
functions [e.g. O’D14].

Chapter 5 targets property-directed reachability, and distills a previously unknown principle
of this algorithmic approach. Through Λ-PDR and its analysis based on the monotone theory
from exact learning, we have shown that PDR overapproximates an abstract interpretation
process in a new logical abstract domain. We have further shown how this abstraction achieves
a significantly more effective forward reachability exploration than approaches that use exact
post-image computations or bounded unrollings, and how this can partially be explained through
the difference between diameter bounds between the original system and its abstraction. To the
author, rationalizing property-directed reachability was a long-held aspiration (if not a personal
vendetta) since working on an implementation of the algorithm in [FFL+17].

In future work, it will be interesting to understand the mechanisms by which PDR deviates
from naive backward reachability, avoiding the pitfall in the other direction, of overapproximating
too much. We hope that this will eventually lead to efficient complexity results for PDR itself.
It will also be interesting to study variants of PDR that target infinite-state using richer logics
beyond propositional logic. Our observation that there is inherent abstraction in PDR due
to states it cannot exclude from a frame may also be relevant in such settings. Here too this
could have interesting implications back in exact concept learning, requiring extensions of the
monotone theory to other logics, which to our knowledge have not been attempted.

We are hopeful that the new view of PDR we provide will inspire practical variations of
PDR, improving lemma generation or frame maintenance; that rethinking the principles of PDR
can lead to transcending the state-of-the-art. This remains to be seen.

There are several high-level potential takeaways that can be learned from the results in this
thesis.

• Learning invariants: Learning theory can be an invaluable tool, not only to create new
invariant inference algorithms, but also to shed light on existing, longstanding ones (§§4.5
and 5.2).

• Space & time: Invariant inference is typically harder than classical learning, because it
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needs not only to accommodate complex syntactic forms of invariants, but also navigate
the program’s behavior over time and complex reachability patterns (§3.6).

• Which invariants: It is possible to analyze invariant inference algorithms in a way that
shows that they consistently converge to an inductive invariant which is not necessarily
the least- or greatest-fixed point (§4.3.2 and Thm. 5.7.2).

• Syntactic structure: Existing and new invariant inference algorithms are guaranteed
to efficiently infer an inductive invariant of complex syntactic structure, using techniques
and ideas inspired by exact concept learning (§§4.3.3 and 4.6).

• Overapproximation: Repeated generalization is used by invariant inference to obtain
effective overapproximation, and that can be distilled—at least in part—to abstract
interpretation that is inextricable from the original approach (§5.3).

• SAT queries: Richer SAT queries can enable more powerful algorithms that explore the
state space in more sophisticated ways (§3.5).

More broadly, this thesis demonstrates that there is still much to understand about the
invariant inference problem, and invariant inference algorithms, using a theoretical toolkit.
We believe that additional research in this spirit would not only further illuminate existing
verification techniques, but can also give rise to entirely new verification algorithms. By
leveraging more advanced classical learning and innovative computational complexity results,
the verification algorithms of the future may be transformative to the verification practice by
converging to desirable invariants of richer syntactic forms and with more intricate reachability
patterns, and at same time have characteristic successes and limitations that are well-understood,
thereby guiding verification practitioners when they attempt to prove the correctness of the
most challenging hardware and software systems. Such research may also better explain the
limitations of fully automatic verification, in a way that could be used to make the most of
automation in partly-automatic verification.

Finally, we would like to describe a few well-defined technical questions that arise from this
thesis but remain open.
Open question: Lower bounds for polynomial-length transition relations. In
our definitions in Chapter 3, the complexity of a black-box query-based inference algorithm
(Def. 3.3.5) is a function of the target invariant length derived from the vocabulary size, and does
not depend on the length of the representation of the transition relation (which the inference
algorithm cannot access directly).

Can inference algorithms utilize an assumption that the transition relation can be expressed
by formulas of polynomial size? Formally, this asks for an analysis of the query complexity
as it depends also on |δ| in addition to |Σ|. It turns out that in this case the algorithm can
“breach” the black-box definition, (concept-) learn the transition relation formula itself, and then
compute an inductive invariant without additional queries.
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Lemma 6.0.1. There exists a computationally unrestricted Hoare-query inference algorithm AH

with query complexity polynomial in |Σ|, |TS| for the class of transition systems PΣP2
(§3.4.1).

Proof. Using halving/majority vote [BF72, Ang87b, Lit87] and equivalence queries to the
transition relation; see the appendix of [FISS20].

However, we conjecture that this is inherently possible only due to the use of exponentially-
long queries. This is related to the open question in exact concept learning of whether a
membership and polynomially-long equivalence queries can efficiently identify general DNF
formulas.

Conjecture 6.0.2. Every Hoare-query inference algorithm AH, even computationally-
unrestricted, querying on formulas polynomial in |Σ|+ |TS|, for the class of transition systems
PΣP2

(§3.4.1) and and for any class of target invariants L s.t. Mon-CNFn ⊆ L, has query
complexity superpolynomial in |Σ|+ |TS|.

If Conjecture 6.0.2 is true, a result analogous to Thm. 3.4.1 can be obtained, obtaining
superpolynomial lower bounds not only in |Σ| but also in |TS|.

(The original Thm. 3.4.1 is not trivial even without this, because although the set class of
all transition systems is doubly-exponential, the class of polynomially-long inductive invariants
is only exponentially large, not doubly-exponential. The exponential lower bound we obtain
in Thm. 3.5.3 is already exponential also in |TS|—and this holds even when candidates can
be exponentially long—as the transition relations in ME are all of size polynomial in their
vocabulary.)
Open question: Bounded model checking and Hoare queries. The algorithms we study
in Chapter 4 fall into the black-box model of extended Hoare queries (§3.4.2). Can efficiency
results similar to e.g. Thm. 4.3.5 can be obtained in the (non-extended) Hoare-query model—
without unrollings for BMC? We believe that the answer is negative. In particular, we conjecture
that the extended Hoare-query model is strictly stronger than the standard Hoare-query model:

Conjecture 6.0.3. There exists a class of transition systems for which

• polynomial-length invariant inference has polynomial query complexity in the extended
Hoare-query model, but

• every algorithm in the ( standard) Hoare-query model requires an exponential number of
queries.

A precursor is the conjecture that bounded model checking cannot be implemented in general
with checks of reachability in a single step:

Conjecture 6.0.4. There exists a class of transition systems for which, given k and a transition
system (Init, δ,Bad) in the class, it is impossible to answer whether δk(Init) ∩ Bad ?= ∅ with
number of Hoare-queries that is polynomial in n = |Σ| and k.
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This is also interesting because PDR is sometimes advocated as a bug-finding procedure,
and it uses only standard Hoare-queries.
Open question: Impossibility results under the fence condition. In Chapter 4 we
introduced the fence condition as a means to overcome the impossibility results and enable
efficient inference of invariants of certain forms. Still, we had to take great care in our inference
algorithms, and our translations from exact concept learning to invariant inference, to use
only queries of specific one-sided forms, while we required a stronger condition to allow the
implementation in invariant inference of every exact concept learning algorithm. It seems that
this is necessary, but we have not proved it:

Conjecture 6.0.5. There exists a class of transition systems and a class of polynomial-length
invariants such that every safe transition system is known to have an inductive invariant from
the class that satisfies the fence condition, and yet every invariant inference algorithm requires a
super-exponential number of queries to solve this class.

Open question: Diameter bounds for abstract transition systems. In Chapter 5
we derived bounds on the number of frames in Λ-PDR by bounding the diameter of a the
“abstract” transition system (§5.4). We bounded the diameter of (Init, δ) by |δ|dnf ; however,
this is sometimes sensitive to small changes in the transition relation that do not change the
diameter of either the original or abstract transition system (see Examples 5.4.4 and 5.4.10).
We conjecture that it is possible to find a diameter bound that favors abstraction (even though
in general the diameter of the abstract system might be larger than that of the original), and
extensive w.r.t. exact reachability, meaning that it is not sensitive to changes that do not alter
exact reachability

Conjecture 6.0.6. There is a “reasonable” function bound that, given a transition system
(Init, δ), returns a valid bound on the diameter of (Init, δ), which is

• favors abstraction: bound(Init], δ]) ≤ bound(Init, δ), and

• extensive: bound(Init1, δ1) = bound(Init2, δ2) if ∀i. δ1
Init1(i) = δ2

Init2(i).
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 תקציר
 

היא גישה בולטת להוכחת נכונות ( SATפותרני ספיקות )ב שימושעל  המבוססתהסקת אינווריאנטות 

 שאינם, אך עשיתמבחינה מיעילים עם אלגוריתמים  ,של תוכניות (safetyאוטומטית של תכונות בטיחות )

הסקת ל SATמבוססי ם לגבי אלגוריתמישאלות קונספטואליות בוחנת מבחינה תיאורטית. תזה זה מובנים 

, בהשראת ובהשפעת תורת הלמידה ך מחקר תיאורטי של הסיבוכיות של אלגוריתמים אלודראינווריאנטות 

(learning theory התוצאות מטילות אור על העקרונות .) מבוססי אלגוריתמים מודרניים שלSAT  להסקת

 .אינווריאנטות

אשר יכולים  אינדוקטיביותלמידת אינווריאנטות תזה זו מפתחת מודלים מבוססי שאילתות שמתאימים ל

שאילתות  באמצעותשל למידת אינווריאנטות יים בתחום; משווה בין הקשיות מרכזלמדל אלגוריתמים 

על הסקת  ; מוכיחה חסמים תחתונים מבוססי אינפורמציהללמידה קלאסית באמצעות שאילתות

מודלים שפותחו קודם  הכח של תות עשירות לעומתח של מודלים בעלי שאילו; ובוחנת את הכאינווריאנטות

הסקת אלגוריתם גרסה של של  סיבוכיותה ם עליונים עלתזה זו, בנוסף, מפתחת חסמילכן בספרות. 

אינווריאנטות, מחלקה עשירה של בהסקת ( interpolantsאינווריאנטות באמצעות אינטרפולנטים )

מפתחת אלגוריתמים חדשים עם תוצאות סיבוכיות יעילה אף ובאמצעות רעיונות מלמידה קלאסית 

(. בנוסף, decision treesנטות, כולל עצי החלטה )ניינות אף יותר של אינווריאמעסינטקטיות למחלקות 

קור ללמידה, תזה זו ממצבת שפותחה במ ישל בשות( monotone theory)צעות התורה המונוטונית באמ

( כסוג של אינטרפטציה property-directed reachabilityתכונה )-מונחיתאת אלגוריתם ישיגות 

מסבירה חלקית בתחום אבסטרקטי חדש, ועל ידי כך ( של תוכניות abstract interpretationאבסטרקטית )

 באלגוריתם זה.( מושג overapproximation)יתר -איך קירוב
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