
Tel Aviv University
Raymond and Beverly Sackler Faculty of Exact Sciences

The Blavatnik School of Computer Science

BOUNDED QUANTIFIER INSTANTIATION FOR CHECKING

INDUCTIVE INVARIANTS

by

Yotam M. Y. Feldman

under the supervision of

Prof. Mooly Sagiv
and

Dr. Sharon Shoham

Thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science

2017

ii

Abstract

Bounded Quantifier Instantiation for Checking Inductive Invariants

Yotam M. Y. Feldman

Master of Science

School of Computer Science

Tel Aviv University

We consider the problem of checking whether a proposed invariant ϕ expressed in first-order logic with

quantifier alternation is inductive, i.e. preserved by a piece of code. While the problem is undecidable,

modern SMT solvers can sometimes solve it automatically. However they employ powerful quantifier

instantiation methods that may diverge, especially when ϕ is not preserved. A notable difficulty arises

due to counterexamples of infinite size.

This thesis studies Bounded-Horizon instantiation, a natural method for guaranteeing the termina-

tion of SMT solvers. The method bounds the depth of terms used in the quantifier instantiation process.

We show that this method is surprisingly powerful for checking quantified invariants in uninterpreted

domains. Furthermore, by producing partial models it can help the user diagnose the case when ϕ is not

inductive, especially when the underlying reason is the existence of infinite counterexamples.

Our main technical result is that Bounded-Horizon is at least as powerful as instrumentation, which

is a manual method to guarantee convergence of the solver by modifying the program so that it admits a

purely universal invariant. We show that with a bound of 1 we can simulate a natural class of instrumen-

tations, without the need to modify the code and in a fully automatic way. We also report on a prototype

implementation on top of Z3, which we used to verify several examples by Bounded-Horizon of bound

1.

iii

iv

To my parents.

v

vi

Acknowledgements

I would like to extend my gratitude to those without whom this thesis would not have come to be.

To my supervisor, Prof. Mooly Sagiv, whose vitality, expertise and faith in me made the difference

for this work. I admire Prof. Sagiv’s approach to doing research, as well as to any other task in hand.

To my supervisor, Dr. Sharon Shoham, for her invaluable guidance and constant support. Her strive

for clarity, professionalism and kindness are remarkable.

To Prof. Neil Immerman, for a very special and highly enjoyable opportunity to work with, and

learn from, an extraordinay expert.

To Dr. Nikolaj Bjørner, for constructive discussions, help with SMT solving internals, and much

appreciated encouragement.

To Oded Padon, for his support, and for always challenging and seeking new directions, in hope of

further fruitful collaboration.

To Kalev Alpernas, Asya Frumkin, Elazar Gershuni, Oded Padon, Hila Peleg and Orr Tamir, for

support, feedback, and hours of grace.

To my family and friends, who had to endure a never-ending season of deadlines, provided relief,

and made everything worthwile.

And to my parents, who brought me thus far.

vii

viii

Contents

1 Introduction 1

2 Preliminaries 5

3 Undecidability 7
3.1 Inductiveness Over Finite Structures . 8

3.2 Inductiveness Over General Structures . 10

4 Bounded-Horizon 15

5 Power of Bounded-Horizon for Proving Inductiveness 21
5.1 Instrumentation . 21

5.2 From Instrumentation to Bounded-Horizon . 23

5.2.1 Power for ∀∗∃∗ Invariants . 24

5.2.2 Generalization to 1-Alternation Invariants . 28

6 Instrumentation for High Depth Instantiations 31

7 Partial Models for Understanding Non-Inductiveness 35

8 Implementation and Initial Evaluation 39

9 Related Work 41

10 Conclusion 43

Bibliography 43

ix

x

Chapter 1

Introduction

A preliminary version of this work will appear in the International Conference on Tools and Algorithms

for the Construction and Analysis of Systems (TACAS), 2017 [FPI+17].

This thesis addresses a fundamental problem in automatic program verification: how to prove that

a piece of code preserves a given invariant. In Floyd-Hoare style verification this means that we want

to automatically prove the validity of the Hoare triple {P}C{P} where P is an assertion and C is

a command. Alternatively, this can be shown by proving the unsatisfiability of the formula P (V) ∧
δ(V, V ′)∧¬P (V ′) (the verification condition) whereP (V) denotes the assertionP before the command,

P (V ′) denotes the assertion P after the command, and δ(V, V ′) is a two-vocabulary formula expressing

the meaning of the command C as a transition relation between pre- and post-states. When C is a loop

body, such a P is an inductive invariant and can be used to prove safety properties of the loop (if it also

holds initially and implies the desired property).

For programs with infinite state space, proving the validity of {P}C{P} is generally undecidable

even when C does not include loops. Indeed, existing SMT solvers can diverge even for simple asser-

tions and simple commands. Recent attempts to apply program verification to prove the correctness of

critical system’s design and code [HHK+15] identify this as the main hurdle for using program verifi-

cation.

The difficulty is rooted in powerful constructs used in SMT-based verification of interesting pro-

grams. Prominent among these constructs are arithmetic and other program operations modeled using

background theories, and logical quantifiers. In this thesis we target the verification of applications in

which the problem can be modeled without interpreted theories. This is in line with recent works that

show that although reasoning about arithmetic is crucial for low-level code, in many cases the verifica-

tion of high-level programs and designs can be performed by reasoning about quantification in uninter-

preted theories. Specifically, the decidable Effectively Propositional logic (EPR) has been successfully

applied to domains such as linked-list manipulation [IBI+13], Software-Defined Networks [BBG+14]

and some distributed protocols [PMP+16]. Without interpreted theories it remains to address the com-

plications induced by the use of quantifier alternation.

In the presence of quantifier alternation, the solver’s ability to check assertions is hindered by the

following issues: (1) an infinite search space of proofs that needs to be explored for correct assertions,

1

2 CHAPTER 1. INTRODUCTION

a problem which is sometimes manifested in matching loops [DNS05], and (2) a difficulty of finding

counterexamples for invalid assertions, notably when counterexamples may be of infinite size. Cur-

rent SMT techniques often fail to produce models of satisfiable quantified formulas [GM09, RTG+13],

which is somewhat unfortunate since one of the main values of program verification is early detection

of flaws in designs and programs. The existence of infinite counterexamples is a major complication

as they are difficult to find. In uninterpreted domains, infinite counterexamples usually do not indicate

a real violation of the verification conditions and are counterintuitive to programmers, yet render as-

sertions invalid in the context of general first-order logic (on which SMT proof techniques are based).

Hence infinite counter-models pose a real problem in the verification process.

Previous work on EPR [IBI+13, BBG+14, PMP+16] used universally quantified invariants with

programs expressed by ∃∗∀∗ formulas1, in which case checking inductive invariants is decidable, hence

problems (1) and (2) do not occur. In particular, EPR enjoys the finite-model property and so counterex-

amples are of finite size. EPR programs are in fact Turing-complete [PMP+16], but universal invariants

are not always sufficient to express the required program properties.

For example, [HHK+15] describes a client server scenario where the invariant is “For every reply

message sent by the server, there exists a corresponding request message sent by a client”. (See Exam-

ple 1 for further details.) This invariant is ∀∗∃∗ and thus leads to verification conditions with quantifier

alternation. This kind of quantifier alternation may lead to divergence of the solver as problems (1) and

(2) re-emerge.

The current work aims to expand the applicability of the EPR-based verification approach to invari-

ants of more complex quantification. We focus on the class ∀∗∃∗ invariants, which arise in interesting

programs. As we show, checking inductiveness of invariants in this class is undecidable. We thus study

problems (1),(2) above for this setting using the notion of bounded quantifier instantiations, which we

term Bounded-Horizon.

Main results. This thesis explores the utility of limited quantifier instantiations for checking ∀∗∃∗invariants,

and for dealing with the problems that arise from quantifier alternation: divergence of the proof search

and infinite counter-models.

We consider instantiations that are bounded in depth of terms. Bounded instantiations trivially pre-

vent divergence while maintaining soundness. Although for a given bound the technique is not complete,

i.e. unable to prove every correct invariant, we provide completeness guarantees by comparing bounded

instantiations to the method of instrumentation, a powerful technique implicitly employed in previous

works [IBI+13, KBI+15, PMP+16]. Instrumentation tackles a ∀∗∃∗invariant by transforming the pro-

gram in a way that allows the invariant to be expressed in a universal form, and, accordingly, makes the

verification conditions fall in EPR. We show that for invariants that can be proven using a typical form

of instrumentation, bounded instantiations of a small bound are also complete. Namely, they are suffi-

ciently powerful to prove the original program without modifications and in a fully automatic way. This

is encouraging since instrumentation is labor-intensive and error-prone while bounded instantiations are

1Automated tools that extract EPR transition relation from code exist for C code manipulating linked lists [IBI+13,
IBR+14, KBI+15] and for the modeling language RML [PMP+16] which is Turing-complete.

3

completely automatic.

This result suggests that in many cases correct ∀∗∃∗invariants of EPR programs can be proven using

a simple proof technique. Typically in such cases tools such as Z3 will also manage to automatically

prove the verification conditions. However, bounded instantiations guarantee termination a-priori even

when the invariant is not correct. When it terminates, the procedure returns a logical structure which is

not necessarily a true counterexample but “approximates” it, as it satisfies all the bounded instantiations.

Interestingly, this suggests a way to overcome the problem of infinite models. This problem arises when

the user provides an invariant that is correct for finite models but is incorrect in general first-order logic.

In such cases, state-of-the-art SMT solvers typically produce “unknown” or timeout since they fail to

find infinite models. Thus the user is left with very little aid from the solver when attempting to make

progress and successfully verify the program. In contrast, bounded quantifier instantiation can be used

to find finite models with increasing sizes, potentially indicating the existence of an infinite model, and

provide hints as to the source of the error. This information allows the user to modify the program or the

invariant to exclude the problematic models. We demonstrate this approach on a real example in which

such a scenario occurred in one of our verification attempts. We show that the provided models assist in

identifying and fixing the error, allowing the user to successfully verify the program.

We also implemented a prototype tool that performs bounded instantiations of bound 1, and used it

to verify several distributed protocols and heap manipulating programs. The implementation efficiently

reduces the problem of checking inductiveness with bound 1 to a Z3 satisfiability check on which the

solver always terminates, thereby taking advantage of Z3’s instantiation techniques while guaranteeing

termination.

Outline.. The rest of the thesis is organized as follows: Chapter 2 provides some background and

presents required notation. Chapter 3 sets the scene by showing the undecidability of the problem

of checking inductiveness. In Chapter 4 we define the Bounded-Horizon algorithm and discuss its

basic properties. Chapter 5 defines the concept of instrumentation as used in this work, and shows

that Bounded-Horizon with a low bound is at least as powerful. Chapter 6 relates instrumentation

to bounded instantiation in the converse direction, showing that other forms of instrumentation can

simulate quantifier instantiation of higher depth. In Chapter 7 we show how bounded instantiations can

be used to tackle the problem of infinite counterexamples to induction when the verification conditions

are not valid. Chapter 8 describes our implementation of Bounded-Horizon of bound 1, and provides

initial evaluation of its ability to prove some examples correct using bound 1. Chapter 9 discusses

related work, and Chapter 10 concludes.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

In this chapter we provide background and explain our notation. Σ will always denote a relational first-

order vocabulary, which may contain constant symbols, ci, and relation symbols, rj , but no function

symbols. For a formula ϕ we denote by const[ϕ] the set of constants that appear in ϕ. We write that

ϕ ∈ ∃∗(Σ) to mean that ϕ is an existential formula defined over vocabulary Σ. Similarly, the class

of universal formulas is denoted by ∀∗(Σ). We say that ϕ is quantifier-free, denoted ϕ ∈ QF(Σ) if

it contains no quantifiers, and that it is alternation free, denoted ϕ ∈ AF(Σ), if it can be written as a

Boolean combination of formulas in ∃∗(Σ). FOL(Σ) stands for arbitrary first-order formulas over Σ. A

sentence is a closed formula.

EPR. The effectively-propositional (EPR) fragment of first-order logic, also known as the Bernays-

Schönfinkel-Ramsey class, consists of ∃∗∀∗(Σ) sentences. Such sentences enjoy the small model prop-

erty, in fact a satisfiable EPR sentence has a model of size no larger than the number of its constants

plus existential quantifiers. Thus satisfiability of EPR sentences is decidable [Ram30].

EPR Transition Relation. We specify a transition relation via an EPR sentence, δ, over a vocabulary

Σ]Σ′ where Σ is a relational vocabulary used to describe the source state of a transition and Σ′ = {a′ |
a ∈ Σ} is used to describe the target state.

Inductive Invariants. A first-order sentence I over Σ is an inductive invariant for δ if I ∧ δ → I ′ is

valid, or, equivalently, if I ∧ δ ∧ ¬I ′ is unsatisfiable 1, where I ′ results from substituting every constant

and relation symbol in I by its primed version (i.e. I ′ ∈ FOL(Σ′)).

Counterexample to Induction. Given a first-order sentence I over Σ and transition relation δ (over

Σ] Σ′), a counterexample to induction is a structure A s.t. A |= I ∧ δ ∧ ¬I ′.

Skolemization. Let ϕ(z1, . . . , zn) ∈ FOL(Σ). The Skolemization of ϕ, denoted ϕS , is a universal

formula over Σ] ΣS , where ΣS consists of fresh constant symbols and function symbols, obtained

as follows. We first convert ϕ to negation normal form (NNF) using the standard rules. For every

existential quantifier ∃y that appears under the scope of the universal quantifiers ∀x1, . . . ,∀xm, we

introduce a fresh function symbol fy ∈ ΣS of arity n + m. We replace each bound occurrence of y

1In this thesis, unless otherwise stated, satisfiability and validity refer to general models and are not restricted to finite
models. Note that for EPR formulas, finite satisfiability and general satisfiability coincide.

5

6 CHAPTER 2. PRELIMINARIES

by fy(z1, . . . , zn, x1, . . . , xm), and remove the existential quantifier. If n + m = 0 (i.e., ϕ has no free

variables and ∃y does not appear in the scope of a universal quantifier) a fresh constant symbol is used

to replace y. It is well known that ϕS → ϕ is valid and ϕS and ϕ are equi-satisfiable.

Chapter 3

Undecidability

For a universal formula I ∈ ∀∗(Σ), the formula I ∧ δ ∧ ¬I ′ is in EPR (recall that δ is specified in

EPR). Hence, checking inductiveness amounts to checking unsatisfiability of an EPR formula, and is

therefore decidable. The same holds for I ∈ AF (Σ). However, this is no longer true when quantifier

alternation is introduced. For example, checking inductiveness of I ∈ ∀∗∃∗(Σ) amounts to checking

unsatisfiability of a formula in a fragment for which satisfiability is undecidable. In this chapter we show

that indeed checking inductiveness of ∀∗∃∗ formulas is undecidable, even when the transition relation

is restricted to EPR. The undecidability of the problem justifies sound but incomplete algorithms for

checking inductiveness, one of which is the Bounded-Horizon algorithm (defined in Chapter 4) which

we study in this thesis.

Finite and infinite structures. We begin by showing that the problem is undecidable when structures,

or program states, are assumed to be finite. This is the intention in most application domains [Imm99]

(including the examples in Chapter 8), especially when the program does not involve numerical compu-

tations. However, in this thesis we will mostly concern ourselves with the problem of checking induc-

tiveness when structures may also be infinite. This is because SMT-based deductive verification relies

on proof techniques from standard first-order logic, whose semantics is defined over general structures,

i.e. both finite and infinite. We thus show an undecidability result for this setting as well. It is interesting

to note that the discrepancy between the intended finiteness of the domain and the proof techniques, that

cannot incorporate this assumption, will re-emerge in Chapter 7.

We refer to inductiveness over finite structures when the validity of I ∧ δ → I ′ is over finite struc-

tures, and to inductiveness over general structures, when it is over both finite and infinite structures.

Scope of the proofs. The undecidability proofs of this chapter are by reductions from tiling problems.

Although technically it is also possible to prove the results by a trivial reduction from the satisfiability

of ∀∗∃∗ formulas (since invariants for the transition relation true necessarily are either valid or unsatis-

fiable), we believe that the proofs presented here demonstrate the intuition behind the inherent difficulty

of checking inductiveness of ∀∗∃∗ formulas in a more profound way.

To further provide intuition, in the proofs we prove the undecidability of a closely related problem,

7

8 CHAPTER 3. UNDECIDABILITY

that of checking inductive invariants for safety of transition systems. Given a transition relation δ (over

Σ]Σ′), a sentence ϕ0 (over Σ) describing the set of initial states and a sentence ϕP (over Σ) describing

the safety property, the problem is to check whether ϕ0 → I (initiation), I ∧ δ → I ′ (consecution),

and I → ϕP (safety) are valid (over finite or general structures). We will consider this problem when

I ∈ ∀∗∃∗, ϕ0 ∈ ∀∗, ϕP ∈ ∀∗. We will consider instances where ϕ0 → I and I → ϕP are valid, and

it only remains to check whether I ∧ δ → I ′ is valid. With these restrictions, the undecidability of the

problem of checking inductive invariants for safety of transition systems over general structures implies

the undecidability of the problem of checking inductiveness as used elsewhere in this thesis.

3.1 Inductiveness Over Finite Structures

Theorem 1. It is undecidable to check given I ∈ ∀∗∃∗ and δ ∈ EPR whether I is inductive for δ over

finite structures.

The proof is based on a reduction from a variant of tiling problems. We start by defining the specific

tiling problem used in the proof of this theorem:

Definition 1 ([IRR+04]). A halting tiling problem consists of a finite set of tiles T with designated tiles

Tstart, Thalt ∈ T , along with horizontal and vertical adjacency relations H,V ⊆ T × T . A solution

to a halting tiling problem is an arrangement of instances of the tiles in a (finite) rectangular grid

(“board”) such that the tile Tstart appears in the top left position, the tile Thalt appears in the end of a

line (the rightmost position in some line), and the adjacency relationshipsH,V are respected, meaning:

if a tile t2 appears immediately to the right of t1 it must hold that (t1, t2) ∈ H, and if a tile t2 appears

immediately under t1 it must hold that (t1, t2) ∈ V .

The problem is undecidable [IRR+04]. The proof is by a reduction from the halting problem:

given a Turing machine we can compute a halting-tiling problem such that the problem has a solution

iff the machine halts (on the empty input). In the reduction, rows represent the tape of the Turing

machine, as it evolves over time (computation steps). Additionally the tiles encode the location of the

head and the current (control) state of the machine. The horizontal and vertical constraints impose that

successive tiled rows correspond to a correct step of the machine, and their locality is due to the locality

of computation in a Turing machine. For further details see [BGG96].

Proof of Theorem 1. The proof is by a reduction from non-tilability in the halting tiling problem (Def-

inition 1) to the problem of checking inductive invariants for safety of a transition system over finite

structures where the initiation and safety requirements are valid. We think of the transition relation δ as

incrementally placing tiles in a rectangle.

Vocabulary. The two dimensions of the rectangle are encoded by two total orders: a horizontal order

and a vertical order. When the order is clear from the context, we use i − 1 as a shorthand for the

predecessor of i in the order, and 0 as a shorthand for the minimal element of the order. max is a

3.1. INDUCTIVENESS OVER FINITE STRUCTURES 9

constant axiomatized to be the maximal element of the horizontal order. We sometimes refer to the

lexicographic order of the vertical and horizontal orders as the board order.

The transition system keeps track of the last tile placed on the board by a relation M(i, j) which is

true only for the last updated location. Since the placing of tiles occurs in a sequential manner we also

call this board location maximal, and a location active if it comes before the maximal location in the

board order. The active area is the set of active locations.

The state of tiles on the board is represented by a set of relations {Tk}, one for each tile type,

encoding the locations on the board where a tile of type Tk is placed.

Transitions. In every step the transition system places a valid tile in the next board location. Placing

a tile of type Tnext on the board is done by an EPR update of the (two-vocabulary) form

∀i, j. M ′(i, j)↔ ((j = 0 ∧M(i− 1,max) ∨ (j 6= 0 ∧M(i, j − 1)))

∀i, j. T ′next(i, j)↔
(
Tnext(i, j) ∨M ′(i, j)

)
∀i, j. T ′k(i, j)↔ Tk(i, j) ∀Tk 6= Tnext.

(3.1)

The transition system nondeterministically chooses a tile type that respects the adjacency relationships.

These relationships are with the tile in the board location immediately before the current location in

the horizontal and vertical orders, which is EPR expressible. Because the set of tile types T is finite,

expressing the allowed tile types given the two adjacent locations can be done by a quantifier-free

formula. Overall the EPR formula describing a step of the system consists of a disjunction between

choices for Tnext. Each of these possible choices is described via a conjunction of the guard that makes

sure that it is legal to place Tnext, and a corresponding update to the relation that is a conjunction of the

formulas in Equation (3.1).

Initial state. Initially we have Tstart placed in the upper-left corner, so ∀i, j. Tstart(i, j)↔ (i = 0 ∧ j = 0)

and ∀i, j. ¬Tk(i, j) for every other tile type Tk.

Safety property. The safety property states that the special tile Thalt, is not placed on the board in the

end of a line (in a max position) in the active area.

Invariant. The invariant states that in the active area we have a valid partial tiling. We require this by

a ∀∗∃∗ formula saying that for every tile placed in an active location except for the maximal there is a

successor tile, placed in the next board location , that conforms to the (local) tiling rules.1 We also add

the safety property to the invariant.

Reduction argument. The invariant holds for the initial state, and trivially implies the safety property.

1We specify the requirement in this forward fashion, rather than requiring that every tile has a valid predecessor, in order
to reuse this invariant in the proof of Theorem 2.

10 CHAPTER 3. UNDECIDABILITY

If there exists a valid tiling with Thalt in the end of a line, a counterexample to induction can be

obtained by encoding this valid tiling in the post-state and that same tiling without the last Thalt tile in

the pre-state.

For the converse, assume that the invariant is not inductive over finite structures, i.e., there exists a

finite counterexample to induction, and show that there exists a solution to the halting tiling problem.

The reasoning is as follows: A finite state satisfying the invariant induces a valid finite partial tiling

(defined by the active area of the board in the structure). Since the transition system always places a tile

that respects the horizontal and vertical constraints, it is easy to see that a counterexample to induction

must place Thalt on the board in the end of a line, and that this also induces a valid partial finite tiling

in the post-state. Thus a finite counterexample to induction implies the existence of a valid finite tiling

with Thalt in the end of a line, which is a solution to the halting tiling problem.

Thus the invariant is inductive iff the halting tiling problem does not have a solution.

3.2 Inductiveness Over General Structures

Theorem 2. It is undecidable to check given I ∈ ∀∗∃∗ and δ ∈ EPR whether I is inductive for δ over

general (finite and infinite) structures.

The proof is based on a reduction from a variant of tiling problems. We start by defining the specific

tiling problem used in the proof of this theorem:

Definition 2 ([BGG96]). An infinite-tiling problem consists of a finite set of tiles T , along with hori-

zontal and vertical adjacency relations H,V ⊆ T × T . A solution to an infinite-tiling problem is an

arrangement of instances of the tiles in the entire plane (i.e. a total function N × N → T) where the

adjacency relationshipsH,V are respected, meaning: if a tile t2 appears immediately to the right of t1 it

must hold that (t1, t2) ∈ H, and if a tile t2 appears immediately under t1 it must hold that (t1, t2) ∈ V .

The problem is undecidable [BGG96]. The proof is by a reduction from the non-halting problem:

given a Turing machine we can compute an infinite-tiling problem such that the problem has a solution

iff the machine does not halt (on the empty input). The encoding is similar to the one from Definition 1.

Proof of Theorem 2. The proof is by a reduction from non-tilability in the infinite-tiling problem (Defi-

nition 2) to the problem of checking inductive invariants for safety of a transition system (over general

structures) where the initiation and safety requirements are valid.

We construct a transition relation similar to the one in the proof of Theorem 1, with some additions,

as described below.

Discussion and motivation. To provide some intuition to the difference between the reductions, we

remark that both of the proofs in this chapter are in essence a reduction from the halting (or non-halting)

problem. The proof of Theorem 1 encodes runs of the machine as finite tilings, and asks whether a tiling

that represents a terminating computation, encoded by Thalt, is possible. This reduction no longer holds

3.2. INDUCTIVENESS OVER GENERAL STRUCTURES 11

when structures may be infinite. The reason is that an infinite valid partial tiling may not correspond to

reachable configuration of the Turing machine, so there may be such an infinite tiling with Thalt even

though the Turing machine never halts2.

In fact, the reduction in this proof must be in the opposite direction: the invariant should be inductive

iff the machine does not terminate, whereas in the proof of Theorem 1 the invariant is inductive iff the

machine does terminate. This is because satisfiability is recursively-enumerable over finite structures

and co-recursively-enumerable over general structures (due to the existence of proofs), which reflects

on checking inductiveness through the satisfiability check of the formula I ∧ δ ∧ ¬I ′.
We thus want to have a counterexample to induction when the machine never halts, i.e. has an

infinite run. As before, runs of the machine are encoded via tiling, only that now an infinite structure

can encode an infinite run of the machine. (It is not necessary that an infinite tiling represents a valid

infinite run of the machine, but every infinite run can be represented by such a structure.) We would like

to “detect” this situation. Our way to do this is by the observation that induction on the number of rows,

or execution steps, must hold when the number of rows is finite (but unbounded), as in Theorem 1, but

does not necessarily hold when there may be an infinite number of rows. This idea is implemented by a

relation H with the invariant that it is preserved under successive rows. In an infinite structure this does

not imply that H is true for all rows. A flag f is used to express a transition that is aware of H not being

globally true.

A technical complication arises because to make sure that the infinite number of rows truely repre-

sents an infinite number of computation steps, we also need to make sure that the number of columns is

infinite (representing the entire tape). This is done using a relation P that “detects” the infinite number

of columns similarly to H . We are assured in the existence of an infinite execution when both H and P

“detect” infinity of the tiling, and we turn the flag f to false to express this.

Returning to the proof, the new elements of the transition system in the current proof are as follows:

Vocabulary. We add a relation H over the row indices (elements of the vertical order), a relation P

over board locations, and a Boolean flag (nullary predicate) f .

Transitions. As before, in each step the transition system places a valid tile in the next board location

(see the proof of Theorem 1). To maintain the invariant that H is preserved under successor of active

rows (see below), when we place a new tile, if H holds for the current line (the element of the vertical

order of the maximal active location) after placing the tile, set H to true for the row after (next element

of the vertical order) as well. (For ease of expression, in this proof we let the transition system place the

first tile itself.)

To maintain the invariant that P is preserved under successor of active tiles in a given row, when we

place a new tile, if P holds for the maximal location, set P to true for the new maximal location.

2One way to construct such a tiling, using a tile in row ω of the board, is utilized in the proof that follows.

12 CHAPTER 3. UNDECIDABILITY

If H does not hold for the current row and P does not hold for the new maximal location, turn f to

false.

Initial state. Initially H is true for the first row (0 of the vertical order) only, P is true for the first

location of every row (0 of the horizontal order with any value of the vertical order) only, and f is true.

In this proof, initially the board is empty.

Safety property. The safety property now asserts that f is true.

Invariant. As before, the invariant states that the active board represents a valid partial tiling, i.e.

every active tile except for the maximal one has a valid successor.

In addition, the invariant states that H is preserved under successor of active board rows, i.e.: If

i1, i2 are active rows — meaning i1, i2 ≤ i where M(i, j) — and i2 is the successor of i1 w.r.t. the

vertical order, then if H holds for i1 it must also hold for i2.

The invariant also states that P is preserved under successor of board locations in any line, i.e.: if

(i, j1) and (i, j2) are successive active board locations, then if P holds for (i, j1) is must also hold for

(i, j2). We also add the safety property to the invariant.

Reduction argument. The invariant holds for the initial state, and trivially implies the safety property.

Assume that there is no solution to the infinite tiling problem, and show that the invariant is induc-

tive. The reasoning is as follows: A state satisfying the invariant induces a partial valid tiling — either

finite or infinite — over the active area of the board. Since there is no infinite valid partial tiling, the

number of rows in the active area must be finite, or the number of (active) columns must be finite. If the

number of active rows is finite, because H is preserved under successor for active rows, we have that

H must hold for the current row, by induction on the number of rows in the active area. If the number

of columns is finite, because P is preserved under successor in every line, we have that P must hold

for the maixmal location, by induction on the number of columns (in the current line). Either way, after

a transition is taken, f remains true. Since the transition system always places a tile that respects the

horizontal and vertical ajdacency relations, sets H to true for the next row and P to true for the new

maximal location, it is easy to see that the rest of the invariant is preserved by a transition as well.

For the converse direction, if there is a solution to the infinite tiling problem, then there is an infinite

structure encoding this tiling. (We take max to be an infinite ordinal of the horizontal order, to allow an

infinite number of columns.) From this we can construct a counterexample to induction: the transition

begins with the infinite valid tiling, with a new valid row in an additional row after this infinite sequence

of tiled rows. (Recall that the board dimensions are axiomatized to be total orders; such a tile is placed

in a location corresponding to ordinal ω of the vertical order.) We can tile this row exactly the as

some other arbitrary line in the tiling and need not worry about vertical constraints, because they were

expressed in a forward fashion, and this row is not a successor of any other row. We set H to be false

for this additional row.

3.2. INDUCTIVENESS OVER GENERAL STRUCTURES 13

We also add two successive columns (successive elements of the horizontal order) after the infinite

tiling (such elements correspond to ordinals ω and ω + 1 of the horizontal order). Since the constraints

were expressed in a forward fashion, there are no horizontal constraints on the first of these columns,

as it is not the successor of any column. Therefore we use two successive tiled columns from the valid

tiling and use the same tiling for the new columns. We set P to be false for the location in these columns

in the new row.

The location in the newly added row and the first new column (i.e. (ω, ω)) is set to be the maximal

active one. Note that this does not violate the invariant: H is preserved under successor of active

rows, but nonetheless does not hold for all active rows (in essence, the induction fails). Similarly, P

is preserved under successor of columns in the last line, but nonetheless does not hold for all columns.

The transition will now place a new tile and turn f to false, because H does not hold for the current line

and P does not hold for the current maximal location, thereby violating the invariant.

Thus the invariant is inductive iff the infinite tiling problem does not have a solution.

14 CHAPTER 3. UNDECIDABILITY

Chapter 4

Bounded-Horizon

In this chapter, we define a systematic method of quantifier instantiation called Bounded-Horizon as a

way of checking the inductiveness of first-order logic formulas, and explore some of its basic properties.

Bounded-Horizon Instantiations. Let δ ∈ ∃∗∀∗(Σ,Σ′) be an EPR transition relation and I ∈ FOL(Σ)

a candidate invariant. We would like to check the satisfiability of I ∧ δ ∧¬I ′, and equivalently of Ind =

IS ∧ δS ∧ (¬I ′)S . Recall that ϕS denotes the Skolemization of ϕ, and note that IS and (¬I ′)S possibly

add Skolem functions to the vocabulary. Roughly speaking, for a given k ∈ N, Bounded-Horizon

instantiates the universal quantifiers in Ind, while restricting the instantiations to produce ground-terms

of function nesting at most k. We then check if this (finite) set of instantiations is unsatisfiable; if it is

already unsatisfiable then we have a proof that I is inductive. Otherwise we report that I is not known

to be inductive. As we will show, this algorithm is sound but not necessarily complete for a given k.

Below we provide the formal definitions. We start with the notion of instantiations, and recall

Herbrand’s theorem which establishes completeness of proof by (unrestricted) instantiations. Suppose

that some vocabulary Σ̃ including constants and function symbols is understood (e.g., Σ̃ = Σ] ΣS ,

where ΣS includes Skolem constants and function symbols).

Definition 3 (Instantiation). Let ϕ(x) ∈ ∀∗(Σ̃) be a universal formula with n free variables and m

universal quantifiers. An instantiation of ϕ by a tuple t of n + m ground terms, denoted by ϕ[t],

is obtained by substituting t for the free variables and the universally quantified variables, and then

removing the universal quantifiers.

Note that an instantiation is a quantifier-free sentence.

Theorem 3 (Herbrand’s Theorem). Let ϕ ∈ ∀∗(Σ̃). Then ϕ is satisfiable iff the (potentially infinite) set{
ϕ[t] | t is a tuple of ground terms over Σ̃

}
is satisfiable.

We now turn to restrict the depth of terms used in instantiations.

Definition 4 (Bounded-Depth Terms). For every k ∈ N, we define BHTk to be the set of ground terms

over Σ̃ with function symbols nested to depth at most k. BHTk is defined by induction over k. Let C be

15

16 CHAPTER 4. BOUNDED-HORIZON

the set of constants in Σ̃, F the set of functions, and for every f ∈ F let Arityf be the arity of f . Then

BHT0 = C

BHTk = BHTk−1 ∪ {f(t1, . . . tm) | f ∈ F, m = Arityf , t1, . . . , tm ∈ BHTk−1}.

We will also write t ∈ BHTk for a tuple of terms t, to mean that every entry of t is in BHTk

(the number of elements in t should be clear from the context). Note that the set of ground terms is

BHT∞ =
⋃

k∈N BHTk.

Definition 5 (Depth of Instantiation). Let ϕ ∈ ∀∗(Σ̃) and t ∈ BHT∞. The depth of instantiation,

denoted depth(ϕ[t]), is the smallest k such that all ground terms that appear in ϕ[t] are included in

BHTk.

Bounded-Horizon algorithm. Given a candidate invariant I ∈ FOL(Σ), a transition relation δ over

Σ]Σ′, and k ∈ N, the Bounded-Horizon algorithm constructs the formula Ind = IS ∧ δS ∧ (¬I ′)S ,

and checks if the set {
Ind[t] | t ∈ BHTk, depth(Ind[t]) ≤ k

}
(4.1)

is unsatisfiable. If it is, then I is provably inductive w.r.t. δ with Bounded-Horizon of bound k. Other-

wise we report that I is not known to be inductive.

Note that the satisfiability check performed by Bounded-Horizon is decidable since the set of in-

stantiations is finite, and each of them is a ground formula.

Bounded-Horizon for ∀∗∃∗ Invariants. We illustrate the definition of Bounded-Horizon in the case that

I ∈ ∀∗∃∗(Σ). Assume that I = ∀x. ∃y. α(x, y) where α ∈ QF. Then IS = ∀x. α(x, f(x)) where f

are new Skolem function symbols. δS introduces Skolem constants but no function symbols, and in this

case so does (¬I ′)S . Bounded-Horizon check of bound k can be approximately understood as checking

the satisfiability of

(∧
t∈BHTk−1

IS [t]
)
∧
(∧
t∈BHTk

δS [t]
)
∧
(∧
t∈BHTk

(
¬I ′
)
S

[t]
)
. (4.2)

(In fact, it is possible that IS contains sub-formulas for which instantiations of depth k do not increase

the total depth of instantiations beyond k, and are thus also included.)

Lemma 1 (Soundness). For every k ∈ N, Bounded-Horizon with bound k is sound, i.e., if Bounded-

Horizon of bound k reports that I ∈ FOL(Σ) is inductive w.r.t. δ, then I is indeed inductive.

Proof. Assume that I is not inductive w.r.t. δ, so there is a structure A such that A |= IS ∧ δS ∧
(¬I ′)S . In particular A |= Ind[t] for every t ∈ BHT∞ and in particular for every t ∈ BHTk such that

depth(Ind[t]) ≤ k. Hence, Bounded-Horizon of bound k will not report that I is inductive.

Example 1. Figure 4.1 presents a simple model of the client server scenario described in [HHK+15].

The program induces an EPR transition relation, and its invariant is provable by Bounded-Horizon of

bound 1.

17

req := ∅; resp := ∅; match := ∅;
action new request(u) {
q := new request;
req := req ∪ {(u, q)}
/@ r := r ∪ {(u, y) | match(q , y)}
}
action respond(u, q) {
assume req(u, q);
p := new response;
match := match ∪ {(q , p)};
/@ r := r ∪ {(x, p) | req(x, q)}
resp := resp ∪ {(u, p)}
}

action check(u, p) {
if resp(u, p) ∧ ∀q . req(u, q)→ ¬match(q , p)
/@ ↪→ if resp(u, p) ∧ ¬r(u, p)
then abort

}

Invariant I = ∀u, p. resp(u, p)→
∃q . req(u, q) ∧ match(q , p)

/@ r(x, y) ≡ ∃z. req(x, z) ∧ match(z, y)
/@ Invariant Î = ∀u, p. resp(u, p)→ r(u, p)

Figure 4.1: Example demonstrating a ∀∗∃∗ invariant that is provable with bound 1. The reader should
first ignore the instrumentation code denoted by /@ (see Example 3). This example models a simple
client-server scenario, with the safety property that every response sent by the server was triggered
by a request from a client. Verification of this example requires a ∀∗∃∗ invariant. This example is
inspired by [HHK+15]. The complete program is provided in [add] (files client server ae.ivy,
client server instr.ivy).

We first explain this example ignoring the annotations denoted by “/@”. The system state is modeled

using three binary relations. The req relation stores pairs of users and requests, representing requests

sent by users. The resp relation similarly stores pairs of users and replies, representing replies sent back

from the server. The match relation maintains the correspondence between a request and its reply.

The action new request models an event where a user u sends a new request to the server. The

action respond models an event where the server responds to a pending request by sending a reply to

the user. The request and response are related by the match relation. The action check is used to verify

the safety property that every response sent by the server has a matching request, by aborting the system

if this does not hold.

A natural inductive invariant for this system is

I = ∀u, p. resp(u, p)→ ∃q . req(u, q) ∧ match(q , p).

The invariant proves that the then branch in action check will never happen and thus the system

will never abort. This invariant is preserved under execution of all actions, and is provable by Bounded

Horizon of bound 1.

Lemma 2 (Completeness for some k). For every I ∈ FOL(Σ) and δ such that I is inductive w.r.t. δ

there exists a finite k ∈ N s.t. I is provably inductive w.r.t. δ with Bounded-Horizon of bound k.

Proof. From Theorem 3 and compactness there is a finite set S of instantiations that is unsatisfiable.

Take k to be the maximal depth of instantiations in S.

For example, if I ∈ ∀∗ then Bounded-Horizon of bound 0 is complete. However, as expected

due to the undecidability of checking inductiveness, for arbitrary invariants Bounded-Horizon is not

necessarily complete for a given k:

18 CHAPTER 4. BOUNDED-HORIZON

req := ∅; resp := ∅;
db req := ∅; db resp := ∅; t := ∅;
action new request(u) {

q := new request;
req := req ∪ {(u, q)}
}
action db recv request(id , q) {
assume db req(id , q);
p := DB response ensuring db(q , p);
db resp := db resp ∪ {(id , p)}
}
action check(u, p) {
assume resp(u, p);
if ∀q . req(u, q)→ ¬db(q , p)
then abort

}

action server recv request(u, q) {
assume req(u, q);
id := new DB request id;
t := t ∪ {(id , u)};
db req := db req ∪ {(id , q)}
}

action server recv db response(id , p) {
assume db resp(id , p);
resp := resp ∪ {(x, p) | t(id , x)}
}

Invariant I = ∀u, p. resp(u, p)→ ∃q . req(u, q) ∧ db(q , p) ∧
∀id , q . db req(id , q)→ ∃u. t(id , u) ∧ req(u, q) ∧
∀id , p. db resp(id , p)→ ∃q . db req(id , q) ∧ db(q , p) ∧
∀id , u1, u2. t(id , u1) ∧ t(id , u2)→ u1 = u2

Figure 4.2: Example demonstrating a ∀∗∃∗ invariant that is provable only with bound 2. The server
anonymizes requests from clients to the database (DB) and forwards the answer to the client. The server
performs a translation t between clients’ identity and an anonymous unique id. The safety property
is that every response sent by the server to a client was triggered by a request from the client. The
inductive invariant further states that every server request to the DB was triggered by a client’s request
from the server, and that every DB response was triggered by a server’s request. The complete program
corresponding to this Figure appears in [add] (file client server db ae.ivy).

Example 2. An example of a program and an inductive invariant for which a bound of 0 or 1 is insuffi-

cient appears in Figure 4.2. In this example the server operates as a middleman between clients and the

database (DB), and is used to anonymize user requests before they reach the database. The server per-

forms a translation p between clients’ identity and an anonymous unique id, sends a translated request

to the DB, and forwards the DB’s response to the clients. The safety property is that every response sent

by the server was triggered by a request from a client. The inductive invariant states, in addition to the

safety property, that every server request to the DB was triggered by a client’s request from the server,

and that every DB response was triggered by a server’s request. Proving that the invariant is inductive

under the action server recv db response requires the prover to understand that for the response

from the DB there is a matching request from the server to the DB, and that for this request to the DB

there is a matching request from the client to the server. Every such translation requires another nested

instantiation. In this example, a bound of 2 manages to prove inductiveness. This example can be lifted

to require an even larger depth of instantiations by adding more translation entities similar to the server,

and describing the invariant in a similar, modular, way.

Small Bounded-Horizon for ∀∗∃∗ Invariants. Despite the incompleteness, we conjecture that a small

depth of instantiations typically suffices to prove inductiveness. The intuition is that an EPR transi-

tion relation has a very limited “horizon” of the domain: it interacts only with a small fraction of the

domain, namely elements pointed to by program variables (that correspond to logical constants in the

19

vocabulary).

When performing the Bounded-Horizon check with bound 1 on a ∀∗∃∗ invariant I = ∀x. ∃y. α(x, y),

we essentially assume that the existential part of the invariant ψ(x) = ∃y. α(x, y) holds on all program

variables — but not necessarily on all elements of the domain — and try to prove that it holds on all

elements of the domain after the transition. We expect that for most elements of the domain, the cor-

rectness of ψ is maintained simply because they were not modified at all by the transition. For elements

that are modified by the transition, we expect the correctness after modifications to result from the fact

that ψ holds for the elements of the domain that the transition directly interacts with. If this is indeed

the reason that ψ is maintained, a bound of 1 sufficiently uses ψ in the pre-state to prove the invariant in

the post-state, i.e. it is inductive.

This is the case in Example 1. Additional examples are listed in Chapter 8. The example of Fig-

ure 4.2 itself also admits a different invariant that is provable by bound 1.

20 CHAPTER 4. BOUNDED-HORIZON

Chapter 5

Power of Bounded-Horizon for Proving
Inductiveness

We now turn to investigate the ability of Bounded-Horizon to verify inductiveness. In this section

we provide sufficient conditions for its success by relating it to the notion of instrumentation (which

we explain below). We show that Bounded-Horizon with a low bound of 1 or 2 is as powerful as a

natural class of sound program instrumentations, those that do not add existential quantifiers. Chapter 8

demonstrates the method’s power on several interesting programs we verified using Bounded-Horizon

of bound 1.

5.1 Instrumentation

We present our view of the instrumentation procedure used in previous works [IBI+13, KBI+15, PMP+16]

to eliminate the need for quantifier-alternation, thus reducing the verification task to a decidable frag-

ment. The procedure begins with a program that induces a transition relation δ ∈ ∃∗∀∗(Σ ∪ Σ′). The

purpose of instrumentation is to modify δ into another transition relation δ̂ that admits an inductive in-

variant with simpler quantification (e.g., universal, in which case it is decidable to check). We note that

instrumentation is generally a manual procedure. For simplicity, we describe the instrumentation pro-

cess informally, but provide the semantic soundness requirement in Definition 6. The instrumentation

procedure consists of the following three steps:

1. Identify a formula ψ(x) ∈ FOL(Σ) (usually ψ will be existential) that captures information that

is needed in the inductive invariant. Extend the vocabulary with an instrumentation relation r(x)

that intentionally should capture the derived relation defined by ψ(x). Let Σ̂ = Σ ∪ {r} denote

the extended vocabulary1.

2. Add update code that updates r when the original (“core”) relations are modified, and maintains

the meaning of r as encoding ψ. The update code must not block executions of real code, and

1It is also possible to instrument the program with constants rather than relations. This can be emulated by adding a unary
relation c(x) representing the constant, and adding the assumption that c contains exactly one element to the invariant. This is
also aligned with the conditions of Theorem 6.

21

22 CHAPTER 5. POWER OF BOUNDED-HORIZON FOR PROVING INDUCTIVENESS

can possibly be a sound approximation. Sometimes it can be generated automatically via finite

differencing [RSL10].

3. Modify the program to use r. Often this is performed by rewriting some program conditions,

keeping in mind that r encodes ψ. This means replacing some quantified expressions by uses of

r.

Example 3. In the example of Figure 4.1, to achieve a universal invariant we add an instrumentation

relation r defined by r(x, y) ≡ ∃z. req(x, z) ∧ match(z, y) (step 1). The simple form of ψ allows us

to obtain precise update code, which appears as annotations marked with /@ in lines that mutate req

and match (step 2). We also replace the if condition in the action check by an equivalent condition

that uses r (step 3). The line marked with /@ ↪→ in the check action replaces the line above it. The

resulting program has the invariant Î = ∀u, p. resp(u, p)→ r(u, p), which is universal.

Let δ̂ ∈ ∃∗∀∗(Σ̂∪ Σ̂′) denote the transition relation induced by the modified program (modifications

occur in steps 2,3). The soundness of the instrumentation procedure is formalized in the following

connection between ψ, δ, and δ̂:

Definition 6 (Sound Instrumentation). δ̂ ∈ ∃∗∀∗(Σ̂ ∪ Σ̂′) is a sound instrumentation for δ ∈ ∃∗∀∗(Σ ∪
Σ′) and ψ ∈ FOL(Σ) if

(
∀x. r(x)↔ ψ(x) ∧ δ ∧ ∀x. r′(x)↔ ψ′(x)

)
→ δ̂ is valid, or equivalently,

δ → δ̂[ψ/r, ψ′/r′] is valid.

Definition 6 ensures that the instrumented program includes at least all the behaviors of the original

program, when r is interpreted according to ψ. Thus, if the instrumented program is safe, then it is

sound to infer that the original program is safe.

Remark 1. In the expression δ̂[ψ/r, ψ′/r′] the update code of r in δ̂ becomes a constraint over the core

relations in Σ. In a sound instrumentation this constraint is required to follow from the way the core

relations are updated by δ, essentially meaning that r is updated in a way that is consistent with its

interpretation as ψ.

The instrumentation procedure does not require the user to know an inductive invariant for the orig-

inal program. However, if a sound instrumentation which leads to an invariant exists, then an inductive

invariant for the original δ can be produced by substituting back the “meaning” of r as ψ (thus, safety

of the original program is implied):

Lemma 3. Let δ̂ be a sound instrumentation for δ and ψ, and Î ∈ FOL(Σ̂) be an inductive invariant

for δ̂. Then I = Î[ψ/r] is inductive w.r.t. δ.

Proof. Î ∧ δ̂ → Î ′ is valid, thus, so is (Î ∧ δ̂ → Î ′)[ψ/r, ψ′/r′]. δ̂ is a sound instrumentation for δ, so

(using Definition 6) I ∧ δ → I ′ is valid.

Note that typically the quantification structure of I is more complex than that of Î .

Instrumentation without additional existential quantifiers. In order to relate instrumentation to Bounded-

Horizon instantiations, we consider the typical case where the instrumentation process of δ does not add

new existential quantifiers to δ̂. This happens when the update code does not introduce additional exis-

tential quantifiers. Formally:

5.2. FROM INSTRUMENTATION TO BOUNDED-HORIZON 23

Definition 7 (Existential Naming). Let δ̂ = ∃z1, . . . zm. ϕ(z1, . . . , zm) where ϕ ∈ ∀∗(Σ̂, Σ̂′). An

existential naming η for (δ̂, δ) is a mapping η : {z1, . . . , zm} → const[δS] ∪ const[δ̂S]. We define η(δ̂)

to be ϕ[η(z1)/z1, . . . , η(zm)/zm].

An existential naming provides a Skolemization procedure which uses existing constants rather than

fresh ones. If such η exists, it maps the (Skolemized) existential quantifiers in δ̂ to their counterparts in

δ. For example, the instrumentation in Figure 4.1 results in δ̂ that has an existential naming w.r.t. the

original δ. Note that it is possible that δ̂ has in fact fewer existential quantifiers than δ, for example due

to the rewriting of conditions (as happens in the example of Figure 4.1 — see the if statement in action

check).

Definition 8 (Instrumentation Without Additional Existenials). δ̂ is a sound instrumentation without

additional existentials for δ if there exists an existential naming η such that δS → η(δ̂)[ψ/r, ψ′/r′] is

valid.

5.2 From Instrumentation to Bounded-Horizon

The results described in this section show that if there is an instrumentation without additional existen-

tials, then Bounded-Horizon with a low bound is able to prove the original invariant, without specific

knowledge of the instrumentation and without manual assistance from the programmer. This is the case

in the example of Figure 4.1, which admits an instrumentation that transforms the invariant to a uni-

versal invariant (see Example 3) in a form that matches Theorem 4, and indeed the original invariant is

provable by Bounded-Horizon of bound 1.

Interestingly, in case Bounded-Horizon with a small bound does not prove inductivenessthe results

imply that either the invariant is not inductive or no instrumentation that does not add existential quan-

tifiers can be used to show that it is inductive (even with the programmer’s manual assistance). This is

the case in the example of Figure 4.22.

While we show that instrumentation that does not add existentials is at most as powerful as Bounded-

Horizon with a low bound, sound instrumentations that do add existentials to the program (thereby not

satisfying Definition 8) can be used to simulate quantifier instantiation of an arbitrary depth. This topic

is explored in Chapter 6.

In the remainder of this section we will assume that δ̂ is a sound instrumentation without additional

existentials for δ, and η is the corresponding naming of existentials. Further, we assume that Î is an

inductive invariant for δ̂ and denote I = Î[ψ/r].

Results. We now state the results whose proofs are presented in the rest of this chapter.

Theorem 4 and Theorem 5 consider I ∈ ∀∗∃∗ that is transformed to Î ∈ ∀∗. In Theorem 4 we show

that a bound of 1 suffices to prove that I is inductive for δ when the instrumentation defining formula
2Strictly speaking this shows that there is no such instrumentation where the instrumentation relation appears only posi-

tively in the invariant, which is the most common case. Examples that require an even larger bound (only sketched for sim-
plicity) do not have any instrumentation without additional existential quantifiers that transforms the invariant to a universal
form.

24 CHAPTER 5. POWER OF BOUNDED-HORIZON FOR PROVING INDUCTIVENESS

ψ ∈ ∃∗ and the instrumentation relation r appears only positively in Î , or when ψ ∈ ∀∗ and r appears

only negatively in Î . This is an attempt to explain the success of bound 1 instantiations in proving our

examples (see Chapter 8). In Theorem 5 we show that a bound of 2 suffices in the more general setting

of ψ ∈ AF (with no restriction on appearances of r in Î).

Theorem 6 considers a generalization to I that is 1-alternation and transformed to Î ∈ AF. We show

that a bound of 2 suffices in this case.

The rest of the chapter is devoted to proofs of these claims. The main points in the proof are

as follows: Assume for the sake of contradiction that I cannot be shown to be inductive for δ by

Bounded-Horizon of a low bound, and take a counterexample to induction of the instantiated I (see

Equation (5.2) in the proof of Lemma 4). By the assumption that δ̂ is an instrumentation without

additional existentials for δ, we can utilize properties of substitution to obtain a counterexample to

induction for the instantiated Î w.r.t. δ̂ (see Equation (5.5)). By the assumption that Î ∈ ∀∗ and δ̂ ∈ ∃∗∀∗,
we can use complete instantiation to argue that we have obtained a true counterexample to induction of

Î w.r.t. δ̂ (see Equation (5.9)), in contradiction to the premise.

Remark 2. The results of this section also apply when multiple instrumentation relations ψ1, . . . , ψt ∈
FOL(Σ) are simultaneously substituted instead of the relation symbols r1, . . . , rt in δ̂ and Î .

5.2.1 Power for ∀∗∃∗ Invariants

We now establish that low bounds are sufficient for the Bounded-Horizon check when Î ∈ ∀∗(Σ̂) and

I ∈ ∀∗∃∗. To do so, we first prove the following lemma.

Lemma 4. Let δ̂ be a sound instrumentation of δ without new existentials and with naming η. Write

Î = ∀x. α̂(x) where α̂ ∈ QF(Σ̂) and let α = α̂[ψ/r]. Then,

(∧
c∈Cn

α(c)
)
∧ δS ∧ (¬I ′)S (5.1)

is unsatisfiable, where C = const[δS ∧ (¬I ′)S] and n is the number of universal quantifiers in Î .

Proof. Assume not, i.e., there exists a structure A0 such that,

A0 |=
(∧
c∈Cn

α(c)
)
∧ δS ∧ (¬I ′)S . (5.2)

We will show that Î is not inductive for δ̂. Let Ĉ = const[η(δ̂) ∧ (¬Î ′)S]. Then,

A1 |=
(∧

c∈(C∪Ĉ)n

α(c)
)
∧ δS ∧ (¬I ′)S (5.3)

where A1 is the same as A0 but also interprets any constant in Ĉ \ C as some arbitrary constant in C.

Thus α(c) holds for the new constants as well.

5.2. FROM INSTRUMENTATION TO BOUNDED-HORIZON 25

Removing some conjuncts from Equation (5.3), we get,

A1 |=
(∧
c∈Ĉn

α(c)
)
∧ δS ∧ (¬I ′)S . (5.4)

By assumption (Definition 8), it follows that,

A1 |=
(∧
c∈Ĉn

α(c)
)
∧ η(δ̂)[ψ/r, ψ′/r′] ∧ (¬I ′)S . (5.5)

Recall that I ′ = Î ′[ψ′/r′]. Since A1 |= (¬Î ′[ψ′/r′])S , it follows that A1 |= (¬Î ′)S [ψ′/r′]. In the

latter formula, some existentially quantified variables from ψ or ¬ψ may remain, whereas in the former

formula they were replaced by Skolem constants. Thus this is just a corollary of the fact that γS → γ is

valid for any γ.

Thus we have shown,

A1 |=
((∧

c∈Ĉn

α̂(c)
)
∧ η(δ̂) ∧ (¬Î ′)S

)
[ψ/r, ψ′/r′]. (5.6)

Now, consider the structure Â that expandsA1 by interpreting r and r′ the way thatA1 interprets ψ and

ψ′, respectively. Then,

Â |=
(∧
c∈Ĉn

α̂(c)
)
∧ η(δ̂) ∧ (¬Î ′)S . (5.7)

Since the formula in Equation (5.7) is universal, it is also satisfied by Â|
Ĉ

, the substructure of Âwith

universe ĈÂ, i.e., Â’s interpretation of the constant symbols Ĉ (recall that Ĉ = const[η(δ̂) ∧ (¬Î ′)S]).

Thus,

Â|
Ĉ
|=
(
∀x. α̂(x)

)
∧ η(δ̂) ∧ (¬Î ′)S . (5.8)

Finally, since γS → γ is valid and so is η(δ̂)→ δ̂ (for the same reasons), we know,

Â|
Ĉ
|= Î ∧ δ̂ ∧ ¬Î ′. (5.9)

But this contradicts the fact that Î is inductive for δ̂.

The following results are corollaries of Lemma 4.

Theorem 4. Let Î ∈ ∀∗. Assume ψ ∈ ∃∗ and r appears only positively in Î , or ψ ∈ ∀∗ and r appears

only negatively in Î . Then I = Î[ψ/r] is inductive for δ with Bounded-Horizon of bound 1. (Note that

I ∈ ∀∗∃∗.)

Proof. Let Î = ∀x. α̂(x) where α̂ ∈ QF. In both cases of the claim α = α̂[ψ/r] ∈ ∃∗, and so all

the universal quantifiers in I are those of Î . This implies that the satisfiability check of Lemma 4 is

simply the Bounded-Horizon satisfiability check with bound 1, and it shows that the result must be

unsatisfiable.

26 CHAPTER 5. POWER OF BOUNDED-HORIZON FOR PROVING INDUCTIVENESS

More formally, assume for the sake of contradiction that I is not inductive w.r.t. δ with Bounded-

Horizon of bound 1. Let α(x) = ∃y1, . . . , ym. θ(x, y1, . . . , ym) where θ ∈ QF, and let

αS(x) = θ(x, f1(x), . . . , fm(x))

be its Skolemization with fresh Skolem function symbols f1, . . . , fm (introduced for y1, . . . , ym, re-

spectively). Then there is a structure A satisfying

(∧
t∈BHT0

αS [t]
)
∧
(∧
t∈BHT1

δS [t]
)
∧
(∧
t∈BHT1

(
¬I ′
)
S

[t]
)

(5.10)

Since αS has no universal quantifiers, the instantiation is just a substitution of the free variables, and A
satisfies (∧

t∈BHT0

αS(t)
)
∧
(∧
t∈BHT1

δS [t]
)
∧
(∧
t∈BHT1

(
¬I ′
)
S

[t]
)

(5.11)

By reducing A to the elements pointed to by BHT1 terms we have that

A|BHT1
|=
(∧
t∈BHT0

αS(t)
)
∧ δS ∧

(
¬I ′
)
S

(5.12)

We now move from the Skolem functions back to existential quantifiers. By the valuation that to every

existentially quantified variable yi in α assigns the interpretation of fi(t) in A|BHT1
(recall that fi(t)

appears in αS instead of the quantifier ∃yi in α), we know that

A|BHT1
|=
(∧
t∈BHT0

α(t)
)
∧ δS ∧

(
¬I ′
)
S
. (5.13)

Recall that BHT0 = const[δS ∧
(
¬I ′
)
S

]. Therefore, Equation (5.13) can be rewritten as

A|BHT1
|=
(∧
c∈Cn

α(c)
)
∧ δS ∧

(
¬I ′
)
S

(5.14)

where Cn = const[δS ∧
(
¬I ′
)
S

]n and is the number of universal quantifiers in I (and Î).

By Lemma 4 this is a contradiction to the assumption that Î is inductive w.r.t. δ̂, and the claim

follows.

Theorem 5. Let Î ∈ ∀∗. If ψ ∈ AF then I = Î[ψ/r] is inductive for δ with Bounded-Horizon of bound

2. (Note that I ∈ ∀∗∃∗.)

Proof. As before, Let Î = ∀x. α̂(x) where α̂ ∈ QF. ψ ∈ AF implies that α = α̂[ψ/r] ∈ AF . Let

α(x) =
(
∀v1θ1,1(x, v1) ∨ ∃z1θ1,2(x, z1)

)
∧ . . .

∧
(
∀vrθr,1(x, vr) ∨ ∃zrθr,2(x, zr)

) (5.15)

where θ1,1, θ1,2, . . . , θr,1, θr,2 ∈ QF.

5.2. FROM INSTRUMENTATION TO BOUNDED-HORIZON 27

Assume for the sake of contradiction that I is not inductive w.r.t. δ with Bounded-Horizon of bound

2.

For brevity denote

ξ(k) =
(∧
t∈BHTk

δS [t]
)
∧
(∧
t∈BHTk

(
¬I ′
)
S

[t]
)

and let gi(x) denote the fresh Skolem function introduced for zi in αS .

By the assumption that inductiveness is not provable using Bounded-Horizon of bound 2,

(∧
t∈BHT1

αS [t]
)
∧ ξ(2) (5.16)

is satisfiable by a structure A.

In particular ∧((
θ1,1(c, d1) ∨ θ1,2(c, g1(c))

)
∧

. . . ∧
(
θr,1(c, dr) ∨ θr,2(c, gr(c))

))
∧ ξ(1)

(5.17)

is satisfied by A, where the conjunction is over c ∈ BHT0 and d1, . . . , dr ∈ BHT1 (with the relevant

arity). Note that the difference from Equation (5.16) is that there are fewer conjuncts here, because

(i) the full Bounded-Horizon check with bound 2 has conjuncts for each c ∈ BHT1 and not just BHT0,

and (ii) we now have ξ(1) instead of ξ(2).

Reduce A to the elements pointed by BHT1 terms, let A↓ = A|BHT1
.

Now, ∧
c∈BHT0

((
∀v1θ1,1(c, v1) ∨ ∃z1θ1,2(c, z1)

)
∧ . . .

∧
(
∀vrθr,1(c, vr) ∨ ∃zrθr,2(c, zr)

))
∧ ξ(1)

(5.18)

is satisfied by A↓. This is because:

• The universal quantifiers are semantically equivalent to a conjunction over all BHT1 elements

because the domain was reduced, and

• The existential quantifiers are justified by the following valuation: the valuation assigns every zi
the interpretation of gi(c).

With this valuation the conjunctions of formula 5.18 are all guaranteed by the conjunctions in formula

5.17.

Now formula 5.18 exactly means that

A↓ |=
(∧
c∈BHT0

α(c)
)
∧ ξ(1). (5.19)

28 CHAPTER 5. POWER OF BOUNDED-HORIZON FOR PROVING INDUCTIVENESS

As in the proof of Theorem 4, using Lemma 4, this is a contradiction to the assumption that Î is inductive

w.r.t. δ̂, and the claim follows.

5.2.2 Generalization to 1-Alternation Invariants

We now generalize the results of Section 5.2.1 to 1-alternation invariants. A formula is 1-alternation

if it can be written as a Boolean combination of ∀∗∃∗ formulas. In the sequel, Î ∈ AF(Σ̂) and I =

Î[ψ/r] ∈ 1-alternation(Σ).

Lemma 5. Let ψ ∈ FOL(Σ). Let Î ∈ AF(Σ̂) be an inductive invariant for δ̂ ∈ ∃∗∀∗(Σ̂). Write ÎS =

∀x. α̂1(x) and (¬Î)S = ∀x. α̂2(x), where α̂1, α̂2 ∈ QF(Σ̂). Let α1 = α̂1[ψ/r] and α2 = α̂2[ψ/r].

Let δ ∈ ∃∗∀∗(Σ) and let δ̂ ∈ ∃∗∀∗(Σ̂, Σ̂′) be a sound instrumentation of δ without new existentials and

with naming η. Then, (∧
c1∈Cn

α1(c1)
)
∧ δS ∧

(∧
c2∈Cm

α2(c2)
)

(5.20)

is unsatisfiable, where C = const[ÎS ∧ δS ∧ (¬I ′)S], n is the number of universal quantifiers in ÎS and

m is the number of universal quantifiers in (¬Î)S .

Proof. The proof is similar to that of Lemma 4, with the transformations applied to the conjunction are

performed both on the invariant in the pre-state and in the post-state.

Assume not, i.e., there exists a structure A0 such that,

A0 |=
(∧
c1∈Cn

α1(c1)
)
∧ δS ∧

(∧
c2∈Cm

α2(c2)
)
. (5.21)

We will show that Î is not inductive for δ̂. Let Ĉ = const[ÎS ∧ η(δ̂) ∧ (¬Î ′)S]. Then,

A1 |=
(∧
c1∈Ĉn

α1(c1)
)
∧ δS ∧

(∧
c2∈Ĉm

α2(c2)
)
. (5.22)

where A1 is the same as A0 but also interprets any constant in Ĉ \ C as some arbitrary constant in C.

By the assumption (Definition 8), it follows that,

A1 |=
(∧
c1∈Ĉn

α1(c1)
)
∧ η(δ̂)[ψ/r, ψ′/r′] ∧

(∧
c2∈Ĉm

α2(c2)
)
. (5.23)

Thus we have shown,

A1 |=
((∧

c1∈Ĉn

α̂1(c1)
)
∧ η(δ̂) ∧

(∧
c2∈Ĉm

α̂2(c2)
))

[ψ/r, ψ′/r′]. (5.24)

Now, consider the structure Â that expandsA1 by interpreting r and r′ the way thatA1 interprets ψ and

5.2. FROM INSTRUMENTATION TO BOUNDED-HORIZON 29

ψ′, respectively. Then,

Â |=
(∧
c1∈Ĉn

α̂1(c1)
)
∧ η(δ̂) ∧

(∧
c2∈Ĉm

α̂2(c2)
)

(5.25)

Since the formula in Equation (5.25) is universal, it is also satisfied by Â|
Ĉ

, the substructure of Â
with universe ĈÂ, i.e., Â’s interpretation of the constant symbols Ĉ. Thus,

Â|
Ĉ
|=
(
∀x. α̂1(x)

)
∧ η(δ̂) ∧

(
∀x. α̂2(x)

)
(5.26)

Recall that Ĉ was defined as Ĉ = const[Î ∧ η(δ̂) ∧ (¬Î ′)S].

Finally, since γS → γ is valid and for the same reasons η(δ̂)→ δ̂ is valid, we know,

Â|
Ĉ
|= Î ∧ δ̂ ∧ ¬Î ′. (5.27)

But this contradicts the fact that Î is inductive for δ̂.

The following result is a corollary of Lemma 5.

Theorem 6. Let Î ∈ AF. If ψ ∈ AF then I = Î[ψ/r] is inductive for δ with Bounded-Horizon of bound

2. (Note that I ∈ 1-alternation.)

Proof. ψ ∈ AF implies that α1(x) = α̂1[ψ/r] ∈ AF and α2(x) = α̂2[ψ/r] ∈ AF (recall that α̂1, α̂2 ∈
QF).

By the assumption that inductiveness is not provable using Bounded-Horizon of bound 2,

(∧
t∈BHT1

(α1)S [t]
)
∧
(∧
t∈BHT2

δS [t]
)
∧
(∧
t∈BHT1

(α2)S [t]
)

(5.28)

is satisfiable, where (α1)S , (α2)S introduce Skolem functions. LetA be such a satisfying structure, and

A↓ = A|BHT1
.

Because α1 ∈ AF, in the same way as in the proof of Theorem 5,

A↓ |=
∧

c∈BHT0

α1(c) (5.29)

and in the same way, since α2 ∈ AF as well, the same structure has

A↓ |=
∧

c∈BHT0

α2(c). (5.30)

Note that from Equation (5.28), A↓ |= δ̂. Overall we have

A↓ |=
(∧
c∈BHT0

α1(c)
)
∧ δS ∧

(∧
c∈BHT0

α2(c)
)

(5.31)

30 CHAPTER 5. POWER OF BOUNDED-HORIZON FOR PROVING INDUCTIVENESS

and by Lemma 5 this is a contradiction to the assumption that Î a is inductive w.r.t. δ̂.

Chapter 6

Instrumentation for High Depth
Instantiations

In this chapter we discuss the connection between quantifier instantiation and program instrumenta-

tion in the converse direction, i.e. simulating quantifier instantiation with instrumentation. In Chapter 5

we showed that instrumentation without adding existential quantifiers is powerful at most as bounded

instantiations with a low bound. In this chapter we show that allowing additional existentials does

increase the power of instrumentation in proving ∀∗∃∗ invariants. In particular, we show how to sys-

tematically construct instrumented programs in a way that corresponds to quantifier instantiation for

∀∗∃∗-invariants: performing the required instantiations within the program allows to make the verifica-

tion conditions decidable to check. Together with Chapter 5, this makes the point that, in the context

of invariant checking, the form of instrumentation by a derived relation studied in this thesis directly

corresponds to quantifier instantiation.

As before, the instrumentation process begins with a program that does not have a universal induc-

tive invariant. We would like to transform the program in a sound way to a program that has a universal

inductive invariant Î . As before, we start by identifying some existential formula ψ(x) ∈ ∃∗(Σ) that

expresses needed information, and encode it using an instrumentation relation r, with the meaning that

“r(x) ≡ ψ(x)”. As before, we present the procedure for a single formula and instrumentation relation,

but in practice it can be used with multiple formulas and instrumentation relations (see Remark 2).

Adding the instrumentation relation r lets Î ∈ ∀∗(Σ̂) express existential information by referring

to r. The modifications to the program must encode enough of “r(x) ≡ ψ(x)” to make Î inductive.

As opposed to the instrumentation described in Section 5.1, this will be done by instantiating the corre-

spondence between ψ(t) and r(t) for specific variables in the program using assume statements. This

replaces the rewriting of program conditions that use ψ to use r. This approach is also extended to

obtain deep instantiations which simulate Bounded-Horizon with arbitrary bound.

Local Instantiations Rather than rewriting ψ(t) to r(t) in the program, we would like to enforce

r to be interpreted according to ψ in the pre-state, i.e., to enforce ∀x. ψ(x) ↔ r(x). The direction

31

32 CHAPTER 6. INSTRUMENTATION FOR HIGH DEPTH INSTANTIATIONS

∀x. ψ(x)→ r(x) is an EPR formula (since ψ ∈ ∃∗), and thus we can simply conjoin it to the verification

condition without sacrificing decidability.

The converse implication, ∀x. r(x) → ψ(x), is a ∀∗∃∗ formula, and adding it to the verification

condition will lead to undecidability. Note that Bounded-Horizon with bound 1 is analogous to en-

forcing r(t) → ψ(t) for every t that is a program variable. Inspired by this, we define the following

instrumentation that lets the user locally enforce the definition of r for program variables.

Definition 9 (Local Instantiation). Let ψ(x) = ∃y. ϕ(x, y). To generate an instantiation of ∀x. r(x)→
∃y. ϕ(x, y) on some tuple of program variables t, we instrument the program by adding new program

variables c, and inserting the following code:

c := ∗; assume r(t)→ ϕ(t, c)

This code uses the havoc statement, which sets the value of c to arbitrary values, followed by an assume

statement that restricts the execution such that if r(t) holds, then ϕ(t, c) holds. Thus, this code realizes

the restriction that r(t) → ∃y. ϕ(t, y), and also assigns to the new program variables c, the witnesses

for the existential quantifiers. We call this addition to the program a local instantiation, as it imposes

the connection between r and ψ locally for some program variables t.

Lemma 6 (Soundness of Local Instantiations). If δ̂ is obtained from δ by a local instantiation then δ̂ is

a sound instrumentation by Definition 6.

Proof. The code added by a local instantiation for t that uses new variables c translates a new constraint

in δ̂ of the form γ = ∃c. r(t) → ϕ(t, c). Since ∀x. r(x) ↔ ψ(x) ⇒ γ, we have ∀x. r(x) ↔
ψ(x) ∧ δ ⇒ δ̂, which implies the condition of Definition 6.

Remark 3. The combination of adding ∀x. ψ(x) → r(x) to the verification condition and allowing the

user to perform local instantiations on the program variables is at least as powerful as rewriting program

conditions, since any rewrite of ψ(t) to r(t) can be simulated by a local instantiation on t.

Instantiations for the Invariant The mechanism of local instantiations is designed to support instan-

tiations of ∀x. ψ(x)↔ r(x) required to prove that the invariant I = Î[ψ/r] is preserved by the program.

This proof is carried out by showing that (∀x. ψ(x)↔ r(x)) ∧ Î ∧ δ ∧ ¬(Î[ψ/r])′ is unsatisfiable.

This may require instantiating the definition of r on Skolem constants that come from the negation of

the invariant in the post-state. Thus, we extend our instrumentation method by adding new “program

variables” that represent the elements of the domain on which the invariant is potentially violated in the

post-state. For every universally quantified variable x in Î , we add a special program variable skx which

can be used in local instantiations, enhancing their power to prove that Î is inductive.

Obtaining Deep Instantiations Applying local instrumentation on a tuple t that consists of origi-

nal program variables, or variables that represent Skolem constants, corresponds to instantiations of

33

/@ r1(x, y) ≡ ∃z. req(x, z) ∧ db(z, y)
/@ r2(x, y) ≡ ∃z. t(x, z) ∧ req(z, y)
/@ r3(x, y) ≡ ∃z. db req(x, z) ∧ db(z, y)

/@ Invariant Î = ∀u, p. resp(u, p)→ r1(u, p) ∧
/@ ∀id , q . db req(id , q)→ r2(id , q) ∧
/@ ∀id , p. db resp(id , p)→ r3(id , p) ∧
/@ ∀id , u1, u2. t(id , u1) ∧ t(id , u2)→ u1 = u2
action server process db response(id , p) {
instantiate r3 on (id , skp) (depth 1)
/@ c1 := ∗;
/@ assume r3(id , skp)→ db req(i, c1) ∧ db(c1, skp);
instantiate r2 on (id , c1) (depth 2)
/@ c2 := ∗;
/@ assume r2(id , c1)→ t(id , c2) ∧ req(c2, c1);
...
}
action check(u, p) {
instantiate r1 on (u, p) (depth 1)
/@ c3 := ∗;
/@ assume r1(u, p)→ req(u, c3) ∧ db(c3, p);
...
}

Figure 6.1: An illustration of instrumentation by local instantiations for the example of Figure 4.2. The
instrumentation adds three instrumentation relations r1, r2, r3, and performs three local instantiations in
order to prove that the invariant is inductive. Note that an instantiation depth of 2 is used, in accordance
with the fact that the original invariant is provable using bound 2 but not bound 1. The complete model
corresponding to this Figure appears in [add] (file client server db instr.ivy).

Bounded-Horizon with bound 1. However, once a local instantiation is performed, new program vari-

ables c are added. Performing a local instantiation on these new variables now corresponds to instanti-

ation from depth 2. By iteratively applying local instantiations, where each iteration adds new program

variables, we can thus obtain quantifier instantiations of arbitrary depth.

Illustrating Example Figure 6.1 illustrates the local instantiation procedure on the example of Fig-

ure 4.2. Recall that the ∀∗∃∗ invariant I of Figure 4.2 is not provable using Bounded-Horizon of bound

1, but is provable using Bounded-Horizon of bound 2. The instrumentation presented in Figure 6.1

introduces three instrumentation relations to encode the existential parts of I , thereby producing the

instrumented universal invariant Î .

To prove the inductiveness of Î , we use local instantiations in both the server process db response

action and the check action. In server process db response, we instantiate the definition of r3
on (id , skp), and assign the existential witness to c1. Intentionally, c1 gets the request that was sent from

the server to the DB that led to the response skp being sent from the DB to the server. skp is the response

that supposedly causes a violation of the invariant when the action server process db response

34 CHAPTER 6. INSTRUMENTATION FOR HIGH DEPTH INSTANTIATIONS

is executed (the instantiations are used to prove that a violation does not occur). This instantiation is of

depth 1. Next, we make an instantiation of the definition of r2 on (id , c1) and obtain a new existential

witness c2. The use of c1 here makes this instantiation depth 2. The check action includes another

instantiation of depth 1, which is simply used to prove that the abort cannot happen (similarly to

rewriting a program condition).

The reader can observe that the local instantiations introduced during the instrumentation process

closely correspond to the instantiations required to prove that the original ∀∗∃∗ invariant I (see Chap-

ter 4).

We note that the process of instrumentation by local instantiations discussed here is different in spirit

from those of Chapter 5: instrumentation by local instantiation consists of almost nothing but adding

existential quantifiers to the transition relation, as opposed to the condition in Definition 8 where we do

not allow the instrumentation to add new existential quantifiers.

Chapter 7

Partial Models for Understanding
Non-Inductiveness

When conducting SMT-based deductive verification (e.g., using Dafny [Lei10]), the user constructs both

the formal representation of the system and its invariants. In many cases, the invariant I is initially not

inductive w.r.t. the given program, due to a bug in the program or in the invariant. Therefore, deductive

verification is typically an iterative process in which the user attempts to prove inductiveness, and, when

this fails, adapts the program, the invariant, or both.

In such scenarios, it is extremely desirable to present the user with a counterexample to induction in

the form of a state that satisfies I but makes a transition to a state that violates it. Such a state can be ob-

tained from a model of the formula Ind = I∧δ∧¬I ′ which is used to check inductiveness. It explains the

error, and guides the user towards fixing the program and/or the invariant [Lei10, FLL+02]. However, in

many cases where the check involves quantifier alternation, current SMT solvers are unable to produce

counterexamples. Instead, SMT solvers usually diverge or report “unknown” [GM09, RTGK13]. In

such cases, Bounded-Horizon instantiations can be used to present a concrete logical structure which is

comprehensible to the user, and is obtained as a model of the (finite) instantiations of the formula Ind.

While this structure is not a true counterexample (as it is only a model of a subset of the instantiations

of the formula), it can still guide the user in the right direction towards fixing the program and/or the

invariant.

We illustrate this using a simple leader-election protocol in a ring [CR79], whose model is presented

in Figure 7.1(a). The protocol assumes that nodes are organized in a directional ring topology with

unique IDs, and elects the node with the highest ID as the leader. Each node sends its own ID to its

successor, and forwards messages when they contain an ID higher than its own ID. A node that receives

its own ID is elected as leader. We wish to prove a termination property which states that once all nodes

have sent their ID, and there are no pending messages in the network, then there is an elected leader. To

verify this we use a relational model of the protocol similar to [PMP+16], and specify the property via

the following formula:

(∃n. leader(n)) ∨ (∃n1, n2. ¬sent(n1) ∨ pending(n1, n2)) (7.1)

35

36 CHAPTER 7. PARTIAL MODELS FOR UNDERSTANDING NON-INDUCTIVENESS

pending := ∅;
. . . # ring topology

action send packet(n) {
assume ring next(n,m)
pending := pending ∪ {(n,m)}
sent := sent ∪ {n}
}

action receive packet(n,m) {
assume pending(m,n)
pending := pending \ {(m,n)}
if m = n then

leader := leader ∪ {n}
else
if n < m then
assume ring next(n,n0)
pending := pending ∪ {(m,n0)}

else # do not forward
}

(a) (b) (c) (d)

Figure 7.1: Leader-election in a ring protocol as an illustration of the use of partial models for in-
correct programs and invariants. (a) sketches the protocol (the complete program appears in [add], file
ring leader termination.ivy). (b),(c) show partial models of bound 1 and 2, respectively, and
(d) illustrates an infinite structure that explains the root cause of the non-inductiveness.

A natural attempt of proving this using an inductive invariant is by conjoining Equation (7.1) (which is

not inductive by itself) with the following property (this was the authors’ actual next step in proving this

termination property):

∀n1. sent(n1) ∧ ¬leader(n1)→ ((∃n2. pending(n1, n2)) ∨ (∃n2. n1 < n2)) (7.2)

meaning that if a node has sent its own ID but has not (yet) become leader, then there is either a message

pending in the network with the node’s ID, or a node with a higher ID.

Alas, the conjunction of Equations (7.1) and (7.2) is still not an inductive invariant for the protocol

(as we explain below). Since Equation (7.2) contains ∀∗∃∗ quantification, the associated inductiveness

check is outside of the decidable EPR fragment. Indeed, Z3 diverges when it is used to check Ind.

This is not surprising since the formula has no satisfying finite structures, but has an infinite model (a

scenario that is not unusual for ∀∗∃∗ formulas).

On the other hand, applying Bounded-Horizon (with any bound) to Ind results in a formula that has

finite models. These concrete models are partial models of Ind. Figs. 7.1(b) and (c) show partial models

(restricted to the pre-states) obtained with bounds of 1 and 2, respectively, on this example.

These models are not true counterexamples to induction: the sub-formula of Equation (7.2) residing

under the universal quantifier does not hold for all the elements of the domain. It does, however, hold

for all elements with which the quantifier was instantiated, which are the elements above the dashed

line. These elements have all sent their own ID, which was blocked by their successor that has a higher

ID, so none of them is the leader. In a finite model, this has to end somewhere, because one of the

nodes must have the highest ID. Hence, no finite counter-model exists. However, extrapolating from

37

Figure 7.1(b) and (c), we can obtain the infinite model depicted in Figure 7.1(d). This model represents

an infinite (“open”) ring in which each node has a lower ID than its successor. This model is a true

model of the formula Ind generated by the invariant in Equations (7.1) and (7.2), but the fact that it is

infinite prevented Z3 from producing it.

Since we use tools that check general (un)satisfiability, which is not limited to finite structures,

the only way to prove that an invariant is inductive is to exclude infinite counterexamples to induction

as well. Using Bounded-Horizon instantiations, we are able to obtain meaningful partial models that

provide hints to the user about what is missing. In this case, the solution is to add an axiom to the system

model which states that there is a node with maximal ID: ∃n1. ∀n2. n2 ≤ n1. With this additional

assumption, the formula Ind is unsatisfiable so the invariant is inductive, and this is proven both by Z3’s

instantiation heuristics and by Bounded-Horizon with a bound of 1. This illustrates the usefulness of

Bounded-Horizon when the invariant is not inductive.

38 CHAPTER 7. PARTIAL MODELS FOR UNDERSTANDING NON-INDUCTIVENESS

Chapter 8

Implementation and Initial Evaluation

We implemented a prototype of Bounded-Horizon of bound 1 on top of Z3 [DMB08] and used it within

Ivy [PMP+16] and the framework of [IBI+13]. We applied the procedure to the incorrect example

of Chapter 7, and successfully verified several correct programs and invariants using bound 1. These

examples are (the examples’ code can be found in [add]):

• The client-server example of Figure 4.1.

• List reverse [IBI+13], where the invariant states that the n edges (“next” pointers) are reversed.

The invariant is ∀∗∃∗ due to the encoding of n via n∗ as explained in [IBI+13].

• Learning switch [BBG+14], where the invariant states every routing node has a successor.

• Hole-punching firewall [BBG+14], where the invariant states that every allowed external node

was contacted by some internal node. We explored two modeling alternatives: using a ghost

history relation, or existentially quantifying over time.

• Leader election in a ring [CR79, PMP+16] with the invariant discussed in Chapter 7.

Table 8.1: Experimental results.

Program #∀ #Func #Consts #∀↓ B1 Total B1 Solve Baseline Z3

Client-server 14 1 15 2 58 ms 3 ms 3 ms
List reverse 47 3 15 4 319 ms 211 ms 50 ms
Learning switch 70 1 7 37 245 ms 65 ms 33 ms
Hole-punching firewall with ghost 15 1 18 3 75 ms 4 ms 4 ms
Hole-punching firewall ∃ time 32 2 21 3 102 ms 4 ms 4 ms
Leader-election in a ring (correct) 41 1 21 1 113 ms 36 ms 27 ms

Leader-election in a ring (incorrect) 40 1 20 1 1112 ms 1008 ms —

B1 Total is the time in milliseconds for the bound 1 implementation. It is compared to Baseline Z3 which is the
solving time in milliseconds of Ind as is (with quantifier alternation) by Z3. B1 Solve measures the solving time
of the formula restricted to bound 1, which demonstrates that most of the overhead occurs when constructing the
formula. #∀ is the number of universal quantifiers in Ind, #Func the number of different Skolem function symbols,
and #Consts the number of constants. #∀↓ is the number of universally quantified variables that were restricted in
the bound 1 check. Measurements were performed on a 3.5GHz Intel i5-4690 CPU with 8GB RAM running Linux
3.13 x86 64.

An initial evaluation of the method’s performance appears in Table 8.1.

39

40 CHAPTER 8. IMPLEMENTATION AND INITIAL EVALUATION

Our implementation works by adding “guards” that restrict the range of universal quantifiers to

the set of constants where necessary. Technically, recall that we are considering the satisfiability of

Ind = IS ∧ δS ∧ (¬I ′)S . 1Let ∀x. θ be a subformula of Ind. If θ contains function symbol applications2,

we transform the subformula to ∀x.
(∨

c x = c
)
→ θ where c ranges over const[Ind]. The resulting

formula is then dispatched to the solver. This is a simple way to encode the termination criterion

of bound 1 while leaving room for the solver to perform the necessary instantiations cleverly. The

translation enlarges the formula by O(#Consts · #∀) although the number of bounded instantiations

grows exponentially with #∀. The exponential explosion is due to combinations of constants in the

instantiation, a problem we defer to the solver.

Z3 terminates on the class of formulas because during the Model-Based Quantifier Instantiation

process every instantiation of a universally quantified formula has the same truth value in the model as an

instantiation using one of the existing ground terms (constants and then BHT1 terms). Z3’s instantiation

engine will produce instantiations using existing terms rather than create superfluous new terms [Bjø].

The results are encouraging because they suggest that the termination strategy of Bounded-Horizon,

at least for bound 1, can be combined with existing instantiation techniques to assure termination with

only a slight performance penalty. Most encouraging is the satisfiable example of Chapter 7. On this

instance, Z3 was able to return “sat” within seconds, although to do so, in theory, the solver must exhaust

the entire set of bounded instantiations. This suggests that the Bounded-Horizon termination criterion

might indeed be useful for “sat” instances on which the solver may diverge.

A different approach to the implementation is to integrate the termination criterion of the bound

with the solver’s heuristics more closely (see [BRK+15]).

1Skolemization is performed via Z3, taking advantage of heuristics that reduce the number of different Skolem functions.
2This in fact implements the approximation as of Equation (4.2). The exact bound 1 per Equation (4.1) can be implemented

by a more careful consideration of which universally quantified variables should be restricted, but this was not necessary for
our examples.

Chapter 9

Related Work

Quantifier instantiation. The importance of formulas with quantifier-alternations for program verifi-

cation has led to many developments in the SMT and theorem-proving communities that aim to allow

automated reasoning with quantifier-alternations. The Simplify system [DNS05] promoted the practical

usage of quantifier triggers, which let the user affect the quantifier instantiation in a clever way. Similar

methods are integrated into modern SMT solvers such as Z3 [DMB08]. Recently, a method for anno-

tating the source code with triggers has been developed for Dafny [LP16]. The notion of instantiation

depth is related to the notions of matching-depth [DNS05] and instantiation-level [GBT09] which are

used for prioritization within the trigger-based instantiation procedure.

In addition to user-provided triggers, many automated heuristics for quantifier instantiation have

been developed, such as Model-Based Quantifier Instantiation [GM09]. Even when quantifier instan-

tiation is refutation-complete, it is still important and challenging to handle the SAT cases, which are

especially important for program verification. Accordingly, many works (e.g., [RTGK13]) consider the

problem of model finding.

Local Theory Extensions and Psi-Local Theories [Sof05, IJS08, BRK+15] identify settings in which

limited quantifier instantiations are complete. They show that completeness is achieved exactly when

every partial model can be extended to a (total) model. In such settings Bounded-Horizon instantiations

are complete for invariant checking. However, Bounded-Horizon can also be useful when completeness

cannot be guaranteed.

Classes of SMT formulas that are decidable by complete instantiations have been studied by [GM09].

In the uninterpreted fragment, a refined version of Herbrand’s Theorem generates a finite set of instanti-

ations when the dependencies are stratified. Bounded-Horizon is a way to bound unstratified dependen-

cies.

Natural Proofs. Natural proofs [QGSM13] provide a sound and incomplete proof technique for de-

ductive verification. The key idea is to instantiate recursive definitions over the terms appearing in the

program. Bounded-Horizon is motivated by a similar intuition, but focuses on instantiating quantifiers

in a way that is appropriate for the EPR setting.

Decidable logics. Different decidable logics can be used to check inductive invariants. For example,

41

42 CHAPTER 9. RELATED WORK

Monadic second-order logic [HJJ+95] obtains decidability by limiting the underlying domain to consist

of trees only, and in particular does not allow arbitrary relations, which are useful to describe properties

of programs. There are also many decidable fragments of first-order logic [BGG01]. Our work aims to

transcend the class of invariants checkable by a reduction to the decidable logic EPR. We note that the

example of Chapter 7 does not fall under the Loosely-Guarded Fragment of first-order logic [Hod02]

due to a use of a transitivity axiom, and does not enjoy the finite-model property.

Abstractions for verification of infinite-state systems. Our work is closely related to abstractions of

infinite state systems. These abstractions aim at automatically inferring inductive invariants in a sound

way. We are interested in checking if a given invariant is inductive either for automatic and semi-

automatic verification.

The View-Abstraction approach [AHH13, AHH14, AHH15] defines a useful abstraction for the veri-

fication of parameterized systems. This abstraction is closely related to universally quantified invariants.

An extension of this approach [AHH14] adds contexts to the abstraction, which are used to capture ∀∗∃∗

invariants in a restricted setting where nodes have finite-state and are only related by specific topologies.

Our work is in line with the need to use ∀∗∃∗ invariants for verification, but applies in a more general

setting (with unrestricted high-arity relations) at the cost of losing completeness of invariant checking.

Our work is related to the TVLA system [LS00, SRW02] which allows the programmers to de-

fine instrumentation relations. TVLA also employs finite differencing to infer sound update code for

updating instrumentation relations [RSL10], but generates non-EPR formulas and does not guarantee

completeness. The focus operation in TVLA implements materialization which resembles quantifier-

instantiation. TVLA shows that very few built-in instrumentation relations can be used to verify many

different programs.

Instrumentation and update formulas. The idea of using instrumentation relations and generating

update formulas is not limited to TVLA and was also used for more predictable SMT verification [LQ06,

LQ08].

Chapter 10

Conclusion

We have provided an initial study of the power of bounded instantiations for tackling quantifier alter-

nation. This thesis shows that quantifier instantiation with small bounds can simulate instrumentation.

This is a step in order to eliminate the need for instrumenting the program, which can be error-prone.

The other direction, i.e. simulating quantifier instantiation with instrumentation, was also presented for

conceptual purposes, although it is less appealing from a practical point of view.

We are encouraged by our initial experience that shows that various protocols can be proven with

small instantiation bounds, and that partial models are useful for understanding the failures of the solver

to prove inductiveness. Some of these failures correspond to non-inductive claims, especially those due

to infinite counterexamples. In the future we hope to leverage this in effective deductive verification

tools, and explore meaningful ways to display infinite counterexamples to the user. Other interesting

directions include further investigation into the automation of program transformations for the purpose

of verification (of which instrumentation is an example), including types of ghost code, and the use of

Bounded-Horizon for automatically inferring invariants with quantifier-alternation.

43

44 CHAPTER 10. CONCLUSION

Bibliography

[add] Full code materials. http://www.cs.tau.ac.il/research/yotam.feldman/

papers/tacas17/examples_code.zip.

[AHH13] Parosh Aziz Abdulla, Frédéric Haziza, and Lukás Holı́k. All for the price of few. In Verifica-

tion, Model Checking, and Abstract Interpretation, 14th International Conference, VMCAI

2013, Rome, Italy, January 20-22, 2013. Proceedings, pages 476–495, 2013.

[AHH14] Parosh Aziz Abdulla, Frédéric Haziza, and Lukáš Holı́k. Block me if you can! In Interna-

tional Static Analysis Symposium, pages 1–17. Springer, 2014.

[AHH15] Parosh Abdulla, Frédéric Haziza, and Lukáš Holı́k. Parameterized verification through view

abstraction. International Journal on Software Tools for Technology Transfer, pages 1–22,

2015.

[BBG+14] Thomas Ball, Nikolaj Bjørner, Aaron Gember, Shachar Itzhaky, Aleksandr Karbyshev,

Mooly Sagiv, Michael Schapira, and Asaf Valadarsky. Vericon: towards verifying con-

troller programs in software-defined networks. In ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June

09 - 11, 2014, page 31, 2014.

[BGG96] E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem. Springer-Verlag,

1996.

[BGG01] Egon Börger, Erich Grädel, and Yuri Gurevich. The classical decision problem. Springer

Science & Business Media, 2001.

[Bjø] Nikolaj Bjørner. personal communication.

[BRK+15] Kshitij Bansal, Andrew Reynolds, Tim King, Clark W. Barrett, and Thomas Wies. Deciding

local theory extensions via e-matching. In Computer Aided Verification - 27th International

Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part II,

pages 87–105, 2015.

[CR79] Ernest Chang and Rosemary Roberts. An improved algorithm for decentralized extrema-

finding in circular configurations of processes. Communications of the ACM, 22(5):281–

283, 1979.

45

http://www.cs.tau.ac.il/research/yotam.feldman/papers/tacas17/examples_code.zip
http://www.cs.tau.ac.il/research/yotam.feldman/papers/tacas17/examples_code.zip

46 BIBLIOGRAPHY

[DMB08] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, 2008.

[DNS05] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for program

checking. J. ACM, 52(3):365–473, 2005.

[FLL+02] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and

Raymie Stata. Extended static checking for java. In Proceedings of the 2002 ACM SIG-

PLAN Conference on Programming Language Design and Implementation (PLDI), Berlin,

Germany, June 17-19, 2002, pages 234–245, 2002.

[FPI+17] Yotam M. Y. Feldman, Oded Padon, Neil Immerman, Mooly Sagiv, and Sharon Shoham.

Bounded quantifier instantiation for checking inductive invariants. In TACAS, 2017.

[GBT09] Yeting Ge, Clark W. Barrett, and Cesare Tinelli. Solving quantified verification conditions

using satisfiability modulo theories. Ann. Math. Artif. Intell., 55(1-2):101–122, 2009.

[GM09] Yeting Ge and Leonardo De Moura. Complete instantiation for quantified formulas in sat-

isfiabiliby modulo theories. In International Conference on Computer Aided Verification,

pages 306–320. Springer, 2009.

[HHK+15] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L.

Roberts, Srinath T. V. Setty, and Brian Zill. Ironfleet: proving practical distributed systems

correct. In Proceedings of the 25th Symposium on Operating Systems Principles, SOSP,

pages 1–17, 2015.

[HJJ+95] Jesper G. Henriksen, Jakob L. Jensen, Michael E. Jørgensen, Nils Klarlund, Robert Paige,

Theis Rauhe, and Anders Sandholm. Mona: Monadic second-order logic in practice. In

Tools and Algorithms for Construction and Analysis of Systems, First International Work-

shop, TACAS ’95, Aarhus, Denmark, May 19-20, 1995, Proceedings, pages 89–110, 1995.

[Hod02] Ian Hodkinson. Loosely guarded fragment of first-order logic has the finite model property.

Studia Logica, 70(2):205–240, 2002.

[IBI+13] Shachar Itzhaky, Anindya Banerjee, Neil Immerman, Aleksandar Nanevski, and Mooly Sa-

giv. Effectively-propositional reasoning about reachability in linked data structures. In CAV,

volume 8044 of LNCS, pages 756–772, 2013.

[IBR+14] Shachar Itzhaky, Nikolaj Bjørner, Thomas W. Reps, Mooly Sagiv, and Aditya V. Thakur.

Property-directed shape analysis. In Computer Aided Verification - 26th International Con-

ference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria,

July 18-22, 2014. Proceedings, pages 35–51, 2014.

[IJS08] Carsten Ihlemann, Swen Jacobs, and Viorica Sofronie-Stokkermans. On local reasoning in

verification. In Tools and Algorithms for the Construction and Analysis of Systems, 14th

International Conference, TACAS 2008, Held as Part of the Joint European Conferences

BIBLIOGRAPHY 47

on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6,

2008. Proceedings, pages 265–281, 2008.

[Imm99] Neil Immerman. Descriptive complexity. Graduate texts in computer science. Springer,

1999.

[IRR+04] Neil Immerman, Alexander Moshe Rabinovich, Thomas W. Reps, Shmuel Sagiv, and Greta

Yorsh. The boundary between decidability and undecidability for transitive-closure logics.

In CSL, 2004.

[KBI+15] Aleksandr Karbyshev, Nikolaj Bjorner, Shachar Itzhaky, Noam Rinetzky, and Sharon

Shoham. Property-directed inference of universal invariants or proving their absence. In

CAV, 2015.

[Lei10] K Rustan M Leino. Dafny: An automatic program verifier for functional correctness. In

Logic for Programming, Artificial Intelligence, and Reasoning, pages 348–370. Springer,

2010.

[LP16] K. Rustan M. Leino and Clément Pit-Claudel. Trigger selection strategies to stabilize pro-

gram verifiers. In Computer Aided Verification - 28th International Conference, CAV 2016,

Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part I, pages 361–381, 2016.

[LQ06] Shuvendu K. Lahiri and Shaz Qadeer. Verifying properties of well-founded linked lists. In

Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, POPL 2006, Charleston, South Carolina, USA, January 11-13, 2006,

pages 115–126, 2006.

[LQ08] Shuvendu K. Lahiri and Shaz Qadeer. Back to the future: revisiting precise program verifi-

cation using SMT solvers. In Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL 2008, San Francisco, California, USA,

January 7-12, 2008, pages 171–182, 2008.

[LS00] Tal Lev-Ami and Shmuel Sagiv. TVLA: A system for implementing static analyses. In

Static Analysis, 7th International Symposium, SAS 2000, Santa Barbara, CA, USA, June 29

- July 1, 2000, Proceedings, pages 280–301, 2000.

[PMP+16] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham. Ivy:

safety verification by interactive generalization. In Proceedings of the 37th ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI 2016, Santa

Barbara, CA, USA, June 13-17, 2016, pages 614–630, 2016.

[QGSM13] Xiaokang Qiu, Pranav Garg, Andrei Stefanescu, and Parthasarathy Madhusudan. Natural

proofs for structure, data, and separation. In ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013,

pages 231–242, 2013.

48 BIBLIOGRAPHY

[Ram30] F. P. Ramsey. On a problem of formal logic. Proceedings of the London Mathematical

Society, s2-30(1):264–286, 1930.

[RSL10] Thomas W. Reps, Mooly Sagiv, and Alexey Loginov. Finite differencing of logical formulas

for static analysis. ACM Trans. Program. Lang. Syst., 32(6), 2010.

[RTG+13] Andrew Reynolds, Cesare Tinelli, Amit Goel, Sava Krstic, Morgan Deters, and Clark Bar-

rett. Quantifier instantiation techniques for finite model finding in SMT. In Automated De-

duction - CADE-24 - 24th International Conference on Automated Deduction, Lake Placid,

NY, USA, June 9-14, 2013. Proceedings, pages 377–391, 2013.

[RTGK13] Andrew Reynolds, Cesare Tinelli, Amit Goel, and Sava Krstic. Finite model finding in

SMT. In Computer Aided Verification - 25th International Conference, CAV 2013, Saint

Petersburg, Russia, July 13-19, 2013. Proceedings, pages 640–655, 2013.

[Sof05] Viorica Sofronie-Stokkermans. Hierarchic reasoning in local theory extensions. In Au-

tomated Deduction - CADE-20, 20th International Conference on Automated Deduction,

Tallinn, Estonia, July 22-27, 2005, Proceedings, pages 219–234, 2005.

[SRW02] Shmuel Sagiv, Thomas W. Reps, and Reinhard Wilhelm. Parametric shape analysis via

3-valued logic. ACM Trans. Program. Lang. Syst., 24(3):217–298, 2002.

 תקציר

, אינדוקטיביתראשון עם חילופי כמתים היא -ת בלוגיקה מסדריקה אם אינווריאנטה מוצעת שמבוטאעבודה זו עוסקת בבד

)ספיקות מודולו תורה לוגית(SMTידי קטע קוד)ללא לולאות(. על אף שהבעיה אינה כריעה, כלי -כלומר משתמרת על

עוצמה של -באופן אוטומטי. עם זאת, הם משתמשים בטכניקות רבותמודרניים לפעמים מצליחים לבצע את הבדיקה

שי משמעותי אינסטנסיאציה של כמתים אשר עלולות להתבדר, במיוחד כשהאינווריאנטה המוצעת אינה אינדוקטיבית. קו

 נגד לאינדוקטיביות בגודל אינסופי.-הוא קיומן של דוגמאות

)אופק חסום(, שהוא דרך טבעית להבטיח התכנסות של כלי Bounded-Horizon עבודה זו חוקרת אלגוריתם בשם

SMT .אנחנו מראים ששיטה זו רבת. השיטה חוסמת את העומק של ביטויים בתהליך האינסטנציאציה של הכתמים-

-שהיא מופעלת לצורך בדיקת אינדוקטיביות של אינווריאנטות מעל תחומים לוגיים לאכעוצמה במידה מפתיעה

נגד חלקיות, השיטה יכולה לסייע למשתמש לאבחן שהאינווריאנטה אינה -ידי הפקת דוגמאות-, עלמפורשים. מעבר לזאת

 נגד אינסופית.-אינדוקטיבית, במיוחד כאשר הסיבה היא קיומה של דוגמת

, שהיא אינסטרומנטציהחזק לפחות כמו Bounded-Horizonהתוצאה הטכנית העיקרית של העבודה היא שאלגוריתם

תאימה ניתנת לביטוי על ידי שינוי התוכנית כך שהאינווריאנטה המ SMT-הבטיח את ההתכנסות של כלי השיטה ידנית ל

האלגוריתם יכול לחקות מחלקה טבעית של 1באמצעות כימות אוניברסלי בלבד. אנו מראים שעם חסם של

 צורך לשנות את התוכנית ובצורה אוטומטית לחלוטין.ללא אינסטרומנטציות,

, בו השתמשנו לוודא מספר דוגמאות באמצעות Z3מתארים מימוש ראשוני של האלגוריתם, מעל הכלי בנוסף, אנו

Bounded-Horizon 1עם חסם של.

אינסטנציאציית כמתים חסומה
לבדיקת אינווריאנטות

 אינדוקטיביות

 חיבור זה הוגש כחלק מהדרישות לקבלת התואר

 .(M.Sc) "מוסמך האוניברסיטה"

 ידיעל

 יותם פלדמן

 עבודת המחקר בוצעה בהנחייתו של

 פרופ' מולי שגיב

 ד"ר שרון שוהם

	Introduction
	Preliminaries
	Undecidability
	Inductiveness Over Finite Structures
	Inductiveness Over General Structures

	Bounded-Horizon
	Power of Bounded-Horizon for Proving Inductiveness
	Instrumentation
	From Instrumentation to Bounded-Horizon
	Power for * * Invariants
	Generalization to 1-Alternation Invariants

	Instrumentation for High Depth Instantiations
	Partial Models for Understanding Non-Inductiveness
	Implementation and Initial Evaluation
	Related Work
	Conclusion
	Bibliography

