
Tel Aviv University
Raymond and Beverly Sackler Faculty of Exact Sciences

The Blavatnik School of Computer Science

SAFETY VERIFICATION OF STATEFUL NETWORKS

by

Kalev Alpernas

under the supervision of

Prof. Mooly Sagiv
and

Dr. Sharon Shoham

Thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science

2016

ii

Abstract

Safety Verification of Stateful Networks

Kalev Alpernas

Master of Science

School of Computer Science

Tel Aviv University

In modern networks, forwarding of packets often depends on the history of previously transmitted traffic.

Such networks contain stateful middleboxes, whose forwarding behaviour depends on a mutable internal

state. Firewalls and load balancers are typical examples of stateful middleboxes.

This work addresses the complexity of verifying safety properties, such as isolation, in networks

with finite-state middleboxes. Unfortunately, we show that even in the absence of forwarding loops,

reasoning about such networks is undecidable due to interactions between middleboxes connected by

unbounded ordered channels. We therefore abstract away channel ordering. This abstraction is sound

for safety, and makes the problem decidable. Specifically, we show that safety checking is EXPSPACE-

complete in the number of hosts and middleboxes in the network. We further identify two useful sub-

classes of finite-state middleboxes which admit better complexities. The simplest class includes, e.g.,

firewalls and permits polynomial-time verification. The second class includes, e.g., cache servers and

learning switches, and makes the safety problem coNP-complete.

Finally, we implement a tool for verifying the correctness of stateful networks.

iii

iv

My beloved Julia.

v

vi

Acknowledgements

I would like to thank Prof. Mooly Sagiv for his guidance and inspiration. Prof. Sagiv’s endless

optimism and singular vision have been the cornerstones of this work. It has been a privilege working

with him.

I would also like to thank Dr. Sharon Shoham for showing me how to strive for excellence, for

not compromising on quality or accuracy, and for teaching me how to achieve elegance and beauty in

academic thought and writing.

I would like to thank Dr. Yaron Velner for his insight into the unknown, knowledge of the known

and interest in the curious. I would like to thank my fellow travelers Yotam Feldman, Asya Frumkin,

Oded Padon, Hila Peleg and Orr Tamir. Finally I would like to thank my family and loved ones for

providing me with the motivation and power to go on.

vii

viii

Contents

1 Introduction 1

1.1 What is Decidable About Middlebox Verification . 2

1.2 Complexity of Stateful Verification . 3

1.3 Main Results . 4

2 A Formal Model for Stateful Networks 7

2.1 Stateful Middleboxes . 7

2.1.1 Finite-State Middleboxes . 8

2.1.2 Symbolic Representation of Middleboxes . 8

2.2 Concrete (FIFO) Network Semantics . 11

2.3 Verification of Safety Properties in Stateful Networks 11

2.4 Undecidability of Safety w.r.t. the FIFO Semantics 13

3 Abstract Network Semantics 15

4 Classification of Stateful Middleboxes 17

4.1 Examples . 23

5 Lower Bounds on Complexity of Safety w.r.t. the Unordered Semantics 27

5.1 Unordered Safety in Progressing Networks is coNP-hard. 27

5.2 Unordered Safety in arbitrary networks is EXPSPACE-hard. 30

6 Upper Bounds on Complexity of Safety w.r.t. the Unordered Semantics 33

6.1 Unordered Safety of Increasing Networks is in PTIME 34

6.2 Unordered Safety of Progressing Networks is in coNP 37

6.3 Unordered Safety of Arbitrary Networks is in EXPSPACE 39

7 Implementation and Case Studies 45

7.1 Network Examples . 45

7.2 results . 46

ix

8 Conclusion and Related Work 47
8.1 Related Work . 47

8.2 Future Work . 48

Bibliography 50

x

List of Figures

1.1 Middlebox hierarchy with worst-case time complexity for each category. 3

2.1 A simple language for representing finite state middleboxes. 〈exp〉 denotes a vector of

〈exp〉 separated by commas. 9

2.2 Symbolic representation of middleboxes. 10

2.3 Isolation checking middlebox. 12

2.4 Interesting network topologies for verification. 12

2.5 The network resulting from the reduction from the halting problem for Two Counter

Machines. 14

3.1 A network with two hosts and two authentication middleboxes. Isolation in this network

is preserced under the FIFO semantics, but is violated under the unordered semantics. . 16

4.1 A learning switch with three ports. 24

4.2 A 3-port round-robin load-balancer. 25

5.1 The network ‘gadget’ associated with vertex v in the hamiltonian path problem. The

vertex v is connected to vertices ui and uj . 29

5.2 The network resulting from the reduction from the Hamiltonian Path problem to network

isolation. 29

5.3 The network resulting in the reduction from the VASS control state reachability problem. 31

6.1 Safety checking of increasing networks. 34

xi

xii

Chapter 1

Introduction

Modern computer networks are extremely complex, leading to many bugs and vulnerabilities which

affect our daily life. Therefore, network verification is an increasingly important topic addressed by

the programming languages and networking communities (e.g., see [KPC+12, CVP+12, KVM12,

KZCG12, KCZ+13, SNM13, NFSK14, FKM+15]). Previous network verification tools leverage a

simple network forwarding model which renders the datapath immutable; i.e., normal packets going

through the network do not change its forwarding behaviour, and the control plane explicitly alters the

forwarding state at relatively slow time scales. Thus, invariants can be verified before each control-plane

initiated change and these invariants will be enforced until the next such change. While the notion of

an immutable datapath supported by an assemblage of routers makes verification tractable, it does not

reflect reality. Modern enterprise networks are comprised of roughly 2/3 routers 1 and 1/3 middle-

boxes [SHS+12]. A simple example of a middlebox is a stateful firewall which permits traffic from

untrusted hosts only after they have received a message from a trusted host. Middleboxes — such as

firewalls, WAN optimizers, transcoders, proxies, load-balancers, intrusion detection systems (IDS) and

the like — are the most common way to insert new functionality in the network datapath, and are com-

monly used to improve network performance and security. While useful, middleboxes are a common

source of errors in the network [PJ13], with middleboxes being responsible for over 40% of all major

incidents in networks.

This work addresses the problem of verifying safety of networks with middleboxes, referred to as

stateful networks. We model such a network as a finite undirected graph with two types of nodes:

(i) hosts which can send packets, (ii) middleboxes which react to packet arrivals and forward modified

packets. Each node in the network has a fixed number of ports, connected by network edges (links).

From a verification perspective, it is possible to view a middlebox as a procedure with local mutable

state which is atomically changed every time a packet is transmitted. The local state determines the

forwarding behaviour.2 Thus, the problem of network verification amounts to verifying the correctness

of a specialized distributed system where each of the middleboxes operates atomically and the order of

1In this work we do not distinguish between routers and switches, since they obey similar forwarding models.
2Routers may be considered a degenerate case of middleboxes, whose state is constant and hence their forwarding be-

haviour does not change over time.

1

2 CHAPTER 1. INTRODUCTION

packet processing by different middleboxes is arbitrary.

Real middleboxes are generally complex software programs implemented in several 100s of thou-

sands of lines of code. We follow [PLA+14, PAS+15] in assuming that we are provided with middlebox

models in the form of finite-state transducers. In our experience one can naturally model the behaviour

of most middleboxes this way. For every incoming packet, the transducer uses the packet header and

the local state to compute the forwarding behaviour (output) and to update its state for future packets.

The transducer can be non-deterministic to allow modelling of middleboxes like load-balancers whose

behaviour depends not just on the state, but also on a random number source. We symbolically represent

the local state of each middlebox by a fixed set of relations on finite elements, each with a fixed arity.

The Verification Problem We define network safety by means of avoiding “bad” middlebox states

(e.g., states from which a middlebox forwards a packet in a way that violates a network policy). Given

a set of bad middlebox states, we are interested in showing that for all packet scenarios the bad states

cannot be reached. This problem is hard since the number of packets is unbounded and the states of one

middlebox can affect another via transmitted packets.

1.1 What is Decidable About Middlebox Verification

In Section 2.4, we prove that for general stateful networks the verification problem is undecidable. This

result relies on the observation that packet histories can be used to count, similarly to results in model

checking of infinite ordered communication channels [BZ83]. One may believe that undecidability

arises when the network configuration admits forwarding loops — configurations which are usually

avoided in real networks. However, we show that the verification problem is undecidable even for

networks without forwarding loops.

In order to obtain decidability, we introduce an abstract semantics of networks where the order of

packet processing on each channel (connecting two middleboxes or a middlebox and a host) is arbitrary,

rather than first-in, first-out (FIFO). Thus, middlebox inputs are multisets of packets which can be

processed in any order. This abstraction is conservative, i.e., whenever we verify that the network does

not reach a bad state, it is indeed the case. However, the verification may fail even in correct networks,

resulting in false alarms. Since packets are atomically processed, we note that network designers can

impose ordering even in this abstract model by sending acknowledgments for received packets, and

dropping out-of-order packets.

In fact, the abstraction of the packet order over channels closely corresponds to assumptions made

by network engineers: since packets in modern networks can traverse multiple paths, be buffered, or

be chosen for more complex analysis, network software cannot assume that packets sent from a source

to a server are received by a server in order. Network protocols therefore commonly build on TCP, a

protocol which uses acknowledgments and other mechanisms to ensure that servers receive packets in

order. Since packet ordering is enforced by causality (by sending acknowledgments) and by software

on the receiving end, rather than by the network semantics, correctness of such networks typically does

1.2. COMPLEXITY OF STATEFUL VERIFICATION 3

Figure 1.1: Middlebox hierarchy with worst-case time complexity for each category.

not rely on the order of packet processing. Therefore we can successfully verify a majority of network

applications despite our abstraction.

1.2 Complexity of Stateful Verification

In Chapter 5, we show that the problem of network verification when assuming a nondeterministic order

of packet processing is complete for exponential space, i.e., it is decidable, and in the worst case, the

decision procedure can take exponential space in terms of hosts and middleboxes. This is proved by

showing that the network safety problem is equivalent to the coverability problem of Petri nets, which

is known to be EXPSPACE-complete [Rac78].

Since the problem is complete, it is impossible to improve this upper-bound without further as-

sumptions. Therefore, we consider limited cases of middleboxes permitting more efficient verification

procedures, as shown in Figure 1.1. We identify four classes of middleboxes with increasing expressive

power and verification complexity: (i) stateless middleboxes whose forwarding behaviour is constant

over time, (ii) increasing middleboxes whose forwarding behaviour increases over time, (iii) progressing

middleboxes whose forwarding behaviour stabilizes after some fixed time, alternatively, the transition

relation of the transducer does not include cycles besides self-cycles, and (iv) arbitrary middleboxes

without any restriction. For example, NATs, Switches and simple ACL-based firewalls are stateless;

hole-punching stateful firewalls are increasing; and learning-switches and cache-proxies are progress-

ing and not increasing.

For stateless and increasing middleboxes, we prove that any packet which arrives once can arrive

any number of times, leading to a polynomial-time verification algorithm, using a fixed-point com-

putation. We note that efficient near linear-time algorithms for stateless verification are known (e.g.,

see [KZCG12]). Our result generalizes these results to increasing networks and is in line with the recent

work in [FFP+15, LBG+15].

For progressing middleboxes, we show that verification is coNP-complete. The main insight is that

if a bad state is reachable then there exists a small (polynomial) input scenario leading to a bad state.

This means that tools like SAT solvers which are frequently used for verification can be used to verify

large networks in many cases but it also means that we cannot hope for a general efficient solution unless

4 CHAPTER 1. INTRODUCTION

P=NP.

Finally, we note that unlike the known results in stateless networks, the absence of forwarding loops

does not improve the upper bound, i.e., we show that our lower bounds also hold for networks without

forwarding loops.

Packet Space Assumption Previous works in stateless verification [KVM12, FKM+15] assume that

packet headers have n-bits, simulating realistic packet headers which can be large in practice. This

makes the complexity of checking safety of stateless networks PSPACE-hard. Our model avoids packet

space explosion by only supporting three fields: source, destination, and packet tags. We make this

simplification since our work primarily focuses on middlebox policies (rather than routing). As demon-

strated in Section 4.1, middlebox policies are commonly specified in terms of the source and destination

hosts of a packet and the network port (service) being accessed. For example, at the application level,

firewalls may decide how to handle a packet according to a small set of application types (e.g., skype,

ssh, etc.). Source, destination and packet tag are thus sufficient for reasoning about safety with respect

to these policies. This simplification is also supported by recent works (e.g. [KZCG12]) which suggest

that in practice the forwarding behaviour depends only on a small set of bits.

Lossless Channels Previous works on infinite ordered communication channels have introduced lossy

channel systems [AJ93] as an abstraction of ordered communication that recovers decidability. Lossy

channel systems allow messages to be lost in transit, making the reachability problem decidable, but

with a non-elementary lower bound on time complexity. In our model, packets cannot be lost. On the

other hand, the order of packets arrival becomes nondeterministic. With this abstraction, we manage to

obtain elementary time complexity for verification.

Initial Experience We implemented a tool which accepts symbolic representations of middleboxes

and a network configuration and verifies safety. For increasing (and stateless) networks, the tool gener-

ates a Datalog program and a query which holds iff a bad state is reachable. Then, the query is evaluated

using existing Datalog engines [Ope].

For arbitrary networks (and for progressing networks), the tool generates a petri-net and a coverabil-

ity property which holds iff the network reaches a bad state. To verify the coverability property we use

LOLA [Sch00, TRL] — a Petri-Net model checker.

1.3 Main Results

This work addresses the complexity of verifying the safety of stateful networks. It makes the following

main contributions:

• We show that verifying safety properties in stateful networks is undecidable, even when middle-

boxes are finite-state and when the network configuration does not admit forwarding loops.

1.3. MAIN RESULTS 5

• We define a conservative abstraction of networks in which packets can be processed out of or-

der, and show that the safety problem of stateful networks becomes decidable, but EXPSPACE-

complete.

• We identify classes of networks, characterized by the forwarding behaviours of their middleboxes,

which admit better complexity results (PTIME and coNP). We demonstrate that these classes

capture real-world middleboxes. The upper bounds are made more realistic by stating them in

terms of a symbolic representation of middleboxes.

• We present initial empirical results using Petri nets and Datalog engines to verify safety of net-

works.

6 CHAPTER 1. INTRODUCTION

Chapter 2

A Formal Model for Stateful Networks

In this chapter, we present a formal model of networks with stateful middleboxes. We define a concrete

network semantics, and present the safety verification problem, as well as the special case of isolation.

Finally, we show that the safety verification problem is undecidable under the concrete semantics.

A network N is a finite undirected graph of hosts and middleboxes, equipped with a packet domain.

Formally, N = (H ∪ M,E,P), where H is a finite set of hosts, M is a finite set of middleboxes,

E ⊆ {{u, v} | u, v ∈ H ∪M} is the set of (undirected) edges and P is a set of packets. A host h ∈ H
consists of a unique id and a set of packets hP ⊆ P that it can send.

Packets In real networks, a packet p ∈ P consists of a packet header and a payload. The packet

header contains a source and destination host ids and additional arbitrary stream of control bits. The

payload is the content of the packet and may consist of any arbitrary sequence of bits. The cardinality of

the set of packets is determined by the possible range of control bits and the possible space of payloads,

and need not be finite.

In this work, P is a set of abstract packets. An abstract packet p ∈ P consists of a header only in

the form of a triple (s, d, t), where s, d ∈ H are the source and destination hosts (respectively) and t is

a packet tag that ranges over a finite domain T . Intuitively, T stands for an abstract set of services or

security policies. Therefore, P = H ×H × T , making it a finite set.

Middlebox behaviour in our model is defined with respect to abstract packets and is oblivious of the

underlying concrete packets.

2.1 Stateful Middleboxes

A middlebox m ∈ M in a network N has a set of ports Pr and a forwarding transducer F . The set of

ports Pr consists of all the adjacent edges of m in the network N,

The forwarding transducer of a middlebox is a tuple F = (Σ,Γ, Qm, q
0
m, δm) where:

• Σ = P × Pr is the input alphabet in which each letter consists of a packet and an input port

• Γ = 2Σ is the output alphabet in which each letter describes (possibly empty) sets of packets over

the different ports

7

8 CHAPTER 2. A FORMAL MODEL FOR STATEFUL NETWORKS

• Qm is a possibly infinite set of states

• q0
m ∈ Qm is the initial state

• δm : Qm × Σ→ 2Γ×Qm is the transition relation

Note that the alphabet Σ is finite (since abstract packets are considered).

We extend δm to sequences h ∈ (P × Pr)∗ in the natural way: δm(q, ε) = {(ε, q)} and δm(q, h ·
(p, pr)) = {(γi · o′, q′) | ∃qi ∈ Qm. (γi, qi) ∈ δm(q, h) ∧ (o′, q′) ∈ δm(qi, (p, pr))}. The language

of a state q ∈ Qm is L(q) = {(h, γ) ∈ (P × Pr)∗ × (P × Pr)∗ | ∃q′ ∈ Qm. (γ, q′) ∈ δm(q, h)}.
The language of F , denoted L(F), is the language of q0

m. We also define the set of histories leading to

q ∈ Qm as h(q) = {h ∈ (P × Pr)∗ | ∃γ ∈ (P × Pr)∗. (γ, q) ∈ δm(q0
m, h)}.

F is deterministic if for every q ∈ Qm and every (p, pr) ∈ Σ, |δm(q, (p, pr))| ≤ 1. If F is deter-

ministic, then every history leads to at most one state and output, in which case F defines a (possibly

partial) forwarding function f : (P ×Pr)∗× (P ×Pr)→ 2P×Pr where f(h, (p, pr)) = o for the (unique)

output o such that (h · (p, pr), γ · o) ∈ L(F). If no such output o exists, then f is undefined. When f

is defined, it defines the (possibly empty) set of output packets (paired with output ports) that m will

send to its neighbors following every history h of packets that m received in the past and input packet

p arriving on input port pr. We note that f(h, (p, pr)) = ∅ should not be confused with the case where

f(h, (p, pr)) is undefined.

If F is nondeterministic, a forwarding relation fr ⊆ (P × Pr)∗ × (P × Pr)× 2P×Pr is defined in a

similar way.

Note that every forwarding function f can be defined by an infinite-state deterministic transducer:

Qm will include a state for every possible history, with ε as the initial state. The transition relation δm
will map a state and an input packet to the set of output packets as defined by f, and will change the

state by appending the packet to the history.

2.1.1 Finite-State Middleboxes

Arbitrary middlebox functionality, defined via infinite-state transducers, makes middleboxes Turing-

complete, and hence impossible to analyze. To make the analysis tractable, we focus on abstract mid-

dleboxes, whose forwarding behaviour is defined by finite-state transducers. Nondeterminsm can then

be used to overapproximate the behaviour of a concrete, possibly infinite-state, middlebox via a finite-

state abstract middlebox, allowing a sound abstraction w.r.t. safety.

In the sequel, unless explicitly stated otherwise, we consider abstract middleboxes. We identify a

middlebox with its forwarding relation and the transducer that implements it, and use m to denote each

of them.

2.1.2 Symbolic Representation of Middleboxes

We use a symbolic representation of finite-state middleboxes, where a state of a middlebox m is de-

scribed by the valuation of a finite set of relations R1, . . . , Rk defined over finite domains (e.g., hosts).

The transition relation δm is also described symbolically using (nondeterministic) update operations of

2.1. STATEFUL MIDDLEBOXES 9

〈mbox〉 ::= input(src, dst, tag, prt) : 〈gcmd〉 [〈gcmd〉]∗
〈gcmd〉 ::= 〈grd〉 ⇒ 〈cmd〉 guarded command
〈cmd〉 ::= output {〈exp〉 [, 〈exp〉]∗} output a packet

| abort terminate-abnormally
| id.insert 〈exp〉 add tuple to relation id
| id.remove 〈exp〉 remove tuple from id
| 〈cmd〉; 〈cmd〉 sequence of commands
| 〈gcmd〉 [〈gcmd〉]∗ guarded command block

〈exp〉 ::= src | dst | tag | prt variable
| constant constant

〈grd〉 ::= 〈grd〉 and 〈grd〉
| 〈grd〉 or 〈grd〉
| not〈atom〉
| 〈atom〉

〈atom〉 ::= 〈exp〉 = 〈exp〉 equality
| 〈exp〉 in id membership test

Figure 2.1: A simple language for representing finite state middleboxes. 〈exp〉 denotes a vector of 〈exp〉
separated by commas.

the relations and output. The syntax for the symbolic representation is described in Figure 2.1.

Technically, we use guarded commands. Guards are Boolean expressions over relation membership

predicates of the form e in R (where e = (e1, . . . , en) for an n-ary relation R) and element equalities

e1 = e2. Each ei is either a constant or a variable that refers to packet fields: src, dst, tag, prt. Commands

are of the form:

(i) output set of tuples,

(ii) abort,
(iii) insert tuple e to relation R,

(iv) remove tuple e from relation R,

(v) sequential composition, and

(vi) guarded command block.

The semantics of insert, remove and sequential composition is straightforward. An output com-

mand produces output. In case more than one output is executed, the output of the execution is the

union of all output commands. Blocks of guarded commands are executed non deterministically. That

is, all the guards in the block are evaluated, and one command whose guard is evaluated to true is ex-

ecuted. If no guard evaluates to true then the empty set is produced as output, and no relation changes

are made. The role of the abort command will become clear in Section 2.3.

A symbolic middlebox program represents a finite-state middlebox where each state represents an

interpretation (state) of all the relations, and the transition relation is defined in the natural way. Note

that since all the relations in the program are over finite domains, the set of states is indeed finite.

Lemma 1. Every finite-state middlebox has a symbolic representation.

10 CHAPTER 2. A FORMAL MODEL FOR STATEFUL NETWORKS

input(src, dst, tag, prt) :
prt = 1⇒ // hosts within organization

trusted.insert dst ;
output {(src, dst, tag, 2)}

prt = 2 ∧ src in trusted⇒
// trusted hosts outside organization
output {(src, dst, tag, 1)}

// otherwise (untrusted host) output ∅

(a) A hole-punching firewall.

input(src, dst, tag, prt) :
prt = 1 ∧ (dst, src, tag) in cache⇒

// previously stored response
output {(this, src, tag, 1)}

prt = 1⇒ // new request
output {(this, dst, tag, 2)}

prt = 2⇒ // response to a request
cache.insert(src, dst, tag) ;
output{(this, dst, tag, 1)}

(b) A Cache Proxy.

Figure 2.2: Symbolic representation of middleboxes.

Proof. Let Q = {q0, . . . , qn} be the finite set of states of m, and q0 be the initial state. We construct a

symbolic middlebox program A over the constants q0, . . . , qn with a single unary relation R. Initially,

R = {q0}. Each transition (q′, o) ∈ δm(q, (p, pr)) of m is represented by three guarded commands.

The guards check the state of the relation and the input packet. The first command removes the (only)

current state q fromR. The second inserts the new state q′ and the third outputs the tuples in o according

to δm.

Remark 1. We note that the construction of a symbolic representation in Lemma 1 results in a linear

blowup of the representation, whereas the construction of the explict-state middlebox represented by

a symbolic representation potentially results in an exponential blowup, suggesting that the symbolic

representation is at least as succinct and is potentially exponentially more succinct than the explicit

state representation.

Example 2. Figure 2.2a contains a symbolic representation of a hole-punching Firewall which uses a

unary relation trusted. It assumes that port 1 connects hosts inside a private organization to the

firewall and that port 2 connects public hosts. By default, messages from public hosts are considered

untrusted and are dropped. trusted is a unary relation which stores public hosts that become trusted

once they receive a packet from private hosts.

Figure 2.2b contains a simplified, nondeterministic, version of a Proxy server (or cache server). A

proxy stores copies of documents (packet payloads) that passed through it. Subsequent requests for those

documents are provided by the proxy, rather than being forwarded. Technically, the middlebox has two

ports, namely, a request port from which requests are received and a response port from which responses

arrive. Our modelling abstracts away the packet payloads and keeps only their types. Consequently we

use nondeterminism to also account for different requests with the same type. The internal relation

cache stores responses for packet types.

2.2. CONCRETE (FIFO) NETWORK SEMANTICS 11

2.2 Concrete (FIFO) Network Semantics

The semantics of a network is given by a transition system defined over a set of configurations. In order

to define the semantics we first need to define the notion of channels which capture the transmission

of packets in the network. Formally, each (undirected) edge {u, v} ∈ E in the network induces two

directed channels: (u, v) and (v, u). The channel (v, u) is an ingress channel of u, as well as an egress

channel of v. It consists of the sequence of packets that were sent from v to u and were not yet received

by u (and similarly for the channel (u, v)). The capacity of channels is unbounded, that is, the sequence

of packets may be arbitrarily long. Whenever a middlebox forwards a packet p from a certain port it

removes it from the head of the corresponding ingress channel and adds the generated packets to the

tails of the corresponding egress channels (note that the mapping between channels and middlebox ports

is unique).

Configurations and Runs A configuration of a network consists of the content of each channel and

the state of every middlebox. Channels have an unbounded capacity, resulting in an infinite number

of configurations even for finite state middleboxes. The initial configuration of a network consists of

empty channels and initial states for all middleboxes. A configuration c2 is a successor of configuration

c1 if it can be obtained by either: (i) some host h sending a packet p ∈ hP to a neighbor, thus appending

the packet p to the corresponding channel; or (ii) some middlebox m processing a packet p from the

head of one of its ingress channels, changing its state to q′ and appending output o to its egress channels

if (o, q′) ∈ δm(q, (p, pr)) (where q is the current state ofm and pr is the port associated with the ingress

channel). This model corresponds to asynchronous networks with non-deterministic event order.

A run of a network from configuration c0 is a sequence of configurations c0, c1, c2, . . . such that

ci+1 is a successor configuration of ci. A run is a run from the initial configuration. The set of reach-

able configurations from a configuration ci is the set of all configurations that reside on a run from ci.

The set of reachable configurations of a network is the set of reachable configurations from the initial

configuration.

2.3 Verification of Safety Properties in Stateful Networks

In this section we define the safety verification problem in stateful networks, as well as the special case

of isolation.

To describe safety properties, we augment middleboxes with a special abort state that is reached

whenever δm(q, (p, pr)) = ∅, i.e., the forwarding behaviour is undefined (not to be confused with the

case where (∅, q′) ∈ δm(q, (p, pr)) for some q′ ∈ Qm). This lets middleboxes function as “monitors”

for safety properties. If δm(q, (p, pr)) = ∅, and h ∈ h(q), we say that m aborts on h · (p, pr) (and every

extension thereof). Similarly, we augment the symbolic representation with an abort command.

We define abort configurations as network configurations where at least one middlebox is in an

abort state.

12 CHAPTER 2. A FORMAL MODEL FOR STATEFUL NETWORKS

input(src, dst, tag, prt) :
prt = 0⇒ output {(src, dst, tag, 1)}
prt = 1 ∧ (src, dst, tag) in forbidden⇒ abort
prt = 1 ∧ ¬((src, dst, tag) in forbidden)⇒ output {(src, dst, tag, 0)}

Figure 2.3: Isolation checking middlebox.

r1

lb

r2
A B

(a) Load Balancer and Rate Lim-
iter

cA

B

S1

S2

f

(b) Firewall and Proxy

f2

pub1
1 pri11 pri21pub2

1

f1

(c) Multi-tenant data center

Figure 2.4: Interesting network topologies for verification.

Safety The input to the safety problem consists of a network N (that possibly contains property mid-

dleboxes). The output is True if no abort configuration is reachable in N, and False otherwise.

Isolation and Reachability An important example of a safety property is isolation. In the isolation

problem, the input is a network N, a set of hosts Hi ⊆ H and a forbidden set of packets Pi ⊆ P . The

output is True if there is no run of N in which a host from Hi receives a packet from Pi, and False

otherwise. The isolation problem can be formulated as a safety problem by introducing an isolation

middlebox mhi
for every host hi ∈ Hi. The role of mhi

is to monitor all traffic to hi, and abort if a

forbidden packet p ∈ Pi arrives. All other packets are forwarded to hi. (Figure 2.3 shows a symbolic

representation of such a middlebox.) Clearly, isolation holds if and only if the resulting network is safe.

The Reachability problem is the dual of the isolation problem (i.e., the output is flipped).

Example 3. Figure 2.4 shows several examples of interesting middlebox topologies for verification. In

all of the topologies shown we want to verify a variant of the isolation property. In Figure 2.4a we want

to verify that A, a host, cannot send more than a fixed number of packets to B. Here r1 and r2 are rate

limiters, i.e., they count the number of packets they have seen going from one host to the other, and lb

is a load balancer that evenly spreads packets from A along both paths (to minimize the load on any

one path). In Figure 2.4b we want to ensure that host A cannot access data that originates in S1, but

should be allowed to access data from S2, where f is a firewall and c is a proxy (cache) server. Finally

in Figure 2.4c we show a multi-tenant datacenter (e.g., Amazon EC2), where many independent tenants

insert rules into firewalls (f1 and f2) and we want to ensure that the overall behaviour of these rules

is correct. For example, we would like to ensure that pri11 cannot communicate with pri12, and pub12
communicates with pri11 only if pri11 initiates the connection.

2.4. UNDECIDABILITY OF SAFETY W.R.T. THE FIFO SEMANTICS 13

2.4 Undecidability of Safety w.r.t. the FIFO Semantics

In this section, we prove undecidability of the safety problem by showing that (the specific example

of) checking isolation w.r.t. the FIFO semantics is undecidable, even when the network does not have

forwarding loops.

It is well known that an automaton with an ordered channel of messages (also known as communi-

cating FSM) can simulate a Turing machine [BZ83]. This can be used to show that the isolation problem

over ordered channels is undecidable in the presence of forwarding loops: a forwarding loop allows a

packet to traverse the network and reach the same middlebox any number of times. Therefore, it allows

one middlebox in the network to simulate a communicating FSM by having all packets rerouted to it.

However, it turns out that forwarding loops are not the root cause for undecidability. In this work, we

prove that the isolation problem is still undecidable even in the absence of forwarding loops.

To formally define forwarding loops, we augment every packet sent by a host with a unique packet id

(e.g., the host id combined with a time stamp). Middlebox forwarding is oblivious to this augmentation:

forwarding functions do not depend on the packet id, nor do they change it. We say that a network has

a forwarding loop if there is a run in which a packet with the same packet id is received by the same

middlebox twice (i.e., a run in which a packet that originates from a middlebox is received by the same

middlebox again, possibly after modifications).

We now prove the undecidability result.

Theorem 4. The isolation problem under the FIFO network semantics is undecidable even for networks

with finite-state middleboxes and without forwarding loops.

Proof. We prove undecidability by a reduction from the (undecidable) halting problem of a two-counter

machine to the reachability problem, which is the complement of the isolation problem. A two-counter

machine M consists of a finite set of control states Q, an initial state q0 ∈ Q, a final state qf ∈ Q, and a

set of instructions per state (state transitions). An instruction determines the next state and manipulates

the value of the counters c1, c2 (initially the value of the two counters is 0). An instruction is in one of

the two following forms [Min61]:

• q1 : ci = ci + 1 ; GOTO q2.

The instruction increments ci and changes the state from q1 to q2.

• q1 : If ci = 0 GOTO q2 Else ci := ci − 1 ; GOTO q3.

The instruction changes the state to q2 if the counter value is zero; otherwise it decrements the

counter and goes to state q3.

We first describe a reduction that constructs a network with forwarding loops and allows discarding

of packets. We then describe how to get rid of the forwarding loops and the discard operation. Our

reduction constructs a network with three middleboxes: a controller middlebox that simulates the state

in Q, a c1 middlebox that helps simulate the value of the first counter, and a c2 middlebox that helps

simulate the value of the second counter, as illustrared in Figure 2.5. The network has two hosts: initiator

and target. Intuitively, the initiator host initiates the simulation of the counter machine, and the target

host receives a packet if and only if the counter machine reaches the final state qf . Isolation holds if

14 CHAPTER 2. A FORMAL MODEL FOR STATEFUL NETWORKS

Figure 2.5: The network resulting from the reduction from the halting problem for Two Counter Ma-
chines.

and only if the target host receives no packet. Both hosts are connected to the controller, which is also

connected to c1 and c2. The set of packet tags is T = {#, 1}. Recall that this determines the set of

(abstract) packets. The simulation is done by making sure that the total number of 1 packets on the

ingress and egress channels of each ci corresponds the value of the simulated counter.

In our construction, the middleboxes decide on forwarding based on the packet tag only. Middlebox

ci forwards all of its received packets back to the controller host. We now describe the forwarding

behaviour of the controller. Initially, the initiator sends two # packets to the controller. From that

point on, the initiator sends only 1 packets. This scheme is enforced by the controller: if any other

packet arrives, the controller goes to a sink state in which it discards all received packets. The controller

forwards the first # to c1 and the second # to c2. When the controller gets a 1 packet from the initiator it

simulates a single step of the counter machine, as follows. In an increment operation of ci, the controller

sends a 1 packet to ci. To simulate a zero test of ci, the controller receives two packets from ci (if packets

from other hosts or middleboxes are received, then the controller goes to a sink state). If the first received

packet is #, then the controller forwards it back to ci. If the second one is also #, then the value of the

counter is zero. If it is 1, then it is discarded (the value of ci is decremented by 1). If both packets are

1, then the first one is discarded and the second is forwarded back to ci. The simulation of the states of

the counter machine is performed by the states of the controller middlebox in a straightforward manner.

Finally, if the controller simulates a transition to qf , then it forwards the packet to the target host. Hence,

the counter machine halts if and only if the target host is not isolated.

Construction without discard operation. To avoid packet discarding we add a dummy host, and

packets that should be discarded are forwarded to the dummy host.

Construction without forwarding loops. To avoid forwarding loops, we add a repeater host to every

middlebox. In the new construction, if a middlebox receives a packet with tag t and needs to forward it

to port p, then it discards it, and (i) if the next packet that it receives is not from its repeater with tag t,

then it goes to a sink state. (ii) otherwise, it forwards the packet it got from its repeater to port p.

Chapter 3

Abstract Network Semantics

In this section we define an abstract network semantics, called the unordered semantics, which recovers

decidability of the safety problem.

In the concrete (FIFO) network semantics channels are ordered. In an ordered channel, if a packet p1

precedes a packet p2 in an ingress channel of some middlebox, then the middlebox will receive packet p1

before it receives packet p2. We abstract this semantics by an unordered network semantics, where the

channels are unordered, i.e., there is no restriction on the order in which a middlebox receives packets

from an ingress channel. In this case, the sequence of pending packets in a channel can be abstracted

by a multiset of packets. Namely, the only relevant information is how many occurrences each packet

has in the channel. The definitions of configurations and runs w.r.t. the unordered semantics are adapted

accordingly. Note that this change does not affect the capacity of the network edges. Consequently the

set of network configurations remains infinite.

Remark 2. Every run with respect to the FIFO network semantics is also a run with respect to the un-

ordered semantics. Therefore, if safety holds with respect to the unordered semantics, then it also holds

for the FIFO semantics, making the unordered semantics a sound abstraction of the FIFO semantics

with respect to safety.

The abstraction can introduce false alarms, where a violation exists with respect to the unordered

semantics but not with respect to the concrete semantics. This is demonstrated by Example 5 which

presents a network that violates isolation with respect to the unordered semantics, but satisfies isolation

with respect to the FIFO semantics. Still, in many cases, the abstraction is precise enough to enable ver-

ification. In particular, in Lemma 8 we show that for an important class of networks, the two semantics

coincide with respect to safety.

Lossy channel semantics is another overapproximation of the FIFO network semantics considered

in the literature. We note that the unordered semantics also over-approximates the lossy semantics with

respect to safety, as any violating run with respect to the lossy semantics can be simulated by a run with

respect to the unordered semantics where “lost” packets are starved until the violation occurs.

Example 5. Consider a network with two hosts (h1 and h2), each connected to an authentication

middlebox (m1 and m2 respectively), as depicted in Figure 3.1. The authentication middleboxes are

15

16 CHAPTER 3. ABSTRACT NETWORK SEMANTICS

Figure 3.1: A network with two hosts and two authentication middleboxes. Isolation in this network is
preserced under the FIFO semantics, but is violated under the unordered semantics.

connected to each other as well. Each authentication middlebox forwards all packets from a host only

if the first packet seen from that host is an authentication key (k1 and k2 for m1 and m2 respectively),

otherwise it drops all packets from that host. We would like to verify isolation between h1 and h2.

Namely, we would like to verify that no packet with source h1 arrives at h2 and vice versa.

A possible scenario violating isolation w.r.t the unordered semantics is: (i) h1 sends k1 and then

sends k2; (ii) m1 receives k1 and then receives k2 (and forwards both packets in that order). (iii) m2

receives k2 before it receives k1 (i.e., the order on the channel betweenm1 andm2 was not maintained).

m2 forwards k2 to h2 and isolation is violated.

On the other hand, if all channels are FIFO, then if h1 first sends k2, it and all subsequent packets

from h1 will be dropped by m1. If h1 first sends k1 instead, m1 will forward it to m2, which in turn

will drop it and all subsequent packets from h1. Consequently, isolation between h1 and h2 is preserved

under the FIFO semantics.

Decidability of Safety w.r.t. the Unordered Semantics In the unordered semantics, the network

forms a special case of monotone transition systems: We define a partial order ≤ between network

configurations such that c1 ≤ c2 if the middlebox states in c1 and c2 are the same and c2 has at least the

same packets (for every packet type) in every channel. The network is monotone in the sense that for

every run from c1 there is a corresponding run from any bigger c2, since more packets over a channel can

only add possible scenarios. The partial order is trivially a well-quasi-order (as the number of packets

cannot be negative), and the predecessor relation is obviously computable. The classical results of

Abdulla et al. [AČJT96] and Finkel et al. [FS01] prove that in monotone transition systems a backward

reachability algorithm always terminates and thus, the safety problem is decidable. Formal arguments

and complexity bounds are provided by Theorem 29.

Chapter 4

Classification of Stateful Middleboxes

Encouraged by the decidability of safety w.r.t. the unordered semantics, we are now interested in inves-

tigating its complexity. As a first step, in this chapter, we identify three special classes of forwarding

behaviours of middleboxes within the class of arbitrary middleboxes. Namely, stateless, increasing, and

progressing middleboxes. We show that these classes capture the behaviours of real world middleboxes.

The classes naturally extend to classes of networks: a network is stateless (respectively, increasing,

progressing or arbitrary) if all of its middleboxes are. As we show in Chapter 5, and Chapter 6, each

of these classes results in a different complexity of the safety problem. Our definitions apply both for

finite-state and infinite-state middleboxes.

Stateless Middlebox A middleboxm is stateless if it can be implemented as a transducer with a single

state (in addition to the abort state), i.e., its forwarding behaviour does not depend on its history (with the

exception of abort). Formally, a middlebox m is stateless if for every two histories h1, h2 ∈ (P × Pr)∗,

packet p ∈ P , port pr ∈ Pr and output set o ∈ 2P×Pr, (h1, (p, pr), o) ∈ fr iff (h2, (p, pr), o) ∈ fr, or m

aborts on either h1 · (p, pr) or h2 · (p, pr).

Increasing Middlebox A middlebox m is increasing if its forwarding relation fr is monotonically

increasing w.r.t. its history, where histories are ordered by the subsequence relation1, denoted by v.

Formally, a middlebox m is increasing if for every two histories h1, h2 ∈ (P × Pr)∗: if h1 v h2, then

for every packet p, port pr and output set o1 ∈ 2P×Pr, if (h1, (p, pr), o1) ∈ fr then either m aborts

on h2 · (p, pr) or for every o2 ∈ 2P×Pr if (h2, (p, pr), o2) ∈ fr then o1 ⊆ o2, and at least one such

output exists. Intuitively, this means that new information can only expand the forwarding policy of an

increasing middlebox, or lead to an abort.

Remark 3. The “increasing” property implies that the forwarding relation of an increasing middlebox

is in fact a function. Hence, the middlebox is deterministic (or trivially determinizable). In the following

we will refer to the forwarding function f of increasing middleboxes instead of the forwarding relation

fr.
1A subsequence is a sequence that can be derived from another sequence by deleting some elements without changing the

order of the remaining elements.

17

18 CHAPTER 4. CLASSIFICATION OF STATEFUL MIDDLEBOXES

The following lemma ensures that the behaviour of an increasing middlebox can be precisely cap-

tured by a finite-state deterministic transducer. Its proof uses Higman’s lemma [Hig52] (based on well

quasi ordering).

Lemma 6. Any infinite-state increasing middlebox has an implementation as a deterministic finite-state

increasing middlebox.

Proof. Consider an infinite-state increasing middlebox m, and its forwarding function f.

Let f(h) denote an ` × k output matrix for the middlebox m and history h, where |P | = ` and

|Pr| = k. We further denote P = {p1, . . . , p`} and Pr = {pr1, . . . , prk}. Every entry in the output

matrix f(h) contains the output set for this pair of packet and port, or > if it is undefined. Formally

f(h)i,j = f(h, (pi, pr j)) or f(h)i,j = > when f is undefined for the input.

As P and pr are finite, we get that there is a finite number of different output matrices. We denote

them by A1, . . . , An. With every output matrix Ai we associate the set of matching histories h(Ai) =

{h | f(h) = Ai}. Note that h(A1) ∪ . . . ∪ h(An) = (P × Pr)∗ and that h(Ai) ∩ h(Aj) = ∅ for every

i 6= j (since the forwarding function is total and deterministic). Therefore, for every history h there

exists a unique i such that h ∈ h(Ai).

In the following, we will show that for everyAi, the set h(Ai) is regular, and thus we can implement

the forwarding function with a finite-state machine, denoted Di, that recognize the matrix that corre-

spond to the current history and forwards a packet accordingly. Based on this property, we construct a

finite-state transducer m′ for m, as follows. m′ runs D1, . . . , Dn in parallel. They all start from their

initial states, and on every new packet p that arrives from port pr , m′ updates the states of D1, . . . , Dn

in parallel based on (p, pr). Exactly one of them, say Di, will reach an accepting state, in which case

m′ will process the packet as defined byAi. Correctness is ensured since for every history h, Di accepts

h if and only if h ∈ h(Ai), which by definition ensures that f(h) = Ai. In addition, the construction

results in a finite-state transducer since the number of matrices is finite.

To complete the proof we show that for every output matrix A, h(A) is regular. We define a partial

order ≤ over matrices as: A ≤ B iff Ai,j ⊆ Bi,j for every pair of indices i, j, (where X ⊆ > for

every X ∈ 2P×Pr). We denote by UP(A) the upwards closure of {A} with respect to the ≤ order on

matrices. We extend the definition of h(A) to sets of matrices: for a (possibly infinite) set of matrices

A we define h(A) =
⋃

A∈A{h | f(h) = A}. We note that since m is increasing, the set h(UP({A})) is

upwards closed with respect to the subsequence relation over histories. Indeed, if h1 ∈ h(UP(A)), then

f(h1) ≥ A. For every h2 w h1, f(h1) ≤ f(h2) (as m is increasing), and thus f(h2) ≥ A, which means

that h2 ∈ h(UP(A)) as well. Hence, by Higman’s lemma and the finite basis property of wqo, we get

that h(UP(A)) has a finite basis (i.e., a finite set of histories). We denote the basis {h1, . . . , ho}. Then

h ∈ h(UP(A)) if and only if h w hi for some i = 1, . . . , o.

We further observe that for a given history hi, the (infinite) set {h | hi v h} is a regular lan-

guage, and as regular languages are closed under finite union, we get that the (infinite) set of histories

h(UP(A)) is regular. Finally, we note that h(A) = h(UP(A)) \
⋃
{h(UP(A′)) | A′ ≥ A ∧ A′ 6= A}.

Since there are finitely many output matrices, closure properties of regular languages imply that h(A)

is regular.

19

Precision of Abstract Semantics in Increasing Networks Recall that in general, safety w.r.t. the

FIFO semantics and the unordered semantics do not coincide. However, the following lemmas show

that for increasing networks (with either finite-state or infinite-state middleboxes) they must coincide,

making the abstraction precise for such networks. Intuitively, this is because in increasing networks

if a packet p reaches a middlebox m once, then it can reach m again, thus enabling the simulation of

unordered channels with ordered ones.

Lemma 7. Let N be an increasing network. For every middleboxm, packet p and port pr , if there exists

a run r of N from the initial configuration in the FIFO semantics such that in the last step m receives

p from pr , then from any configuration there exists a run, in the FIFO semantics, that ends in a step in

which m receives p from pr (or in abort).

Proof. We prove the assertion by induction on |r| (the length of the run from the initial configuration).

We fix m, p, pr , r, and an arbitrary configuration c from which we wish to show a run.

If |r| = 1, then it must be the case that m received the packet from a neighbor host. Hence, c has a

run in which the same neighbor host sends the same packet to m, and after all the previous packets in

the ingress channel of m are processed, the packet p arrives from port pr .

If |r| > 1, then we consider two distinct cases. In the first case, the packet was sent to m by a

neighbor host, and by the same arguments as before the assertion holds. In the second case, the packet

was sent to m by a neighbor middlebox m′. Let h′ = (p′1, pr
′
1), . . . , (p′n, pr

′
n) be the history of packets

received by m′ before it sent the packet, and let (p′, pr ′) be the packet that triggered the forwarding of p

from m′ to m. Since these packets were received by m′ before the last step of r it must be the case that

there exist n+ 1 runs r1, . . . , rn, r
′ with length at most |r| − 1, such that run ri ends when m′ receives

packet (p′i, pr
′
i), and run r′ ends when m′ receives (p′, pr ′).

Hence, by the induction hypothesis there is a run over N that begins in c and ends in some configura-

tion c1 after m′ received the packet (p′1, pr
′
1). Similarly, for every i = 1, . . . , n there is a run that begins

in ci and ends in some configuration ci+1 after m′ received the packet (p′i, pr
′
i). Finally, there is a run

from cn+1 to a configuration c′ that ends after m′ received (p′, pr ′). Consider the history h′′ of m′ that

is formed in the run c ; c1 ; . . . cn+1 ; c′. Regardless of the history of m′ in c (which is the prefix

of h′′), we get that h′ is a subsequence of h′′ (as (p′i+1, pr
′
i+1) is added after (p′i, pr

′
i)). Hence, after

m′ receives (p′, pr ′), it must forward p to m (due to the fact that fm′(h, (p′, pr ′)) ⊆ fm′(h′′, (p′, pr ′))).

Hence, after m processes all the packets in its ingress channel, it will receive (p, pr) (or will get to an

abort state).

Lemma 8. Let N be an increasing network. Then the output of the safety problem in N w.r.t. the FIFO

semantics and the unordered semantics is identical.

Proof. Recall that any (violating) run w.r.t. the FIFO semantics is also a viable (violating) run w.r.t. the

unordered semantics. Therefore, in order to prove the assertion of the lemma, it suffices to prove that

for every violating run w.r.t. the unordered semantics there is a violating run w.r.t. the FIFO semantics.

We prove that for every unordered run r and every middlebox m there exists an ordered run r′ s.t.

r|m v r′|m where r|m is the history of middlebox m in run r.

20 CHAPTER 4. CLASSIFICATION OF STATEFUL MIDDLEBOXES

The proof is by induction on the length of the unordered run r. The base case, where |r| = 0, is

clear as the history is necessarily empty.

For |r| > 0, the induction hypothesis guarantees that for the prefix of r of length |r − 1|, denoted

r−1, there exists an ordered run r′−1 s.t. r−1|m v r′−1|m. If m is not the recipient of the last packet,

then we consider r′ = r′−1. The resulting history for middlebox m is r′|m = r′−1|m, and because

r|m = r−1|m in this case, we have that r|m v r′|m.

If m is the recipient of the last packet, we consider two distinct cases. In the first case, the final

packet (p, pr) in r was sent by a neighbor host. Since hosts can send packets in any configuration, we

append the last event of r to r′−1, resulting in the ordered run r′. The resulting history for middlebox m

is r′|m = r′−1|m · (p, pr), and because r|m = r−1|m · (p, pr), we have that r|m v r′|m.

In the second case, the final packet (p, pr) in r was sent by a neighbor middlebox m′. We consider

the history of middlebox m′ for r−1 — the prefix of r of length |r − 1|, denoted h = r−1|m′ =

〈(p0, pr0), · · · , (pl, pr l)〉. By the induction hypothesis, there exists an ordered run r′′−1 s.t. r−1|m′ v
r′′−1|m′ , and by Lemma 7 we get that for every packet (pi, pr i) in h from any configuration there exists

an ordered run that ends in middlebox m′ receiving (pi, pr i).

We proceed by constructing the run r′. We first construct the run r̃ = r′−1 · r′1 · · · r′l where r′−1 is

the ordered run guaranteed by the induction hypothesis s.t. r−1|m v r′−1|m, and ri is the ordered run

ending in the middlebox m′ receiving the packet (pi, pr i), starting from the configuration at the end

of the previous run. The construction ensures that r−1|m v r̃|m (since r−1|m v r′−1|m). In addition,

because r−1|m′ = 〈(p0, pr0), · · · , (pl, pr l)〉 v r̃|m′ andm′ is increasing,m′ can send the packet (p, pr)

to m after r̃. We obtain r′ by appending to r̃ the final event of r, where m′ sends the packet (p, pr) to

m. Since r′|m = r̃|m · (p, pr), r|m = r−1|m · (p, pr) and r−1|m v r̃|m, we get that r|m v r′|m.

In particular, we can construct an ordered run in which m has an aborting history.

Progressing Middlebox In order to define progressing middleboxes, we define an equivalence relation

between middlebox states based on their forwarding behaviour. States q, q′ are equivalent, denoted

q1 ≈ q2, if L(q1) = L(q2). A middlebox m is progressing if it can be implemented by a transducer

in which whenever the state is changed into a non-equivalent state, it will never return to an equivalent

state. Formally, if (o′, q′) ∈ δm(q, (p, pr)) and q′ 6≈ q (where q, q′ are reachable states of m) then for

any history h ∈ (P × Pr)∗, if (γ′′, q′′) ∈ δm(q′, h) then q′′ 6≈ q.

As opposed to increasing middleboxes, progressing middleboxes might require infinitely many

states. In this case nondeterminism is essential as it allows to support the abstraction of infinite-state

middleboxes via finite-state transducers.

Example 9 (Infinite-state progressing middlebox). Consider the packet space H × H × {0, 1}, and

a deterministic middlebox m with a single port whose forwarding function is defined as follows. As

long as all received packets have tag 0, then each packet is forwarded (as is) back to the single port.

When a packet with tag 1 arrives for the first time, if the number of previous packets is prime, then all

future packets are discarded. Otherwise, all future packets are forwarded back to the single port. Prime

numbers are not recognizable by finite-state machines. Hence, there is no finite-state implementation

21

of m. On the other hand, m is progressing since its state always progresses (from counting to always

discarding or always forwarding).

Finite-state progressing middleboxes have the following useful property:

Lemma 10. Every finite-state progressing middlebox has an implementation as a finite-state transducer

whose underlying state graph has a tree structure, except for, possibly, self-loops.

Proof. We show an implementation as a directed acyclic graph (DAG), possibly with self loops. The

transformation to a tree is then straightforward. Let m be the minimal transducer that implements the

progressing middlebox. We consider the language L(q) of each state q inm. Minimality ensures that no

two states in m have the same language (otherwise they are equivalent and can be merged). Therefore,

each state q represents a unique language L(q).

Towards a contradiction we assume that there is a directed loop that is not a self-loop in m. A loop

implies that there are two states q1 6≈ q2 in m such that q1 transitions to q2 by some sequence h2 and

q2 transitions back to q1 by some sequence h3. Further, by minimality of m, q1 is reachable by some

sequence h1.

Since m is progressing, contradiction is obtained.

The next lemma summarizes the hierarchy of the classes (as illustrated by Figure 1.1).

Lemma 11. • Any stateless middlebox is also increasing.

• Any increasing middlebox is also progressing.

Proof. The first part of the lemma is straightforward.

Consider the second part of the lemma. Letm be the minimal transducer of an increasing middlebox

and f is its forwarding function. Towards a contradiction assume that m is not progressing, i.e. there

exist two states q1 6≈ q2 and three histories h0, h1, h2 s.t. (γ0, q1) ∈ δm(q0, h0), (γ1, q2) ∈ δm(q0, h0 ·
h1) and (γ2, q1) ∈ δm(q0, h0 · h1 · h2). Because m is increasing, there exist a packet p and a port pr s.t.

f(h0, (p, pr)) ⊂ f(h0 · h1, (p, pr)) (otherwise the states q1 and q2 are equivalent, in contradiction to the

minimality of m). However, since h0 and h0 · h1 · h2 lead to the same state, namely q1, f(h0, (p, pr)) =

f(h0 · h1 · h2, (p, pr)) and we get that f(h0 · h1, p) 6⊆ f(h0 · h1 · h2, p).

Since m is increasing, contradiction is obtained.

Syntactic Characterization of Middlebox Classes The classes of middleboxes defined above can be

characterized via syntactic restrictions on their symbolic representation.

A middlebox representation is syntactically stateless if its representation does not use any insert or

remove command on any relation. A middlebox representation is syntactically increasing if its rep-

resentation does not use the remove command on any relation, does not include any insert command

under guards that include negated membership predicates and all guards are mutually exclusive (i.e. no

two guards can be true at the same time). A middlebox representation is syntactically progressing if its

representation does not use the remove command on any relation.

22 CHAPTER 4. CLASSIFICATION OF STATEFUL MIDDLEBOXES

Lemma 12. Every stateless finite-state middlebox has an equivalent syntactically stateless symbolic

representation and vice versa.

Proof. The lemma is trivial for stateless middleboxes, as both the symbolic and transducer representa-

tions simply describe a forwarding table.

Lemma 13. Every increasing finite-state middlebox has an equivalent syntactically increasing symbolic

representation and vice versa.

Proof. We first show that every increasing finite-state middlebox has an equivalent syntactically in-

creasing symbolic representation. Let m be an increasing finite-state middlebox with state set Q =

{q1, . . . , qn}. By Lemma 11 and Lemma 10 we may assume w.l.o.g that the underlying graph of m is

a tree. We construct a symbolic program A with one unary relation R over the constants q1, . . . , qn.

Initially R = {q1}. To describe A we give the next three notations. For a state qi and a packet p we

denote the successor state of qi according to packet p by qi →p (we note that possibly qi →p= qi). We

denote by qi(p) the forwarding rule of m when m is in state qi and packet p is received. We denote the

(single) predecessor of qi in the tree by pre(qi). For simplicity, we assume that the root q1 also has a

predecessor, namely, q0 with q0(p) = ∅ for every packet p.

We now describe how A processes a packet p:

• Relation update. For every qi ∈ R: insert qi →p to R.

• Forwarding. For every qi ∈ R: output qi(p)− pre(qi)(p).

We first observe that A can be implemented as a syntactically increasing program. Indeed, the “for

every” loops can be replaced by a finite sequence guards consisting of positive relation queries, and

only insert update operations are used. We now show that the forwarding behaviours of A and m are

identical. Let h be an arbitrary history and let p be an arbitrary packet. By trivial induction we get

that the states in the relation R are exactly the states that m visited during the history h. We assume

w.l.o.g that the set of visited states (in history h) is {q1, . . . , qk} and that qi = pre(qi+1). We prove, by

induction on k, that the forwarding function of m and A are identical. In the base case k = 1, and the

proof follows as we defined pre(q1)(p) = ∅. For k > 1, we observe that since m is increasing and a

prefix is also a subsequence, then qk−1(p) ⊆ qk(p). Hence, qk(p) = (qk(p) − qk−1(p)) ∪ qk−1(p). By

the induction hypothesis, we get that A first forwards qk−1(p), and by the implementation of A, we get

that it then forwards qk(p) − qk−1(p). Hence, overall A forwards qk(p), and the proof of the claim is

complete.

To conclude, we proved that A is a syntactically increasing symbolic representation of m.

For the converse direction, we show that the forwarding behaviour of a middlebox given in a syn-

tactically increasing symbolic representation is increasing. Let A be a syntactically increasing symbolic

program. For simplicity we assume that A has only one relation R. The mutually exlusive guard re-

quirement implies determinstic execution. Consequently, for a history hwe can denote byRh the unique

content of relation R after h. We claim that if h1 v h2, then Rh1 ⊆ Rh2 . The proof follows from the

fact that all the guards inA have positive conditions and from the fact that elements are only added to the

4.1. EXAMPLES 23

relation. As the forwarding behaviour depends only on the state of the relation, and since all conditions

are positive, we get that the forwarding behaviour is increasing.

Lemma 14. Every progressing finite-state middlebox has an equivalent syntactically progressing sym-

bolic representation and vice versa.

Proof. We first show that every progressing finite-state middlebox has an equivalent syntactically pro-

gressing symbolic representation. Let m be a progressing finite-state middlebox, and by Lemma 10 we

may assume w.l.o.g that the underlying state graph of m is a tree. Let Q = {q1, . . . , qn} be the states

of m. We construct a symbolic program A similarly to the proof of Lemma 13 (with one unary relation

R over the constants q1, . . . , qn, where initially R = {q1}). When a packet p is processed, the program

computes a maximal (according to topological order) state qi in R (with a guard for every path from the

tree root to each state in the state tree). It then adds qi →p to R and forwards qi(p). Since m is a tree,

then only one maximal state exists in R, and we get that A always simulates m correctly.

For the converse direction, we show that the forwarding behaviour of a middlebox given in a syn-

tactically progressing symbolic representation is progressing. Let A be a syntactically progressing sym-

bolic program. For simplicity we assume thatA has only one relationR. We recall that the domain ofR

is always finite, and thus it has only a finite number of different states (interpretations). We construct a

middlebox m whose states are exactly the states of R, and the forwarding function is exactly according

to those states. As A is progressing, we get that elements are only added to R, and thus the underlying

graph of m is progressing.

4.1 Examples

In this section, we introduce several middleboxes, each of which resides in one of the classes of the

hierarchy presented above.

ACL Switch An ACL switch has a fixed access control list (ACL) that indicates which packets it

should forward and which packets it should discard. Typically the rules in the list refer to the port

number or to hosts that are allowed to use a certain service. As such, the forwarding policy of an ACL

switch is based only on the source host and/or ingress port of the current packet, and does not depend

on previous packets. Hence, an ACL switch can be implemented by a stateless middlebox.

Hole-Punching Firewall A hole-punching firewall is described in Example 2. As the set of trusted

hosts depends on the history of the middlebox, a hole punching firewall cannot be captured by a stateless

middlebox. (Formally, given two different histories, the forwarding function might produce a different

output for the same packet and port.)

However, a hole punching firewall is an increasing middlebox. This follows since for every source

host s and two histories h1 v h2, if s is trusted according to h1, then it is also trusted according to h2.

The proof of the latter is by induction on |h1|. In the base case |h1| = 0, and therefore s is in the initial

24 CHAPTER 4. CLASSIFICATION OF STATEFUL MIDDLEBOXES

input(src, dst, tag, prt) :
¬ ((dst, prt) in connected) ⇒

connected.insert(src, prt); // remember src’s port
(dst, 1) in connected ⇒ output {(src, dst, tag, 1)}
(dst, 2) in connected ⇒ output {(src, dst, tag, 2)}
(dst, 3) in connected ⇒ output {(src, dst, tag, 3)}
¬ ((dst, 1) in connected) ∧
¬ ((dst, 2) in connected) ∧
¬ ((dst, 3) in connected) ⇒

output {(src, dst, tag, oprt) | oprt in allPorts and oprt 6= prt} // flood

Figure 4.1: A learning switch with three ports.

list of trusted hosts (and therefore, it is trusted also in h2). If |h1| > 0, then h1 = h′1 · (p, pr). We

consider two distinct cases: In the first case s was trusted before the last packet p in h1 was received.

Hence, by the induction hypothesis we get that s is trusted also in h2. In the second case s became

trusted only after the last packet p was processed. In this case, p had a trusted source host s1 (according

to h′1) with destination s. Since h1 v h2, there exist h′2, h
′′
2 such that h2 = h′2 · (p, pr) ·h′′2 and h′1 v h′2.

By the induction hypothesis, the source host s1 of the last packet p is also trusted according to h′2, and

therefore s is trusted also in h′2 · (p, pr). As the set of trusted hosts never decreases, s remains trusted in

h2.

Learning Switch A learning switch dynamically learns the topology of the network and constructs a

routing table accordingly. Initially, the routing table of the switch is empty. For every host h the switch

remembers the first port from which a packet with source h has arrived. When a packet arrives, if the

port of the destination host is known, then the packet is forwarded to that port; otherwise, the packet is

forwarded to all connected ports excluding the input-port.

A learning switch is a progressing middlebox. Intuitively, after the middlebox’s forwarding function

has changed to incorporate the destination port for a certain host h, it will never revert to a state in which

it has to flood a packet destined to h. A learning switch is however, not an increasing middlebox, as

packets destined to a host whose location is not known are initially flooded, but after the location of the

host is learned, a single copy of all subsequent packets is sent.

Figure 4.1 depicts a symbolic representation of a learning switch that uses a a binary relation

connected storing connections between hosts and ports. If the port of the destination host is known,

then the packet is forwarded to that port; otherwise, the packet is forwarded to all connected ports ex-

cluding the input-port. The last command in the program is a syntactic shorthand used to avoid the

explicit enumeration of incoming ports required to correctly perform the flood operation.

Proxy Server The Proxy server as described in Example 2 is a progressing middlebox. After it has

stored a response, it nondeterministically replies with the stored response, or sends the request to the

4.1. EXAMPLES 25

input(src, dst, tag, prt) :
(prt = 0 ∧ (1) in nextport) ⇒ output {(src, dst, tag, 1)}
(prt = 0 ∧ (1) in nextport) ⇒ nextport.remove 1
(prt = 0 ∧ (1) in nextport) ⇒ nextport.insert 2
(prt = 0 ∧ (2) in nextport) ⇒ output {(src, dst, tag, 2)}
(prt = 0 ∧ (2) in nextport) ⇒ nextport.remove 2
(prt = 0 ∧ (2) in nextport) ⇒ nextport.insert 1
(prt = 1 ∨ prt = 2) ⇒ output {(src, dst, tag, 0)}

Figure 4.2: A 3-port round-robin load-balancer.

server again. Once a new request is responded by a proxy the forwarding behaviour changes as it takes

into account the new response, and it never returns to the previous forwarding behaviour (as it does not

“forget” the response). This example demonstrates how nondeterminism is used to model middleboxes

whose concrete behaviour depends on packet payloads. In a concrete network model that does not

abstract away the packet payload, the proxy middlebox would always reply to a request with a stored

response and never forward it to the server.

Round-Robin Load Balancer A load balancer is a device that distributes network traffic across a

number of servers. In its simplest implementation, a round-robin load balancer with n out-ports (each

connected to a server) forwards the i-th packet it receives to out-port i (mod n). Round-robin load

balancers are not progressing middleboxes, as the same forwarding behaviour repeats after every cycle

of n packets.

Figure 4.2 depicts a symbolic representation of a round-robin load balancer with 3 ports: port 0 is an

‘input’ port, and ports 1 and 2 are ‘output’ ports on which the load balancer splits the incoming traffic.

It uses a unary relation nextport to hold the port to which the next packet is to be sent.

Remark 4. In practice, middlebox behaviour can also be affected by timeouts and session termination.

For example, in a firewall, a trusted host may become untrusted when a session terminates (which makes

the firewall behaviour no longer increasing). Similarly, cached content of a cache server expires after

a certain period of time (which violates progress). In this work, we do not model timeouts and session

termination.

26 CHAPTER 4. CLASSIFICATION OF STATEFUL MIDDLEBOXES

Chapter 5

Lower Bounds on Complexity of Safety
w.r.t. the Unordered Semantics

When considering the unordered network semantics, the safety problem becomes decidable for networks

with finite-state middleboxes. In this Chapter, we analyze its complexity lower bounds. The complexity

bounds are w.r.t the input size, namely, (i) the number of hosts; (ii) number of middleboxes; and (iii) the

encoding size of the middleboxes functionality, i.e., the size of the explicit state machine (if the encoding

is explicit) or the number of characters in the symbolic representation (if the encoding is symbolic).

In Chapter 6 we present matching upper bounds for networks represented symbolically. Since sym-

bolic representations are at least as succinct as explicit-state descriptions of finite-state middleboxes, all

the lower bounds obtained for the explicit finite-state model apply for the symbolic one as well, and

all the upper bounds obtained for the symbolic model are applicable to the explicit finite-state model,

resulting in tight complexity bounds, both for explicit finite-state middleboxes and for symbolic ones.

5.1 Unordered Safety in Progressing Networks is coNP-hard.

Lemma 15. The isolation problem w.r.t. the unordered network semantics for a progressing network is

coNP-hard.

Proof. We show a reduction from the Hamiltonian Path problem to the reachability problem, which is

the complement of the isolation problem. Recall that the isolation middlebox is stateless, hence it does

not change the class of the input network. We can therefore deduce that the same lower bounds also

hold for the more general safety problem.

We use flood-once middleboxes that upon receiving a packet increment its tag and flood the new

packet. All following packets that arrive at the middlebox are discarded. These flood-once middleboxes

are finite-state progressing middleboxes.

We introduce a single flood-once middlebox for every vertex in the graph and connect them in

accordance with the edges in the graph. In addition, we create two hosts hsource and htarget and connect

them to the middleboxes representing the source and target in the graph. The packet tags ‘count’ the

27

28CHAPTER 5. LOWER BOUNDS ON COMPLEXITY OF SAFETY W.R.T. THE UNORDERED SEMANTICS

length of the path. Thus, a Hamiltonian Path corresponds to a packet with the tag n arriving at the

destination host.

The following lemma shows that a similar result can be obtained using more “standard” middle-

boxes, namely, stateless middleboxes and learning switches.

Lemma 16. The isolation problem w.r.t. the unordered network semantics for a network where each

middlebox is either stateless or a learning switch is coNP-hard.

Proof. The proof is by reduction from the (NP-hard) Hamiltonian Path problem to the reachability

problem. Recall that the Hamiltonian Path problem is given a directed graph G(V,E) and 2 vertices v0

and vn, and it determines whether there is a simple path from v0 to vn in G with length |V |. W.l.o.g we

assume that the out-degree of all vertices of G is two. For the reduction, we construct a network with

three hosts, namely, hs, ht and hd, 4|V | middleboxes, and an isolation middlebox, as described below.

The topology of the resulting network is illustrated in Figure 5.2 The set of packet tags is {1, . . . , |V |}.
The set of target hosts for that reachability problem consists of host ht, and the set of packets to be

received consists of packets with tag |V |. We now describe the network in more detail. With every

vertex v we associate three stateless middleboxes, namely, vA, vB and vC , and a learning switch vLS ,

illustrated in Figure 5.1. Intuitively, these middleboxes will simulate a “flood once” middlebox. The

middlebox vA is connected to vB , vC and vLS . The middlebox vLS is connected to vB and vC as well

as to vA, and if (v, u1) ∈ E and (v, u2) ∈ E, then vB has a link to (u1)A and vC is connected to (u2)A.

Host hs is connected to (v0)A and is allowed to send only the packet (hs, ht, 1) (source hs, destination

ht, and tag 1). Host ht is connected to the isolation middlebox which in turn is connected to (vn)B and

(vn)C . Host hd is a dummy host, disconnected from any middlebox. Its purpose is merely to allow

three distinct host ids. The forwarding function of the learning switch is as described in Section 4.1.

The forwarding function of the stateless middleboxes is defined as follows:

• packets received by vA from some uB or uC : if the packet header is (hs, ht, t), namely, source is

hs, destination is ht and packet tag is t, then forward it to vLS .

• packets received by vA from vLS : if the packet is (hd, hs, t), then forward packet (ht, hd, t) to

vLS .

• packets received by vB, vC from vLS : if the packet is (hs, ht, t) forward packet (hd, hs, t) to vLS .

If the packet is (ht, hd, t) forward packet (hs, ht, t+1) to the appropriate uA. Otherwise, discard.

All other packets are discarded. The isolation middlebox goes to an abort state upon receiving the packet

(hs, ht, |V |).

We first give an informal description of how a packet is processed and then turn to formally prove

the correctness of the reduction. When vA receives a (hs, ht, t) packet from some uB or uC it sends it

to the learning switch. When vLS first receives the packet it forwards it to all of its neighbors except

for vA (from which it was received) and marks the port connected to vA as the destination port to hs.

vB and vC reply with (hd, hs, t), and when the first of these packets arrives to vLS , then it marks either

vB or vC as the destination of hd. In addition, as the port connected to vA is marked as the destination

to hs, the learning switch sends the packets (hd, hs, t) to vA. vA responds with (ht, hd, t). When vLS

5.1. UNORDERED SAFETY IN PROGRESSING NETWORKS IS CONP-HARD. 29

Figure 5.1: The network ‘gadget’ associated with vertex v in the hamiltonian path problem. The vertex
v is connected to vertices ui and uj .

Figure 5.2: The network resulting from the reduction from the Hamiltonian Path problem to network
isolation.

receives the packet it marks the port connected to vA as the destination for ht and forwards the packet

to vB or vC (depending on which was marked as the destination for hd). vB or vC increments the tag

and forwards the packet to a neighbor uA. All additional packets of the form (hs, ht, t
′) that will arrive

to vA after vB or vC has already incremented the tag will be forwarded by vLS back to vA (as it was

marked as the destination port to ht), and in vA they will be discarded.

We now give a formal proof. We claim two assertions: (i) For every v ∈ V , at most one of the

middleboxes vB and vC forwards a packet to an adjacent node (other than vLS). (ii) Both vB and vC
will never forward the same packet twice. The proof of item (i) is due to the fact that every packet passes

through the learning switch and the learning switch will mark only one of vB or vC as the destination of

hd. The proof of item (ii) is due to the fact that if a packet p is generated as a result of vB (vC) sending

a packet to an adjacent middlebox, then at this stage vA is already marked by the learning switch as the

destination of ht. Therefore, when the packet p reaches vA, it will be forwarded from the learning switch

back to vA and will be discarded. Hence, it can never reach vB (vC) again. By the two assertions we

get that reachability holds if and only if a packet visited |V | different middleboxes (v1)X1 , . . . , (vn)Xn

for Xi ∈ {B,C}, and each such middlebox was visited exactly once. Hence, reachability holds iff a

Hamiltonian path exists.

30CHAPTER 5. LOWER BOUNDS ON COMPLEXITY OF SAFETY W.R.T. THE UNORDERED SEMANTICS

5.2 Unordered Safety in arbitrary networks is EXPSPACE-hard.

The lower bound is obtained by a reduction from the VASS control state reachability problem. We first

present the problem and its known complexity results. A vector addition system with states (VASS) is

a weighted directed graph (V,E, v0, w : E → Zk), where V is a finite set of vertices (Control States),

E ⊆ V × V is a set of directed edges, v0 is the initial vertex, and w is a weight function that assigns a

k-dimensional weight vector to every edge. A (finite) path π in the directed graph is valid if it begins in

v0 and every prefix of π has a non-negative sum of weights in every dimension.

The VASS control state reachability problem problem gets as input a VASS and a reachability set

R ⊆ V , and checks whether there exists a valid path in the VASS to (at least) one vertex in R.

Lemma 17 ([CLM76]). The VASS control state reachability problem is EXPSPACE-complete. More-

over, it is EXPSPACE-hard even when the coefficients of every vector in the image of the weight function

are bounded by ±1, and even when every vector has at most one non-zero dimension.

To simplify our proofs we define the class of simple VASSs as all VASSs that satisfy:

• Every weight vector has exactly one non-zero coefficient which is either +1 or −1.

• All the outgoing edges of every vertex v have different weight vectors. Formally, for every

v1, v2, v3 ∈ V , if (v1, v2), (v1, v3) ∈ E and w(v1, v2) = w(v1, v3), then v2 = v3.

The next claim is a simple corollary of Lemma 17.

Corollary 18. The control state reachability problem over simple VASS systems is EXPSPACE-hard.

Next, we show a reduction from control state reachability over simple VASS systems to stateful

network reachability.

The reduction is straightforward: given a VASS system (V,E, v0, w : E → Zk) and a reachability

set R ⊆ V we construct a network with two hosts, namely h1 and h2 and one middlebox m (see

Figure 5.3). The network reachability problem is whether h1 can send a message to h2. The set of

packet tags is T = {1, . . . , k} (where k is the number of dimensions in the VASS system). We denote

by pt = (h1, h2, t), and PT = {pt | t ∈ T} the packets host h1 sends. We associate each packet pt
with a vector ~t ∈ Nk that consists of 1 in dimension t and the rest of the dimensions are zero. The set

of states of m is V (with initial state v0) with the addition of one sink state. When in sink state, the

middlebox discards all incoming packets and remains in sink state. We now describe the transitions of

the middlebox m from state v ∈ V :

• Upon receipt of a packet pt from port 1:

– If v ∈ R, then forward the packet to port 3 (reachability is obtained).

– If there exists u ∈ V such that (v, u) ∈ E (of the VASS) and w(v, u) = ~t, then:

∗ Forward pt to port 2

∗ Change state to u

– Else (such u does not exists), discard packet and go to sink state.

• Upon receipt of a packet pt from port 2:

– If v ∈ R, then forward the packet to port 3 (reachability is obtained).

5.2. UNORDERED SAFETY IN ARBITRARY NETWORKS IS EXPSPACE-HARD. 31

port 1

port 2

port 3
m

h1 h2

Figure 5.3: The network resulting in the reduction from the VASS control state reachability problem.

– If there exists u ∈ V such that (v, u) ∈ E (of the VASS) and w(v, u) = −~t, then:

∗ Discard the packet

∗ Change state to u

• Upon receipt of a packet from port 3, go to sink state.

• Upon receipt of a packet p 6∈ PT from any port, go to sink state.

In order to prove the correctness of the reduction we give the next definitions and notations. A VASS

configuration is a tuple (v,~c) ∈ V × Zk which consists of a vertex and a vector. A configuration is

reachable in n steps if there exists a valid path in the VASS with length exactly n and total sum of

weights ~c. We denote by SVASS (n) the (finite) set of all configurations that are reachable in n steps.

A VASS-network configuration is a tuple (v,~c) ∈ V × Zk, where v is the state of the middlebox m

and ~c corresponds to the multiplicity of the packets of PT in the multiset of packets in port 2. That is, if

the multiplicity of packet pt in the multiset is r, then dimension t of ~c is r. We say that a VASS-network

configuration is reachable in n steps if there exists a scenario that consists of exactly n middlebox

packet processing events that forms the configuration. We denote by SNetwork (n) the (finite) set of all

VASS-network configurations that are reachable in n steps.

Lemma 19. For every n ≥ 0: SVASS (n) = SNetwork (n)− ({sink} × Nk).

Proof. The proof is by induction over n, and the proof for n = 0 is trivial. For n > 0, let (v,~c) be an

arbitrary VASS configuration in SVASS (n − 1). We claim that every successor configuration of (v,~c)

is also in SNetwork (n). The proof is straight forward. If the successor is reachable by an addition of

positive vector ~r, then a corresponding successor in the network is obtained when h1 sends a packet of

type r and m processes the packet. If the successor is reachable by an addition of negative vector ~r,

then by the induction hypothesis there exists a pending packet in port 2 with type r, and a successor

in the network is obtained when m processes one packet from port 2 with type r. Hence, we get that

SVASS (n) ⊆ SNetwork (n)− ({sink}×Nk). The proof that SNetwork (n)− ({sink}×Nk) ⊆ SVASS (n)

follows from similar arguments.

The next lemma follows immediately from Lemma 19 and Corollary 18.

Lemma 20. The reachability problem w.r.t. the unordered network semantics for an arbitrary network

is EXPSPACE-hard.

32CHAPTER 5. LOWER BOUNDS ON COMPLEXITY OF SAFETY W.R.T. THE UNORDERED SEMANTICS

Chapter 6

Upper Bounds on Complexity of Safety
w.r.t. the Unordered Semantics

This Chapter provides complexity upper bounds for the safety problem of stateful networks w.r.t. the

unordered semantics of networks. Our complexity analysis considers symbolic representations of mid-

dleboxes (which might be exponentially more succinct than explicit-state representations). The obtained

upper bounds match the lower bounds from Chapter 5 (hence, the bounds are tight).

Remark 5. The complexity upper bounds we present are under the assumption that all relations used

to define middlebox states may have at most polynomial number of elements (polynomial in the size of

the network and the size of the middlebox representation). To enforce this limitation we assume that the

arity of relations is constant. If the arity of the relation is bounded by a constant c, then the number of

elements is bounded by the polynomial nc, where n is the size of the network.

In all of our examples we use relations with arity at most three, and since abstract packets have only

three attributes, we believe that most applications will use relations with small arity.

The Input to the Safety Verification Problem The input to the safety verification problem is given

in the form of a network topology description, and the symbolic representations of the middleboxes in

the network.

The complexity results in this chapter are given in terms of the number of hosts in the network |H|,
the size of the type domain |T |, the total number of ports in the network |Pr|, the number of middleboxes

in the network |M |, and the total size of the symbolic representation |S| =
∑
|Si| where |Si| is the size

of the symbolic representation of middlebox mi.

In our complexity analysis we sometime refer to the set of packets in the networks. Recall that the

set of packets in the networks is P = H ×H ×T , and so the size of P is |P | = |H|2|T |. Finally, in our

complexity analysis we also refer to
∑
|Ri| which denotes the total size of the domains of relations of

middleboxes in the network where Ri is the domain of relation Ri. Note that |Ri| is polynomial in the

in the size of |H|, |Pr| and |T |, as the arity of Ri is fixed and the domains of its dimensions are taken

from H , Pr and T .

33

34CHAPTER 6. UPPER BOUNDS ON COMPLEXITY OF SAFETY W.R.T. THE UNORDERED SEMANTICS

StateData := {m 7→ InitialRelationValues(m) | m ∈M}
PacketData := {m 7→ NeighborHostPackets(m) | m ∈M}
while fixed-point not reached

foreach m ∈M , (p, pr) ∈ PacketData(m)
let q = GetState(StateData(m))
if δm(q, (p, pr)) = ∅ then return violation // abort state reached
let (q′, o) ∈ δm(q, (p, pr))
StateData := AddData(m, q′)
PacketData := AddPacketsToNeighbors(m, o)

return safe

Figure 6.1: Safety checking of increasing networks.

6.1 Unordered Safety of Increasing Networks is in PTIME

In this section, we show that safety of syntactically increasing networks is in PTIME.

Figure 6.1 presents a polynomial algorithm for determining safety of a syntactically increasing net-

work. The algorithm performs a fixed-point computation of the set of all tuples present in middlebox

relations in reachable middlebox states, as well as the set of all different packets transmitted in the

network. For every middlebox m ∈M , the algorithm maintains the following sets:

• StateData(m): a set of pairs of the form (R, d) where R is a relation of m, and d is a tuple in the

domain of R, indicating that there is a run in which d ∈ R.

• PacketData(m): a set of pairs of the form (p, pr), where p is a packet and pr is a port of m,

indicating that p can reach m from port pr .

StateData(m) is initialized to reflect the initial values of all middlebox relations. PacketData(m) is

initialized to include the packets hP that can be sent from neighbor hosts h ∈ H . As long as a fixed-point

is not reached, the algorithm iterates over all middleboxes and their packet data. For each middlebox m

and (p, pr) ∈ PacketData(m), m is run over (p, pr) from a state q in which every relation R contains

all the tuples d such that (R, d) ∈ StateData(m). The sets StateData(m) and PacketData(m′) for

every neighbor m′ of m, are updated to reflect the discovery of more elements in the relations (more

reachable states), and more packets that can be transmitted.

As the algorithm only adds relation elements and packets, the number of additions is bounded by

(|P ||Pr|+
∑
|Ri|). At every iteration of the while loop, at least one relation element or packet is added

to StateData or PacketData respectively. The number of foreach iterations in every single while
iteration is bounded by |P ||Pr|. The runtime of every foreach iteration is linear in the runtime of the

corresponding middlebox, which is linear in the size of its symbolic representation. This is because

the computation of δm(q, (p, pr)) consists of executing the middlebox program, and since the symbolic

representation does not have loops, the runtime is linear. Hence, the runtime of a single iteration of the

foreach loop can be bounded by |S|.
The total running time of the algorithm is then bounded by (|P ||Pr|+

∑
|Ri|)|P ||Pr||S|, and hence

polynomial.

6.1. UNORDERED SAFETY OF INCREASING NETWORKS IS IN PTIME 35

The correctness of the algorithm relies on the next lemma, which is a variation of Lemma 7.

Lemma 21. For every increasing network, if there is a run in the unordered semantics in which packet

p arrives to port pr of middlebox m, then any run r in the unordered semantics has an extension in

which packet p arrives to m from port pr . Moreover, if there is a run in which element d is in a relation

R, then any run has an extension in which element d is in the relation R.

We now use Lemma 21 to prove that in every iteration the data structure of the algorithm under-

approximates PacketData and StateData .

Lemma 22. For every iteration of the algorithm there is a run r, such that if (p, pr) ∈ PacketData(m),

then in r there is a step in which p arrived to m from port pr , and if (R, d) ∈ StateData(m), then in r

there is a step in which d was added to R.

Proof. The proof is by induction on the number of iterations performed by the algorithm. The proof for

the base case (zero iterations performed) is trivial — the initial state of the PacketData and StateData

matches the initial state of the network.

For the n-th iteration, let (p, pr) ∈ PacketData(m). We consider two distinct cases. In the first

case, after the n − 1-th iteration, (p, pr) ∈ PacketData(m). Then by the induction hypothesis, there

exists a run r such that in r there is a step in which p arrived to m from port pr . In the second case,

(p, pr) was added to PacketData in the n-th iteration. In this case, after iteration n− 1 there must have

existed a middlebox m′ adjacent to m, a state q in which {(R1, d1), · · · , (Rk, dl)} ⊆ StateData(m ′),

and (p′, pr ′), such that as a result of running m′ over (p′, pr ′) from state q, (p, pr) was sent to m. By

the induction hypothesis, there exist runs r1,1, · · · , rk,l in which (R1, d1), · · · , (Rk, dl) (respectively)

are added to StateData(m ′), as well as a run r0 in which p′ arrives to m′ from pr ′. Then by Lemma 21

we can constructs a run r′ in which m′ is in state q and p′ has arrived to m′ from pr ′. The configuration

c, which is obtained by m′ processing p′, is a successor of the last configuration of r′. We denote the

resulting run by r, and note that in the last step of r, p arrived to m from port pr .

The proof for (R, d) ∈ StateData(m) follows from similar arguments.

Finally we use Lemma 21 to construct a witness run for the n-th iteration.

The next lemma shows that when fixed-point occurs the data structure over-approximate

PacketData and StateData .

Lemma 23. When the algorithm reaches a fixed-point, if (p, pr) /∈ PacketData(m) (respectively.,

(R, d) /∈ StateData), then there is no run in which m receives p from port pr (resp., d is added to R).

Proof. Let r be the witness run that the fixed-point under-approximates (r exists by Lemma 22). To-

wards a contradiction we assume that there is a run r′ in which m receives p from port pr (respectively,

d was added to R), but such an event did not occur in r. By Lemma 21, we get that r has an extension

in which the event does happen. But such an extension contradicts the fact that a fixed-point occurred.

Hence, the data structure over-approximates all runs.

36CHAPTER 6. UPPER BOUNDS ON COMPLEXITY OF SAFETY W.R.T. THE UNORDERED SEMANTICS

Lemma 22 and Lemma 23 imply that the algorithm determines the safety problem, and the next

theorem follows.

Theorem 24. The safety problem of syntactically increasing networks w.r.t. the unordered semantics is

in PTIME.

Proof. Safety is violated iff there exists a run r that ends in a configuration c where some middlebox is

in state q with packet p pending on its port pr such that δm(q, (p, pr)) = ∅.
By lemmas 22 and 23, the latter holds iff at some iteration of the algorithm (p, pr) ∈

PacketData(m), and the values pf m’s relations in state q are included in StateData(m), in which

case the algorithm identifies the safety violation.

Remark 6. Recall that for increasing networks, safety w.r.t. the unordered semantics and the FIFO

semantics coincide. As such, the polynomial upper bound applies to both.

Remark 7. The complexity analysis of the algorithm used the property that |P | is polynomial in the

network representation. If n-tag packet headers are allowed, i.e. P = H ×H ×T1 . . .×Tn, then |P | is
no longer polynomial in the network representation, damaging the complexity analysis of the algorithm.

In fact, in this case the safety problem w.r.t. the unordered semantics becomes PSPACE-hard even for

stateless middleboxes.

Intuitively, n-tag packet headers allow a middlebox to maintain the state of n automata in the packet

header, supporting a reduction from the emptiness problem of the intersection of n automata, which is

PSPACE-hard [Koz77].

Proof. The PSPACE-hardness proof is by reduction from the problem of deciding the emptiness of

intersection of n automata [Koz77], which is formally defined as:

• Input: n automata A1, . . . , An over alphabet {0, 1} with state set Q (w.l.o.g. all automata have

the same set of states).

• Question: is there a word w ∈ {0, 1}∗ that is accepted by all n automata?

The reduction is as follows. Given n automata with state set Q we define a network with one host and

one middlebox. The packets consist of n+1-tuples of tags from the domain T = Q∪{0, 1}. Intuitively,

the first n tags hold the states of the n automata, and the last tag is an input symbol for the automata.

The middlebox has two ports. Port 0 is connected to the host and port 1 is a self loop.

The symbolic representation of the middlebox has four parts:

1. Initial state verifier. The first part handles packets from port 0. If the packet’s first n tags do not

correspond to the n initial states, then the middlebox discards the packet. Otherwise it sends the

packet to port 1.

2. Advance state. The second part handles packets from port 1. In a sequence of n|Q| commands,

the program advances the state of each automaton (i.e., changes the corresponding packet tag)

according to the symbol in tag n+ 1. After the sequence, the program continues to the third part.

3. Accepting state verifier. If the packet’s tags correspond to n accepting states, then the program

aborts. Otherwise the program continues to the fourth part.

6.2. UNORDERED SAFETY OF PROGRESSING NETWORKS IS IN CONP 37

4. New symbol generator. In the fourth part the program generates two packets that differ only in

their n + 1 tag. In one packet the tag has value 0 and in the second it has value 1. Both packets

are sent back to port 1.

It is an easy observation that the intersection of the n automata is non-empty iff abort is invoked.

6.2 Unordered Safety of Progressing Networks is in coNP

We prove coNP-membership of the safety problem in syntactically progressing networks by proving

that there exists a witness run for safety violation if and only if there exists a “short” witness run, where

a witness run for safety violation is a run from the initial configuration in which at least one middlebox

reaches an abort state.

The proof considers the network states that arise in a run. A network state captures the states of

all middleboxes (not to be confused with a network configuration, which also includes the content of

every channel). Formally, let N be a network whose middleboxes are defined symbolically via (in total)

n relations, namely R1, . . . , Rn. Then the network state consists of the values of (R1, . . . , Rn).

In order to construct a “short” witness run, we wish to bound both the number of different network

states in a run and the number of steps in which a run stays in the same state. The former is bounded

due to the progress of the network: once the state of some middlebox changes along a run, it will not

change back to the previous state. The latter is more tricky. To provide a bound, we wish to analyze the

packets that “affect” the run. We define the notion of active packets. The active packets are a superset

of the packets that actually affect the run.

Active packets Let r be a finite run of a network. We say that a packet p is active in step i of r, if

it resides in the ingress channel of some middlebox m and it is processed (i.e., received by m) in some

future step of r. A packet is inactive, if it is pending in the ingress channel of m until the end of the run.

The next lemmas show that only a few active packets are needed to reach a certain state in the

network. Intuitively, the proof of the lemma traverses the run from the last configuration to the first,

and removes inactive packets (and steps that produce only inactive packets), which in turn makes other,

earlier, packets inactive. For a run r and a network state s that appears in r, we denote by r[s] an interval

of the run that includes all consecutive occurrences of s (for runs of progressing networks, the interval

is unique).

Lemma 25. Let r be a run in which the network state changes exactly k times, and the different states

are s1, s2, . . . , sk (in this order). Then for every prefix rsi of r that ends in a state si, there is an

extension esi to rsi such that: (i) esi visits the network states si, . . . , sk; (ii) esi has at most k− i active

packets in every step; and (iii) the number of active packets in esi may decrease only after a change in

the network state.

Proof. The proof is by induction over |r| − |rsi |. For the base case r = rsi and the proof is trivial. For

|r| > |rsi |, we extend the prefix rsi by one step according to r. We denote this extended prefix by r′.

38CHAPTER 6. UPPER BOUNDS ON COMPLEXITY OF SAFETY W.R.T. THE UNORDERED SEMANTICS

Let p be the last packet that was processed in r′, and let m be the middlebox that processes p. That is,

m and p are responsible for the step that extends rsi to r′.

We consider two distinct cases. In the first case, the network state in the last configuration of r′ is

still si. Then by the induction hypothesis we get that there is an extension e′si with at most k − i active

packets in interval e′si [si]. We consider the set of packets the were created by m after processing p. If

this set has at least one active packet in e′si , then we define esi to be e′si prepended by the last step of r′,

where p is marked as active and all the active packets of e′si remain active. Surely, there are no more than

k−i active packets in the first step of esi since at least one of the active packets in e′si resulted from p and

hence did not yet exist in this step, so it balances out the addition of p as an active packet. In addition,

the total number of active packets is not decreased in this step (thus, the claim holds). Otherwise, we

define esi to be e′si , i.e. we skip the processing of p, and turn it to inactive.

In the second case, the last state in r′ is si+1. Then by the induction hypothesis we get that there

is an extension e′si+1
with at most k − i − 1 active packets. In this case we construct esi simply by

prepending to e′si the last step of r′. That is, p is marked as active and all the active packets of e′si+1

remain active. There are only k − i − 1 + 1 = k − i active packets. Hence, the claim holds. This

completes the proof.

Lemma 26. Let r be a run in which the network state changes exactly k times, and the different states

are s1, s2, . . . , sk (in this order). Then there exists a run r′ such that: (i) r′ visits the network states

s1, s2, . . . , sk; and (ii) r′ stays in state si at most (k − i)2|P ||M | steps.

Proof. For the sake of the proof we give a unique id to every active packet according to the following

rules:

• If a host sends an active packet, then the packet gets some unique id (for example, maximal id

assigned so far + 1).

• If an active packet p1 was processed by a middlebox, and the middlebox forwards only one active

packet p2, then p2 gets the id of p1.

• If an active packet p1 was processed by a middlebox, and the middlebox forwards more than one

active packet, then each active packet gets a unique id (for example, maximal id assigned so far +

1).

We now return to the proof. Let e′ be the shortest extension for the prefix of r that consists of the initial

configuration that satisfies the assertions of Lemma 25. The extension e′ clearly visits s1, . . . , sk. We

claim that it stays in state si at most (k − i)2|P ||M | steps. The proof of the claim follows from the fact

that if there are two steps j1 < j2 in e′[si] such that in both steps a middlebox m received an active

packet p with id id , and no new active packet (i.e., an active packet with a new packet id) was generated

between those rounds, then a run in which m does not process packet p with id id is shorter by one step,

and reaches the same configuration in step j2 − 1. Hence, if a certain middlebox processed more than

|P |(k − i) packets, then it must be the case that either a new active packet was created, or it processed

the same packet twice. The proof is complete by the pigeonhole principle and by the fact that there are

at most k − i active packets and |M | middleboxes.

6.3. UNORDERED SAFETY OF ARBITRARY NETWORKS IS IN EXPSPACE 39

The next lemma shows that there is a short witness for reachability of a state in progressing networks.

Lemma 27. Let N be a syntactically progressing network whose middleboxes are defined symbolically

via relations R1, . . . , Rn (in total). Then there is a run ending in an abort state if and only if there is

such a run whose length is at most (
∑n

i=1 |Ri|)3|P ||M |.

Proof. The proof is an immediate corollary of Lemma 26. If there is a run r that leads to a certain

state of R1, . . . , Rn, then since all middleboxes are progressing we get that the number of intermediate

network states k is at most (
∑n

i=1 |Ri|). We denote the intermediate states by s1, . . . , sk. By Lemma 26,

there is also a run r′ that visits the same k states and stays in state si at most (k−i)2|P ||M | ≤ k2|P ||M |
steps. Therefore |r′| ≤ k3|P ||M |.

Since the size of each relation is polynomial in the size of the network, we conclude:

Theorem 28. The safety problem w.r.t. the unordered semantics for progressing networks is coNP-

complete.

Proof. The lower bound follows from Lemma 15. The upper bound is obtained by first observing that

the complement of the safety problem is polynomially reducible to the reachability of a state in the

network (by adding a special abort state). In addition, the state reachability problem is in NP: since the

arity of each relation in the considered middlebox programs is fixed, its size is polynomial in the size of

the network. Hence, by Lemma 27, there is a witness run for reachability whose length is polynomial.

Thus, the NP procedure is to guess the short run and verify it, in time linear in the length of the run

multiplied by |S| (the size of the symbolic representation of the middleboxes which also bounds the

time it takes to compute their transitions).

6.3 Unordered Safety of Arbitrary Networks is in EXPSPACE

In this section we show how to solve the reachability problem of symbolic networks by a reduction to

the coverability problem of Petri Nets, which is EXPSPACE-complete [Rac78].

A Petri Net is a four-tuple C = (P, T , I,O) where P is a set of places, T is a set of transitions,

I : T → N|P| is an input function and O : T → N|P| is an output function. A marking µ ∈ N|P|

denotes the number of tokens assigned to each place. Given a marking, a transition t ∈ T can be fired

(equivalently enabled) if I(t) ≤ µ. Firing a transition t ∈ T from marking µ produces a new marking

µ′ = µ− I(t) +O(t) [Pet77]. We denote a firing of a transition by µ→t µ
′. In the following, we will

refer to non-zero dimensions in I(t) as consumed tokens, and non-zero dimensions inO(t) as produced

tokens. A finite run in a Petri Net from a marking µ0 is a series of transitions and resulting markings

µ0 →t0 µ1 →t1 · · · →tk µk s.t. t0 can be fired from µ0 and each following transition can be fired from

the previous marking.

The coverability problem asks, given a Petri Net C, an initial marking µ0 and a target marking µ,

whether there is a finite run leading to a marking µ′ s.t. µ′ ≥ µ.

40CHAPTER 6. UPPER BOUNDS ON COMPLEXITY OF SAFETY W.R.T. THE UNORDERED SEMANTICS

We now show how we encode a symbolic network as a Petri Net, and how we formulate the reach-

ability problem as a Petri Net coverability problem. We first describe the role of every place and the

initial marking, and then we describe the set of transitions used to simulate a run of the network.

Places The places are partitioned to sets of places in the following way:

• Channel places. To keep track of the packets over the unbounded channels, we assign a place to

every pair of packet p ∈ P and channel. The number of tokens in the place corresponds to the

number of instances of packet p on the channel. The initial marking for each packet place is 0.

• Active and non-active relation places. For every element d in every relationR in every middlebox

we have two places. The active place will have the marking 1 when the element is in the relation.

When the element is not in the relation the non-active place will the marking 1. The initial marking

for the active (respectively, non-active) place is 1 if initially the element is in the relation (resp.,

not in the relation). Otherwise, the initial marking is 0. The markings for both places will only be

0 or 1. We need two places since the Petri Net semantics does not allow to encode negative (i.e.,

non-membership) conditions.

• Global command place. We have a single place that is used to make sure that at most one mid-

dlebox is processing a packet in every step. The initial marking for the place is 1; it is consumed

whenever a packet processing starts, and produced when it ends.

• Command places. We have a place for every triple of command, processed packet and input port

in every middlebox in the network. The markings on the places are used to keep track of the

next command to be executed. In particular, each guarded command block has a single place (for

every combination of packet and input port) rather than a a place for each guarded command in the

block. This ensures that only one of the guarded commands in the block whose guards evaluate

to true is executed. Having a separate command place for every packet processed and every input

port allows us to evaluate variables that appear in the command (including the guards). The initial

marking for the topmost guarded command block in each middlebox (with every combination of

packet and input port) is 1. The initial marking for the rest is 0.

• Auxiliary guard places. To allow conjunction and disjunction in the guard we add auxiliary guard

places. The initial marking for each of these places is 0.

• Abort place. To keep track of the safety state of the network, we assign a single place for all abort
calls made during the network run. The initial marking for the place is 0.

Transitions For each middlebox in the network we define a “command transition” for each combi-

nation of processed command, input packet, input port, and next command, as explained below. For

some commands only a single “next” command exists, however, since we allow non-determinism, some

commands (specifically, guarded command blocks with overlapping guards) have multiple “next” com-

mands, in which case a separate transition is defined for each one of them.

For a guarded command block we define a set of “command transitions”. This allows us to handle

complex guards (i.e. guards which contain conjunction and disjunction in addition to atomic proposi-

6.3. UNORDERED SAFETY OF ARBITRARY NETWORKS IS IN EXPSPACE 41

tions). To do so, we recursively decompose each guard while producing a sequence of transitions that

simulates the evaluation of the boolean formula in the guard.

To correctly simulate cases in which no guard in a guarded command block is evaluated to true, and

as a result no command is processed, we add a default guarded command to each guarded command

block. The guard of the default guarded command is a conjunction of the negations of the guards of the

other guarded commands in the block. The command of the default guarded command is output ∅.
Each of the command transitions of the first command in the middlebox (i.e. the topmost guarded

command block) consumes a token from the global command place, and each terminating command

that can be executed in the middlebox run produces a token in the global command place. Note that

the addition of default guarded commands as described above means that the terminating commands

are well defined (i.e. for every command in the middlebox, if it is terminating in some run then it is

a terminating command in every run that it is executed in). Each of the command transitions of the

first command in the middlebox also consumes a token from the corresponding channel place. Further-

more, every command transition consumes its command place, and produces the command place of the

following command, specifically the place corresponding to the combination of the next command to

be executed and the same input packet and input port as the packet and port processed in the current

command (or the first command in case it is a terminating command).

In addition to the above, the command transition associated with a command, input packet, input port

and next command consumes and produces tokens in the places relevant to the corresponding command,

as well as the guards (in the case of a guarded command block), as described below.

Since we have a command transition for every combination of command, input packet and input

port, when we translate the command to a transition we consider the values of the variables (src, dst,

type and port) at that transition based on the packet and port currently processed by the middlebox, and

simplify the command (and guards) accordingly. For example, for the command trusted.insert dst,
packet (h0, h1, t0) and port pr0, the command simplifies to trusted.insert h1. In particular, atomic

equality predicates are now essentially equalities between constants, and are trivially simplified.

The transition for each guarded command in a guarded command block consumes a token from the

command place for the guarded command block, and produces a token in the command place of the

first command in the guarded command, as well as consuming and producing the tokens of the guard as

described below.

We begin by describing the tokens consumed and produced by the atomic propositions of the guards

(after simplification). Note that since guards do not change the state of the network, all tokens consumed

by the guard must also be produced by the guard.

• Relation membership (d ∈ R). Consume (and produce) tokens in the active place for element d

in relation R.

• Negated relation membership (d /∈ R). Consume (and produce) tokens in the inactive place for

element d in relation R.

Next, we describe how disjunction and conjunction are handled: In the case of a guarded command

whose guard’s formula ϕ contains a disjunction or conjunction, we produce a series of transitions by

42CHAPTER 6. UPPER BOUNDS ON COMPLEXITY OF SAFETY W.R.T. THE UNORDERED SEMANTICS

recursively decomposing the formula, and producing a set of transitions for every decomposition step.

Each decomposition step introduces new auxiliary guard places. We denote by ci =⇒ϕ cj an inter-

mediate step in the decomposition process where ci is the place that initiates the evaluation of ϕ and

cj is the place of the next step in the execution. Specifically, initially, ci is the command place for the

guarded command and cj is the command place of the command. The recursive decomposition of guard

ci =⇒ϕ cj is as follows:

• Conjunction (ϕ = ϕ1 ∧ϕ2). We introduce five auxiliary places, denoted c1, c2, c3, c4 and c5, two

intermediate steps, and four new transitions. The first transition consumes one token from ci and

produces two tokens in c1. The second and third transitions consume one token each from c1 and

produce a token in c2 and c3 respectively. We produce two intermediate steps: c2 =⇒ϕ1 c4 and

c3 =⇒ϕ2 c5. Finally, we produce a final transition that consumes one token from both c4 and c5,

and produces a token in cj .

• Disjunction (ϕ = ϕ1 ∨ ϕ2). We introduce four auxiliary places, denoted c1, c2, c3 and c4, two

intermediate steps, and four new transitions. The first transition consumes a token from ci and

produces a token in c1. Likewise, the second transition consumes a token from ci and produces

a token in c2. We produce two intermediate steps: c1 =⇒ϕ1 c3 and c2 =⇒ϕ2 c4. The third

transition consumes a token from c3 and produces a token in cj . Likewise, the fourth transition

consumes a token from c4 and produces a token in cj .

The process is performed recursively on ci =⇒ϕ1 cj and ci =⇒ϕ2 cj . The process terminates

for ci =⇒ϕ cj once ϕ is an atomic proposition, in which case a single transition is produced, which

consumes a token from ci, consumes and produces the tokens for the atomic proposition as described

above, and produces a token in cj .

Finally, we describe the dimensions consumed and produced by the commands output, insert,
remove and abort.

• output. Produce: the appropriate packets in the egress channel. We note that in the special case

of output ∅ no tokens are produced.

• insert. We replace every insert command with a guarded command block consisting of two

guarded commands. The first guarded command represents the case where the element is already

in the relation, in which case the guard will be a relation membership predicate, and the command

will be output ∅. The second guarded command represents the case where the element is not in

the relation. The guard of the command will be a negated relation membership predicate to the

guard, and the transition produced from the command will consume and produce the following:

Consume: a token from the appropriate non-active place of the new element.

Produce: a token in the appropriate active place of the new element.

• remove. Analogous to insert.
• abort. Produce: a token in the abort place.

This concludes the description of the command transitions.

Finally, for every host h and every packet p ∈ hP we have a “host transition” that produces a token

in the corresponding ingress channel place of the neighbor middlebox.

6.3. UNORDERED SAFETY OF ARBITRARY NETWORKS IS IN EXPSPACE 43

From Network Safety to Petri Net Coverability Non-safety of the network amounts to a run in the

Petri Net where an abort place gets a token. The target marking for the coverability problem is therefore

a vector of 0s, with 1 in the abort place.

As the reduction is polynomial, we get that the stateful network reachability problem is in EX-

PSPACE.

The reduction, combined with the lower bound implies:

Theorem 29. The safety problem of arbitrary stateful networks w.r.t. the unordered semantics is

EXPSPACE-complete.

44CHAPTER 6. UPPER BOUNDS ON COMPLEXITY OF SAFETY W.R.T. THE UNORDERED SEMANTICS

Chapter 7

Implementation and Case Studies

In this section, we present several examples of networks consisting of stateful middleboxes and their

safety properties. We describe a prototype implementation of a tool for verification of stateful networks,

and describe our initial experience while running the tool on the networks listed in Example 3 and

illustrated in Figure 2.4. For the experiments we used a machine equipped with a quad core Intel Core

i7-4790 CPU and 32GB of memory, running Ubuntu Linux 14.04.

7.1 Network Examples

Load Balancer and IDS As an example consider the network shown in Figure 2.4a. Here A is a host,

lb is a load balancer, which can send a packet received from A to either r1 or r2. Both r1 and r2 are rate

limiters, i.e., they count and limit the number of packets sent between host pairs. Let us consider a case

where the administrator wants to ensure that exactly 8 packets sent by A can be received by B. If the

load balancer in this case sends packets from A to both r1 and r2, then this rate limit does not hold.

Firewall and Proxy Consider the network in Figure 2.4b. Here, c is a content addressable cache,

which on receiving a packet checks if it has previously seen either server S1 or S2 respond to a packet

of the same type; if so it sends back the previously observed response, otherwise it forwards the request

to the packets original destination. f is a learning firewall. We want to ensure thatA cannot receive data

from S1, while B should be able to receive data from both S1 and S2. This is complicated by the fact

that c’s response is based on the packet type: in the current configuration if B sends a request for type

t to server S1 then A can access the response by subsequently sending a request with the same type t

addressed to server S2. In general this problem is not solvable without changing the cache to be policy

aware.

Multi-Tenant Datacenter Consider a multi-tenant datacenter such as Amazon EC2 shown in Fig-

ure 2.4c. In such datacenters each tenant (customer who purchase VMs from the provider) gets to add

rules about their VMs, to the firewall to which their VMs are connected. For example in Figure 2.4c,

each tenant i owns VMs pubi1 and prii1, and programs the rules for firewall fi. Given a set of rules for

45

46 CHAPTER 7. IMPLEMENTATION AND CASE STUDIES

firewall f1 and f2 we verify that VMs of the same tenant can communicate with each other and that pri

VMs of one tenant can send packets to pub VMs of the other.

7.2 results

Increasing Middleboxes Increasing networks are verified using LogicBlox, a Datalog based database

system [AtCG+15]. The Multi-Tenant Datacenter example is an increasing network. Our tool produced

a datalog program with 35 predicates, 153 rules and 29 facts. LogicBlox successfully reached a fixed

point in 3s, and proved all required properties.

Arbitrary Middleboxes Progressing and Arbitrary networks are verified using LOLA, a Petri-Net

model checker [Sch00, TRL]. In the Load Balancer and Rate Limiter example our tool created a P/T

net with 243 places and 663 transitions; it was successfully verified in 30ms. In the Firewall and Proxy

example our tool produced a P/T net with 530 places and 4447 transitions. LOLA successfully verified

the resulting petri-net in 0.2s.

Chapter 8

Conclusion and Related Work

In this work, we investigated the complexity of reasoning about stateful networks. We developed three

algorithms and several lower bounds. In the future we hope to develop practical verification methods

utilizing the results in this work. Below we survey some of the most closely related work and conclude

with open questions and future work.

8.1 Related Work

Topology-Independent Verification The earliest use of formal verification in networking focused on

proving correctness and checking security properties for protocols [CJM98, RA00]. Recent works such

FlowLog [NFSK14] and VeriCon [BBG+14] also aim to verify the correctness of a given middlebox

implementation w.r.t any possible network topology and configuration, e.g., flow table entries only

contain forwarding rules from trusted hosts.

Immutable Topology-Dependent Verification Recent efforts in network verification [MKA+11,

CVP+12, KVM12, KZCG12, SLBK13, SNM13, AFG+14, FKM+15] have focused on verifying net-

work properties by analyzing forwarding tables. Some of these tools including HSA [KCZ+13], Li-

bra [ZZY+14] and VeriFlow [KZCG12]. These tools perform near real-time verification of simple

properties, but they cannot handle dynamic (mutable) datapaths.

Mutable Topology-Dependent Verification SymNet [SPNR13] has suggested the need to extend

these mechanisms to handle mutable datapath elements. In their mechanism the mutable middlebox

states are encoded in the packet header. This technique is only applicable when state is not shared

across a flow (i.e., the middlebox can punch holes, but do no more), and will not work for cache servers

or learning switches.

The work in [PLA+14] is the most similar to our model. Their work considers Python-like syntax

enriched with uninterpreted functions that model complicated functionality. However [PLA+14] do not

define formal network semantic (e.g., FIFO vs ordered channels) and do not give any formal claim on

the complexity of the solution.

47

48 CHAPTER 8. CONCLUSION AND RELATED WORK

Channel Systems Channel systems, also called Finite State Communicating Machines, are systems

of finite state automata that communicate via asynchronous unbounded FIFO channels [Boc78, BZ83].

They are a natural model for asynchronous communication protocolsand, indeed, they form the seman-

tic basis of protocol specification languages such as SDL and Estelle. Unbounded FIFO channels can

simulate unbounded Turing machine tape and therefore all verification problems are undecidable. Ab-

dulla and Jonsson [AJ93] introduced lossy channel systems where messages can be lost in transit. In

their model the reachability problem is decidable but has a non-primitive lower bound [Sch02].

In this work we use unordered (non-lossy) channels as a different relaxation for channel systems.

The unordered semantics over-approximates the lossy semantics w.r.t. safety, as any violating run w.r.t.

the lossy semantics can be simulated by a run w.r.t. the unordered semantics where “lost” packets are

starved until the violation occurs.

The unordered semantics admits verification procedures with elementary complexity, and turns out

to be sufficiently precise for many network protocols in which order is not guaranteed and hence not

relied on.

8.2 Future Work

Exploration of Network Semantics In this work we have outlined two possible network semantics,

namely FIFO and Unordered packet processing order. Various other network semantics could be con-

sidered, along with their effect on expressibility and complexity results, and the precision loss in safety

analysis. One such network semantics is the Sticky Channel semantics, where packets can be added

by the sending middlebox and read by the receiving middlebox but cannot be removed. This network

semantics corresponds to networks in which middleboxes can arbitrarily retransmit messages.

Modelling Packet Payload In this work we have only considered packet headers. However, some

middlebox behaviour depends on the content of the packet payload (Intrusion Detection Systems are

one such example). A potential approach to bridging this gap could be to model middleboxes using

register automata. This would allow us to reason about letters from an infinite alphabet, thus modelling

the arbitrary nature of packet payloads, while potentially retaining the decidability of reasoning about

such systems.

Liveness In this work we have limited ourselves to reasoning about safety properties. However, var-

ious liveness and performance properties are just as important when approaching the creation of net-

works. Reasoning about liveness properties such as guarantees on packet arrival, or performance prop-

erties such as load estimates or packet traversal times would require the development of a new model

for describing the network semantics and middlebox behaviour. In particular, unordered semantics are

ill suited for most sorts of reasoning on liveness properties.

Further Aspects of Network Security In addition to safety properties that can be expressed by

checker middleboxes and liveness properties there are various other network security properties that

8.2. FUTURE WORK 49

can be considered when reasoning about networks. Non-interference and information leakage are two

examples of security properties which cannot be modeled by our current approach.

Reasoning About Progressing Networks Under the FIFO Semantics We’ve seen that in arbitrary

networks reasoning is undecidable under the FIFO semantics but EXPSPACE-complete under the un-

ordered semantics, and that for increasing networks the two semantics coincide. This leaves the question

of reasoning about progressing network under the FIFO semantics open.

50 CHAPTER 8. CONCLUSION AND RELATED WORK

Bibliography

[AČJT96] Parosh Aziz Abdulla, Kārlis Čerāns, Bengt Jonsson, and Yih-Kuen Tsay. General decid-

ability theorems for infinite-state systems. In Logic in Computer Science (LICS), pages

313–321. IEEE, 1996.

[AFG+14] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen,

Cole Schlesinger, and David Walker. NetKAT: Semantic foundations for networks. In

POPL, 2014.

[AJ93] Parosh Abdulla and Bengt Jonsson. Verifying programs with unreliable channels. In Logic

in Computer Science (LICS), pages 160–170. IEEE, 1993.

[AtCG+15] Molham Aref, Balder ten Cate, Todd J Green, Benny Kimelfeld, Dan Olteanu, Emir

Pasalic, Todd L Veldhuizen, and Geoffrey Washburn. Design and implementation of the

logicblox system. In ACM SIGMOD International Conference on Management of Data,

pages 1371–1382, 2015.

[BBG+14] Thomas Ball, Nikolaj Bjørner, Aaron Gember, Shachar Itzhaky, Aleksandr Karbyshev,

Mooly Sagiv, Michael Schapira, and Asaf Valadarsky. Vericon: towards verifying con-

troller programs in software-defined networks. In ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, PLDI, page 31, 2014.

[Boc78] Gregor V Bochmann. Finite state description of communication protocols. Computer

Networks (1976), 2(4):361–372, 1978.

[BZ83] Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. Journal of

the ACM (JACM), 30(2):323–342, 1983.

[CJM98] Edmund M. Clarke, Somesh Jha, and Wilfredo R. Marrero. Using state space exploration

and a natural deduction style message derivation engine to verify security protocols. In

Programming Concepts and Methods, IFIP TC2/WG2.2,2.3 International Conference on

Programming Concepts and Methods (PROCOMET ’98) 8-12 June 1998, Shelter Island,

New York, USA, pages 87–106, 1998.

51

52 BIBLIOGRAPHY

[CLM76] E Cardoza, R Lipton, and Albert R Meyer. Exponential space complete problems for petri

nets and commutative semigroups (preliminary report). In Proceedings of the eighth annual

ACM symposium on Theory of computing, pages 50–54. ACM, 1976.

[CVP+12] Marco Canini, Daniele Venzano, Peter Peres, Dejan Kostic, and Jennifer Rexford. A nice

way to test openflow applications. In 9th USENIX Symposium on Networked Systems

Design and Implementation (NSDI’12), 2012.

[FFP+15] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh Govindan, Ratul

Mahajan, and Todd D. Millstein. A general approach to network configuration analysis.

In 12th USENIX Symposium on Networked Systems Design and Implementation, NSDI 15,

Oakland, CA, USA, May 4-6, 2015, pages 469–483, 2015.

[FKM+15] Nate Foster, Dexter Kozen, Matthew Milano, Alexandra Silva, and Laure Thompson.

A coalgebraic decision procedure for netkat. In Proceedings of the 42nd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015,

Mumbai, India, January 15-17, 2015, pages 343–355, 2015.

[FS01] Alain Finkel and Ph Schnoebelen. Well-structured transition systems everywhere! Theo-

retical Computer Science, 256(1):63–92, 2001.

[Hig52] Graham Higman. Ordering by divisibility in abstract algebras. Proceedings of the London

Mathematical Society, pages 326–336, 1952.

[KCZ+13] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and S. Whyte. Real time

network policy checking using header space analysis. In 10th USENIX Symposium on

Networked Systems Design and Implementation (NSDI ’13), 2013.

[Koz77] Dexter Kozen. Lower bounds for natural proof systems. In 18th Annual Symposium on

Foundations of Computer Science, pages 254–266. IEEE, 1977.

[KPC+12] Maciej Kuzniar, Peter Peresini, Marco Canini, Daniele Venzano, and Dejan Kostic. A soft

way for openflow switch interoperability testing. In CoNEXT, pages 265–276, 2012.

[KVM12] P. Kazemian, G. Varghese, and N. McKeown. Header space analysis: Static checking for

networks. In 9th USENIX Symposium on Networked Systems Design and Implementation

(NSDI ’12), 2012.

[KZCG12] Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and Brighten Godfrey. Veriflow: veri-

fying network-wide invariants in real time. Computer Communication Review, 42(4):467–

472, 2012.

[LBG+15] Nuno P. Lopes, Nikolaj Bjørner, Patrice Godefroid, Karthick Jayaraman, and George

Varghese. Checking beliefs in dynamic networks. In 12th USENIX Symposium on Net-

worked Systems Design and Implementation, NSDI 15, Oakland, CA, USA, May 4-6, 2015,

pages 499–512, 2015.

BIBLIOGRAPHY 53

[Min61] Marvin L Minsky. Recursive unsolvability of post’s problem of ”tag” and other topics in

theory of turing machines. Annals of Mathematics, pages 437–455, 1961.

[MKA+11] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, Brighten Godfrey, and

Samuel Talmadge King. Debugging the Data Plane with Anteater. In SIGCOMM, 2011.

[NFSK14] Tim Nelson, Andrew D. Ferguson, Michael J. G. Scheer, and Shriram Krishnamurthi. Tier-

less programming and reasoning for software-defined networks. In Proceedings of the 11th

USENIX Symposium on Networked Systems Design and Implementation, NSDI 2014, Seat-

tle, WA, USA, April 2-4, 2014, pages 519–531, 2014.

[Ope] OpenStack. LogicBlox. http://www.logicblox.com/ retrieved 07/07/2015.

[PAS+15] Aurojit Panda, Katerina J. Argyraki, Mooly Sagiv, Michael Schapira, and Scott Shenker.

New directions for network verification. In 1st Summit on Advances in Programming Lan-

guages, SNAPL 2015, May 3-6, 2015, Asilomar, California, USA, pages 209–220, 2015.

[Pet77] James L Peterson. Petri nets. ACM Computing Surveys (CSUR), 9(3):223–252, 1977.

[PJ13] Rahul Potharaju and Navendu Jain. Demystifying the dark side of the middle: a field study

of middlebox failures in datacenters. In Proceedings of the 2013 Internet Measurement

Conference, IMC 2013, Barcelona, Spain, October 23-25, 2013, pages 9–22, 2013.

[PLA+14] Aurojit Panda, Ori Lahav, Katerina Argyraki, Mooly Sagiv, and Scott Shenker. Verifying

isolation properties in the presence of middleboxes. arXiv preprint arXiv:1409.7687, 2014.

[RA00] Ronald W Ritchey and Paul Ammann. Using model checking to analyze network vulnera-

bilities. In Security and Privacy, 2000.

[Rac78] Charles Rackoff. The covering and boundedness problems for vector addition systems.

Theoretical Computer Science, 6(2):223–231, 1978.

[Sch00] Karsten Schmidt. Lola a low level analyser. In Application and Theory of Petri Nets 2000,

pages 465–474. Springer, 2000.

[Sch02] Ph Schnoebelen. Verifying lossy channel systems has nonprimitive recursive complexity.

Information Processing Letters, 83(5):251–261, 2002.

[SHS+12] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia Ratnasamy, and

Vyas Sekar. Making middleboxes someone else’s problem: Network processing as a cloud

service. In SIGCOMM, 2012.

[SLBK13] R. Skowyra, A. Lapets, A. Bestavros, and A. Kfoury. A verification platform for sdn-

enabled applications. In HiCoNS, 2013.

[SNM13] Divjyot Sethi, Srinivas Narayana, and Sharad Malik. Abstractions for model checking sdn

controllers. In FMCAD, 2013.

http://www.logicblox.com/

54 BIBLIOGRAPHY

[SPNR13] Radu Stoenescu, Matei Popovici, Lorina Negreanu, and Costin Raiciu. Symnet: static

checking for stateful networks. In Proceedings of the 2013 workshop on Hot topics in

middleboxes and network function virtualization, pages 31–36. ACM, 2013.

[TRL] Lola 2.0 sources. http://download.gna.org/service-tech/lola/

lola-2.0.tar.gz.

[ZZY+14] Hongyi Zeng, Shidong Zhang, Fei Ye, Vimalkumar Jeyakumar, Mickey Ju, Junda Liu,

Nick McKeown, and Amin Vahdat. Libra: Divide and conquer to verify forwarding tables

in huge networks. In NSDI, 2014.

http://download.gna.org/service-tech/lola/lola-2.0.tar.gz
http://download.gna.org/service-tech/lola/lola-2.0.tar.gz

 תקציר

 רשתות. ברשת התעבורה בהיסטוריה רבות פעמים תלוי מידע חבילות ניתוב מודרניות תקשורת ברשתות

 פנימי מערכת במצב כתלות הודעות שולחות אשר, מצב תלויות (middleboxes) ביניים מכונות מכילות כאלה

 ביניים למכונות טיפוסיות דוגמאות הם (load balancers) עומס ומאזני (firewalls) אש חומות. לשינוי הניתן

 .מצב תלויות

 ביניים מכונות המכילות ברשתות, בידוד כגון, בטיחות תכונות וידוא של הסיבוכיות את בוחנת זו עבודה

 של ניתוח, ברשת ניתוב מעגלי בהעדר גם כי מראים אנו, הצער למרבה. סופיות מצבים כמכונות המיוצגות

 תקשורת בערוצי המחוברות ביניים מכונות שבין האינטראקציה עקב כריעה בלתי בעיה הוא כאלה רשתות

 תכונות עבור נאותה זו הפשטה. התקשורת ערוצי על ההודעות סדר את נפשיט, לכן. חסומים לא סדורים

 שלמה-EXPSPACE היא הבטיחות תכונות וידוא בעיית כי נראה, בפרט. לכריעה הבעיה את והופכת, בטיחות

 ביניים מכונות של מחלקות תתי שני נאפיין, לכך מעבר. ברשת הביניים ומכונות הקצה שרתי במספר כתלות

 מבין יותר הפשוטה המחלקה עבור. יותר טובה בסיבוכיות בטיחות תכונות וידוא יתאפשר שעבורם סופיות

 עבור. פולינומיאלי בזמן להתבצע יכול בטיחות תכונות וידוא, אש חומות היתר בין המכילה, השתיים

 ,(learning switches) לומדים ומתגים (cache servers) מטמון שרתי היתר בין המכילה, השנייה המחלקה

 .שלמה-coNP היא בטיחות תכונות וידוא בעיית

 .מצב תלויות ברשתות בטיחות תכונת של נכונות המוודא כלי של מימוש נתאר, לסיום

 בטיחות תכונות בדיקת
 מצב תלויות ברשתות

 התואר לקבלת מהדרישות כחלק הוגש זה חיבור

 (.M.Sc)"האוניברסיטה מוסמך"

 ידי על

 אלפרנס כלב

 ם שלבהנחיית בוצעה המחקר עבודת

 שגיב מולי' פרופ

 ד"ר שרון שוהם

	Introduction
	What is Decidable About Middlebox Verification
	Complexity of Stateful Verification
	Main Results

	A Formal Model for Stateful Networks
	Stateful Middleboxes
	Finite-State Middleboxes
	Symbolic Representation of Middleboxes

	Concrete (FIFO) Network Semantics
	Verification of Safety Properties in Stateful Networks
	Undecidability of Safety w.r.t. the FIFO Semantics

	Abstract Network Semantics
	Classification of Stateful Middleboxes
	Examples

	Lower Bounds on Complexity of Safety w.r.t. the Unordered Semantics
	Unordered Safety in Progressing Networks is coNP-hard.
	Unordered Safety in arbitrary networks is EXPSPACE-hard.

	Upper Bounds on Complexity of Safety w.r.t. the Unordered Semantics
	Unordered Safety of Increasing Networks is in PTIME
	Unordered Safety of Progressing Networks is in coNP
	Unordered Safety of Arbitrary Networks is in EXPSPACE

	Implementation and Case Studies
	Network Examples
	results

	Conclusion and Related Work
	Related Work
	Future Work

	Bibliography

