Modular Verification of Concurrent
Programs via Sequential Model
Checking

Dan Rasin

Modular Verification of Concurrent
Programs via Sequential Model
Checking

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

Dan Rasin

Submitted to the Senate
of the Technion — Israel Institute of Technology
Kislev 5778 Haifa November 2017

This research was carried out under the supervision of Prof. Orna Grumberg and Dr. Sharon

Shoham, in the Faculty of Computer Science.

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my supervisor, Prof. Orna Grumberg, for being both a

wonderful supervisor and an incredible person. Thank you for the the weekly inspiring meetings,
for constantly helping me improve my work, and for encouraging me to explore and learn what
research is. Thank you for always having an open door, and for making the studying experience
so fun. It has been a huge honor to work with you and learn from you.

I would like to thank my co-supervisor Dr. Sharon Shoham for her immense part of this
work. Thank you for your dedication, and for the ability to make every meeting fruitful with
new ideas and sharp thought. It was always enjoyable to meet you both in Tel Aviv and the
Technion. You are a great advisor and a great person, and I am very grateful for all your help
and guidance.

I would like to thank my parents, Lina and Lev, for their endless love and support. Thank
you for teaching me how to always aim high, and being there for me at every stage of my life.
Finally, I would like to thank my girlfriend Veronica. You have been escorting me through this
period both on good days when I had progress and on worse more frustrating days. You have

been always supportive and helped me to go forward, and I will be forever grateful for that.

The generous financial help of the Technion is gratefully acknowledged.

Contents

List of Figures
Abstract

1 Introduction
1.1 Related Work oo

1.2 Organization. e
2 Preliminaries

3 Reduction to Sequential Verification
3.1 From Concurrent to Sequential Programs
3.2 Interface Between Main and the Environment
33 What's Next o e e e

4 Analyzing the Main Thread
4.1 The Structure of Pps o o o e e e
4.2 Representation of P Within Ppy o o
4.3 Initial Construction of Py; e
4.4 Tteration of the MainThreadCheck Algorithm
4.5 Analyzing a Potentially Spurious ViolatingPath

4.6 Generalizing an Environment Query

5 Soundness and Progress of the Main Thread Analysis
5.1 Soundness e e

5.2 Progress and Termination L.

6 Answering Environment Queries
6.1 Sequential Program for Answering Environment Queries

6.2 Correctness of Environment Query

7 Extending the Algorithm
7.1 Extending to Multiple Threads
7.2 Environment Queries with Multiple Threads

13
13
14
14

17
17
20
25
26
28
31

33
33
43

49
49
51

7.3 Extending Assertions to all Threadsof P

8 Optimizations

8.1 General Optimization

8.2 Optimizations for Generalizing Environment Information

8.3 Multiple Threads Optimizations

9 Experimental Results

10 Conclusion and Future Work

10.1 Conclusion
10.2 Future Work

69
69
70
72

75

List of Figures

4.1

4.2
43
4.4

4.5
4.6

5.1

6.1

7.1

7.2

9.1

9.2

A typical computation of Py is a periodic repetition of extended steps consisting
of: original commands of ¢, newly added assertion and the env_move function. 20
Peterson’s mutual exclusion algorithm for two threads t0 and ¢1. 27
The sequential program Py after adding environment move calls. 27
(a) If Reachy,)(c, B) = FALSE, we search fore more general o and 3" which
restrict the environment transition; (b) If Reach,,)(c, 3) = ¢ # FALSE, then
we know that ¢ leads to 8 and that) A o« %2 FALSE. 31
The sequential program F, after a few iterations of Algorithm4.1. 31
The env_move function of Fp: initially (without highlighted lines); and after
one refinement (with highlighted lines). 31

The partition and partitioning states of a computation p. Note that r3 is allowed

to have inner cut-point states, as it is a computationof t. 39

The sequential program P; for computing Reach,)(a, B) for a = =cs1 A
claim0 A (-claiml V turn = 0) and 8 = cs1. For the convenience of

presentation, we split the assume («) to three assume commands. 52

A variation of the fib_bench examples from the SV-Comp concurrency bench-

mark with three threads. o 000 0. 67
The sequential program P, with both try_start and env_move’ calls, for
answering Reach({tzjtg})(al,ﬁl) witha; £ (a == 1Ab==1Ac==1)
and B1 = (a+20>15). . . oo 67

Run times [secs] for all four tools for verifying concurrent dynamic program-
ming algorithms. 77

Run times [secs] for fib_bench programs with ring topology vs. chain topology. 78

Abstract

Verification of concurrent programs is known to be extremely difficult. On top of the chal-
lenges inherent in verifying sequential programs, it adds the need to consider a high (typically
unbounded) number of thread interleavings. In this work, we utilize the plethora of work on ver-
ification of sequential programs for the purpose of verifying concurrent programs. We introduce
a technique which reduces the verification of a concurrent program to a series of verification
tasks of sequential programs, without explicitly encoding all the possible interleavings. Our
approach is modular in the sense that each sequential verification task roughly corresponds
to the verification of a single thread, with some additional information about the environment
in which it operates. Information regarding the environment is gathered during the run of the
algorithm, by need.

A unique aspect of our approach is that it exploits a hierarchical structure of the program
in which one of the threads, considered “main”, is being verified as a sequential program. Its
verification process initiates queries to its “environment” (which may contain multiple threads).
Those queries are answered by sequential verification, if the environment consists of a single
thread, or, otherwise, by applying the same hierarchical algorithm on the environment.

Our technique is fully automatic, and allows us to use any off-the-shelf sequential model-
checker. We implemented our technique in a tool called CoMuS and evaluated it against
established tools for concurrent verification. Our experiments show that it works particularly

well on hierarchically structured programs.

Chapter 1

Introduction

Verification of concurrent programs is known to be extremely hard. On top of the challenges
inherent to verifying sequential programs, it adds the need to consider a high (typically un-
bounded) number of thread interleavings. For such programs, it is very appealing to exploit
their modular structure in verification.

Usually, however, a property of the whole system cannot be partitioned into a set of properties
that are local to the individual threads. Hence, pure modular verification methods, in which each
thread is verified in isolation are not useful in practice. Thus, proving the property on a single
thread requires some knowledge about its interaction with its environment.

In this work we develop a new approach, which utilizes the plethora of work on verification
of sequential programs for the purpose of modularly verifying the safety of concurrent programs.
Our technique automatically reduces the verification of a concurrent program to a series of
verification tasks of sequential programs. This allows us to benefit from any past, as well as
future, progress in techniques for sequential verification.

Our approach is modular in the sense that each sequential verification task roughly cor-
responds to the verification of a single thread, with some additional information about the
environment in which it operates. This information is automatically and lazily discovered during
the run of the algorithm, when needed.

A unique aspect of our approach is that it exploits a hierarchical view of the program
in which one of the threads, ¢, is considered “main”, and all other threads are considered
its “environment”. We analyze tj; using sequential verification, where, for soundness, all
interferences from the environment are abstracted (over-approximated) by a function env_move,
which is called by ¢, whenever a context switch should be considered. Initially, env_move
havocs all shared variables; it is gradually refined during the run of the algorithm.

When the sequential model-checker discovers a violation of safety in ¢;;, it also returns
a path leading to the violation. The path may include calls to env_move, in which case the
violation may be spurious (due to the over-approximation). Therefore, the algorithm initiates
queries to the environment of ¢3; whose goal is to check whether certain interferences, as
observed on the violating path, are feasible in the environment. Whenever an interference turns

out to be infeasible, the env_move function is refined to exclude it. Eventually, env_move

becomes precise enough to enable full verification of the desired property on the augmented ¢ .
Alternatively, it can reveal a real (non-spurious) counterexample in ¢ ;.

The queries are checked on the environment (that may consist of multiple threads) in the
same modular manner. Thus we obtain a hierarchical modular verification. The hierarchical
characteristics of our method guarantee that along the algorithm, each thread learns about the
next threads in the hierarchy, and is provided with assumptions from former threads in the
hierarchy to guide its learning.

Our technique is fully automatic and performs unbounded verification, i.e., it can both prove
safety and find bugs in a concurrent program. It works on the level of program code. The
information gathered about the environment is accumulated in the code of ¢;; by means of
assertions, and assumptions within the env_move function.

The fact that our algorithm generates standard sequential programs in its intermediate
checks allows us to use any off-the-shelf sequential model-checker. In particular, we can handle
concurrent programs with an infinite state-space, provided that the sequential model checker
supports such programs.

We implemented our technique in a prototype called Concurrent to Multiple Sequential
(CoMuS) and evaluated it against established tools for unbounded verification of concurrent
C programs. We use SeaHorn [22] to model check sequential programs. SeaHorn receives C
programs, annotated with assertions, and checks whether an assertion can be violated. If so,
it produces a trace leading to a violated assertion. Otherwise, it announces that no violation
occurs.

While our approach is designed to work on any concurrent program, our experiments
show that it works particularly well on programs in which the threads are arranged as a chain,
t1,t2,...,t;, where thread ¢; depends only on its immediate successor ¢;41 in the chain. This in-
duces a natural hierarchical structure in which ¢; is the main thread with environment ¢, . . ., z;
thread ¢5 is the main thread in the environment, and so on. This structure often occurs in

concurrent implementations of dynamic programming [2] algorithms.

To summarize, the main contributions of our work are as follows:

e We present a new modular verification approach that reduces the verification of a concur-
rent program to a series of verification tasks of sequential programs. Any off-the-shelf

model checker for sequential programs can thus be used.

e Our approach exploits a hierarchical view, where each thread learns about the next threads
in the hierarchy, and is provided with assumptions from former threads to guide its

learning.

e The needed information on a thread’s environment is gathered in the code, automatically

and lazily, during the run of the algorithm.

e We implemented our approach and showed that as the number of threads grows, it outper-

forms existing tools on programs that have a hierarchical structure, such as concurrent

4

implementations of dynamic programming algorithms.

1.1 Related Work

The idea of performing code transformation and using any off-the-shelf model checker appeared
in [42, 43, 30]. However, they translate the concurrent program to a single nondeterministic
sequential program, and model the scheduler as well. In contrast, our technique exploits the
modular structure of the program. [38] also transforms the concurrent program into a single
sequential one. However, their approach is not sound, as they can miss some behaviors leading
to an error.

The fundamental concept of using modular reasoning is known as the Assume-Guarantee
paradigm [34]. The main idea is to split the specification into two: one part describing the
desired behavior of one module, and the second part describes an assumption on the module’s
environment, under which the first property should hold. The system can then be proved safe if
the module satisfies the desired property under the given assumption about the environment,
and the environment is proved to satisfy the assumption (independently). The assume guarantee
paradigm has been a key aspect in many works in the world of verification and model checking
[23], [31], [32], [12]. Our work is inspired from the Assume-Guarantee paradigm. Assumptions
about the environment under which we try to prove the desired property are gathered within our
env_move function. We start by generating simple assumptions about the environment (which
are correct by construction), and strengthen them with new assumptions after we were able to
prove that the environment indeed satisfies them.

In the rest of this section, we address unbounded modular techniques for proving safety
properties of concurrent programs. Other related problems in the field of concurrent verification
include proving termination (e.g. [9, 35]) and using bounded model checking, where the bound
can address different parameters, such as the number of context switches [25, 43], the number
of write operations [42] or the number of loop iterations [39, 1, 45].

The work most closely related to ours is [20, 21]. There, an automatic modular verification
framework is described, which uses predicate abstraction of both states and environment
transitions. Our env_move function is also used to abstract environment transitions, and we also
use predicates, in the form of assertion in the code, to reason about states leading to an error.
[20, 21] also iteratively try to prove the program safe, and gradually refine this abstraction by
checking possible witnesses of errors. However, they treat all threads symmetrically, whereas
our approach exploits a hierarchical view of the program. In particular, we single out a "main”
thread from its “environment” threads. The main thread initiates queries to its environment in
order to prove or disprove a violation. The environment threads are also treated hierarchically, in
a similar manner. In addition, their exploration of a single thread (with the information learned
from its environment) uses abstract reachability trees, which are inherent to their technique. We,
on the other hand, represent each thread (augmented with information from its environment)
as a stand-alone C program. Thus, we can use any off-the-shelf model checker to address the

”sequential part” of the verification problem, utilizing possible advancements in the field of

sequential model checking.

The works in [13, 26, 16] suggest to apply rely-guarantee reasoning for concurrent (or
asynchronous) programs, while the different sections of the program can be verified sequentially.
However, their technique requires human effort to specify the rely-guarantee conditions. [24]
also suggests a human-involving approach, where verification is modular, but the user is
responsible for providing the abstraction for each thread. In our approach we infer assumptions
about the environment automatically, and augment the code with assumptions and assertions to
represent them.

[14] suggests a modular algorithm with rely-guarantee reasoning and automatic condition
inference. [27] formalizes the algorithm in the framework of abstract interpretation. However,
their algorithm requires finite state systems, and its inferred conditions only refer to changes in
global variables. Hence, they fail to prove properties where local variables are necessary for the
proof. This can be overcome by treating all variables as global, but this would strip the algorithm
from its modularity. In our approach, reasoning about local variables is allowed, when we learn
that they are necessary for verification. Such variables are then turned into global variables, but
their behavior is abstracted in the threads that require them, preserving modularity. [8] also
fights the incompetence of modular proofs by exposing local variables as global, according to
counterexamples. However, their approach uses BDDs and suits finite state systems. Similar to
[20], they also treat threads symmetrically. Our approach is applicable to infinite state systems
and uses a guided search to derive cross-thread information.

Our queries resemble queries in learning-based compositional verification [7, 32], which
are also answered by a model checker. Our hierarchical recursive approach resembles the
n-way decomposition handled in [32]. However, these works represent programs, assumptions
and specification as LTSs, and although extended to deal with shared memory in [41] these
algorithms are suitable for finite state systems.

Several works such as [15, 18, 44, 37], tackle the interleaving explosion problem by per-
forming a thread interleaving reduction. [44] combines partial order reduction [17] with the
impact algorithm [28], whereas [37] identifies reducible blocks for compositional verification.
These approaches are complementary to ours, as our first step is performing an interleaving

reduction (to identify cut-points for env_move calls).

1.2 Organization

The rest of this work is organized as follows. Chapter 2 presents the background and necessary
definitions concerning the semantics and analysis of both sequential and concurrent programs.
Chapter 3 presents the key concepts of our methodology, and formally defines environment
queries. Chapter 4 focuses on the sequential program constructed to analyze t3s, and the
env_move function that is used to over-approximate computations of the environment. Chapter 5
formally proves the correctness of the aforementioned analysis. The correctness of the proofs
relies on the existence of a method for answering environment queries. Chapter 6 describes how

such environment queries are answered in case the environment consists of a single thread. The

chapter also includes a proof for the correctness of this construction. Chapter 7 describes how
our method can be extended to multiple threads. Chapter 8 describes a list of optimizations used
by our tool. Chapter 9 provides an experimental evaluation, and shows that our technique is

useful for programs which have a hierarchical structure. Chapter 10 summarizes this work.

Chapter 2

Preliminaries

Sequential Programs. A sequential program P is defined by a control flow graph whose
nodes are a set of program locations L (also called labels), and whose edges E are a subset of
L x L. The program has an initial label, denoted ["*** € L. Each node [is associated with a
command ¢ € ¢mds, denoted cmd(l), which can be an assignment or an if command, as well as
havoc, assume and assert (explained below). Intuitively, we think of standard C programs
(that may contain loops as well), which can be trivially compiled to such control flow graphs.
The program may also include non-recursive functions, which will be handled by inlining.

The program is defined over a set of variables V. Conditions in the program are quantifier-
free first-order-logic formulas over V. A special variable pc ¢ V, ranging over L, indicates
the program location. A state s of the sequential program P, is a pair (I, 0) where [€ L is the
value of pc and o is a valuation of V. Variables may have unbounded domains, resulting in a
potentially infinite state-space. We also assume the existence of a special error state, denoted
e = (le, L). We denote by I(s) and o(s) the first and second components (resp.) of a state
s = (I, o). Given a valuation o over V' and a set of variables U, we denote by o|; the restriction
of o to the variables in U. That is, o|y(v) = o(v) for every v in V NU, and 0|y (v) is undefined
for any other v. Note that we do not assume that U C V. If c is a command or a condition over
some of the program variables, we denote by Vars(c) the set of variables appearing in c¢. We
denote ol = o yyry(c)-

A program may include an initialization condition in the form of a valuation o, of a set of
variables U C V. We denote by 0;,;:(v) the initial value of a variable v € U. The set of initial
states consists of all states (I,) where 0|y = 0jnit. We denote by ¢y the initialization
formula ¢y = /\U [v = oynit(v)]. It is possible to express more complex initial conditions,
e.g. (v1 >0A vgv—ei— v3 = T7), via explicit assume commands in the code, as described below.

For a state s = (I, o), let emd(s)=cmd(l). We denote next(s) = {s’ | s’ can be obtained
from s using cmd(s)}!. This set is defined according to the command cmd(s). In particular,
s € next(s) implies that (I(s),(s")) is an edge in P. The definition of next(s) for assignments
and if commands is standard. A v=havoc () command assigns a non-deterministic value to the

variable v. An assume (b) command is used to disregard any computation in which the condition

"havoc commands are non-deterministic, hence s’ is not unique.

b does not hold. It does nothing, otherwise. Formally, if s = (I, o) and cmd(s)=assume (b),
then o F b = next(s) = {(I',0)} where !’ is the label of the next command to be executed
after the assume command (i.e., I is the single label such that (I,!') € E), and 0 ¥ b =
next(s) = 0. An assert (b) command moves to the error state if b is violated, and does
nothing otherwise. Formally, if s = (I,) and cmd(s)=assert (b) for some condition b, then
o E b= next(s) = {(I',0)} where I’ is the label of the next command to be executed, and
o ¥ b= next(s) = {e}.

A computation p of P is a sequence p = sg — §1 — ... — S, for some n > 0 s.t. for
every two adjacent states s;, S;+1: Si+1 € next(s;). pis an initial computation in P if it starts
from an initial state. p is a reachhable computation in P if there exists an initial computation p'
for which p is the suffix. The path of a computation (lp, 09) — ... — (I, 0,) is the sequence
of program locations lg, . . . , 1.

Remark. The examples appearing later in this work are C programs, where we use line numbers

to denote the labels of the program.

Preconditions and Postconditions. Given a condition ¢ over the program variables V' and
an edge e = (I,1"), a precondition of q w.r.t. e, denoted pre(e, q), is a condition p such that
for every state s, if o(s) E p and [(s) = [then there exists s’ € next(s) s.t. o(s’) E ¢ and
(s =10 2 A precondition extends to a path m = [y, ..., [, with commands ¢, ..., c,—1 in
the natural way. The weakest precondition of g w.r.t. e (resp., 7) is a precondition that is implied
by any other precondition, and can be computed in a standard way, according to the command
emd(l) (resp., ¢, - - -, ¢p—1) and the chosen target label I (resp., l1, . .., l,) [11]. We denote it
wp(e, q) (resp., wp(m, q)).

A path precondition p = pre(, q) has the property that for every state s such that o(s) E p,
there exists a computation p whose path is 7 from s to some state s’ such that o(s) F ¢. A path
weakest precondition p = wp(m, q) also satisfies the converse: if p is a computation whose path
is 7 from some state s to a state s’ s.t. o(s’) F ¢, then o(s) F p.

A postcondition of a condition p w.r.t e = (I,1’), denoted post(e, p), is any condition ¢
such that if o(s) F p, I(s) = [then for every s’ € next(s), if [(s') = I’ then o(s') F q.
Postconditions can also be extended to paths 7 = Iy, ..., [,. We use post(r,p) to denote a
postcondition of condition p w.r.t. path 7. A path postcondition ¢ = post(m, p) has the property
that for every computation p whose path is 7 from a state s s.t. o(s) F p to some state &', it
holds that o(s') F q.

Concurrent Programs A concurrent program P consists of multiple threads ¢y, ..., ¢,
where each thread t; has the same syntax as a sequential program over a set of variables V; and
a program location variable pc,. The threads communicate through shared variables, meaning
that generally V;, V; are not disjoint for i # j. Let V = |J;~, V;. A state s of the concurrent

program P is a pair s = (I, o), where ¢ is a valuation of V and [= (I, ...,l,) with [; being

Note that our definition of a precondition does not require all the successors to satisfy g.

10

the value of pc; for every thread ¢;. We denote I(s,t;) = [;. We also assume one common
error state €. An initialization condition o;,;; and initialization formula ¢;,;; are defined as in
the sequential case. The set of initial states consists of all states (Zmit, o) where o E ¢y and
7 (14nit ... 1) are the initial labels of the threads tq, . . ., t,, (resp.).

The execution of a concurrent program is interleaving, meaning that exactly one thread
performs a command at each step, and the next thread to execute is chosen non-deterministically.
We consider a sequentially consistent semantics in which the effect of a single command on the
memory is immediate. For s = (I, o), let cmd(s, t;) denote the command of thread ¢; at label
l;. We denote next(s,t;) = {s’ | s’ can be obtained from s after ¢; performs emd(s, t;)}. A
computation p of the concurrent program P is a sequence sg ﬂ> s1 t(—2)> . ﬂ Sp, s.t. for
every two adjacent states s;, Sj41: 1) ¢ {t1,...,tm} and s; 41 € next(s;, t(”l)). We say
that p is a computation of thread ¢ in P if t/) = ¢ for every 1 < j < n. Given a set of threads
T C {t1,...,tn}, we sat that p is a computation of 7" in P if t) e T for every 1 < j <n.
We define initial and reachable computations as in the sequential case, but w.r.t. computations

of the concurrent program.

Remark. Our technique also supports atomic synchronization operations by modeling them
with atomic control commands. For example, Lock (1ock) is modeled by atomic execution of
assume (lock = false); lock=true; As explained later, our technique models context
switches by explicit calls to a function, env_move. Thus, we are able to guarantee that these
commands are treated as an atomic operation (with no context switches allowed) by not including

env_move calls between them.

Variable Classification A variable is read by a thread ¢; if it appears in a condition of any
control structure (if, assume, assert) or on the right hand side of any assignment in ¢;. A variable
is written by t; if it appears on the left hand side of any assignment in ¢;. A variable v € V is
shared between two threads ¢;, t; if v € V; N'V;. A variable v € V; is a local variable of ¢; if
v ¢ Vj forevery j # i.

Safety. A computation of a (sequential or concurrent) program is violating if it ends in the
error state (i.e., the last step of the computation executes the command assert (b) at a state s
such that o(s) ¥ b). The computation is safe otherwise. A (sequential or concurrent) program is
safe if it has no initial violating computations. In the case of a sequential program, we refer to
the path of a violating computation as a violating path.

A Sequential Model Checker is a tool which receives a sequential program as input, and
checks whether the program is safe. If it is, it returns “SAFE”. Otherwise, it returns a counterex-

ample in the form of a violating path.

Interleaving Reduction An interleaving reduction analysis is a technique which identifies
a set of labels, called cut-points, such that the original program is safe if and only if all the

computations in which context-switches can only occur at cut-points are safe. This means that

11

at every state of the computation, at most one thread (which is the thread performing the current
sequence of steps) can be at a label which is not a cut-point. When the next thread to move
changes (i.e., a context switch occurs), all threads must be in a cut-point label.

More formally, let CLy C L4,...,CL,, C L, be the sets of cut-point labels for the
threads ¢1, ..., 1, of a concurrent program P. A state s satisfying I(s,t;) € CL; for every
thread ¢; of P, is called a cut-point state. The program P is safe if and only if it has no initial

C . t@ () t(m) . . . "
violating computation p = sg S1 e Sy in which every two adjacent transitions

(@ 1) . . .
Si—1 —> S; — S;+1 satisfy the following two properties:

o If t() = ¢t(+1) then s; is a cut-point state.

o if t() = ¢+ then for every thread t; # t@): I(s;,t;) € CL; (and I(s;,t™) is not

restricted).

For the rest of this work, we will only consider computations in which context switches
are restricted to cut-point states. For simplicity, we assume that all initial states are also cut-
point states, i.e., [{"" € C'L; for every thread t; of P. Several techniques for performing an

interleaving reduction are described in [15, 18, 44, 37].

12

Chapter 3

Reduction to Sequential Verification

In this chapter we provide an overview of our methodology for verifying safety properties of
concurrent programs, given via assertions. The main idea is to use a sequential model checker in
order to verify the concurrent program. Our approach handles any number of threads. However,
to simplify the presentation, we first describe our approach for a concurrent program that consists

of two threads. In Chapter 7, we extend the presentation to any number of threads.

In the sequel, we fix a concurrent program P with two threads. We refer to one as the
main thread (t);) and to the other as the environment thread (tg), with variables V), and Vg
and program location variables pcj; and pcg, respectively. V3; and Vg might intersect. Let
V = Vi U V. Given a state s = (I, o), we denote by I5/(s) and I (s) the values of pcy, and
pcp in a state s, respectively. We also denote by lé\’}it and lg”t the initial values of pc;; and
pcg. For simplicity, we assume that the safety of P is specified by assertions in ¢ ;. Section 7.3

describes how to support assertions in all threads of P.

3.1 From Concurrent to Sequential Programs

Our algorithm generates and maintains a sequential program for each thread. Let Py; and Pg
be the two sequential programs, with variables 1//1\; D Vi and I//E DO VEg. Each sequential
program might include variables of the other thread as well, together with additional auxiliary
variables not in V. Our approach is asymmetric, meaning that P; and Pr have different roles
in the algorithm. P, is based on the code of ¢;;, and uses a designated function, env_move, to
abstract computations of tg. Pg is based on the code of ¢, and is constructed in order to answer
specific queries for information required by Py, specified via assumptions and assertions. The
algorithm iteratively applies model checking to each of these programs separately. In each
iteration, the code of P, is gradually modified, as the algorithm learns new information about

the environment, and the code of P is adapted to answer the query of interest.

13

3.2 Interface Between Main and the Environment

In Chapter 4, we first describe the way our algorithm operates on Pj;. During the analysis
of Pys, information about the environment is retrieved using environment queries: Intuitively,
an environment query receives two conditions, « and /3, and checks whether there exists a
reachable computation of ¢ in P from « to 8. The idea is to perform specific guided queries in
t g, to search for computations that might “help” ¢, to reach a violation. If such a computation
exists, the environment query returns a formula 1, which ensures that all states satisfying it can
reach (3 using ¢t only. We also require that « and 1) overlap. In order to ensure the reachability
of 3, the formula 1) might need to address local variables of ¢, as well as pcg. These variables
will then be added to Pjs, and may be used for the input of future environment queries. If our
algorithm can prove that there are no such computations of ¢, it returns v = FALSE. The

formal definition follows.

Definition 3.2.1 (Environment Query). An environment query Reach (c, B) receives con-
ditions v and 3 over V' U {pcp}, and returns a formula) over V' U {pcg} such that:

1. If there exists a computation of ¢ in P that is (1) reachable in P, (2) starts from a cut
point state s s.t. s F «, and (3) ends in a cut point state s’ s.t. ' F (3, then) Aaw £ FALSE.

2. For every state s s.t. s F 1, there exists a computation (not necessarily reachable) of ¢t

in P from s to some s’ s.t. s’ F 3.

3. 1) # FALSE = 1) A\ o # FALSE.

Observation 3.2.2. 1. We note that ¢ is not required to be precise, i.e., nothing is required
of states s s.t. s ¥ 1.

2. If 1» = FALSE, the first property implies that there is no reachable computation of g in

P between cut point states from « to (.

3. If a A B # FALSE, 3 is always a valid result for Reach,(«, (), as a computation of

length zero would satisfy the requirements.

4. The aforementioned computations do not have to be initial, (i.e., the first state s of the

computation is not necessarily an initial state).

5. The last property of Definition 3.2.1 is only needed for the progress of our main algorithm
(see Lemma 5.2.4 of Section 5.2). For soundness, the first two properties suffice.

3.3 What’s Next

Chapter 4 focuses on Pyy. It describes the structure of Py, based mainly on the code of ¢,
and the connection between states and computations of P to states and computations of Py;. It

also describes the env_move function, and formally defines in what sense it over-approximates

14

tg. The key part of this chapter is Algorithm 4.1, which analyzes and refines P;; to determine
the safety of P. The correctness proof for Algorithm 4.1 appears in Chapter 5. The algorithm
assumes the existence of a model checker that can determine the correctness of sequential
programs (and provide counterexamples). That is, it reduces the verification of concurrent
programs to a series of verification tasks of sequential programs.

An additional assumption of Algorithm 4.1 and its correctness proof in Chapter 5, is the
existence of a method for answering environment queries. Chapter 6 describes how environment
queries are answered in the case of a single environment thread tg. The key elements of
this chapter are Pg, the sequential program constructed according to tg, and the try_start
function, that is used in Pg to over-approximate initial computations of P in order to let P
simulate non-initial computations of ¢ that follow them. Chapter 6 also includes a proof for

the correctness of this construction.

Multiple Threads The key ingredients used by our technique are (i) an env_move function
that is used in Pjs to overapproximate finite computations (of any length) of ¢z, and (ii) a
try_start function as mentioned above. When P has more than two threads, the environment
of tjs consists of multiple threads, hence environment queries are evaluated by a recursive
application of the same approach. Since the computations we consider in the environment
are not necessarily initial, the main thread of the environment should now include both the

env_move function and the try_start function. For more details see Chapter 7.

15

16

Chapter 4
Analyzing the Main Thread

In this chapter we describe our algorithm for analyzing the main thread for the purpose of
proving the concurrent program P safe or unsafe (Algorithm 4.1). Algorithm 4.1 maintains
a sequential program, Py, over 1//]\; O Vs, which represents the composition of ¢, with an
abstraction of ¢ p. The algorithm changes the code of P, iteratively, by adding new assumptions

and assertions, as it learns new information about the environment.

The rest of this chapter is organized as follows: Section 4.1 describes general properties
of Py, that hold throughout Algorithm 4.1. Section 4.2 provides necessary formal definitions
describing the relation between P and Pjs. Next, we start describing our algorithm. Section 4.3
describes the initialization steps of Algorithm 4.1, and presents a running example. After
initialization, Algorithm 4.1 works in iterations. Section 4.4 describes the outline of each
iteration, and explains when the algorithm can terminate with a final result (safe or unsafe).
Section 4.5 details how the algorithm analyzes counterexamples provided by the sequential
model-checker. This analysis is the core of every iteration of Algorithm 4.1. Section 4.6 briefly

describes how the results of environment queries can be generalized.

4.1 The Structure of P,

We now detail the general structure of Pj;. The described properties are invariants, and hold

throughout all modifications of Py;.

Variables of P;; As mentioned before, 1//1\; includes all variables of ¢y, i.e., I//J\; O V. ‘//J\;
may also include variables in Vg \ Vi, as well as include pcg as an explicit variable. All
other variables in ‘//]; are auxiliary local variables required for ad-hoc technical purposes, and
will be mentioned later (see (4) of Section 4.5). Other than the usage in (4) of Section 4.5,
all commands in Pys only address variables in V' U {pcg}. Thus, we can safely assume that
conditions computed later in Algorithm 4.1 using paths of P,; (weakest precondition and

postcondition) are also over V' U {pcg}.

17

Algorithm 4.1 Algorithm MainThreadCheck
1: procedure MAINTHREADCHECK(tps, tE)

2: Pys = add env_move calls in ¢5; and initialize env_move()
3: while a violating path exists in Py, do // using sequential MC
4: Let 7 = lo, ..., Zn+1 be a violating path.
5: if there are no env_moves in 7 then:
6: return “Real Violation”
7: end if
8: let Zk be the lAabel ofAlast env_move call in R
9: let Tstare = lo, - - -, Uk andfrend:lk+1,...,ln
10 B = wp(Tend, —b) // see (1) in Section 4.5
11: o = post(Fstart, Pinit) // see (2) in Section 4.5
12: Let i) = Reachq,(a, B) // environment query for t i (see Chapter 6)
13: if) is FALSE then
14: Let o/, 3/ be as in (4) in Section 4.5.
15: Py = RefineEnvMove (P, o, 3')
16: else // see (5) in Section 4.5
17: Add assert (=) in Py at new label Z’, placed right before Zk
18: end if
19: end while
20: return ‘“Program is Safe”.

21: end procedure

Initialization Condition of P,; All variables in l//]\; NV appear in Py; with the same decla-
ration as in P, and the same (possible) initialization as in P. In addition, if pcg € ‘//1\\4, it is

initialized with %% Formally, if P uses the initialization formula ¢;;;; = A, [v = Ginit(v)],
ve

then émit, the initialization formula of Py, is gZA)W-t £ A v =0init(v)]if pcg & ‘//1\7, and

veUNViy
Dinit 2 (A _[v=04nir(v)]) A (peg = 1) if pcg € Var.
veUNViy
The env_move Function The abstraction of ¢g is achieved by introducing a new function,
env_move. Context switches from ¢, to t g are modeled explicitly by calls to env_move. The
body of env_move changes during the run of Algorithm 4.1. However, it always has the property
that it over-approximates the set of finite (possibly of length zero) computations of ¢ in P, that
are reachable in P (this is formalized by Definition 4.2.5). The env_move function is called at

every cut-point location in ¢js, as determined by an interleaving reduction analysis.

Commands of P); The code of P,; always consists of the original code of tj;, with the

following changes:
e The env_move function (which contains assumptions about the environment) is part of

Pyy.

e Calls to env_move are included at every chosen cut-point. These are added during
initialization. Exactly one env_move call is added at each cut-point, meaning that there is

at least one original command of ¢,; between every two env_move calls in Py;.

18

e New assertions may be included (only) directly before an env_move call. There may be
several such new assertions before a single env_move call. These are added during the
run of Algorithm 4.1).

Observation 4.1.1. The last two properties imply that the next command after env_move must
be an original command of ;. Clearly, by the second property above, it cannot be another
env_move call. Further, when new assertions are added, they always immediately precede
an env_move call (but after numerous such additions, there may be several subsequent newly
added assertions before a particular env_move call). Therefore, if the next command after the
env_move were some newly added assert (b), the next commands afterwards must have been
several (possibly zero) additional new assertions (part of the same sequence as assert (b)),
followed by the env_move call before which assert (b) was added. This would have meant
no original command of ¢, between two consecutive env_move calls, and it contradicts the

second property.

Computations of P,; There are no additional commands in P,; other than the ones listed
above. Original commands of ¢, are also neither modified nor reordered. In particular, the
control flow of tj is preserved within Py;. Hence, any computation of Py, can be viewed as a

periodic repetition of the following “extended steps”, where each step consists of:

1. A sequence of original commands of ¢;;, between cut-point locations, with no inner

cut-point location.
2. A sequence of new assertions accumulated before an env_move call.
3. An execution of the env_move function.

Further, for every two such adjacent “extended steps”, the label reached in ¢, after the last
original command (of ¢j,) of the former extended step, must be the same as the label in ¢,
of the first original command in the latter extended step. Figure 4.1 illustrates such a typical

computation of Pyy.

Observation 4.1.2. Note that the set of new assertions before an env_move call may be empty.
Specifically, after initialization - none of the env_move calls have new assertions preceding
them. Additionally, since we include the initial label of each thread in the set of cut-point labels,
there will be an env_move call in Py before the first original command of ¢/, and possibly

additional new assertions before that env_move call.

To address the original label in ¢, Algorithm 4.1 maintains a mapping, denoted Lab, that
maps each label of P, (except those inside env_move) to the corresponding label in ¢ .

Definition 4.1.3 (Lab). Let [be a label of Py, not inside env_move, with ecmd(l) =c. We

define Lab(l) recursively as follows:

e If c is an original command of ¢,;, appearing at label [in ¢/, then Lab(l) = I.

19

v _move()

original commands of 7, , starting from a

H--

cut-point location / to a cut-point location /'

—
assert(b,))
[~ Newly added assertions

. Es;:ert(bk)

env_move()

original commands of t,,. starting from /'

to another cut-point location /"

assert(c,)
"™ Newly added assertions

?ssert(c)
I
env__move()
p—

Figure 4.1: A typical computation of Py is a periodic repetition of extended steps consisting of:
original commands of ¢, newly added assertion and the env_move function.

e If cis an env_move call or a new assert, Lab(f) = Lab(f’), where I’ is the next label in

Py after the env_move or the assert command (resp.).

Lab is well defined, as the next label after asserts or env_move calls is uniquely defined,
and a sequence of such commands cannot form a loop, without introducing at least a single
command originally from ¢;;. Technically, for each label of P, the mapping holds the label
of the next original command of ¢, to be executed. Clearly, this definition is not injective, as
multiple labels of asserts and env_move calls can be mapped to the same label of an original
command. For example, consider the sequential program P0 in Figure 4.3, which is based on t0
from Figure 4.2. In this example, line 10 of PO with the command turn = 1, as well as the
preceding line 9 with an env_move call, are both mapped to line 8 of t0 with the original turn
= 1 command. Thus, Lab(9) = Lab(10) = 8.

4.2 Representation of P Within P,

In this section, we describe the relation between states of the sequential program Pjs, and
states of the concurrent program P. We also formalize the relation between computations of
tys in P, and computations in Py that are restricted to original commands of ¢, (i.e., between
consecutive cut-points).

The purpose of P is to combine a precise representation of ¢, with an over-approximation
of tg (represented by the env_move function). Together, this combination provides an over-

approximation of the computations of P. Every state of Pj; can be viewed as an abstract state,

20

representing several states of P. The formal relation is given by the following definition:

Definition 4.2.1 (Extend). Let § = (f ,0) be a state of Py, s.t. [is not inside env_move. We
define the set Extend(3) to be the set of all states s = (I, o) of P such that:

e l1(s) = Lab(l)
e Ifpcp € vj\;then lp(s) =6(pcEg)

e Foreveryv e V:ve Vy = o(v) =a(v)

Intuitively, the states appearing in Fxtend(§) are all the states of P that agree with § on the
program location of tj; (and of tg if pcp € V]\;), and agree with § on all the variables in
VNV

Observation 4.2.2. Note that the set Fxtend(s) is never empty for any state § of Py;. This is
because any extension of o (s) to the variables in V' \ Vs will form a legal state s of P (not

necessarily reachable) which is in Extend(s).

Observation 4.2.3. If s € Extend($), then for every formula v over Var N (VU{pcg}), it
holds that s F v <= o(3) F . This is true, since Definition 4.2.1 implies that s and § have
identical values on all the variables in ~.

Next, we would like to extend our observation to initial states using the following lemma:

Lemma 4.2.4. Let S be an initial state of Pys. Then there exists an initial state s of P, such
that s € Extend(8).

Proof. Let ¢inis = /\U[v = 0init(v)] be the initialization formula of P. We define a state s as
ve

follows:
o Iy(s) = i,
o Ip(s) = [pit,
e Forevery v € U: 0(s)(v) = ginit(v).
o Forv e Vi \U: o(s)(v) = o(3)(v).

o Ifv ¢ Var and v ¢ U: o(s)(v) can be chosen arbitrarily.

'The difference in notation (i.e., “s” vs. “o(§)”) results from the special status of the variable pc . It is not part
of o(s), but it is a part of s, with its value indicated by [z(s). In Pas, on the other hand, it is a regular variable, and
is part of o ().

21

By the first three properties, s is clearly an initial state of P. We need to show that s €
Extend(8).

The code of Py, starts with a (possibly empty) sequence of new assertions, an env_move,
and then the first original command c at label lf\}it of tjs (see Observation 4.1.2). Therefore,
ecmd(8) is either such a new assertion or an env.move call, and there is no other original
command of ¢y in Pys between cmd(8) and c. Hence, by Definition 4.1.3, Lab(1(3)) = 43

Since § is initial, o(8) E ¢ini. Thus, if pcg € Vi, then o(8)(pcp) = 1% = Ig(s).
Similarly, if v € VuNU, o(8)(v) = oinit(v) = o(s)(v). Forv € ‘//j\;\ U,o(8)(v) =0o(s)(v)
by the construction of s. Thus, s € Extend(s). O

After defining the compatibility between states of P and states of P,;, we can now address
the compatibility of computations. First, we define in what sense the env_move function over-
approximates computations of ¢g. Intuitively, the env_move function over-approximates the
set of finite reachable computations of ¢ in terms of their input-output relation. Formally, this

means the following.

Definition 4.2.5 (Over-approximation). We say that env_move over-approximates the compu-
tations of tg in P if for every reachable (and possibly empty) computation p = s 2NN
of tg in P from a cut-point state s to a cut-point state s’, and for every state § of Py s.t.
s € Extend(8), and emd(8) is an env_move call, there exists a computation p = § — - -+ — §
of Py s.t.

e [(§) is the next command in Py after env_move, and for every inner state §” in p, 1(5”)
is a label inside env_move (i.e., p is a complete single execution of env_move)
e s € Extend(§)

The definition implies that if tg can move (in any finite number of steps) from a state s
satisfying some condition « to a state s’ satisfying some condition 3, env_move should also
allow reaching a state satisfying (3, when it is called from a state satisfying «.. In order to prove
that env_move always over-approximates the computations of {r in P, we need to consider
the possible refinements and changes applied to env_move by Algorithm 4.1. This is proved
in Lemma 5.1.1, after the complete presentation of the algorithm in this chapter. We will later
see (Lemma 5.1.3) that in addition to this over-approximation, P, also under-approximates
the set of states leading to an error, using the new assertions. This under-approximation also
incorporates partial information about ¢g.

As opposed to tg, the representation of £, within Py is precise. In fact, this property is
based on the general structure of Py, as described in this section. Hence, we can prove the
following two useful lemmas, formalizing the meaning of “precise representation” of ¢, within
Pyr. Lemma 4.2.6 maps computations of Py that do not use env_move, to representative
computations of ¢;; in P. Lemma 4.2.7 maps computations p of ;7 in P to computations p

in Py, that represent them, where a subtle point is that p may correspond to a prefix p’ of p,

22

followed by an error state. This may happen, in case that Algorithm 4.1 already learned that the
last state of p’ leads to an error. The soundness proof at Section 5.1 uses both of these lemmas
(as well as additional properties of the algorithm, presented later) to complete the correctness

argument of our algorithm.

Lemma 4.2.6 (P, representation I). Let p = § — --- — & be a computation of Py, along a
path in which all commands are not inside env_move and are not env_move calls, and such
that §' = €. Then for every state s € Extend(8) there exists a computation p of tpr in P from s

to some state s’ s.t. s' € Extend(§).

Proof. Let k be the length of the computation p. The proof is by induction on k.

Base Case: Assume k = 0. Let s be a state of P. If we choose s’ = s, there is a zero length
computation (of t37) in P from s to s’ (from s to itself). Since &k = 0, §' = §, and therefore
s € Extend(8) implies s’ € Extend(§).

Indcution Step: Let £ > 0. Assume that the lemma holds for computations in Pj; of length
(k-1), and let p = § — --- — §’ — § be a computation of length k in Py, as described
above. Then p' = § — --- — §” is a computation of length (k — 1), for which the induction
hypothesis holds. Let s € Extend($). By the induction hypothesis, there exists some state
s" € Extend(s8") and a computation p’ of t5; in P from s to s”. We define a state s’ = (I, o)

as follows:
o [y (s") = Lab(l(§)).
o lp(s) =l1p(s").
e VeV
— If v € Vi then o’ (v) = o(§') (v).

— Ifv & V) then o'(v) =a(s")(v).

It is sufficient to show that there exists a computation p” of ¢, in P from s” to s’ and that
s’ € Extend(s), since p = p’ - p” will then be a computation from s to s/, as required. Note
that in order to prove that s € Extend(3’), we only need to show that if pcp € Vs then
lp(s’) = o(8)(pcE), as the other two requirements of Definition 4.2.1 are met immediately by
the definition of s'.

Let c=cmd(8”). ¢ is the command used by p to move from §” to §'. Since ¢ cannot be an

env_move call and is also not inside env_move, there are two possible cases:
e cis an original command of ty,.

e cis anew assertion in Pyy.

23

1. Assume first that c is an original command of ¢;,. Since original commands of ¢,
cannot change pcg in Py, we get 0(8”)(pcg) = 0(§')(pcg). Since s” € Extend(§"),
pcp € Viy implies lg(s") = 0(8")(pcg). Combining this with the definition of &', we
getlp(s') = 1p(s”), and all together I (s') = o(§')(pcE).

It is now sufficient to show that s € next(s”, tps) (a computation of length one from s”

to s).

Let Vet = Vars(c). The command c can only change the variables in V., and the possible
modifications are independent of variables not in V,;. Since cis in Pz, Ve C T//J\; and
hence by the definition of ¢, 0’|y, = 0(§')|v,.,. Since s € Extend(s"), we also get
(v = 0(8")|v,.,- Since §' € next(8"), it means that o(§)|y,,, can be obtained
from o(8”)|y,., by performing ¢, and hence o]y, can be obtained from o (s”)|y,., by
performing c¢. For a variable v & V,u, o'(v) = o(s”)(v) (by the definition of s’ if
v & Vi, and because o(3')(v) = o(3")(v) for v € Vs \ Vier, as ¢ cannot change

variables outside V). Hence, ¢’ can be obtained from o (s”).

As for the labels, [p(s") = Ig(s”) by the definition of s’. We also need to show that [(")
is the label reached after performing ¢ from s”. Given the state s”, the label of the next
command depends on [(s”), the location of s” within ¢,/, and of o(s”)|y,.,. The label
of the next command is unique given this valuation (although an if-command may move
to several possible labels, it can only have one target given a specific valuation of V).
Since s” € Extend(8"), it holds that [, (s") = Lab(1(8")) and o (s")|v,., = 0(8")|v,.,-
Hence, the label reached in ¢); after performing ¢ from s”, is also given by Lab(I(§")),
where §' is the state obtained after performing ¢ on §”. Luckily, this is exactly how [, (s")

was defined.

2. Otherwise, c is a newly added assertion command. Since, §' # e, the assertion is not
violated and hence, o(§”) = o(§'). In particular, pcp € Vs implies o(8")(pcg) =
o(§)(pcg) as before, and hence again we have [p(s') = lg(s") = o(8")(pcg) =
o(8')(pcp)-

It is now sufficient to show that s’ = s” (a computation of length zero). By Definition 4.2.1,
Iy (s") = Lab(1(8")), which equals to Lab(l(8")) by Definition 4.1.3. With the definition
of s’ we get Ipr(s") = lp(s”). The rest of the equalities follow immediately from the

definition of &', the equality o(8”) = o(§') and the assumption s” € Exztend(s"). O

Lemma 4.2.7 (P, representation II). Let p be a computation of tys in P from a state s to a
state s' such that there are no inner cut-point states within p (but s and s' may be cut-point
states). Let § be a state of Pys such that s € Extend(s), and cmd(8) is an original command
of tar. Then there exists a computation p of Pyy from 5 to a state §' such that either §' = €, or

the following conditions hold:

e s € Extend(§)

24

o If s’ is a cut-point state then cmd(8') is an env_move call.

e If s' is not a cut-point state then cmd(8') is an original command of ty; (and by the first

requirement cmd(§') = emd(s')).

Proof Sketch. The full proof of this lemma is similar to the previous one, and is omitted. As
before, the main idea is that performing an original command of ¢j; on some state s of P,
has “the same” effect as performing it on a state § of Py satisfying s € Extend(s). We can
construct p by adding each command from p to p. Since Vj; C ‘//z\;, and s € Extend(3), it is
possible to perform the same series of commands in P,; as well. The two more subtle points in

the proof are the following:

o The formed sequence of commands, p, indeed forms a computation in Py, because Py
preserves the control flow of £, and because there are no inner cut-point states in p.
Therefore, after performing a command from p in Pp;, the next command to be executed
is also an original command of ¢,;, and cannot be an env_move call or a newly added

assertion. Thus, we can continue with the construction of p for every command in p.

e The last state &’ may be €. If s’ is a cut-point state, then the last step of p should lead
to an env_move call. However, some newly added assertions, not appearing in ¢, may
appear before that env_move call in Py;. If s’ contradicts one of these assertions, the
computation in Pp; will move to € (before reaching the env_move call). We will later
see (Lemma 5.1.3) that this can only happen when the relevant state s is a state from
which an error is reachable. Algorithm 4.1 plants such new assertion about future errors,
when it learns the conditions that guarantee them. This is explained more thoroughly in
Section 4.4.

If &' satisfies all the assertions before the env_move call, we can simply add all these
assertions to p, making ¢md(§') an env_move call as needed. This is legal, as satisfied
assertions do not change o(§'). If s’ is not a cut-point state at all, 5 would not reach
an env_move call (nor the new assertions added before such calls), making cmd(§") an

original command of tj;.

4.3 Initial Construction of P,

Algorithm 4.1 starts by constructing the initial version of Py, based on the code of ¢;;. To do
s0, it adds explicit calls to env_move in every cut point label of ¢;,. In addition, the algorithm
constructs the initial env_move function, which havocs (i.e., assigns a non deterministic value
to) every shared variable of ¢tr and ¢, that is written by tz. This function will gradually be

refined to represent the environment in a more precise way.

25

Example 4.3.1. We use the Peterson’s algorithm [33] for mutual exclusion, presented in Fig-
ure 4.2, as a running example. The algorithm contains a busy-wait loop in both threads, where
each thread enters its critical section (i.e. leaves the while loop) only after the turn variable
indicates that it is its turn to enter, or the other thread gave up on its claim to enter the critical
section. In order to specify the safety property (mutual exclusion), we use additional variables
cs0, cs1 which indicate that t0 and t1 (resp.) are in their critical sections. We would like
to verify that t0 and t1 cannot be in their critical section at the same time, i.e —¢s0 V —csl
always holds. The safety property is specified by the assert (!csl) commands at Line 13
of Figure 4.2. We could have also used the full assertion assert (!cs0 || !csl) atevery
location in t0. However, the assert (!esl) at Line 13 suffices, as cs0 is always t rue there,
and always false everywhere else (In fact, our algorithm performs an initial static analysis that
makes this simplification automatic).

Assume that t0 was chosen as the main thread and ¢1 as the environment thread. We generate
a sequential program F,, based on the code of t0: we add env_moves at every cut point, as
determined by our interleaving reduction analysis. The result is illustrated by Figure 4.3. In our
case, the cut-points are after all commands except for those in line 16 and 19, where 0 changes
the local variable cs0, and except for the while (true) command at Line 7, which does not
read any variable. 2

The initial env_move only havocs all variables of P0 that are written by ¢1, i.e., claiml,

turn, csl (see Figure 4.6).

4.4 Iteration of the MainThreadCheck Algorithm

Each iteration of Algorithm 4.1 starts by applying a sequential model checker to check whether
there exists a violating path (that may involve calls to env_move) in Pp; (Line 3). If not,
we conclude that the concurrent program is safe (Line 20), as the env_move function over-
approximates the computations of the environment. If an assertion violation is detected in
Py, the model checker returns a counterexample in the form of a violating path. If there are
no env_move calls in the path, (Line 5), it means that the path represents a genuine violation
obtained by a computation of the original main thread, and hence the program is unsafe (Line 6).

Otherwise, the violation relies on environment moves, and as such it might be spurious. We
therefore analyze this counterexample as described in Section 4.5. The purpose of the analysis
is to check whether ¢ indeed enables the environment transitions used along the path. If so, we
find “promises of error” for the violated assertion at earlier stages along the path and add them
as new assertions in Py;. Intuitively speaking, a “promise of error” is a property ensuring that

tr can make a sequence of steps that will allow ¢, to violate its assertion. Such a property may

%In fact, since the condition claiml && turn '= O inline 12 of Figure 4.3 is not evaluated atomically
in C programs, another env_move is required after reading claiml and before reading t urn. This can be
solved by rewriting the program s.t. it first assigns the values of claiml and turn to two new local variables,
calls env_move between these two assignments, and only evaluates the new local variables to check whether the
condition holds. We omit this here for simplicity.

26

oI - Y B N VU R SR

N - o

13

bool claim0 = false, claiml = false;
bool cs1 = false, csO = false;
int turn;
1 | bool claimO = false, claiml = false;
void t0() { 2 | bool csl = false, c¢sO = false;
while (true) { 3 |int turn;
claim0 = true; 4
turn = 1; 5 | veid PO() {
while (claiml && turn != 0) { 6 env_move();
} 7 while (true) {
csO = true; 8 claim0 = true;
// CRITICAL_SECTION 9 env._move();
assert (!csl); 10 turn = 1;
cs0 = false; 11 env_move();
claim0 = false; 12 while (claiml && turn != 0) {
} 13 env_move();
14 }
void t1() { 15 env_move();
while (true) { 16 csO0 = true;
claiml = true; 17 assert(!csl);
turn = 0; 18 env._move();
while (claim0 && turn != 1) { 19 cs0 = false;
} 20 claim0 = false;
csl = true; 21 env_move();
// CRITICAL_SECTION 22 }
csl = false; 23 |}
claiml = false;
}
4 Figure 4.3: The sequential program P, af-

ter adding environment move calls.

Figure 4.2: Peterson’s mutual exclusion
algorithm for two threads ¢0 and ¢1.

depend on both threads, and hence it is defined over V' U {pcg} (pcy, is given implicitly by the
label of the assertion in Py). Formally, we have the following definition:

Definition 4.4.1. Let v, v’ be formulas over V U {pcg} and let [, be labels of t;;. We say
that (1, 1)) is a promise of (I',4)’) if for every state s of P s.t. [y;(s) = [and s F 1 there exists a
computation in P starting from s to a state s” s.t. [j;(s’) =" and s’ E ¢'.

If (1,%)) is a promise of (I, —b) and cmd(l') =assert (b), then we say that (I,¢) is a

promise of error.

A promise (and a promise of error) (,) is defined “from the point of view” of ¢,,. That is, if
1 holds when ¢y is at a specific label [, then (I’,¢)") (or an error) can be reached. Note that the
definition refers to computations of P, and is independent of our construction of Py; and Pg.
Note further that the definition is transitive. Specifically, if (I,) is a promise of (I’,4') and

(I',4") is a promise of error, then (I, 1)) is also a promise of error. The proof follows.

Lemma 4.4.2 (Transitivity of promises of error). Let (I,1) be a promise of (I',v'), and let

(I',4") be a promise of error. Than (1,1)) is also a promise of error.

Proof. Since (I',4) is a promise of error, there exists a label I” € L s.t. cmd(l") = assert(b)
and (I',4’) is a promise of (I”,—b). It is sufficient to show that (/,) is also a promise of
(I”,-b). Let s be a state of P s.t. Ip;(s) = [and s E 1. By Definition 4.4.1, there exists a
computation p in P from s to a state s’ s.t. [37(s") =1’ and s’ F /', Again, by Definition 4.4.1,

27

there exists another computation p’ in P from s’ to a state s” s.t. [j;(s”) = 1" and s” E —b. The
concatenation of these two computations, p” = p - p/, is a computation from s to s” and hence
(1,7) is indeed a promise of (I, —b). O

Outcome Each iteration of Algorithm 4.1 ends with one of these four scenarios:

1. There is no violation in P; and hence P is safe (Line 20).

2. The algorithm terminates having found a genuine counterexample for P (Line 6).

3. The obtained counterexample is found to be spurious since an execution of env_move
along the path is proved to be infeasible. The counterexample is eliminated by refining
the env_move function (Line 15, also see item (4) in the next section).

4. Spuriousness of the counterexample remains undetermined, but a new promise of error is
generated before the last env_move call in the violating path of P;. We augment Py

with a new assertion, representing this promise of error (Line 17).

The analysis of a potentially spurious violating path of Py, as well as the generation of new
promises of error (step (5)) and the refinement of env_move when the counterexample is found

to be spurious (step (4)), are explained in detail in Section 4.5.

4.5 Analyzing a Potentially Spurious Violating Path

This section thoroughly explains the analysis of a potentially spurious violating path in Py,
i.e., a path that contains at least one env_move call, obtained in an iteration of Algorithm 4.1.
Let 7w = le, ceey Zn+1 be such a violating path of Py returned by the sequential model checker.
Since 7 is a violating path, we know that in+1 = [, and that cmd([n) =assert (b), for some
condition b. Let [, for some 0 < k < (n — 1), be the label of the last env_move call in 7. For
convenience, we assume that labels within env_move are omitted from 7. That is, ik+1 is the
label of the next command in Py, after the env_move.

We perform the following steps, illustrated by Figure 4.4:

(1) Computing Condition After the Environment Step: We compute (backwards) the weak-
est precondition of —b w.r.t. the path 7r¢,q = ik+1, ..., L, to obtain a formula 3 = wp(Tend, —b)
(Line 10 of Algorithm 4.1). Recall that 3 has the property that for every state $ of Pys, o(5) F 8
iff there exists a computation p in Py, starting from § whose path is 7,4, that reaches a state &’

s.t 0(§') E —b. Also, note that there are no env_move calls in 7r¢p,q.

(2) Computing Condition Before the Environment Step: We compute (forward) a postcon-
dition o = post(Tstart, gz@mzt) starting from qAﬁim-t for the path Tgtqrt = le, e ,ik. Note that «
is not necessarily a strongest postcondition. Therefore, in order to ensure progress, we need
to make sure that if 74, ends with a suffix of asserts, assert (¢1), ..., assert (¢,), they

are all taken into account in our postcondition computation (e.g., by conjoining each c; with

28

post(Tstart, ¢3im-t)). Formally, this means that o = ¢; for every 1 < ¢ < m. This requirement
is used by Lemma 5.2.4 (which is part of the progress proof for Algorithm 4.1).

Recall that « has the property that for every computation p from a state § of Py to state §’
whose path is 7 stare: if 0(3) E ¢ingt then o(§') E a.. Note that this property is not compromised
by our progress requirement, as the last commands of every such computation are the sequence
assert (c1),...,assert (¢,). If 0(§) ¥ ¢; for some 1 < i < m, p cannot pass assert (c;)
and reach the env_move call.

We strive to compute a postcondition which is “as precise as possible”. However, soundness
does not rely on this and we can choose « as an arbitrary postcondition. For progress, the

minimal necessary requirement is the one mentioned above.

(3) Environment Query: ~ We compute ¢ = Reach;,)(, 3) (Line 12).

Example 4.5.1. Figure 4.5 presents a prefix of P, after a few iterations of the algorithm, before
the first refinement of env_move (i.e., Py still uses the initial env_move function). The previous
iterations found new promises of error, and augmented P,; with new assertions. Consider the ini-
tial conditions from Figure 4.2, i.e., ¢init = [claim0 = claiml = csl = cs0 = falsel.
Assume that our sequential model checker found the violation given by the next path: 2, 3, 4, 5,
6,7, 8, 9, reaching and violating assert (!csl || (claiml && turn != 0)) atLine9
(i.e.,b=[7cslV (claiml A turn # 0)]).

To check whether the last env_move call at Line 7 represents a real computation of ¢1,
we compute the weakest precondition of the condition =b £ cs1 A (—claiml V turn = 0),
taken from the violated assertion at Line 9, w.r.t. the path 7.,q = 8,9. The result is § =
wP(Tend, 7b) = (cs1 A =claiml). The computation of o = post(Tsiart, gZ;zmt) for the path
Tstart = 2, 3,4, 5,6 yields « = [-cs0 A claim0 A (-esl V claiml)]. Note the conjunction
with (—cs1 V claiml), which is the condition inside the last assert of 7rs;4,c. We then generate

an environment query Reach,(a,).

(4) Refining the env_move Function: If ¢y = FALSE (Line 13) it means that there is no
reachable computation of ¢z in P from a state s such that s = « to a state s’ such that
s’ |= B (due to the properties of an environment query in Definition 3.2.1). We invoke a
generalization method (see Section 4.6) to obtain two formulas o/, 8’ such that o = o/, 3 = 3/
and still Reach, (o, 8") = FALSE (Line 14). Finally, we refine env_move to eliminate the
environment transition from o’ to 3’ (Line 15). Figure 4.4(a) illustrates this step.

The refinement is done by introducing in env_move, after the variables are havocked, the
command (if (o/(W_old)) assume (—f’)), where W _old are the values of the variables
before they are havocked in env_move (these values are copied by env_move, using additional
auxiliary variables, to allow evaluating o’ on the values of the variables before env_move is
called). The commands ensure that if the condition o is met when entering the env_move

function, then condition £ is satisfied when it exits. Since reachable computations from o’ to 3’

29

were proven by the environment query to be infeasible in ¢, we are ensured that env_move

remains an over-approximation of the reachable computations of ¢ .

Example 4.5.2. Figure 4.6 presents the env_move function before and after the refinement step
resulting from the reachability query described in Example 4.5.1, with o = [-cs0 A claim0 A
(mcslVclaiml)]and 5 = (csl A —claiml). The refinement step adds the two highlighted
lines to the initial env_move function. The call to Reach,)(«, () in this example results in
1 = FALSE. After generalization is applied (see (4) in Section 4.5, and Section 4.6), we obtain
two formulas o’ = TRUE, 8" = (3 which indeed satisfy Reach,)(c/, 8') = FALSE, a = o
and 8 = ('. Since Reach,(c/, ") = FALSE, there are no reachable computations of ¢z
reaching a state satisfying 3’ = ¢s1 A —claim1. We therefore augment env_move with a new
constraint (1 f (a/[W/Wy]) assume (=f3')), derived from this observation. Since o = T'rue,

this constraint is simplified to (if (true) assume(!csl || claiml)).

(5) Adding Assertions: If ¢y # FALSE, then for every state s satisfying 1) there exists a
computation of ¢ in P from s to a state s’ satisfying 3. Since 8 = wp(7teng, —0) (see (1)), it
is guaranteed that this computation can be extended (in ¢;s) along the path 7,4, which does
not use any environment moves, to reach a state s” that violates the assertion assert (b).
This is illustrated in Figure 4.4(b). We therefore conclude that if ¢ is satisfied before the
env_move at location [, a genuine violation can be reached, making (Lab(l},), 1) a promise of
error. Therefore, we add a new label I with cmd(f’) = assert () right before Zk (Line 17).
The Lab function is updated to make sure that each command is mapped to the same label as
before, and Lab(l') = Lab(l},), making (Lab(l"), 1) a promise of error as well. In addition, if
1y includes a variable v that is not in I//]\; (e.g., pcg), then v is added to X//J\;, its declaration (and
initialization, if exsits) is added to P, and env_move is extended to havoc v as well (if it is

written by tg).

Remark. In both steps (4) and (5), the algorithm learns new information about the environment
and is ensured to make progress. The formal proof appears in Section 5.2.

Intuitively, after the refinement in (4), the path 7 (or any transformation of 7 by adding
new inner assertions, which may be added by Algorithm 4.1 in future iterations) is eliminated
completely. This is because every computation that uses 74+ Would reach a state satisfying
«. Then, the refined env_move forces the computation to reach =3, which means that the
computation cannot reach and violate assert (b) using 7.,4. Note, however, that the blocked
path 7 is a path of Py;. It might be the case that another violating path 7’ is found, which
projects to the same path of tj; as 7. For example, if assert (b) is part of a sequence of
newly added assertions before some env_move call, 7’ can be identical to 7, except for the last
assertion (i.e., 7’ will not violate assert (b)).

In (5), the analysis is more subtle. First, after adding the new assertion, the algorithm
can search for computations violating that assertion (and having one less env_move call).

Nevertheless, the algorithm may also have to re-examine the path 7 (extended with the new

30

® N R W o =

SRR

. i Y
new promise [W/\

(248 : 7
7N of violation: I N~ M\
()% 5) O~s)
¢ \\‘}\\\g// é \‘;ﬁ //"‘// —-b ¢ \\ o /) \\ﬂ J -b
— +——+—+ i — ——— i
env. assert(b) env. assert(b)
o i move Ly e b I L move ln Le
Tstart Tend Tstart Tend
(a) (b)

Figure 4.4: (a) If Reach(,(«a, 8) = FALSE, we search fore more general o/ and /3’ which
restrict the environment transition; (b) If Reach) (a, 3) = ¢ # FALSE, then we know that v
leads to 3 and that ¢» A o # FALSE.

1 | void env_move () {
void PO() { 2 bool claiml_copy = claiml;
assert ((tcsl) || claiml); 3 int turn_copy = turn;
env_move (); 4 bool csl_copy = csl;
while (true) { 5 claiml = havoc_bool ();
claim0 = true; 6 turn = havoc_int ();
assert ((lcsl) || claiml); 7 csl = havoc_bool ();
env_move (); 8 if (true) {
turn = 1; 9 assume(!csl || claim1);
assert ((!csl) || (claiml && turn!=0)); 10
1 |}
}
}

Figure 4.6: The env_move function
of Fp: initially (without highlighted
lines); and after one refinement (with
highlighted lines).

Figure 4.5: The sequential program Fy after a
few iterations of Algorithm 4.1.

assertion) again in subsequent iterations. However, it is ensured that in all computations
whose path is 7 (extended with the new assertion, and possibly other inner assertions added by

Algorithm 4.1), the new assertion holds.

4.6 Generalizing an Environment Query

Given formulas a, 3 s.t. Reach,)(a,) = FALSE, we wish to generalize them into o, B
s.t. Reach,)(o/,B') = False and @ = o and 3 = j’. We start by representing « and
5 in negation normal form (NNF) ([40]). Note that, if a formula + is in NNF, then for every
subformula (except atomic negations) § of + and for every formula &’ s.t § = ¢, it holds
that v = ~[0/0’] (monotonicity). Then generalization is performed by iteratively choosing
subformulas ¢ of « (or /3), replacing § by a generalization ' # § s.t. § = ¢, and computing
Reachy (a, B). For example, we can attempt to generalize § = d1 A g to d; or to Jo. If the
result of Reachy (cv, B) after generalization is still FALSE, the process continues. Otherwise,

« (or () is reverted and another generalization is attempted.

31

32

Chapter 5

Soundness and Progress of the Main
Thread Analysis

In this chapter, we provide the correctness proof for Algorithm 4.1. First, we prove that the
algorithm is sound. That is, (i) if it terminates, and returns that P is safe, then P is indeed safe,
and (ii) if it returns that P is unsafe, then P has an initial violating computation. This is shown
by Theorem 5.1.

Next, we prove that Algorithm 4.1 makes progress. Namely, it never stagnates. Instead, it
continues learning new information through every iteration. This is proved by Lemmas 5.2.2
and 5.2.4. We also prove that for programs with a finite state space, termination is guaranteed.
Theorem 5.2 provides this proof.

The proofs use one implicit assumption. Namely, they assume that there exists some
mechanism for answering environment queries correctly. The mechanism we use is described

and proved correct in Chapter 6.

5.1 Soundness

Our algorithm for verifying the concurrent program P terminates when either (i) all the assertions
in Py; are proven safe (i.e., neither the original error nor all the new promises of error can
be reached in Pys), in which case Algorithm 4.1 returns “Program is Safe”, or (ii) a violation
of some assertion in P, which indicates either the original error or a promise of error, is
reached without any env_move calls, in which case Algorithm 4.1 returns “Real Violation™.
Theorem 5.1 below summarizes the soundness of the algorithm. In order to prove it we first
need Lemmas 5.1.1, 5.1.3 and 5.1.6:

Lemma 5.1.1 (Soundness of env_move). During the run of Algorithm 4.1, env_move always

over-approximates the computations of tp in P (see Definition 4.2.5).

Proof. The proof is by induction on the order of refinements of Py, and specifically, the
env_move function. We start by proving that the initial env_move satisfies the lemma. We

then consider the two possible modifications of Pp: refining env_move, and adding a new

33

assert (—1) command, outside of env_move. Though the latter, by itself, cannot affect any
computation within env_move, it may introduce new variables (from tg) to Py, if such a
variable v, not already in Y//J\;, appears in ¢. This new variable affects the definition of Extend
(Definition 4.2.1), and may also require an additional v=havoc () within env_move. Thus, the

proof consists of the following three stages:
1. The initial env_move satisfies the lemma.

2. If env_move satisfies the lemma and a variable v is added to P,;, the new env_move

function of the new program P, also satisfies the lemma.

3. If env_move satisfies the lemma and is augmented with i £ (o/[W _copy/W]) assume (—f3’)

commands, the new env_move function also satisfies the lemma.

Let p be a computation of ¢ in P from s to s’ which satisfies the conditions of Definition 4.2.5.

Base Case: Initially, the env_move function only havocs all variables in ‘//]\; that are written
by tg (anywhere in the program). Let v;=havoc (), vo=havoc (), ..., vy,=havoc () be the
series of havocs inside env_move. Since a havoc command only sets a non-deterministic value
to a single variable (and then moves to the next command), we can construct a computation in
Pyrr, p = 89 — 81 — 89-++ — 8, starting from § = § and ending at &' = §,, such that §; is
obtained from $;_; by performing v;=havoc (), forevery 1 <1 < n.

Since a havoc command can assign any non-deterministic value, we can choose a computa-
tion in which v;=havoc () assigns o(8;)(v;) with o(s")(v;) (or with lg(s") if v; = pcg). Since
vi=havoc () does not change variables other than v;, we get o(8;)(v) = o(8;-1)(v) for every
v # v;. This yields a computation from § to §, which is clearly a complete single execution of
env_move. It is left to show that s’ € Extend(s’).

Since s € Extend(8), [pr(s) = Lab(l(8)). Since cmd($) is an env_move call, Lab(l(8)) is
))-
s).

defined as the label of the next command in P after the env_move, which is exactly Lab(I(8
Since p is a computation of ¢ in P, it does not change pc,,, and hence we get I/ (s) = Iy (
Joining all three equalities yields [/ (s") = Lab(1(§")) as required.

Finally, let v € V]\; If v is not written by ¢, then the value of v in s and s’ is identical. It
also does not appear as one of the havocked variables, hence it’s value in § and &' is identical.
Since s € Extend(§), we get the desired requirement about v for s’ and §' as well. If v is
written by ¢z, then v appears as one of the havocked variables. Its value is set exactly once
to o(s")(v) (or to lg(s’) if v = pcg) by the v=havoc () command, and it is unchanged by all
other havocs. Hence, o(§')(v) = o(s')(v) ifv € V and 0(§')(v) = lg(s) if v = pc, which
concludes the proof that s’ € Extend(§').

Induction Step: For the next two parts, let Py; denote the sequential program before refine-
ment, and Py, the sequential program after refinement. Let env_move, denote the env_move

function of Pj,. Let Extend, denote the mapping Fxtend for states of Py,.

34

We need to show that given a state §, of Py, s.t. c¢md(s,) is an env_move, call and
s € Extend,(8,), there exists a computation p, = §, — --- — §. in P}, which is a complete
single execution of env move, s.t. s’ € Extend,(§..). By the induction hypothesis, We know
that for every state § of Py, s.t. cmd(8) is an env_move call and s € Extend(s), there exists a
computation p = § — --- — § in Py, which is a complete single execution of env move s.t.
s' € Extend(§).

Adding a New Variable to P); Assume first that Py, was obtained from P, after introduc-
ing a new variable v. Given a state 5, of Py, as described above, let 5 be the state of Py
obtained from §, by removing the value of v from o (8,). Clearly, since, s € Extend,(8,),
then s € Extend($), since removing a variable cannot compromise any of the conditions of
Definition 4.2.1. Since [($) is also copied from §,, then ¢md(§) is an env_move call. Thus,
there exists a computation p = 9 — §; — -+ — &, in Py; from § = ¢ to some § = §,, as

guaranteed by the induction hypothesis above. There are two cases to consider:

e If v is not written by ¢g, then env_move,=env.move. Since p is a computation of tg,
it holds that o(s")(v) = o(s)(v) (or lg(s’") = lg(s) if v = pcp). Let §),..., 8] be a
sequence of states of Pj,, obtained from 3, . . ., §,, by adding the value of v to o(5;) and
setting it to o(8])(v) = o(5,)(v), for 0 < i < n. Note that in particular, it means that
30 = 8.

Since all the commands in p do not use v (which does not appear at all in P,), and since
o(5]_1)(v) = o(8])(v) forevery 1 < i < n, we can use the exact same commands as in p
to form a computation p, = 3 — --- — ;. Since env_move,=env_move, this is also a

complete single execution of env_move, in P},. It is left to show that s’ € Extend,(s],).

Since s’ € Extend($,,), and § only differs from §], by the appearance of v to o (s],), we
only need to check the condition in Definition 4.2.1 concerning v. And indeed, since v is
not changed during p, and since s € Extend($,), we get that o(],)(v) = o(8")(v) =
a(s)(v) = a(s')(v) (or = lg(s) = lp(s’), if v = pcE), as required.

e If v is written by ¢, then a new v =havoc () command is added at the beginning of
env.move,. Let 53, ..., 5], be a sequence of states of P}, obtained from 5y, ..., 5, by
adding the value of v to o($;) and setting it to o(5])(v) = o(s")(v) (or to Ig(s’), if
v = pcp), for 0 < i < n. We also change [(5() to point to the second command in
env_move,, immediately after the new v =havoc (). Note that o(s,) and o(5;;) agree
on all variables, except for, possibly, v. Further, since cmd($,) is an env_move, call and
1(5) is immediately after the first command in env_move,, there exists a transition in
Py, which moves from 5, to 53, by using the v =havoc () command at the beginning of
env_move,, which sets the value of v to o(5))(v) = o(s')(v) (or to lg(s') if v = pcp).
Let o, be a computation in Py, defined as follows: the computation starts by moving from
5, to (), as described above. The computation continues from 5, using the transitions

55 — -+- — &, and the same commands as in p. As before, this is a legal computation

35

since p is a legal computation in Pps, the commands of p do not refer to v and all
the states), ..., §), agree on o(8})(v). Since p is a complete execution of env_move,
and env_move only differs from env_move, by the addition of the initial v =havoc ()
command (which was used to reach from 3, to 53) at the beginning of env_move,.,, then

pr 1s a complete single execution of env_move, from §, to 7.

Again, it is left to show that s’ € Extend,(]). As before, we only need to check
the condition for Definition 4.2.1 concerning v, and indeed, o(3])(v) = o(s')(v) (or

= lg(s'), if v = pcg), by construction.

Refining env_move env_move is only refined after an environment query Reach,(c/, 3')
returned FALSE, as described in the beginning of this section. The refinement step adds the
commands i £ (&/[W_copy/W]) assume (—f’) at the end of env_move,. Given a state 5, of
Py, as described above, let 5 be the state of Py identical to §,.. Clearly, since, s € Extend,(8,),
then s € Extend(s). Since () is also copied from §,, then cmd(s) is an env_move call. Thus,
there exists a computation p = 89 — §; — -+ — &, in Py; from § = 5 to some &' = 5, as
guaranteed by the induction hypothesis above.

Let 53, ..., 5;, be a sequence of states of P}, identical to 5, ..., 5,, except for the value
of [(8],), which points to the beginning of the new if (o/[W_copy/W]) command. Note that
in particular, 5, = 5(. Since Ps and Py, have the same variables, and since env_move and
env_move, share the same prefix until /(s],), the computation p; = §j — --- — &, is a valid
computation in P}, from §,, at the beginning of env_move, to [(5]).

Since Reachy,)(c’, 8') returned FALSE, by Definition 3.2.1, one of the conditions s F o/
or ' £ (' cannot hold. That is, s F o implies s F —=f’. Since s € FEztend(s) and
s' € Extend(8), it follows by Observation 4.2.3, that if 0(5) F o then o(§') F —f’. Since
o(5,) =0o(8) and o(8)) = o(§), then if o(5,) E o/ then o(8],) E —f".

The condition o'WW _copy/W] uses auxiliary variables that are local to env_move, and
reflects the values of §,’s variables, when entering env_move,.. The condition -/’ refers to the
current state variables. Consider a computation p,, which is a concatenation of p/. with the two
new commands of env_move,.

If o(5,) E &/, then o(8]) F —f’, which means that performing the two commands from
57, will result in entering the true branch of the i f command and then passing the assumption
assume (—f3") (since the condition holds). If o(8,) ¥ o, the next step from 3", will be to skip
the new if command (and the assume that follows). In both cases, p, reaches the end of
env_move, without changing (35,). Hence, we achieve a computation from §, to some new
state §/. at the end of env_move,.

Finally, by the same arguments as in the base case, we get [5/(s") = Iy (s) = Lab(l(3,)) =
Lab(1(8))), and since o(8).) = o(5],) = o(§') and s’ € Extend(s), it also holds that s’ €
Extend(8).), as required.

O

When p is an empty computation (i.e., s = s) then the lemma receives the following form:

36

Corollary 5.1.2. If s is a reachable cut-point state of P, then for any state § of Py such that
s € Extend(8) and cmd(8) is an env_move call, there exists a computation consisting of a

complete single execution of env_move to a state §' such that s € Extend(§").

Lemma 5.1.3 (Assertions are promises of error). Let l, be a label of Py with cmd(Za) =

assert (b) for some condition b. Then (Lab(l,),—b) is a promise of error.

Proof. The proof is by induction on the order in which assertions are added to Py,.

Base Case: Assume that assert (b) is an original assertion of ¢); in Py;. According to
Definition 4.1.3, Lab(ia) = la, Where [, is the label of ¢, for which ecmd(l,) is the original
assert (b). Let s be some state of P such that [5;(s) = [, and s F —b. Let p be a zero length
computation in P, starting from s (and hence ending at s). Hence, by Definition 4.4.1, (I,, —b)

is a promise of (I, =b), and since the cmd(l,)=assert (b), then (I,, —b) is a promise of error.

Induction Step: Assume that the lemma holds for all assertions in Py, and that a new
assertion is now added. An assertion is only added at step (5) of Section 4.5, after an environment
query Reach,(«, B) returned ¢) # FALSE. The added assertion is of the form assert (=)
and it is added at a new label [, right before the env_move call for which the environment
query was applied. Let [, = Lab(%) We would like to show that (I, 1) is a promise of error.

Let s be a state of P such that [5/(s) = [, and s F 1. By Definition 3.2.1, there exists a
computation p of tg in P from s to some state s’ such that s’ = 3. Since this computation is
a computation of ¢g, pcyy is left unchanged at every stage in p, hence lps(s") = lar(s) = ly.
Therefore, (1,) is a promise of (ly, /).

An environment query is invoked only after a violating path, containing at least one
env_move call, is found in Py;. Let 7.,q be the suffix of the found path, starting after the
last env_move, as defined in step (1) of Section 4.5. The path ends with some label ln having
emd(l,)=assert (b) for some condition b. By the induction hypothesis, (Lab(l,), —b) is a
promise of error.

We now wish to show that (I, 3) is a promise of (Lab(l,),—b). Let I, be the label in Py,
of the last env_move call in the found path, and Zk+1 the label of the next command in P, after
the env_move (not inside the function). Since the newly added assertion at location Z¢ is not
an original command of ¢, and it is added right before an env_move call, by Definition 4.1.3
ly = Lab(ly) = Lab(l},). Using the same argument for the env_move call at [, we get that
Lab(l) = Lab(lj41), and hence ly = Lab(lj41).

Let sg be some state of P such that [/(sg) = Iy, and sg F 3. Let 53 be a state of Pps such
that:

° I(35) = ik+1

o If pc € Vs then 0(35) (pcg) = lu(sp)

37

Clearly sg € Extend(5g), and by Observation 4.2.3, 53 . According to step (1) in
Section 4.5, and the definition of a weakest precondition, for every state § of Py s.t. o(8) F £,
and specifically for 53, there exists a computation in P that passes through 7,4 (and therefore
ends at l:l) and reaches a state $_;, such that o(5-p) F —b (and I(5-p) = I).

Since 7¢nq does not use env_moves, it follows from Lemma 4.2.6, that there exists a
computation in P from sg to a state s—, € FExtend(5-;). Again, by Observation 4.2.3,
s_p E —b. Since s, € Extend(3-y), it also holds that [y;(s—y) = Lab(l(5-3)) = Lab(l,).

We conclude that indeed (1, 3) is a promise of (Lab(l,,), —b). Since (Lab(l,),b) is a
promise of error, by Lemma 4.4.2, (I, 3) is also a promise of error. Since (ly,1)) is a promise

of (I, 3), we can use Lemma 4.4.2 again, to conclude that (I, 1)) is a promise of error. [

Essentially, lemma 5.1.3 describes the manner is which Pj; under-approximates the set
of states leading to an error in P. Each assertion provides an annotation for a set of states of
P, leading to an error. Any state of Py that can reach and violate an assertion without using
env_move calls, represents concrete states of P that can reach an error (possibly with the help
of the environment).

The complementary direction, describes how P, also over-approximates the computations
of P. Computations passing through safe states only (i.e., states from which an error in not
reachable), are fully over-approximated. However, computations in P passing through states
from which an error is reachable may be pruned in P;; by an assertion. To describe this formally,

we need the following definition and lemma.

Definition 5.1.4 (Computation Partitioning). Let p be a computation in P from a state s to a
state s’. The partition of p is a series of computations r1, . . ., rg, called segments, such that

e s is the first state of 71, s’ is the last state of i and for every 1 < i < (k — 1), the last
state of r; is the first state of ;1. Hence, the concatenation r; - 73 - - - 1, connecting r;

with 7;4 1 using their overlapping state, yields p.
e For 1 < i <k, r; is either a computation of ¢y, or a computation of ¢.

e If r; is a computation of ¢, then it has no inner cut-point states (but there is no restriction
for the first and last state of r;).

e Each r; is maximal. That is, if r; is a computation of ¢ 5 then both of its neighbors r;_1 and
ri+1 (if defined) must be computations of ¢,;. If r;, 7,41 are two adjacent computations

of tys, then the state connecting them is a cut-point state.

Ifry,...,rg, are the partition of a computation p, then the partitioning states of p, sg, S1, - .., Sk
are the boundary states of the partition. That is, s is the first state of p and for 1 < < k, s; is

the last state of ;.

Figure 5.1 illustrates the definition above.

38

‘cm-poz'm| |cur-poim| |CZ£I-pOI:PII| |cut-p0i}zt‘ |cur-paim|

|||||||||| i
p 1 1 1
] |

|
. AN A A py, ——|
5, e s, v 5, v s, e S, s
4] s 73 ry s

Figure 5.1: The partition and partitioning states of a computation p. Note that r3 is allowed to
have inner cut-point states, as it is a computation of ¢ .

Observation 5.1.5. Note that due to the maximality requirement, and the fact that initial
locations are always considered as cut-points, all the partitioning states, except for, maybe, sy,

are cut-point states.

Lemma 5.1.6. Let p. = s — - -+ — s’ — ¢ be an initial violating computation in P, and let
p be the prefix of p. from s to s (i.e., emd(s') =assert (b) and o(s') ¥ b). Letry,... 1) be
the partition of p, and sg, s1, - . . , Si, the partitioning states of p. Then there exists a sequence of

states 5, ..., 5; of Py such that
1. j <k
2. §g is reachable in Py from an initial state.
3. For1 <1 < j: §;is reachable in Py from 5;_1
4. For0<i<j:s; € Extend(s;)
5. Ifi < j, and riy1 is a segment of tyy, then cmd($;) is an original command of Ty
6. Ifi < j, and i1 is a segment of t g, then cmd($;) is an env_move call

7. There exists a computation in Py from 5; to an error state

The main idea of this very technical lemma is that computations of P have a representation
in Pjs. Given the partition of a computation p into segments, a segment of ¢,; will be repre-
sented by the exact same commands appearing in Py, (Lemma 4.2.7). Segments of ¢{g will
be represented by the env_move function (Lemma 5.1.1). It might be the case that p contains
two adjacent segments of ¢/, in which case their representative computations in Py; will have
an env_move call between them. We will use Corollary 5.1.2 to “skip” the env_move while
preserving the valuation of the connecting state.

However, the representative computation of p in Pj; may encounter a promise of error,
annotated by an assertion in Pys. In this case, the representative computation will be pruned
and move to an error state at an early stage. Thus, the representative computation will only

represent a prefix of p. Our goal is to show that when p, is an initial violating computation

39

then the representative computation is always either pruned as described, or reaches the original

assertion and violates it.

Proof. The proof is by construction. At each step, we construct a new state §; satisfying Items 3
and 4. Then, we show that either an error state is reachable from that state (Item 7), or it satisfies
Items 5 and 6, and we can continue the construction of the next state §; ;. However, while
trying to construct §; 1, we may discover that §; reaches an error before reaching the desired
5i+1. In that case, we can simply choose j = 1. Le., 5; will satisfy Item 7, as well as Items 5
and 6 (even without the condition ¢ < j)

We also show that §; satisfies Item 2, and that if the construction reaches j = k, then

(Item 7) must hold, i.e., an error state is reachable (ensuring Item 1).

Base Case - i = 0: We start by constructing the first state 55. We first construct a state § of
Py as follows, and show that § is an initial state of Py

e 1(3) = ™ (initial label of Pyy)
e Forevery v € V N Vas: (3)(v) = o(s)(v)

o If pcp € Vay, then o(8)(peg) = lg(s)

Let @iniz = /\U[U = oinit(v)] be the initialization formula of P, for some U C V.
ve

Since s is initial in P, it holds that o(s)|y = Ginit, and Ig(s) = 1%, By the definition of 3,
U(é)]‘m@ = a(sﬂzm@. Since U C V, then clearly J(é)]Um@ = a(s)\Um@ = Uimt\Um@.
Further, if pcg € Vi, then 0(3)(pcg) = lp(s) = [, Hence, § F binit, and is an initial state
of Pyy.

By Definition 4.1.3, Lab(fi”it) is mapped to the label in ¢, associated with the first original
command of ¢5s in Py (see Observation 4.1.2). That is., Lab(l(3)) = 1% = Ip(s). By
Definition 4.2.1, s € Extend(S).

Since all initial labels are considered as cut-points, the code of Py starts with an env_move
call, before the first original command of ¢j7, cmd(s), and possibly some new assertions (not
originally from tj;) prior to that env_move call. If o($) violates any of these new assertions,
then s leads to an error, hence we can pick §o = § and complete the proof with 7 = 0. Otherwise,
the computation starting from § reaches a state §', after all new assertions, for which cmd(§') is
the env_move call. Since satisfied assertions do not change the valuation of a state, we have
o(8) = o(8'). Further, since none of the assertions is an original command of ¢,;, we have
Lab(1(8)) = Lab(l(8")). Hence, since s € Extend($), it also holds that s € Extend(§'). s is
initial in P, and therefore reachable. Thus by Corollary 5.1.2, there exists a computation in Pp;
which uses the entire env_move function, from §' to another state §”, satisfying s € Extend(8").
cmd(§"), the next command after the env_move, is the first command of ¢y, i.e. cmd(s). We

consider three possible cases:

40

1. If K = 0, p is an empty computation, and since p. is a violation, then emd(§") =
cmd(s)=assert (b) for some condition b s.t. o(s) ¥ b. Since s € Extend(§"), then
o(8") ¥ b as well. Hence we can choose j = 0, and §9 = s”. s” is reachable from §

(through (8’) and the env_move function), and reaches an error, as required (Item 7).

2. If k > 0 and r is a segment of g, we can pick §y = &, as § is reachable from 3,

s € Extend(8") and emd(§') is an env_move call (Item 6).

3. If £ > 0 and 7, is a segment of ¢,;, we can choose 59 = §”, as §” is reachable from 3,

s € Extend(8") and emd($”) an original command of ¢57. (Item 5).

The latter two cases show that 5 satisfies Items 5 and 6, even in the case where j > 0. Thus,
we can continue and construct the next state 51. Of course, if during this construction we learn
that an error is reachable from 5y, we can choose 7 = 0 and conclude the construction, without

constructing 5.

General Step: Let 0 < ¢ < k, and let §;_1 be the last constructed state. If we did not choose
j = (i — 1) during the previous construction step, then §;_; satisfies Items (3 - 6).

If r; is a segment of ¢57, cmd(8;—1) is an original command of ¢5; (Item 5). r; has no inner
cut-point states, but s; itself is a cut-point state (see Observation 5.1.5). Using Lemma 4.2.7 for
r;, there exists a computation in Py, from §; 1 to some stare &', that is either €, or satisfies that
s; € Extend(8") and emd(§') is an env_move call. If § = ¢, we can now choose j = (i — 1)
and complete the construction. Otherwise, if 7;11 is a segment of ¢z, we choose $; = &', and
it satisfies Items (3 - 6). Next, assume that ;1 is a segment of ¢;;. By Corollary 5.1.2, there
exists a computation p in Py; from &, consisting of a single complete execution of env_move,

to a state §”

, also satisfying s; € Extend(8"). Since p passes through the entire env_move
function, cmd(8”) is the next command after the env_move, i.e., an original command of ¢,
(see Observation 4.1.1). We then choose 3; = 5", and again it satisfies Items (3 - 6).

If, on the other hand, r; is a segment of ¢, then ;1 must be a segment of ¢, due to the
maximality of the partition. Also, by Item 6, cmd($;—1) is an env_move call. Then by Lemma
5.1.1, there exists a computation in Py, consisting of a complete single execution of env_move
from §;_1 to some state §' satisfying s; € Fxtend(8’). Therefore, cmd(§’) is the next command
after env_move, i.e., an original command of ¢,;, and we can choose §; = §’ and complete the

construction of 3;.

Last Step: i =k We now show that if 5 is constructed, ¢ is definitely reachable from §
(Item 7) and we can complete the construction. Assume that in the previous construction step,
we did not choose j = (k — 1), and §;_1 was constructed satisfying Items (3 - 6).

Similar to the construction step, if 7, is a segment of ¢ 7, cmd(Sj—1) is an original command
of t)s. Again, by Lemma 4.2.7, there exists a computation p in P, from §;_1 to either ¢ or

to a state § such that s, € Fatend(8') and emd(§) is either an env_move call or an original

41

command of ¢ 7. If p reaches €, we choose j = (k—1) and complete the construction. Otherwise,
if emd(§') is an env_move call, again by Corollary 5.1.2, there exists a computation from §’

to some state §”

also satisfying s, € Extend(s”) s.t. cmd(8") is an original command of ¢y,
appearing immediately after the env_move. Since s € Extend(8”), Lab(1(5")) = ln(sk),
and therefore cmd(8”) = emd(sy) =assert (b). Since o(sg) ¥ b, then o(5") ¥ b (see
Observation 4.2.3), thus we can choose §, = 8", as the next step from 3" will reach €. If
emd(8') is an original command of ¢, we can repeat the same arguments for §’ instead of §”.
Le., Lab(l(8")) = lp(sk) and emd(8') = emd(sg) =assert (b). Thus, choosing §; = §”
completes the construction.

Finally, if 7 is a segment of {5, by Lemma 5.1.1, there exists a computation in Py; from
$k_1 to some state § satisfying s, € Fxtend(§') and whose command is the next command
after the env_move function, i.e., an original command of ¢);. As before, we learn that
emd(§8') = emd(sy) =assert (b), and can choose §; = §'.

]

Theorem 5.1. If Algorithm 4.1 returns “Safe” then the concurrent program P has no initial

violating computation; If it returns “Real violation” then P has an initial violating computation.

Intuitively, the first claim follows since env_move always over-approximates the reachable
finite computations of ¢ (see Lemma 5.1.1). The second follows from the properties of an
environment query (see Definition 3.2.1) and from the use of promises of errors (Definition 4.4.1).

Formally, we use the lemmas above:

Proof. 1. The algorithm returns “Safe” only when P, is safe. However, if P is not safe,
by Lemma 5.1.6, there exists a sequence of states in Pj; such that the first is reachable
from an initial state, every other state in the sequence is reachable from the previous,
and the last state can reach € in Pj;. This yields an initial violating computation in P;.

Therefore, Algorithm 4.1 cannot return “Safe”.

2. The algorithm returns ”Real violation” only when there exists an initial violating com-
putation p = § — --- — §' — ¢ that does not use any env_moves. Since the last step
of the computation leads to €, cmd(§') =assert (b), for some condition b, such that
o(§) E —b. By Lemma 4.2.4, there exists an initial state s of P s.t. s € Extend(s).
§' # ¢, hence by Lemma 4.2.6, there exists a computation p in P from s to some state

s’ € Extend(§"). s is initial in P, and therefore, p is an initial computation in P.

Since, s’ € Extend(§'), it holds that Iy;(s") = Lab(l(8')). Further, since o(§") E —b,
then s’ F —b (see Observation 4.2.3). By Lemma 5.1.3, (Lab(I(8')), —b) is a promise of
error. Hence, there exists a computation p’ from s’ in P which violates an assertion in P.
The concatenation of p with p’ yields an initial violating computation in P.

0

42

5.2 Progress and Termination

While termination is not guaranteed for programs over infinite domains, the algorithm is ensured
to make progress in the following sense. Each iteration either refines env_move (step (4) in
Section 4.5), thus pruning a violating computation of Pps, or generates new promises of errors
at earlier stages along the violating path (step (5) in Section 4.5). Each refinement of env_move
makes it more precise w.r.t. the real environment, and hence advances the algorithm in the
direction of verifying the program, in case it is safe. When a new promise of error is introduced,
it is sufficient to find a path reaching it, rather than a path reaching the original error. Hence, it
advances the algorithm in the direction of finding a bug, in case the program is unsafe. With
each iteration, we can search for paths with less env_move calls, until we encounter a violating
path in Pj; with no env_move calls at all (or prove that no such violating path exists). Further,
the addition of the new promise of error guarantees that even though the same violating path
may recur, the new assertion restricts the computations that can be observed along this path.

In order to formally describe progress, and prove termination for finite state programs, we
consider two approximation sets. The ERR set is a set of states used to under-approximate
the set of states known to lead to a real violation of safety. We can deduce such states from
promises of error in Pp;. This set will strictly increase with every addition of a new assertion to
Pys. The MOV set consists of pairs of states, that over-approximate the start and end state of
all reachable computations of t5. We can deduce such states from the computations allowed by
the env_move function. This set will strictly decrease with every refinement of the env_move
function.

The next lemmas show that each iteration of the algorithm (except the last one) refines one
of the sets (strictly increases FZRR or strictly decreases M OV') and leaves the other unchanged.
This would prove termination for the finite case, as described in Theorem 5.2, as both sets ERR
and MOV are bounded.

Definition 5.2.1. We define the following approximation sets:

e ERR is the sets of all states s in P such that there exists a state 5 of Py, satisfying
(i) s € Extend(8) (ii) cmd(8) is a newly added assertion assert (b) in Py, and
(iii) s F b

e MOV is the set of all pairs (s, s'), where s, s" are states of P such that there exist states §,

§ of Pys such that s € Extend(§), ' € Extend(§'), and there exists a complete single

execution of env_move from 3 to & (see Definition 4.2.5).

Lemma 5.2.2 (Progress when Reach;,)(a, 3) = FALSE). Let ERR and MOV be the sets
as in Definition 5.2.1 at the beginning of a new iteration of Algorithm 4.1, in which Reach ;) (a, B)
(in line 12) returned FALSE, and let ERR, and M OV, be the corresponding sets at the end of
the iteration. Then ERR, = ERR and MOV, C MOV

Proof. 1f Reachy,)(c,) returns FALSE, then Algorithm 4.1 refines env_move, and concludes

the iteration. Since this does not change the code of Pj; outside the env_move function (and

43

specifically does not add, remove or change any exiting assertion), it is clear that ERR, =
ERR'.

As for MOV, the refinement step augments env_move with i £ (a/[W_copy/W]) assume (—3')
commands at the end of the function. Let P}, be the program obtained from P, following this
refinement step, and let env_move, be the env_move function of Py;.

We first show that MOV, C MOV Let (s,s") € MOV, and let §,, 5. be the corresponding
states, and p, be the computation from &, to &, as described in Definition 5.2.1. p,. is a complete
execution of env_move, (who only has a single exit point, at its end), hence it must have a
prefix p/. consisting of the entire env_move, function, except the newly added commands. Let
5" be the last state of /.. Consider a computation p in Py starting from a state $, identical to
Sy, which uses the same sequence of actions (same commands and chooses the same value for
havoc commands) as in p.. Since the initial states are identical, such a computation will follow

the same path and reach a state §’ with o(§') = o (8

). The only difference between §" and 8!/ is
the label. While /(8!) points to the newly added i f command, [(§) points immediately after
the env_move function (same as §/.), and hence satisfies [(§') = [(§).). Since the suffix of p,
reached &) from §/ only through i f and assume commands, it also holds that o (5)) = o(5..),
and hence o(8') = o(8].), which together with [(§") = [(8]) leads to §' = /..

Therefore, s’ € Extend(8'), and we know that s € Extend(§) (because § = §,), and that
p is a complete single execution of env_move from § to §'. By Definition 5.2.1, this proves
(s,s') € MOV.

Finally, we wish to show that M OV, # MOV The iteration can only reach line 12 (where
Reach,)(a, B) is called), if an initial violating computation, p, was found in Py, containing
at least one env_move call. Let 5, be the state of that computation before the last env_move
call, and let 55 be the state of the same computation immediately after the env_move. By the
definition of a postcondition and a weakest precondition, and of o and § in Algorithm 4.1, it
holds that o(3,) F cvand 0(33) F f.

Clearly, the sub-computation of p from 5, to 53 is a complete single execution of env_move.
According to Observation 4.2.2, there exist some s € Extend(sy) and s’ € Extend(sg),
which means that (s, s") € MOV. We would like to show that (s, s’) € MOV,

Let o/, B’ be the formulas used for refinement. The chosen formulas must satisfy o = o/,
B = . Since s € Extend(3,) and 0(54) F «, then s E a (see Observation 4.2.3), and since
a =o' skEd. Similarly, s’ E 3.

Assume to the contrary that (s, s’) € M OV,. That is, there exist some §,, §. of Py, such
that s € Extend($,), s € FExtend(8)) and a computation p, from §, to &), consisting of
a complete single execution of env_move,. In particular, p, reaches (and passes) the newly
added if (&/[W_copy/W]) assume (—f’) at the end of the env_move function. Since s €
Extend(s,) and s’ € Extend(8]), by Observation 4.2.3, we get that o (5,) F o/ and o(8).) E .

Using auxiliary variables to hold old values, the condition 1 £ (&/[W_copy/W]) refers to the

"Note that the definition of ERR uses general (and not necessarily reachable) states of Py;. Though the set of
reachable states in £ RR may decrease due to the pruning of computations using env_move, the set of general
states in £ R R does not change

44

values of the variables of the first state that entered the env_move, function, i.e., §,.. Since
5, E o/, the computation enters the true branch of the if statement and reaches the assume (—3')

at some state 8. Since the computation reaches the end of the function, it must hold that

o(8”) E =f'. The next (and final) state in p, is §,.. However, passed assume commands do not
change variables, hence o (8!) = o(8).), which contradicts o(8.) £ ('

O

When Reachy)(a, 3) returns ¢ # FALSE, the new formula might contain new variables
from V', which were not previously in Y//J\; These variables should then be added to Y//J\; and
if they are written by ¢, they should also be havocked inside env_move. We first show that
adding such variables does not change our approximation sets, and proceed to prove the progress
lemma for the case where Reach,)(a, 3) # FALSE.

Lemma 5.2.3 (No regress when adding new variable). Let ERR and M OV be the approxima-
tion sets as in Definition 5.2.1 for Py, and assume a new variable, v, from tg is added to ‘//}\\/[
creating a new program Py, with variables V];r. Let ERR, and MOV, be the corresponding
sets in Py, Then ERR, = ERR and MOV, = MOV

Proof. Adding v does not change any of the existing assertions, and does not add new assertions,
hence it is clear that FRR, = ERR. Let env_move, denote the env_move function of Py,. If
v 1s not written by ¢ g, no modification is made to the code of Pj;, except adding a declaration
for v, i.e., adding it to VA;, and maybe initializing v. In particular env_move=env_move,.
Hence, MOV, = MOV in this case as well.

If v is written by ¢, a new havoc statement is added for this variable inside env_move,,
and a new local auxiliary variable is added to env_move, to hold v’s initial value.

We first show that MOV C MOV,. Let (s,s") € MOV, and let 8, §' be the corresponding
states, and p be the computation from § to § as described in Definition 5.2.1. Let &, be a
state of P}, identical to § w.r.t all mutual variable (Var) and with location 1(8,) = 1(3), i.e.,
pointing to the same env_move call. For the variable v, we define o(s,)(v) = o(s)(v) (or
o(87)(v) = lg(s) if v = pcg). Clearly, since s € Extend(s), we also get s € Extend($,).

Consider the following two-step computation p/. in Py starting from §,.. The first step of
the computation would be to assign a copy of v to a new local auxiliary variable v_-COPY .
The second step will be a v =havoc () command, setting the value of v to o (s’)(v) (or g (s')

all
S

if v = pcg). Let 8 be the end state of p.. As only v and v_-COPY were changed by /.,

o)l = o6l = o (9).

The rest of the commands inside env_move, (i.e., all commands except for those used
by pl) are exactly the same commands as in the entire env_move function of Py;. Further,
all

a(sr)|@ = 0(§), and the computation p only uses variables from V),. Hence, there exists

a computation p/’

" from § to some state §,. which uses the exact same actions as p (same

commands, and chooses the same values for havocs), and reaches a state, §,. with the same
ST AR N _ (a : AN Y]

values for V)s as § (i.e., o(8).) v = 0(8")), and the same location {(8].) = [(§’), at the end of

the env_move function. Further, since none of the commands in p changes v, it must hold that

45

o(8)(v) = a(8))(v) = o(s')(v) (or lg(s") if v = pcg). Therefore, since s’ € Extend(s")
then it also holds that s’ € Extend(s..). Let p, be the concatenation p, = .. - pl/. Then p, is a
complete single execution of env_move,, which means that (s, s’) € MOV,.

The proof of the converse, MOV O MOV, is similar, and is only briefly sketched. For this
direction, we start with a computation p, = §, — --- — §. of env_move, and omit the two
first new commands. We obtain a computation /. which does not use v and passes through the
same commands as in env_move. We then need to show that it corresponds to a computation

9 A/

matching” §,..

9 A al <

p in Pys from a state 5§ “matching” 3, to a state § Since v does not appear in
Vr, its value does not influence the definition of Fxtend w.r.t. Py, and hence we will have

s € Extend(8) and s’ € Extend(s). O

Lemma 5.2.4 (Progress when Reach,(«, 3) # FALSE). Let ERR and MOV be the ap-
proximation sets as in Definition 5.2.1 at the beginning of a new iteration of Algorithm 4.1, in
which Reach (., 3) (in line 12) returned 1) # FALSE, and let ERR, and MOV, be the
corresponding sets at the end of the iteration. Then ERR, 2 FRR and MOV, = MOV

Proof. If Reach,(«, 3) returns 1) # FALSE, then Algorithm 4.1 adds a new assert (=)
to the code of Py, and concludes the iteration. We can assume w.l.g. that all the variables in v
are already in X//J\; since if not, by Lemma 5.2.3 they can be added without changing the sets
ERR and MOV.

Adding assert (—)) does not change the env_move function, does not change any
env_move call, and does not change original commands of ¢y;. If (s,s') € MOV, then
the corresponding states (8, ") from Definition 5.2.1 are such that cmd(§) is an env_move
call, and emd(8§') is a command appearing immediately after an env_move. According to
Observation 4.1.1, it must be an original command of ¢,;. Hence, all computations from such §
to such §’ do not pass through newly added assertions, and hence are not affected by the addition
of another new assertion. Therefore, MOV, = MOV 2.

For FRR, we first show that FERR, O EFRR. Let s € ERR and let § be the corresponding
state from Definition 5.2.1, such that s € Extend(8), cmd(§) is a new assertion assert (b)
in Py and s F —b. The existence of § and the relevant assert (), is not affected by adding
assert (—1), hence s € FRR, as well.

Finally, we need to show that FRR, # FERR. Let Pj; be the program obtained from
Py after adding the new assertion. The command assert (—¢) is added directly before
an env_move call. Let assert (¢1), ..., assert (¢,) be the (possibly empty) sequence of
assertions preceding this env_move call in Py, and let v = 1<Z/\< G- According to step (2) of
Section 4.5, o = -y, and by the last property of Definition 3.2.1, o A 1) # FALSE.

Hence, there exists a valuation &, of Y//J\; such that 6, E (¢ A), and since o = , it holds
that 6, E (¢ A7). Let §, = (I, 6,.), where I'. is the new label associated with the newly added
assert (—)) in Pj;. According to Observation 4.2.2, there exists some s € Extend($,), and
by Observation 4.2.3, s F 1) A . By Definition 5.2.1, we get that s € ERR,..

2As in lemma 5.2.2, this is correct since we do not restrict ourselves to reachable computations

46

We would like to show that s ¢ ERR. Assume to the contrary that s € FRR, and let $ be
a state of Pys such that s € Extend(8), cmd(8) is some newly added assert (b) in Py, and
s E —b.

Since s € Extend(s,) and s € Extend(8), it holds that Lab(1(5)) = lar(s) = Lab(1(8;)).
1(s,) = f; is the new label associated with the new assert (=) in P}, right before an
env.move call. Hence, Lab(lz,) is mapped to the location in ¢, of the first command after
that env_move (which is an original command of ¢, by Observation 4.1.1). Let I’ = Lab(lA}).
The only new assertions in Py; whose location can also be mapped to I’ are assert (¢;), ...,
assert (¢y) .-

Hence, cmd(8) =assert (¢;) for some 1 < i < m, which means that s £ —¢;. But,
¥= A ¢, and this contradicts s F .

1<i<m

O

Theorem 5.2. If P is a finite-state program, then Algorithm 4.1 terminates.

Proof. Let N be the number of states in P. Given Py, we define the function f(Pys) =
(N — |ERR|) 4+ |MOV|). The number of states in ERR is bounded by NNV, the total number of
states of P, hence f(Py) is always non-negative. If Reach;,)(«, 8) returns FALSE at some
iteration, then by lemma 5.2.2,

ERR)| is left unchanged, while | M OV| decreases, causing
f(Pyr) to decrease. If Reachy,)(a, B) returns ¢ # FALSE, then by lemma 5.2.4, [MOV'| is
left unchanged, and |E RR)| increases, causing f(P)s) to decrease again.

Since f(Pas) is bounded from below by 0, it can only decrease a finite number of times.
Hence, Algorithm 4.1 can only reach the call to Reach,)(«,) finitely often. The only cases
in which Algorithm 4.1 does not reach the environment query, is either when there is no initial
violating computation in Py - in which case the algorithm terminates, proving the program
safe, or when there exists an initial violating computation in Pj; without any env_move calls -
in which case the algorithm terminates, proving the program unsafe. Therefore, termination is

always guaranteed. O

Note. The proof of termination here relies on the successful termination of all sequential model
checking calls performed by our algorithm. Clearly, if our sequential model checker does not
terminate at some stage during the algorithm, our algorithm will continue waiting for its result

and will not terminate as well.

47

48

Chapter 6

Answering Environment Queries

In this chapter, we complete the description of our approach for verifying concurrent programs
that consist of two threads, by presenting a technique for answering environment queries
(Definition 3.2.1). Intuitively, the purpose of an environment query Reachy (v, () is to check
whether there exists a reachable computation p of ¢z in P from a state s = « to a state s’ = .
This computation may involve any finite number of steps of ¢, executed without interference
of tjs. Section 6.1 describes how we can generate a sequential program and use a sequential
model checker to answer this question, while Section 6.2 formally proves that this construction

indeed satisfies the properties of Definition 3.2.1.

Note. A careful examination of the exact properties of Definition 3.2.1 reveals that an environ-
ment query does not completely determine the existence of a reachable computation of ¢t from
a to (. Although, v = FALSE guarantees that there are no such computations, there might be
no such computation when ¢ # FALSE as well, if all the states satisfying ¢) A « are unreachable.

6.1 Sequential Program for Answering Environment Queries

If a A B # FALSE, we simply return /3, which is a valid answer, as it represents a computation
of length zero. Otherwise, we wish to apply a sequential model checker on ¢ in order to reveal
such computations, or conclude there are none. However, the computation p may not be initial.
That is, p may start from an arbitrary label [of ¢ with non-initial values to the variables, while
our sequential model checker can only search for violating paths starting from an initial state.
Hence we construct a modified sequential program Pg, based on the code of t5, which also
represents (over-approximates) non-initial, but reachable, computations p of tg in P.

We observe that a reachable computation p is the continuation of a computation p’ which
is initial in P, but is not restricted to ¢ alone. Before starting p,) was allowed to run and
set different values to its variables (possibly several times) and this could have also affected
the control flow of tg before starting p. Therefore, we add in Pg calls to a new function,
try_start, which models the runs of ¢;; until the start of p, by assigning non-deterministic

values to the variables written by ¢,7. The calls to try_start are added in all cut-points of ¢ .

49

The try_start Function The try_start function is responsible for non-deterministically!
setting the start point of p, where context switches to ¢, are no longer allowed. It does so by
setting a new start variable to T RU E (provided that its value is not yet 'RU E'). We refer
to the latter call as the activation try_start. start is initialized to FALSE in Pg. As long
as start remains FALSE (i.e., prior to the activation call), t ry_start havocs all the variables
in Pg, written by t5;. When start is set to T'RU F, we add an assume («) command after
the havoc commands, as this is the state chosen to start the computation p. Whenever start is
already TRUE, try_start exits without performing any havoc commands, ensuring that p
indeed only uses transitions of tf.

Recall that o and 8 may also refer to pcg. To address this, we explicitly add pcg to Y//E as
an auxiliary variable (which is different than the implicit pc variable of Pg). We need to make
sure that whenever « or (are evaluated, the value of pcg corresponds to the label of the next
original command of ¢g to be executed (similar to the mapping in Definition 4.1.3). To this
end, try_start receives the original location (in ¢g) in which it is called as a parameter, and

updates the explicit pcg variable.

We also add assertions of the form assert (!start || —f), aftereverycallto try_start
in Pg. Hence, a violating path, if found, is such that it reached start A . That is, it captures
a computation in which start was set to TRUE at some point (in which a was satisfied)
and reached 3. As before, $ may refer to pcg, but the new assertions appear exactly after the

try_start calls, which update pcg.

Returning Result If a violating path is not found, we conclude that a computation as above
does not exist and hence return Reach,,)(c, 3) = FALSE. If a violating path 7 = lo, ... st
is found (with Zn+1 = 1), let Zk be the location of the first command after the activation
try_start(l) for some 0 < k < n, and [the program location that was passed to the activation
try_start. Further, let 7,4 be the sub-path of 7 from Zk to in We compute the weakest
precondition of 3 w.r.t. the path 7.,4. When start = TRUFE, the t ry_start function does
nothing except updating the explicit pc g variable of Pg. Hence, a computation passing through
Tend 18 essentially a computation of tg in P.

However, 7.4 is nevertheless a path of Pg, and as such, its commands may refer to the
auxiliary variable start 2. We wish to obtain a result ¢ over V U {pcy} only. Since we
know that after the activation try_start, start always has the value T RU F/, we can replace
start with TRU E in the weakest precondition formula. Hence, the chosen result would be
Y = (pcg = 1) N wp(Tend, B)[start/TRUE].

The computed 1) satisfies the desired requirement: For every state s of P with [g(s) =1
s.t. s F wp(Tend, B), there exists a computation p of ¢ starting from s which follows a path

corresponding to 7., in P and will reach a state s’ satisfying 3. This is described more formally

'A non-deterministic choice is modeled by using an additional variable, havocking it and then checking its value.
’In particular, the 1 £ (!start) condition itself inside t ry_start will be part of the path, although its
true-branch is never taken

50

is Section 6.2.

Note. As mentioned in the beginning of this chapter, it is not guaranteed that p is reachable,
as in the prefix we only used an abstraction of ¢;;. However, it satisfies the requirements of
Definition 3.2.1.

Example 6.1.1. Figure 6.1 describes the code of P, used to answer the environment query
Reach,)(a, B) for @ = =csl A claim0 A (mclaiml V turn = 0) and 8 = cs1. The
try_start function is called at every computed cut-point, followed by assert (-start
V-p8),1.e. assert (!start || !csl). However, since cs1 is only written by t1, we can
use static analysis to learn cs1’s value at different locations. In our case cs1 is false everywhere
except between lines 12 and 15, hence the assertion assert (!start || !csl) immediately
holds and can be dropped.

The parameters passed to try_start are the program locations of the next command to be
executed, as can be seen in Figure 4.2. For as long as start is false, every call to try_start
will havoc claim0 and turn, as these are the variables written by t0. When the TRUE
branch of the i f (x) is chosen, we set start to true and add assumptions for our precondition
—icsl Aclaim0 A (—claiml V turn = 0).

If the activation try_start isin lines 2, 5, 16 or 18, t1 will be stuck in the busy wait loop,
since we assume claim0, whose value does not change, and turn is set to 0 before the loop in
line 6. If the activation try_start is in lines 7 or 9, where claiml (who is only written by
t1) is always true, the assumptions assume (!claiml || turn==0) and assume (claim0)
imply claim0 A turn # 1, hence there are no computations leaving the loop. If the activation
try_start is in line 13, all the computations are disregarded, since assume (!cs1) conflicts
with cs1’s actual value at this location, which is always true.

Finally, the only activation try_start that can lead to a violation is the one in line 11,
which is followed by the command cs1=true. The path 7,4, starting after the activation
try_start and reaching the violation, consists of the single command in line 12 (omitting the
“non-activating” try_start call). The original location in ¢z in which this computation starts,
is Line 24 (see Figure 4.2), which is exactly the location passed to the activation try_start.
Hence, we compute wp(7end, cs1)[start/TRUE] = TRUFE, and thus Reach,)(a,) re-
turns 1) = (pcgy = Loy).

6.2 Correctness of Environment Query

In this section, we prove the correctness of our technique for answering environment queries.
Namely, we prove that the returned formula), as obtained by the aforementioned technique,
indeed satisfies the properties of Definition 3.2.1. To this end, we need to formally describe the
connection between ¢tz and Pg, and between states of Pg and states of the original program P.
Evidently, such connections would be very similar to those between Py, and P. Hence some
proofs do not contain the same amount of detail as we used for the case of P,;, and others are

only sketched, while emphasizing the relevant differences.

51

o - Y N NI SR

. _ . _] 1 | void PI1() {
bool claim0 = false, claiml = false; 2 try_start(Lio): // Label 19 in Figure 4.2
bool csl = false; .
int turn: 3 while (true) {
’ 4 claiml = true;
bool start = false; Z :;Zn,siagt.(Lzl);
. . 7 try_start(La2);
void try.start(int pc.aux) { 8 while (claim0 && turn != 1) {
PCJI = pe-aux; 9 try_start(Lo3);
if (!start) { 0 }
claim0 = havoc_bool(); N try_start(Lag);
turn = havoc_int (); ¥ .24’
if () { 12 csl = true;
start = true; 13 try_start(Lag);
B ’ 14 assert (!start || lcsl);
assume (!csl);
. 15 csl = false;
assume (claimO); 6 try_start(Lay):
assume (! claiml || turn == 0); Y- 270
} 17 claiml = false;
18 try_start(Lag);
} 19 }
}
20 |}

Figure 6.1: The sequential program Py for computing Reach,)(a,) for a = —cs1 A
claim0 A (—claiml V turn = 0) and 8 = cs1. For the convenience of presentation, we split
the assume («) to three assume commands.

General Structure P is constructed for the purpose of answering an environment query
Reach,,)(a, B). The code of Pg is based on the code of . Technically, it contains original
commands of g, new assertions, calls to the try_start, and the try_start function itself.
Since assertions and function calls are only inserted between commands and do not change
the control flow (unlike if commands), the control flow of ¢t within Pg is preserved. This
is similar to the case of P;;, where except original commands of ¢3; we had new assertions,
env_move calls and the env_move function.

To argue about the relation of Pg to tg, we need to formally define a mapping between
labels of Pg to labels of ¢ . Essentially, we map each label of Pr to the label (in ¢ g) of the next
original command of ¢ to be executed in Pg. The definition is very similar to Definition 4.1.3

for Pyy.

Definition 6.2.1 (Labg). Let [be a label of Pg, not inside t ry_start, with cmd(l) = c. We

A

define Labg (1) recursively as follows:

e If cis an original command of ¢ g, appearing at label [in ¢, then Labg(l) = L.

N A~

e Otherwise, c is either an assert ora try_start call. We define Labg(l) = Labg(l'),

where [’ is the next label in Pr (notinside try_start) afterthe assert orthe try_start

(resp.).

We can now define the relation between states of Pg and states of P, similarly to Defini-
tion 4.2.1.

Definition 6.2.2 (Extendg). Let § = (Z, &) be a state of Pg, s.t. [is not inside try_start.
We define the set Extendg(3) to be the set of all states s = (I, o) of P such that:

o lp(s) = Labp(l(3)).

52

e Foreveryv e V:ve Vg = a(s)(v) =a(8)(v).

Observation 6.2.3. 1. Unlike Definition 4.2.1, the definition above does not make any
requirement for the value 6 (pcg). Each location in Pg is uniquely mapped to a location
in tg using Labg. However, Pr does contain an explicit variable for pc . The purpose
of this variable is to allow the query parameters « and /3 to argue about the label of ¢ 5.
Hence, it is important that pc iz will have an updated value at every place where we use
one of the input formulas (« or 3) in which it may appear. This is indeed the case, as «
appears only inside the t ry_start function, whose first command is used to update pcg,
and [appears in assertions, which are placed immediately after t ry_start calls (and
with no original command of {5 between them). The original commands of ¢z do not

address this variable.
2. Similar to Observation 4.2.2, Extendg(3§) is also never empty.

3. We would have also liked to claim, similar to Observation 4.2.3, that if s € Extendg(5),
then for every formula ~ over Vi N (VU{pcg}),itholds that s F v <= o(3) F 7.
However, as mentioned above, the value of pcg is only updated (and corresponds to
[g(s)) at specific locations of Pr. Hence, if v contains pc g, this general claim may be
incorrect. However, the claim is correct in all cases where pc g has an updated value. In

particular, within t ry_start and in assertions.

Next, we have a series of lemmas describing the properties of Pr and the connection between
Pr and tg. The correctness proof for our mechanism of answering environment queries is
concluded by Theorem 6.1.

First, we wish to prove that computations of Pr in which the start variable is TRUE,
correspond to computations of ¢g. This is formalized by Lemma 6.2.7. To prove Lemma 6.2.7,

we first need the following three technical lemmas.

Lemma 6.2.4 (Start activation). Let p be a computation in Pg, from a state § to a state §' # ¢,
such that o(8)(start) = TRUE. Then o(§")(start) = TRUE for every §" in p.

Proof. Assume to the contrary that the lemma is false, then there exists some §” in p, which
is the first state in p such that o(8”)(start) # TRUE. §" # &, the first state in p, since
o(8)(start) = TRUE. Let §, be the state preceding §” in p. Since §” is the first state
such that 0(8")(start) # TRUE, cmd($y) must change the value of start (from TRUE to
o(8")(start) = FALSE).

However, according to the construction described in Section 6.1, the only commands
in Pg that change the value of start (after initialization) are start = T RUFE inside the
try_start function, and violated assertions (which transition to ¢, in which the value of
start is undefined). None of the commands in p can be a violated assertion, as this would
lead the computation to €, which is a final state. This is impossible, since the last state of

satisfies &' # €. Hence, cmd(s,) = “start = TRUE", and since §” is obtained from §, by

53

performing cmd($y,) = “start = TRUE", it must hold that o (§”)(start) = TRU E, which is
a contradiction. O

Lemma 6.2.5 (State preservation in Pg). Let p be a computation in Pg, from a state s to a state
§' # €, such that o(5)(start) = TRUE. Assume that [(§) and 1(§') are not inside try_start,
and that p has no original commands of t p. Then for every state s of P: s € Extendp(§) <
s € Extendg(§).

Proof. The only other commands in P which are not original commands of { are try_start
calls and executions (i.e., commands within try_start), and assertions. Since, Labgr maps
a label of Pg to the label associated with the next original command of ¢g, and there is no
such command between § and §', it follows that Labg(1(8)) = Labg(1(§')). The definition of
Ezxtendr only depends on the mapping Labg, and the values of variables in Vg N V. Hence,
it is sufficient to show that o(5)(v) = o(8)(v) for every v in V. Since § # €, none of the
assertions in p can be violated. Hence, all of the assertions in p do not change the valuation o.
Further, since o(§)(start) = TRUE, by Lemma 6.2.4, o(8")(start) = TRUE for every §"
in p. When start = TRUE, the try_start function, only updates the value of pcy (which is
not in V') and exits without changing any other variable.

Hence, none of the commands within p change o (v) for every v in V. Therefore, o(5)(v) =

o(8")(v) for every v in V as required. O

With the help of the previous two lemmas, we can now also argue about computations that

include original commands of ¢t as well.

Lemma 6.2.6 (Single step of ¢ mapping). Let p be a computation in Pg from § to § # e,
such that o(8)(start) = TRUE and l(8), 1(§') are not inside try_start. Assume also that
emd(8) is an original command of tp and the rest of the commands in p are not. Then for every

state s € Extendg(8) there exists a state s' € Extendg(8') such that s' € next(s,tg).

Proof. Letc = cmd($). If s € Extendg(8), then Labg(1(5)) = lg(s). Since ¢ is an original
command of tg, it follows by the definition of Labg, that c is the same command as in label
lp(s)intg, ie., ¢ = cmd(s,tg). Hence, we can apply con s in tp.

Additionally, Vars(c) C Vg C Vg, and since s € Extendg(8), it follows that o(s)|. =
o(8)|.. Hence, any modification that ¢ can apply on o($), can also be applied to o(s). Addition-
ally, the control flow of ¢ g within Pg is preserved (as the only new commands are try_starts
and assertions), and any condition within c that may affect branching, holds or is violated in §
iff it holds or is violated in s (resp.).

Hence, if §” is the second state in p (obtained after applying c to 3), then there exists
s’ in P obtained by applying ¢ = cmd(s,tg) to s (i.e., s € next(s,tg)), which satisfies
s’ € Extendg(§").

By Lemma 6.2.4, o(§8")(start) = TRUE. Since c is an original command of tg, {(8")
cannot be inside try_start (but it can be a try_start call). Thus, we can use Lemma 6.2.5

(for the suffix of p starting from §”) to obtain s’ € Fxtendg(§'), as required.

54

Lemma 6.2.7 (Computations of Pg). Let p be a computation in Pg from 5 to §' # € such that
1(8), 1(8') are not inside try_start and o(§)(start) = TRUE.
Then for every s € Extendg/(8) there exists ' in Extendg(8') and a computation of t in

P from sto s

Proof. Lets € Extendg(8). If p has no original commands of ¢z, then we can choose s’ = s
(and a computation of length 0) and the results follows from Lemma 6.2.5. Otherwise, p contains
an original command of tg. Note that by Lemma 6.2.5, if 5" is the first state in p such that
emd(8") is an original command of ¢y, then s € Extendg(8”). Therefore, proving the lemma
with §” as the initial state would prove the lemma for 3 as well. Thus, we can assume w.l.g. that
cmd($) is an original command of ¢ .

Let 30, . . . §x be a partial series of the states in p, consisting of all states §” such that cmd(8")
is an original command of ¢z and including §" as well (even if ¢cmd(8’) is not an original
command of ¢g). By our assumption, §9 = §. Moreover, by Lemma 6.2.4, o(3;)(start) =
TRUE for 0 < i < k. Further, according to our state selection, for every 0 < ¢ < (k— 1), there
exists a computation in Pg from §; to 8,41, in which emd($;) is the only original command
of tp. Additionally, [(8;) is not inside try_start for 0 < i < k (for §, = §' by the lemma’s
condition, and for the rest, cmd(s;) is an original command of ¢z, which cannot be inside
try-start). Hence, by applying Lemma 6.2.6 iteratively k times (starting from so = s), we
obtain a series of k states in P, sj ... sy, such that s; € Extendg($;) and s; € next(si—1,tg)

for 1 <4 < k. Since 5, = &', we can choose s’ = s;, to satisfy the lemma. O

The purpose of the lemmas above was to describe how a computation of Pg, in which the
start variables was activated, corresponds to a computation of ¢z in P. This is conceptually
similar to lemma 4.2.6. A computation that does not use the abstracting commands, is de facto a
computation of a single thread. In Py, not using the abstraction meant avoiding the env_move
function. In Pg, the activation of the start variable prevents the computation from havocking
the variables written by ;.

Now, we also need a converse relation. More precisely, we need to show that a reachable
computation p of ¢ is indeed represented within Pg. For the correctness of our proof, we
are only interested in computations from « to 5. This again resembles a previous claim we
proved about Py, in Lemma 5.1.6. There, we proved that violating computations of P have a
representative violating computation in Py, using commands of ¢ in Py; and the env_move
function to abstract tg. In the following lemma, we show that the initial computation in P
which reaches the first state of p (and hence making p reachable) is represented by commands
of tp in Py and try_start to abstract £j;. The representation of p does not need to use the
abstraction. The proof is very similar to Lemma 5.1.6, and therefore it is only sketched, with

explanations of the differences from and similarities to Lemma 5.1.6.

55

Lemma 6.2.8. Let p be a computation of tg from s to s' that is reachable in P such that
sEa, s F Band s,s are a cut-point states (the same conditions as in the first property of

Definition 3.2.1). Then there exists an initial violating computation p in Pg.

Proof Sketch. p is reachable in P, then there exists a computation pg in P from an initial state,
sg of P, to s. pg contains both commands of ¢;; and commands of tg. To prove the lemma,
we need to partition pg to segments (i.e., sub-computations of pg), similar to Definition 5.1.4.
However, in Definition 5.1.4, we split pg to computations of ¢;; and computations of ¢, and
further split computations of ¢, at cut point states. For this lemma, we need to split computations
of tg at cut point states, and leave computations of ¢5; as a whole segment (even if they contain
inner cut point states).

Then, we can iteratively match each segment with a computation 7 in Pg, such that the
first computation starts from an initial state, and each next one starts from the last state of the
previous computation, thus creating an initial computation in Pg.

A segment r of ¢ g with no inner cut-point states would correspond to a computation 7 of Pg
containing only original commands of ¢g. When 7 reaches the cut-point state, 7 would reach a
try-start call. This is similar to Lemma 5.1.6, where the corresponding computation in Py
reaches an env_move call. if r is a segment of ¢;;, the try_start function would be used to
abstract r (i.e., ¥ would be an execution of try_start). # would skip the inner if-statement
(i.e., not setting start to T'RU E). Since the try_start havocs all the shared variables written
by s, any modification performed by 7 is possible in 7 as well (for all variables relevant to
Pg). If we have two adjacent segments of ¢, the t ry_start can also abstract a zero length
computation of ¢,;, since one possible result of a havoc command is keeping the existing value
of a variable.

Eventually, the constructed computation would end with a try_start (whether it is a
segment of ¢g reaching a cut-point state, or a segment of ¢;; abstracted by that try_start).
This last t ry_start will be chosen as the activation try_start, i.e., it sets start to TRUE
and assumes «. Since pg ends with s and s F «, the compatible state in Pr would also satisfy
a, thus not pruning the computation.

To complete, we need to match each command in p with the compatible command in Pg.
Since start was already set to T'RU E, when the computation in P reaches another try_start
call, it will skip it (except for updating pc). This process would end at some state §’ such that
s’ € Extendg(§') and emd(8') is assert (!start || —fB). start was set to TRUFE at the
activation t ry_start and is unchanged for the rest of the computation. Since s’ F 3, we will
have o(§") E start A 8. Hence, the assertion will be violated and the constructed computation

is indeed an initial violating computation. O

After discussing the relation between Pg and tg, we need two additional lemmas that character-

ize the violating computations in Pr and the return value of our mechanism.

Lemma 6.2.9. Let p = § — ... 5 — € be aviolating initial computation in Pg. The activation
try_start (i.e., an execution of try_start where start is changed from FALSE to TRUE)

exists and is unique.

56

Proof. All the assertions in Py are of the form assert (!start || —#). The variable start
has an initial value of FALSE. If start is left unchanged during p, then in particular o (8') (start) =
FALSE, which is a contradiction to p being a violating computation.

Since the only location in which start can be set to TRU E is within the try_start
function, there exists an activation try_start, which sets start to TRU E. After setting start
to TRUE, the try_start assumes « and then exits. Let §” be the first state in p after the first
activation t ry_start. Then by Lemma 6.2.4 for the sub-computation of 5 from §” to §', start

remains T'RU F in all the next states. Hence, the activation t ry_start is unique. (I

With the proof above, the next Lemma is well defined:

Lemma 6.2.10. Let p = § — ... 38 — € be a violating initial computation in Pg, and let 8" be
the first state in p after the activation try_start. Let peypq be the sub-computation of p from
5" 10 &, Ttong the path of peng, and be the program location parameter passed to the activation

try_start.
Then o(5") E a A (pcg = 1) A wp(Ttend, B)[start/TRU E].

Proof. The only command in the activation try_start, after setting start to TRUE, is
assume (a) , after which the function returns. Hence, §” is the next state in p after assume ()
is executed. Since passed assume commands do not change the valuation o, it follows that
o(8")E a.

The assertions in Pg, are of the form assert (!start || —f3). Since p is a violation, it
follows that 5’ F start A 8 and in particular, 8’ E 3. Since p.,q is a computation from §” to
§', by the definition of a weakest precondition, it follows that o(8") F wp(7eng, 8)- Since, §”
appears after the activation t ry_start, then o(8”)(start) = T RU E. Therefore, it must also
hold that o(8") F wp(mend, B)[start/T RU E].

Finally, the activation try_start sets the value of pcg to [. This value is only set
at the beginning of try_start, and is unchanged until the next try_start call. Hence,
o(8")(pcg) = I, which means that 0(§") E (pcg =1)

]

With the last lemma, we can finally complete the correctness proof of our technique for answering

an environment query:

Theorem 6.1 (Environment Query Construction). Let Pg be a sequential program constructed
for an environment query Reach, E)(a, B) and let 1 be the results of the query, obtained
according to the description in Section 6.1. Then 1 satisfies the properties of Definition 3.2.1.

Proof. First, if a A 8 # FALSE, then 3 is a valid answer for Reach;,,)(c, 3), as mentioned in
Observation 3.2.2. Otherwise, the answer is according to the construction of Pg.

Assume first that the constructed Py is safe. In this case, we return ¢» = FALSE. When
1 = FALSE, the second and third property of Definition 3.2.1 hold vacuously. Additionally,
by Lemma 6.2.8, when Py is safe, there is no computation of ¢z from s F « to s’ = [that is

reachable in P such that s, s” are cut-point states. Hence the first property holds as well.

57

Assume now that P is unsafe, and let p = § — --- — §' — € be a violating computation
in Pg. Let 5 be the first state after the activation t ry_start(l) (I being the parameter passed),
and 7,q the path used by p starting from §” until §’. The returned formula is) = (pcg =
1) AN wp(Ttend, B)[start/T RUE)]. According to Lemma 6.2.10, o(8") E a A 9. In particular,
this means that a A 1 # FALSE. Hence, the first and third property of Definition 3.2.1 hold.

For the second property, let s,, be a state of P, such that s,, F 1. We construct a state 5, of

Pg as follows:
o [(5y) =1(8").
e o(3y)(pcr) = .
e 0(5y)(start) =TRUE.

e Forevery v € V N Vg 0(3,)(v) = o(sy)(v).

We first wish to show that s, € Extendg(5y). The properties for variables in V' N X//E hold
immediately, by the definition of . It is left to show that [(sy) = Labg(l(5y)). Labg(1(5"))
is mapped to the label associated with the next original command of ¢ to be executed in Pg,
starting from location [(§”). §” is the next state after a try_start, called with parameter ,
which is also the label associated with the next original command of ¢ to be executed. Hence,
Labg(1(8")) = I. Since sy, F 1, then in particular sy, F (pcp = 1), i.e., Ig(sy) = I. Since
1(5p) =1(5"), we get lg(sy) = Labg(l(5y)), and sy, € Extendgp(5y) as required.

Note also that 5,, has an updated value of pcp, ie., 0(5y)(pcp) = | = Labg(l(5y)).
Hence, since sy, F v and s, € Extendg(3y), it follows that o(5,) F 9 (see the last
property of Observation 6.2.3). In particular, 0(3y) F wp(7end, 8)[start/TRUE]. Since
o(5y)(start) = TRUE, it also holds that 0(5y) F wp(#end, 3). Hence, by the definition of a
weakest precondition, there exists a computation py, from 5., to some éib, which uses the path
Trenq such that U(%) EB.

The last label of 7,,q is 1(§"), which must be a label associated with an assertion, as the next
state in p after §' is e. Therefore, §Z/) # € and l(%) is not inside try_start (which does not
contain assertions). Then by Lemma 6.2.7, there exists s&) € Emtend(%) and a computation of
tg from sy to 52& in P. The pc, variable has an updated value at % as well, since assertion are
placed immediately after t ry_start calls (which update pcg), and before additional original

commands of ¢tz. Hence, again by Observation 6.2.3, Siﬂ ES. O

58

Chapter 7

Extending the Algorithm

In this chapter we discuss two extensions of our algorithm. First, in Sections 7.1 and 7.2, we
extend it to concurrent programs that consist of more than two threads. Next, in Section 7.3, we
extend it to handle assertions that appear in any thread, and not only the one designated as the

main thread.

7.1 Extending to Multiple Threads

In this section, we describe the extension of our method to programs with more than two threads.
We first give an overview of the differences from (and similarities to) the case of two threads
(and in particular, a single environment thread), and discuss the required adaptations to support
this setting. We then continue more formally with the necessary new definitions. Finally,
Section 7.2 describes how environment queries with multiple threads are answered, which is the
key ingredient of this extension.

Consider a program P with threads t1,...,t,,, and assume ¢; is chosen as t;;. The
environment of ¢; now consists of all the other threads: T' = {to, ..., ¢, }. Recall that in the
case of two threads, the verification problem was divided to verification of the main thread,
performed by Algorithm 4.1, and answering environment queries, described in Chapter 6. Note
that our correctness proof of Algorithm 4.1 in Section 5.1 only relies on our construction and
refinement of Py; according to the chosen main thread and the results of environment queries,
and in particular the construction of the env_move function to abstract the environment. This
means that the correctness of Algorithm 4.1, which solves the verification problem ‘“from
the point of view of ¢, is independent of the number of environment threads, as long as
information describing the environment is added correctly to Pp;.

More precisely, this means that the algorithm for handling the main thread, Algorithm 4.1,
remains the same in the presence of multiple threads. In order for the correctness proof
of Section 5.1 to be applicable for the case of multiple environment threads, we need to
make sure that (1) the initial env_move function of Pj; over-approximates the environment 7’
(Definition 4.2.5), (2) refinements of env_move preserve this over-approximation, and (3) newly

added assertions still represent promises of error, with respect to the environment 7. This is

59

sufficient, as these are the only modifications applied to Pj; during Algorithm 4.1.

To achieve this, we consider the construction (and transformation) of P,; and the env_move
function in particular. Initially, the env_move havocs all shared variables changed by the
environment. For the case of a single thread ¢, it means all variables of ¢, that are also written
by tg. For the case of multiple environment threads 7', it simply means all variables of ¢, that
are written by any of the threads in 7T'. Next, there are two types of modifications that can be
applied to Pps during Algorithm 4.1. First, the env_move is changed by the refinement step
described in (4) of Section 4.5 iff an environment query Reach;,(«, () returned i) = FALSE.
Second, new assertions are added to P iff an environment query returned ¢ # FALSE. As
we argue next, these modifications remain correct, as long as the query’s result is correct. In
fact, their correctness relies completely on the correctness of the query’s result. The latter is
addressed in Section 7.2.

To this end, we first need to establish a slightly different definition for environment queries,
to capture the fact that the environment consists of multiple threads 7" = {t2, ..., %, }. As each
thread ¢; € T has its own pc variable, ‘//]\7 may now include pc; as an additional variable for

every thread ¢; € T, instead of a single pcg.

Definition 7.1.1 (Multithreaded Environment Query). Let P be a concurrent programs with
threads t1, ..., tm, and let T C {t1, ..., }. An environment query Reachr)(c, 3) receives
conditions awand S over V.U |J {pc;}, and returns a formula ¢) over VU |J {pc;} such
i t; €T i t; €T
that:
1. If there exists a computation of 7"in P that is (1) reachable in P, (2) starts from a cut-point
state s s.t. s F «, (3) ends in a cut-point state s’ s.t. ' F 3, then ¢ A o # FALSE.

2. For every state s s.t. s F 1), there exists a computation (not necessarily reachable) of T in

P from s to some s’ s.t. s F 3.

3. 4 # FALSE = 1) A o # FALSE.

Essentially, this definition is identical to Definition 3.2.1, where computations of tg are
replaced with computations of 7', and in which the conditions («, 5, %) can address the pc
variable of all environment threads. Next, we can rephrase the definition about the env_move
“over-approximating 7™, and also the definition of a promise of error for the case of multiple
threads. For the former, we also need to adapt the definition of Extend to the case of multiple
threads:

Definition 7.1.2 (Multithreaded Exztend). Let § = (I,6) be a state in Py, s.t. [is not inside
env_move. We define the set Extend(3) to be the set of all states s = (I, o) of P such that:

o 1yi(s) = Lab(l(3)).

e Forevery thread t; € T: If pc; € Vs then Li(s)'= o (8)(pc;).

! Where ;(s) denotes the value of pc; in s.

60

e Foreveryv € V:ve Vy = a(s)(v) =a(8)(v).

Definition 7.1.3 (Multithreaded Over-approximation). We say that env_move over-approximates
the computations of T in P if for every reachable (and possibly of length zero) computation
p of T in P from a cut-point state s to a cut-point state s’, and for every state § of Py s.t.
s € Extend(8), and ecmd(8) is an env_move call, there exists a computation p = § — --- — §
of Py s.t.

e [(§') is the next label in Py after the env_move called at §, and for every inner state §” in

p, 1(8") is a label inside env move (i.e., p is a complete single execution of env_move)
e s € Extend(s)

Definition 7.1.4 (Multithreaded Promise of Error). Let ¢, v’ be formulasover VU |J {pc;}
i t, €T
and let [, I’ be labels of t),. We say that (1,) is a promise of (I',1)") if for every state s of P s.t.

Ip(s) = land s F 1) there exists a computation in P starting from s to a state s’ s.t. Ij;(s") =1/
and s’ = /.
If (1,%) is a promise of (I, —b) and emd(l') = assert (b) for some condition b, then we

say that (I,) is a promise of error.

We note that Definition 7.1.4 is almost identical to Definition 4.4.1, with V' U {pcp}

simply replaced by V.U |J {pc;}. Definition 7.1.2 also highly resembles Definition 4.2.1,
i ;€T

where instead of addressing a single pc g variable in Vz\;, the definition addresses multiple pc;
variables (for each thread ¢;). Finally, Definition 7.1.3 is also identical to Definition 4.2.5, with
computations of ¢ g replaced by computations of 7.

In fact, the entire correctness proof from Section 5.1, can be left almost unchanged, while
only using the same replacements mentioned above: Computations of ¢z become computations
of T', and pc should be replaced by multiple pc; variables for each thread ¢;. Naturally, the
proof assumes that the environment query returns a correct result according to our new definition.
Hence, the core of the extension of the algorithm to multiple threads relies on our technique for

answering environment queries, which is explained next.

7.2 Environment Queries with Multiple Threads

Overview In this section, we wish to describe an algorithm for answering environment queries,
Reach(r) (a1, £1) for some environment 7" such that |T'| > 1. To preserve modularity, we use
an algorithm similar to Algorithm 4.1, which can answer the query by analyzing a single thread
with some abstraction of its environment. We select a thread ¢/, ,€ T" and view it as the main
thread for the query. The environment in this context will consist of 77 = T\ {t,}. During
the algorithm, we would require some information concerning 7", which again will be answered
by environment queries: Reachr) (a2, B2). Note that the size of the environment for the inner
queries is reduced. Thus, we can continue recursively until reaching an environment of size one,

which was already handled in Chapter 6.

61

After selecting t,,, we construct a sequential program Pj, with try_start calls and
assertions as described in Chapter 6. After each try_start call (and before the assert), we
add a call to an env_move function. P]’VI will have an env_move’ function of its own, which is
different from the env_move of Py;. The goal of env_move’ is to over-approximate 7”.

Recall that we are interested in over-approximating reachable, but not necessarily initial,
computations of 7" in P. For each such computation p, there exists some initial computation
pi in P, which is a prefix of a computation p’ such that p’ = p; - p. Each step in p; can be
performed by any of the threads in P, while each step in p is restricted to 7". Our construction
of P}, models steps of t/,, precisely, and it should abstract the steps of all other threads in both
p; and p.

Over-approximating p; The purpose of the t ry_start function is to abstract p;, and to non-
deterministically decide when p; ends, o is satisfied, and p should start. To this end, as long as
the start variable remains FALSE, the t ry_start function havocs all variables written by any
thread of P other than t’Mz. Similar to Chapter 6, the t ry_start also non-deterministically sets
start to T'"RUE and assumes «1. As before, we refer to this call as the activation try_start.
After this point, the t ry_start function does not havoc any variables (as start= T RUE). As
in Chapter 6, we pass the label associated with the next original command of ¢, to try_start,

in order to update pc/, the pc variable of ¢/,

Over-approximating p When start is set to T'RU EF/, we move from over-approximating p;
to over-approximating p. As before, steps of ¢, are modeled precisely, and we wish to over-
approximate the steps of all other threads in T, i.e., the threads in 7”. This over-approximation
will be handled by the env_move’ function of P;,. First, note that we are only interested in this
over-approximation once start was set to T RU E. Hence, the code of the env_move’ function
should start with an if (start){...} condition, and all other commands would be inside
the true-branch of this i f statement. The rest of env_move’ is constructed in the same manner
as described in Chapter 4. The initial env_move’ function havocs variables written by threads
in T”, similar to the description in Section 4.3. It is later refined by statements of the form i f
(ah[W _copy/W]) assume (—3)), similar to (4) of Section 4.5, following inner environment
queries Reachpr)(a, B2), which returned FALSE.

Algorithm Outline Algorithm 7.1 provides the complete procedure of how environment
queries are answered. The algorithm follows a similar pattern as Algorithm 4.1. First, if at any
stage there are no initial violating computations in Pj,, the over-approximation ensures that
there is indeed no reachable computation of 7" in P from «; to 3. In this case, Algorithm 7.1
returns vy = FALSE (Line 25).

Next, assume that a violating computation p was found in Pj,, and that / contains at

least one env_move’ call after the activation try_start (Line 13). The last env_move’ call

ZVariables that neither belong to any of the threads in 7', nor appear in a; or 81 can be omitted, as they clearly
do not affect the result

62

Algorithm 7.1 AnswerEnvQuery

1: procedure ANSWERENVQUERY (P, T, t,, a1, (1)

2 Py’ =add try_start calls in cut-point locations of ¢,

3 Py, = add env_move’ calls after t ry_start in Py;’ and initialize env_move’

4: Py’ =add assert (—start V —f3;) after every env_move’ in Py’
5: while a violating path exists in Py;” do // using sequential MC
6
7
8
9

Let 7 = lo, .. ln+1 be a violating path (with ln+1 =1,)
Let assert (—\5ta7’t Vv b) be the violated assertion at label ,,
Lettry._ start(l) be the activation try_start at some label l

: Let 7’ = l]+1, .. l be the sub- path of 7 starting from the activation try_start.
10: if there are no env_move’ calls in 7’ then:
11: return ¢ = (pcyp = 1) Awp(#', B1)[start/ T RUE)
12: end if
13: let lk be the label of last env_move call in 7 (and in 7')
14: let Tstqrt = lo,.. lk and 7epg = lk+1,...,ln
15: B2 = wp(Trend, ﬂb) // see (1) in Section 4.5
16: oo = post(Rsart, Pinit) // see (2) in Section 4.5
17: Let 12 = Reach (a2, f2) // environment query for 7"
18: if 19 is FALSE then
19: Let oy, 3} be as in (4) in Section 4.5.
20: Py’ =RefineEnvMove (P, ob, %)
21: else // see (5) in Section 4.5
22: Add new label [’ in P), right before fk with cmd(i’) =assert (—start V —a)y)
23: end if

24: end while
25: return £ FALSE
26: end procedure

will be examined in the same manner as in Algorithm 4.1, by another environment query
Reach(pry (a2, B2) (Line 17). If we learn that 7" cannot lead from a3 to (2, envmove’ is
refined to eliminate p (Line 20). Otherwise, a new assertion is added before the env_move’ call
(Line 22), whose violation ensures the reachability of 35 through computations of 7”.

Finally, if the algorithm finds an initial violating computation p in P;, with no env_move'
calls after the activation t ry_start (Line 11), it terminates and returns % as appears in Line 11.
The returned ¢ guarantees the reachability of the violated assertion through steps of ¢, alone.
The violated assertion itself guarantees the reachability of ;. The computed) must also

intersect vy which is assumed at the activation try_start.

Correctness The formal correctness proof for Algorithm 7.1 combines and repeats the cor-
rectness proofs from Sections 5 and 6. The parts about the role of the try_start function
and the final result v intersecting o1, are similar to the ones in Chapter 6. The parts about
the over-approximation of the env_move’ function and assertion being “promises of 3", i.e.,
conditions ensuring the reachability of 8; through computations of 7', are similar to the ones
used in Chapter 5. Next, we give a formal description of the correctness of Algorithm 7.1,

followed by a proof sketch with references to the relevant previously proved lemmas.

63

Theorem 7.1 (Correctness of Algorithm 7.1). Let Reach(r)(cu, 1) be an environment query
in P for an environment T', and let 1 be the results of the query, obtained by Algorithm 7.1.
Then) satisfies the properties of Definition 7.1.1.

Proof. (detailed sketch) The proof is by induction on the size of the environment 7'.

Base Case: |T'| = 1: If |T| = 1, then T consist of a single thread ¢ ;, with no environment.
The env_move’ mentioned in Algorithm 7.1 would be empty, and can be omitted. There is
no need to examine inner environment queries from some as to some (2, as there are no
environment computations. Note that without the env_move’ functions, the construction is
identical to the one in Chapter 6, and the algorithm will terminate after a single model-checker

call. Hence, the correctness proof for the base case was already presented in Chapter 6.

Induction Step: |T'| > 1: Assume that [T'| > 1. lett),€ T andlet T’ = T\{t),}. |T"| < |T,
hence by the induction hypothesis, Algorithm 7.1 provides correct results for environment
queries about 7". The induction hypothesis is needed for the two possible refinements of P ,:

adding new assertions and refining env_move’. Next, we discuss both of these refinements.

env_move’ Over-approximates 7’: For this part we need an adjusted version of Lemma
5.1.1. In simple words, we claim that for every reachable computation p of 7" in P from some
s to some s’, and for every state § of Py, that “matches” s (with an adapted version of the
Extend definition), there exists a complete single execution of the env_move’ function from
5 to some & matching s’. The proof follows the same pattern as the proof of Lemma 5.1.1.
At initialization, the lemma is correct as env_move’ havocs all variables written by threads
in 7”. Refinements only occur after an inner environment query Reach (o, B5) returned
FALSE. By the induction hypothesis, this means that there are no reachable computations of 7"
in P from o to 35. We refine env_move’ with commands of the form i £ (a4[W_copy/W])
assume (—434), which only block env_move’ from reaching (5 when it was called with a
state satisfying of,. Thus the refinement does not “lose” the representation of any reachable

computation of 7" in P.

Assertions in P;, Represent Promises of 31 . A promises of (1 is a condition ¢" and a label
[of ¢}, such that for every state s of P with [y;/(s)*= [and s F 1’ there exists a computation
of T in P from s to some state s’ such that s’ F ;. We wish to show that the violation of
every assertion in P}, is a promise of 3. The proof follows the same pattern as Lemma 5.1.3.
At initialization, this holds since all assertions are of the form assert (—start V —3;) . Other
assertions are only added after inner environment queries returned 1/, = Reachrr (o, B2) #
FALSE. Consider the first newly added assertion. It can only be added after a violating
computation p was found in P}, leading to an original assertion. Thus, 5 is computed as a

weakest precondition and ensures the reachability of 5, using steps of t, alone. Further, by

3denoting the pc variable of ¢},

64

the induction hypothesis, the result 1) ensures the reachability of 3 using computations of 7”.
Combining computations of ¢/, and computations of 7" yields computations of 7'. Hence, /31
is reachable from)9 by computations of 7'. Since the newly added assertion is of the form
assert (—start V —o) , its violation indeed represents a promise of 31. For other assertions,
we can continue inductively and use the transitivity of the definition of “promises of (3;”, similar

to Lemma 5.1.3.

1 # FALSE = 1) Aoy # FALSE We now wish to show that whenever Algorithm 7.1 returns
1 # FALSE, it means that) A o1 # FALSE. This is in fact the last property of Definition 7.1.1.
The proof is based mainly on the proof of Lemma 6.2.10. If Algorithm 7.1 returned v # FALSE,
it means that an initial violating computation p = § — ...5 — ¢ was found in P}, with
no env_move’ calls after the activation try_start. Let assert (—start V b) be the violated
assertion (Line 7). The state immediately after the activation try_start must satisfy ¥ A a;.
It satisfies v, because 1) was computed as a weakest precondition from —b exactly until the
activation t ry_start, using steps of ¢ ;, and the computation p used these exact steps to reach
—b and violate the assertion. It satisfies a1 as «; was assumed at the end of the activation

try_start, and otherwise p could not have continued. We conclude that 1) A o1 # FALSE.

1 = FALSE Implies no Computation from «; to 51 We now wish to show that when
Algorithm 7.1 returns 1) = FALSE, it means that there is no reachable computation of 7" in P
from a cut point stare s satisfying a1, to a cut point state s’ satisfying 3;. This, together with
the property above, proves the first property of Definition 7.1.1.

The proof is a combination of the proofs of Lemma 5.1.6 and Lemma 6.2.8. Assume that
there exists such a reachable computation p. As discuss in the beginning of this section, since p
is reachable, there exists some initial computation p; in P, which is a prefix of a computation p’
such that p’ = p; - p. The main idea of the proof is to construct an initial violating computation
p'in P},. As long as such a computation exists, Algorithm 7.1 cannot reach Line 25 and would
not return ¢ = FALSE.

p' would also consist of two subcomputations p' = p; - p, based on p; and p. During p;,
the start variable will be FALSE. Thus, the env_move’ function, whose body is contained
withina if (start){...} statement, will be effectively disabled. Therefore, we can use a
construction similar to Lemma 6.2.8 until the activation try_start. p; would be partitioned
into segments, where each segment either corresponds to a computation of ¢}, with no inner
cut-point states, or to a computation of the rest of the threads in P, other than t,,. Segments
of ¢}, would be represented in p; by the exact same commands of ¢, which appear in P},.
Segments of the other threads would be represented by the try_start function. p; would end
after the activation try_start, where p would start.

The connecting state § between p; and p would match s, which connects p; and p. Since
s F «aq, the assume (o;) command within the activation try_start would not trim the
computation, and it can continue from §. Next, during the activation try_start, the start

variable is set to T'RU E/, which means that the havocs within the try_start function are

65

disabled. Thus, we can now use a construction similar to Lemma 5.1.6. As before, p would be
partitioned into segments. Recall that p is a computation of 7". Thus, each segment will either
corresponds to a computation of ¢, with no inner cut-point states, or to a computation of T" in
P. Segments of ¢/, would be represented by the exact same commands in Py, and segments
T’ would be represented by the env_move’ function.

Finally, p would reach a state §' matching s’. Since s’ is a cut-point state, there would be an
assert (—start V —f3;) command at the compatible label at the end of p, i.e., at [(§'). Since
s’ E 1, & would also violate that assertion. Note that it is also possible that p would violate
a previous assertion and thus would not continue until §’. Nevertheless, we get a violating

computation 4’ in P},.

1) Guarantees the Reachability of 5; To conclude, we need to show that the second property
of Definition 7.1.1 holds. That is, if s F 1, then there exists a computation of 7" in P
from s to some s satisfying 1. The proof is a combination of Item 2 of Theorem 5.1, and
the proof of the second property of Definition 3.2.1 in Theorem 6.1. The main idea is that
the returned v is computed as the weakest precondition in Py, from the violation of some
assertion assert (—start V b) to the activation t ry_start. Therefore, if s F 1, there exists a
computation of ¢/, in Py;” from s to some s” satisfying —b. We already showed that the location
ot the violated assertion, together with —b are a promise of 3;. Hence there is a computation
of T in P from s” to some s’ satisfying ;. Concatenating these two computations, gives the
desired result.

O

Example 7.2.1. Figure 7.1 presents a program with three threads, inspired by the fib_bench
examples of the SV-Comp concurrency benchmark. Assume that ¢; was selected as the main
thread in P, and during the analysis of the corresponding sequential program P, an environment
query Reacht, ;1) (1, B1) was initiated, with oy £ (a == 1A b == 1Ac¢ == 1) and
B1 £ (a4 2b > 15). Figure 7.2 presents the sequential program P constructed to answer the
query. The try_start havocs both a, which is written by ¢ and ¢, which is written by 3 (and
pce, as well), as it should abstract any prefix in P. The env_move function, on the other hand,
only abstracts the next threads in the hierarchy, i.e., 3. Hence, it need not havoc a.

Note that there is no computation of T = {t2,¢3} from «; to 5;. The variable a is not
written by the threads in 7', hence it keeps the value of 1 in any computation of 1" starting
from a. Therefore, c is bounded by 3, and b is bounded by 7, making 5, £ (a + 2b > 15)
unreachable.

Nevertheless, there exists a violating computation in P,. The reason is of course the
abstraction of ¢. Assume that the first try_start in Line 28 is chosen as the activation
try.start. The following env_move havocs ¢, and can set it to an arbitrary high value. This
value can then be added to b in Line 32, leading to the violation of the assertion in Line 35. This
violating computation will now be examined by Algorithm 7.1, and eventually eliminated, after

an appropriate refinement of P»’s env_move function.

66

O ® NN AW N =

int a=1, b=1, c=1;
void t1() {
int k1 = 0;
while (k1 < 2) {
a += b;
kl++;

}

assert(a <= 15);

}
void t2() {
int k2 = 0;
while (k2 < 2) {
b += c;
k2++;
}

void t3() {
int k3 = 0;
while (k3 < 2) {
c += a;
k3++;

}

}

Figure 7.1: A variation of the
fib_bench examples from the
SV-Comp concurrency bench-
mark with three threads.

oI - Y B N VU R SR

_COPY =

pc-t3;

int a=1, b=1, c=1;
bool start = false;
void environment-move () {
if (start) {
int ¢c.COPY = ¢, pc_t3
¢ = havoc_int ();
pc-t3 = havoc_int();
}
}

void try_start(int pc_aux) {

int a_COPY = a,
pc-t2 = pc_aux;
if (!start) {

c_.COPY

¢ = havoc_int ();
a = havoc_int ();
pc-t3 = havoc_int();
it (v {
start = 1;
assume(a == 1);
assume(b == 1);
assume(c == 1);
}
}
}
int main() {
int k2 = 0;

try_start(L13);
environment_move ();

assert ((!start_) || (a
while (k2 < 2) {
b += c;

try_start(Lis);
environment_move ();
assert ((!start_) ||
k2++;

= cC,

pc-t3_.COPY =

+ 2%b <= 15));

(a + 2xb <= 15));

pc-t3;

Figure 7.2: The sequential program P, with both
try_start and env.move’ calls, for answering
Reach({tmt?’}) (041,51) with o £ (a == 1Ab==
IAc==1)and $ = (a +2b > 15).

7.3 Extending Assertions to all Threads of P

The next paragraph briefly explains how our technique can support assertions appearing ev-

erywhere in P, and not only in ¢t5;. Since our sequential program P, for tj; uses explicit

variables to address the pc of other threads, we can use these variables to address assertions

from other threads as well. Assume that an assert (b) appears at some label [of a thread

t; #tar. We can equip Py with a new assertion of the form assert ((pc; = 1) = b). Note that

this assertion should hold regardless of the program location in ;. That is, the environment of

tas should never be able to reach [(pc; = [) A —b], from every label of ¢5;. To express this, we

can simply add this assertion at the end of the env_move function of Pp;. Thus, this assertion

will be handled as if it was an original assertion of ¢, appearing after every cut-point, and

simply referring to pc; as well.

Another important observation is that environment queries issued by the algorithm, only

67

consider computations between cut-point states. If [is not a cut-point of ¢;, clearly there is no
reachable computation of the environment ending at a cut-point state s s.t. s = (pc; = [). Thus,

we need to add the labels of all assertions to the sets of cut-points.

68

Chapter 8
Optimizations

The following chapter describes a list of optimizations used by our tool.

8.1 General Optimization

Reusing Counterexamples This optimization is used when Reachy,)(a, 3) returned 1 #
FALSE, and a new assertion assert (—)) was added right before an env_move call (case (5)
of Section 4.5). In that case, instead of initiating another call to our model-checker, as described
in Algorithm 4.1, we can reuse the counterexample of the previous iteration, including all of its
commands up to (excluding) the last env_move call, and adding the new assertion assert (—))
at the end.

In this case, upon encountering a violating path, we try to validate all uses of env_move
along that path. The main advantage of this optimization is that it avoids calling the model
checker (which is the most expensive part of Algorithm 4.1). The main disadvantage is that
the newly composed counterexample is not constructed by a model checker, as opposed to the
non-optimized case, and hence may not be feasible, even in Py;. The reason for that is that the
computed postcondition a only over-approximates the reachable states before the env_move
call. Hence, though v is guaranteed to intersect «, it may not intersect any reachable state of
Py

Therefore, in order to make sure we only return sound answers, we only apply this opti-
mization when there is at least one env_move in the composed counterexample. Since we only
return ”Unsafe” upon encountering a counterexample with no env_move calls, this ensures that
the model checker was actually used to verify the feasibility of the counterexample. Note that
despite being possibly unreachable in P, the new assertions are still promises of error, hence
any additional assertions added by analyzing the (possibly infeasible) counterexamples leading

to them, are also promises of error.

Skipping Assertions in Weakest Precondition Our technique includes weakest precondition
computations both in Py; and in Pg. In both cases, we compute a weakest precondition

B = wp(7r, —b) for some path 7, ending at an assertion assert (b) . If the path 7 contains other

69

[N O I

assertions, that may either be original assertions of P, new assertions added by our algorithm,
or assertions placed to answer an environment query, we can ignore them while computing the
weakest precondition. Thus, the obtained formula represents more states.

B = wp(7, —b) has the property that for every states § satisfying 3, there exists a compu-
tation p from §, whose path is 7, reaching —b, and thus violating the assertion. However, the
important part of this property is the reachability of an error from 5. We only use 7, as this was
the witness that assured us the reachability of that error. By ignoring other assertions in m, we
obtain a more general formula 3’. 3’ has the property that for every state § satisfying ', there
exists a computation p whose path is either 7, in which case it reaches —b, or some prefix of 7,

ending at another violated assertion.

Example 8.1.1. Consider the code below as an example, and assume we wish to compute the
weakest precondition from the violation of the assertion in Line 5, (i.e., for the condition a > 1),

for the path m = 3, 4. This will later be sent to an environment query.

env._move();
assert (b>0);
a += 1;
assert (a<=1);

Without the optimization, the computed condition is 3 £ (a > 0 A b > 0). This condition
indeed ensures the violation of the second assertion. Thus, the following environment query will
search for computations ending in both ¢ > 0 and b > 0. However, if we ignore the assert
command in Line 3, we get 3’ = (a > 0). This guarantees the violation of one of the assertions,
but not necessarily the latter. We can then apply a more general environment query, which

searches for computations reaching a > 0 only.

8.2 Optimizations for Generalizing Environment Information

The following three optimizations can be motivated by the following scenario. Assume the
main thread learns new information about the environment, of the form if (a(W_old))
assume (—3). The relevant formulas « and 5 may refer to several variables that are used only
by tps. Since the environment query only considers computations of ¢, there exists some
property of the environment alone, which prevents the transition from « to 5. Our goal is to
identify such properties.

Let C be the set of variables of £, that are not written by ¢ and appear in « and 5. Those
variables are in fact constant in the context of tg. Thus, by the absence of computations of g
from « to B we can conclude that for every assignment to the (unchanged) variables in C, there
is no computation from « to 3.

This quantified property is of course a property of g alone, since it is defined only over
variables of g (it may contain variables shared between ¢ and ¢, but none that are local to

tar). However, our representation does not allow us to express quantified predicates.

70

Thus, the following three optimizations all try to eliminate variables of ¢, that appear in
« and [, without applying quantification. The first optimization is applied before the query is
made (when we do not know yet whether indeed there are no computations from « and), and

the other two are applied after the query returned v = FALSE.

Using Query Invariants A query invariant is a condition that appears in « or 5 as a conjunct
and consists only of variables not written by ¢g. Clearly, any computation from « to 8 (if exists)
must satisfy the query invariant along all states in the computation, and in particular in the first
and last states (satisfying v and [resp.). Hence, query invariants may be used to simplify « and
B.

If o or 3 contains a query invariant p, our optimization first constructs a simplification o/
and 8’ of @ and 3 w.r.t. p. Then an optimized environment query Reach(t 5) (o, ") is sent to
Pg (see (3) in Section 4.5).

For example, if « = (i == 1 A j > 0), and 7 is not written by ¢, then (i == 1) is a query
invariant. If 3 = (i + j > 5), then we can use the query invariant to obtain 3’ = (j > 4). If i is
also not read by tg, then the predicate ¢ == 1 can now be omitted entirely from . With the
optimized query, instead of learning that there is no computation froma = (i == 1Aj > 0) to
B = (i+j > 5), we may learn that there is no computation from o/ = (j > 0) to 8’ = (j > 4).
This property is (a) much stronger, and (b) only refers to variables of ¢ .

Query invariants may be useful not only for the case of constant variables. For example, if
[has a conjunct p as a query invariant, and « contains a sub-formula of the form q; V g9, s.t.

p = —q1, then this sub-formula can be simplified to gs.

The optimization described above is useful for the case where Reach;,)(c/, 3') returned
1) = FALSE, since the nonexistence of reachable computations of ¢ from o/ to 3’ implies that
there are no such computations from « to 3 as well. However, if ¢/ = Reach,)(o/, 8') #
FALSE, we cannot simply add assert (—¢’) as before. The reason is that query invariants
are only guaranteed to hold, given the context (« and) of the query. More specifically, the
computed 1’ only guarantees that we can reach 5’. But 3’ does not necessarily lead to 3.
Reaching 3/ guarantees that we reach [only for the specific « (and the query invariants)
used for this query. Since we might reach the env_move that initiated the query using different
computations in which « does not hold, it is unsound to add assert (—¢’) before the env_move
call. To resolve this, if a computation from o’ to 3’ was found in Pg, the returned formula 1) is

computed as the weakest precondition from the original 3, and not from [’.

For example, if we learn that there exists a computation from j > 0 to j > 4 (using the
example above, where 5 = (i + j > 5) is an error), and compute some weakest precondition v’

ensuring that we can reach j > 4, it will be unsound to add assert (—¢’) before the env_move

call. This is because j > 4 implies the error only in case © == 1. If we reach the same
env_move call with ¢ == 0, reaching j > 4 does not guarantee that we can reach the original
B.

71

B Constants Replacement The next optimization can be used when « contains a conjunct of
the form v == p(U), where v is not written by ¢z, and p is a term over some other variables U
(that might be written by ¢g). The main observation here is that since v is unchanged during
computations of ¢, the value of v at the end of the computation still equals to p(U _old), where
U _old represents the value of the variables in U at the start of the computation.
Recall that the standard refinement of env_move uses a statement of the form i £ (a(W_o1d))

assume (). That is, we already have a method for arguing about variables at the beginning
of the computation, but it was typically used just for a. In this case, we can omit the predicate

v == p(U) from «, and simply replace every other occurrence of v (in «v or 3) with p(U _old).

Searching for Inductive Environment Properties A useful type of property is an inductive
environment property. An Inductive environment property is a condition -y, defined only over
variables written by tg, such that there is no reachable computation of tg from v to —v.
Recall that when a query Reach,,)(a, B) returns FALSE, we learn that there is no reachable
computation of 5 from « to 3. We try to utilize such results to proactively search for additional
relevant information, in the form of inductive environment properties. However, checking
whether some 7 is an inductive environment property (by computing Reach,)(v, —y)) is
computationally expensive, as it involves calling the model checker. Hence, this check is only
applied in specific cases, as described by the two heuristics below.

The first heuristic is applied if after the two optimizations above, the resulted o/ and 3’ still
contain variables not written by tg. In a typical case, « is a conjunction of several conditions.
It might be the case that « itself contains variables not written by ¢, but has some conjuncts
which are only over variables that are written by . For each such conjunct v, we check if
is an inductive environment property. We also save -y, so that we will not check it again if it
reappears as a conjunct in some future a.

The second heuristic is applied when @« = TRUE, and (§ is a conjunction. When
o = TRUE, it means that —f is a global invariant. Global invariants are typically strong
properties which incorporate some fundamental property of the program. When combined with
generalization, as described in Section 4.6, none of the disjuncts forming —f can also be global
invariant on their own (otherwise 5 would have been generalized). Nevertheless, they might be
inductive environment properties. Hence, we check whether any of the disjuncts of =3 defined
only over variables written by ¢ g, are indeed inductive environment properties.

In both cases, if an inductive environment property v was found, we use it to further
refine the env_move function, by adding if (y(W_old)) assume (v), additionally to the
if (a(W_.old)) assume () statement we always add when environment queries return
FALSE.

8.3 Multiple Threads Optimizations

The optimizations appearing in this section are relevant for the case where P has more than two

threads, and environment queries are answered by Algorithm 7.1.

72

Preserving Environment Information Typically, during the run of Algorithm 4.1, multiple
environment queries Reach(T) (a1, 1) are made. When P consists of two threads, each such
query is answered using a single model checker call, on a sequential program P, (see Chapter 6).
However, when the environment 7" of the main thread ¢, consists of more than one thread,
environment queries are answered by Algorithm 7.1. During this algorithm, a sequential
program P}, is constructed and refined according to additional inner environment queries
Reach(gry(a, B2) for a smaller environment 7". The information learned about 7" can also be
relevant for future queries. Hence, P, does not have to be reconstructed from the beginning for
every new environment query, and it can reuse information learned about 7”.

We now discuss which information can remain in P;, and serve future queries (made by Ppy).
Assume that P}, was constructed once for answering an environment query Reach(r (a1, £1)
from Pjy, and later reconstructed to answer another query Reach) (o}, B1). Any new assertion
added to Py, during the process of answering the first query, is in fact a “promise of 3;”. That
is, if the assertion is violated, it means that start A 1 can be reached. In the general case,
B1 # B1 and hence this information does not guarantee the reachability of /3], needed by the
query Reach(ry(c, B1). Thus, it should be removed from P,

However, the information which appears inside the env_move’ function, represents the
absence of computations of 7" from some a to some 5. Since this is a property of 77, it
remains correct regardless of the conditions («, 31) given by the query from Pj;. Hence,

information gathered within the env_move’ of P}, can be accumulated and serve future queries.

Quick Generalization The generalization described in Section 4.6 is by itself a useful op-
timization. The difference in runtime between solving with and without generalizations can
sometimes be in orders of magnitude. A common interesting pattern observed during our exper-
iments, is that calling our tool with generalization, results in more calls to the model-checker
than calling it without generalization, for the same program P. However, the overall verification
time for the generalization case is still shorter. The reason for this pattern is that many of the
model-checker calls are performed as part of the generalization process, thus increasing the
number of calls. Nevertheless, the sequential programs obtained after generalization tend to be
simpler than those obtained without. This results in a much shorter runtime per each model
checker call.

Notwithstanding the above, consider the case of more than two threads, as described in
Chapter 7. Let Py be the sequential program of the main thread, 57, P}, the sequential program
of the main thread of the environment, t,,, and 7" the rest of the threads of P. Assume also
that Reach(ry(u, /1) = FALSE for some environment query, originated from the analysis of
Py. Essentially, generalization is performed by guessing conditions o,] s.t. @1 = o} and
B1 = B}, and checking whether still Reach (), 81) = FALSE. If this query is answered by
Algorithm 7.1, it may initiate additional inner environment queries Reach (a2, 82). These
queries, in turn, might trigger another generalization, and so forth. When the number of threads
increases, this overhead becomes significant and compromises the benefits of generalization.

We therefore suggest an intermediate approach. Recall that if Reachr)(a1, 81) returned

73

FALSE, it means that P, already has enough information to refute the transition from «; to
1. We can therefore check if Pj,, by itself, can also refute the transition from o to 3. If so,
we can generalize (a1, 1) to (o], 31). Otherwise, this generalization call fails and we retreat
to (a1, B1) (and might try another generalization). Note that in the latter case, it still might
be the case that Reachp)(a}, 1) would have returned FALSE, but this would have required
additional refinements of Pj,. In practice, we reduce the number of model-checker calls allowed
per generalization attempt Reachr) (o), B}) = FALSE to one. This approach often gives a
substantial share of the benefits of generalization, while significantly reducing the overhead.

74

Chapter 9

Experimental Results

Setup We implemented our algorithm in a prototype tool called CoMuS. The implementation
is written in Python 3.5, uses pycparser [3] for parsing and transforming C programs, uses
SeaHorn [22] for sequential model checking, and uses Z3 [10] to check implications of formulas
for some of the optimizations described in Chapter 8. CoMusS currently supports only a subset
of the syntax of C (as appears in the preliminaries). It does not perform alias analysis and hence
does not handle pointers. It also does not support dynamic thread creations, although we support
any fixed number of threads.

We compare CoMuS with Threader [36], VVT [19] and UL-CSeq [29], the last two being
the top scoring model checkers on the concurrency benchmark among sound unbounded tools
in SVCOMP’ 16 and SVCOMP’ 17 (resp.). On the concurrency benchmark, VVT was 4" overall
in SVCOMP’ 16, and UL-CSeq was 8™ overall in SVCOMP’17 . Threader performs modular
verification, abstracts each thread separately and uses an interference abstraction for each pair of
threads. UL-CSeq performs a reduction to a single non-deterministic sequential program. The
program is then passed to a sequential model-checker. We used UL-CSeq in its default setting,
with CPA-Checker [4] as a backend. VVT combines bounded model checking for bug finding
with an IC3 [6] based method for full verification.

We ran the experiments on a x86-64 Linux machine, running Ubuntu 16.04 (Xenial) using
Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz with 8GB of RAM.

Experiments We evaluated the tools using three experiments. One compares the four tools
on concurrent programs with a clear hierarchy. The second compares syntactically similar
programs with and without hierarchal structure to evaluate the effect of the structure on the

verification time. The last one looked at general concurrent programs.

Hierarchically Structured Programs For the first experiment, we used three concurrent

dynamic-programming algorithms: Sum-Matrix, Pascal-Triangle and Longest-Increasing-Subsequence.

!"The same benchmark was used for unbounded sound tools and tools which perform unsound bounded reductions.
Bounded tools are typically ranked higher. Our method is unbounded and is able to provide proofs, hence we find
the selected tools more suitable for comparison.

75

The Sum-Matrix programs receive a matrix A as input. For every pair of indexes (i, j), it com-
putes the sum of all elements A[k,], where k& > ¢ and [> j. In their concurrent version,
each thread is responsible for the computation of a single row. The Pascal-Triangle programs
compute all the binomial coefficients up to a given bound. Each thread computes one row of
the triangle, where each element in the row depends on two results of the previous row. The
Longest-Increasing-Subsequence programs receive an array, and compute for each index ¢, the
length of the longest increasing subsequence that ends at index ¢. Each thread is responsible for
computing the result for a given index of the array, depending on the result of all prefixes.

These algorithms have a natural definition for any finite number of threads. Typically,
the verification becomes harder as the number of threads increases. For evaluation, we used
programs with an increasing number of threads, and checked the influence of the number on
the different tools. For each instance, we use both a safe and an unsafe version. Both versions
differ from each other either only by a change of specification, or by a slight modification that
introduces a bug.

The chosen programs have two meaningful characteristics: (i) They exhibit non-trivial
concurrency. This means that each thread performs a series of computations, and it can advance
when the data for each computation is ready, without waiting for the threads it depends on to
complete. Consider the Sum-Matrix problem as an example. Assume thread ¢; needs to compute
the result at some location (4, j), and that each row is computed backwards (from the last cell to
the first). The computation exploits the results of thread ;1. Thread ¢; needs to wait for thread
t;+1 to compute the result for location (i + 1, j). However, ¢; does not wait for ¢;;1 to terminate,
as it can compute the cell (4, j), while ¢;11 continues to compute (i + 1,j — 1). (i) Their data
flow graph has a clear chain structure. That is, the threads can be ordered in a chain hierarchy,
and each thread only requires information computed by its immediate successor.

Figure 9.1 summarizes the results for these programs. The timeout was set to 3600 seconds.
The code of the programs is available at https://tinyurl.com/tacascomus. We
include in the table also our running example, the Peterson algorithm.

The results demonstrate a clear advantage for CoMusS for verification (i.e., for safe programs)
as the number of threads increases. For falsification, CoMuS is outperformed by VVT’s bounded
method. However, it still performs significantly better than the two other tools when the number

of threads grows.

Hierarchical vs. Non-hierarchical Programs The programs used for this evaluation are
variants of the “fib_bench” examples of the SV-COMP concurrency benchmark. We compare
programs in which the data flow graph has a ring topology, vs. programs in which it has a chain
topology. Figure 7.1 presents such a program with three threads and a ring topology. For the
ring case, consider a program with threads %, . . ., ¢, and variables vy, . . . , v,—1. Each thread
t; runs in a loop, and iteratively performs v;+=v(;11(mod n))- The checked property is that vo
does not surpass an upper bound. The chain case is identical except that for the last thread, £,,_1,
we break the chain and perform v,,_;+=1 instead of v,,_;+=vg. Figure 9.2 presents the results

of this comparison. All the programs in the table are safe and with two loop iterations. The

76

https://tinyurl.com/tacascomus

Safe Unsafe
ColMus Colus

class| threads| Threader] VWT JULCSeq] Time | Seahorn Calls] Threader] VWT JULCSeqg| Time | Seahom Calls
mat 2 0.39 10.52 323 2.83 15 0.28 D54 295 1.25 5
mat 3 1.82 61.04 | 5952 1318 47 175 0.39 6.57 292 9
mat 4 32.84 | 46323 8383 | 3633 a9 4567 1.01 40.21 494 13
mat 5 1571.3 |2062.84| 193.64 | 70.75 129 292933 | 252 | 44978 | 15.26 39
mat 5 TO o 452 | 215.04 242 TO B2 | 182811 | 17.64 M
mat 7 O o o 578.25 390 O 13.21 TWO 23.52 47
pas 2 0.41 2.56 526 0.72 2 026 047 322 1.27 5
pas 3 6.13 8211 T6.76 13.93 43 48| 0.59 2.08 8.45 19
pas 4 35048 | 541.35 O 131.65 145 491,41 3.63| T 18.04 25
pas 5 O o o O - O 19.21| T\WO 50.48 48
long 2 0.32 012 3.22 053 2 0.19 01 2.36 0.43 1
long 3 22.72 0.96) 110.85 | 6.98 32 19.07 0.21 797 8.95 38
long 4 TO 10817 O 42.39 a0 TO 116 TWO 54.03 a0
long 5 O 1520.05] T\O 197.49 151 O 67.1 TWO 41433 224
long i TWO o TO [3077.29 585 TWO 395,91 TV [2380 44| 451
Pet 2 0.32 7.95 11318 | 17.85 45 - - - - -

Figure 9.1: Run times [secs] for all four tools for verifying concurrent dynamic programming
algorithms.

timeout was set to 1200 seconds.

For the ring case, all tools fail to verify programs with > 4 threads. Threader presents
similar results for both ring and chain topologies. VVT benefits from the less dependent chain
topology, but still timeouts on more than three threads. CoMuS, on the other hand, is designed
to exploit hierarchy, and benefits significantly from the chain topology, where it verifies all
instances. UL-CSeq is excluded from the table as it performs sub-optimally for “fib_bench”
examples (both in our experiments and in the SV-COMP results).

General Concurrent Programs We also evaluated the tools on a partial subset of the SV-
COMP concurrency benchmark, whose code is supported by CoMuS. Typically, on these runs
CoMusS was outperformed by the other tools.

We conclude that even though our method can be applied to programs without a clear

hierarchical structure, it is particularly beneficial for programs in which the hierarchy is inherent.

77

Ring Chain
ColMus Colus
threads | Threadery WVT Time | Seahorn Calls] Threader] VWWT | Time | Seahorn Calls

2 4.03 389 | 8.23 27 2.84 957 | 1.98 g

3 681.57 ™o | 111.32 272 615.87 [387.11(7.31 26
4 WO TG O - TWO TG | 20021 54
5 TG T o - T TG | 5311 102
B WO TG T - T T | 123.53 167
7 WO TG O - T TG | 307.3 265
2 TG T o - T T | 620.99 283

Figure 9.2: Run times [secs] for fib_bench programs with ring topology vs. chain topology.

78

Chapter 10

Conclusion and Future Work

10.1 Conclusion

In this work we develop an automatic, hierarchical and modular method for proving or disproving
safety of concurrent programs by exploiting model checking for sequential programs. The
technique chooses one “main thread”” and constructs a sequential program based on the main
thread and an abstraction of all other threads. It then uses a model checker on this sequential
program, and tries to determine the safety of the original program based on the model checker’s
result.

If the abstraction is not sufficient for a conclusive answer, we generate “environment queries”
to check whether the other threads can perform computations that would “help” the main
thread to reach a violation. The queries are answered by a recursive application of the same
approach, i.e., by creating a sequential program based on one of the environment threads, with
an abstraction of the rest. The number of abstracted threads decreases by one with every step of
the recursion, until we reach a single environment thread. In that case, environment queries are
answered by a single call to a model checker.

The method can use any off-the-shelf model checker, thus benefiting from possible develop-
ments in the field of sequential verification. The minimal requirement from the model checker
is to determine the safety of sequential programs, and to provide counterexamples in the form of
a violating path when the program is unsafe.

The method can handle infinite-state programs, assuming such programs are supported by
the sequential model checker. It is sound and unbounded. We proved that our method is sound,
ensured to make progress, and terminates in the case of finite state programs. We implemented
our approach in a prototype tool called CoMuS, which compares favorably with top scoring

model checkers on programs which have a hierarchical structure.

10.2 Future Work

Getting Inside the Model Checker Although a key aspect of the designed reduction is to be

independent of the chosen model-checker, there can be benefits for implementing the method

79

“inside” the model-checker. For example, when a model checker determines that a program is
safe, it typically learns certain invariants at different locations of the program. If the model-
checker is called to answer an environment query, such invariants can be used to learn properties
of the environment, that are more general than the specific question asked by the original query.
Thus, it can replace or diminish the need of our own generalization technique (which requires
additional model-checker calls). Further, since we generate a series of sequential programs that
are syntactically similar, it is to be expected that incremental techniques could yield a significant
speedup. In the future, we intend to exploit internal information gathered by the sequential

model-checker (e.g., SeaHorn) to further speedup our results.

Extension to Liveness An interesting view of our method is the question of whether it can
be applied to liveness properties as well. The main difference between liveness and safety
properties, is that liveness counterexamples are infinite. Given such a counterexample, possible
research directions are to try and compute a promise of error at some point along the infinite
counterexample (i.e., a property that ensures that the program will reach the infinite computation
violating the liveness property), or to reverse the counterexample analysis and try to compute a
strongest postcondition and an infinite precondition. [S] showed how liveness checking problems
can be transofrmed to safety checking problems for finite systems. However, it is remains an
open question if these ideas (or the other directions mentioned above) can be used to extend our
method.

80

Bibliography

[1] J. Alglave, D. Kroening, and M. Tautschnig. Partial orders for efficient Bounded Model
Checking of concurrent software. In Computer Aided Verification (CAV), volume 8044 of
LNCS, pages 141-157. Springer, 2013.

[2] R. Bellman. Dynamic programming. Courier Corporation, 2013.
[3] E. Bendersky. https://github.com/eliben/pycparser.

[4] D. Beyer and M. E. Keremoglu. CPAchecker: A tool for configurable software verification.
In Computer Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT,
USA, July 14-20, 2011. Proceedings, pages 184-190, 2011.

[5] A. Biere, C. Artho, and V. Schuppan. Liveness checking as safety checking. Electronic
Notes in Theoretical Computer Science, 66(2):160-177, 2002.

[6] A. R. Bradley. Sat-based model checking without unrolling. In Verification, Model
Checking, and Abstract Interpretation - 12th International Conference, VM CAI 2011,
Austin, TX, USA, January 23-25, 2011. Proceedings, pages 70-87, 2011.

[7]1 J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu. Learning assumptions for
compositional verification. In TACAS, pages 331-346, 2003.

[8] A. Cohen and K. S. Namjoshi. Local proofs for global safety properties. In Computer
Aided Verification, 19th International Conference, CAV 2007, Berlin, Germany, July 3-7,
2007, Proceedings, pages 55-67, 2007.

[9] B. Cook, A. Podelski, and A. Rybalchenko. Proving thread termination. In Proceed-
ings of the ACM SIGPLAN 2007 Conference on Programming Language Design and
Implementation, San Diego, California, USA, June 10-13, 2007, pages 320-330, 2007.

[10] L. De Moura and N. Bjgrner. Z3: An efficient smt solver. Tools and Algorithms for the
Construction and Analysis of Systems, pages 337-340, 2008.

[11] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[12] K. A. Elkader, O. Grumberg, C. S. Pdsdreanu, and S. Shoham. Automated circular
assume-guarantee reasoning. In International Symposium on Formal Methods, pages
23-39. Springer, 2015.

81

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

C. Flanagan, S. N. Freund, and S. Qadeer. Thread-modular verification for shared-memory
programs. In Programming Languages and Systems, 11th European Symposium on
Programming, ESOP 2002, held as Part of the Joint European Conference on Theory
and Practice of Software, ETAPS 2002, Grenoble, France, April 8-12, 2002, Proceedings,
pages 262-277, 2002.

C. Flanagan and S. Qadeer. Thread-modular model checking. In Model Checking Software,
10th International SPIN Workshop. Portland, OR, USA, May 9-10, 2003, Proceedings,
pages 213-224, 2003.

C. Flanagan and S. Qadeer. Transactions for software model checking. Electr. Notes Theor.
Comput. Sci., 89(3):518-539, 2003.

I. Gavran, F. Niksic, A. Kanade, R. Majumdar, and V. Vafeiadis. Rely/guarantee reasoning
for asynchronous programs. In 26th International Conference on Concurrency Theory,
CONCUR 2015, Madrid, Spain, September 1.4, 2015, pages 483-496, 2015.

P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems - An
Approach to the State-Explosion Problem, volume 1032 of Lecture Notes in Computer
Science. Springer, 1996.

G. Gueta, C. Flanagan, E. Yahav, and M. Sagiv. Cartesian partial-order reduction. In
Model Checking Software, 14th International SPIN Workshop, Berlin, Germany, July 1-3,
2007, Proceedings, pages 95-112, 2007.

H. Giinther, A. Laarman, and G. Weissenbacher. Vienna verification tool: IC3 for parallel
software - (competition contribution). In Tools and Algorithms for the Construction and
Analysis of Systems - 22nd International Conference, TACAS 2016, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven,
The Netherlands, April 2-8, 2016, Proceedings, pages 954-957, 2016.

A. Gupta, C. Popeea, and A. Rybalchenko. Predicate abstraction and refinement for
verifying multi-threaded programs. In Proceedings of the 38th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2011, Austin, TX, USA,
January 26-28, 2011, pages 331-344. ACM, 2011.

A. Gupta, C. Popeea, and A. Rybalchenko. Threader: A constraint-based verifier for
multi-threaded programs. In Computer Aided Verification - 23rd International Conference,
CAV 2011, Snowbird, UT, USA, July 14-20, 201 1. Proceedings, volume 6806 of Lecture
Notes in Computer Science, pages 412—417. Springer, 2011.

A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas. The seahorn verification
framework. In Computer Aided Verification - 27th International Conference, CAV 2015,
San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I, volume 9206 of Lecture
Notes in Computer Science, pages 343-361. Springer, 2015.

82

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]

T. A. Henzinger, S. Qadeer, and S. K. Rajamani. You assume, we guarantee: Methodology
and case studies. In Computer Aided Verification, 10th International Conference, CAV ’98,
Vancouver, BC, Canada, June 28 - July 2, 1998, Proceedings, pages 440-451, 1998.

S. K. Lahiri, A. Malkis, and S. Qadeer. Abstract threads. In International Workshop on
Verification, Model Checking, and Abstract Interpretation, pages 231-246. Springer, 2010.

A. Lal and T. W. Reps. Reducing concurrent analysis under a context bound to sequential
analysis. In Computer Aided Verification, 20th International Conference, CAV 2008,
Princeton, NJ, USA, July 7-14, 2008, Proceedings, pages 37-51, 2008.

K. R. M. Leino and P. Miiller. A basis for verifying multi-threaded programs. In Pro-
gramming Languages and Systems, 18th European Symposium on Programming, ESOP
2009, Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2009, York, UK, March 22-29, 2009. Proceedings, pages 378-393, 2009.

A. Malkis, A. Podelski, and A. Rybalchenko. Thread-modular verification is cartesian
abstract interpretation. In Theoretical Aspects of Computing - ICTAC 2006, Third Interna-
tional Colloquium, Tunis, Tunisia, November 20-24, 2006, Proceedings, pages 183—-197,
2006.

K. L. McMillan. Lazy abstraction with interpolants. In Computer Aided Verification, 18th
International Conference, CAV 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings,
pages 123-136, 2006.

T. L. Nguyen, B. Fischer, S. La Torre, and G. Parlato. Unbounded lazy-cseq: A lazy
sequentialization tool for C programs with unbounded context switches - (competition
contribution). In Tools and Algorithms for the Construction and Analysis of Systems - 21st
International Conference, TACAS 2015, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015.
Proceedings, pages 461463, 2015.

T. L. Nguyen, B. Fischer, S. La Torre, and G. Parlato. Lazy sequentialization for the safety
verification of unbounded concurrent programs. In Automated Technology for Verification
and Analysis - 14th International Symposium, ATVA 2016, Chiba, Japan, October 17-20,
2016, Proceedings, pages 174-191, 2016.

C. S. Pasareanu, M. B. Dwyer, and M. Huth. Assume-guarantee model checking of

software: A comparative case study. In SPIN, volume 99, pages 168—183. Springer, 1999.

C. S. Pasareanu, D. Giannakopoulou, M. G. Bobaru, J. M. Cobleigh, and H. Barringer.
Learning to divide and conquer: applying the L* algorithm to automate assume-guarantee
reasoning. Formal Methods in System Design, 32(3):175-205, 2008.

G. L. Peterson. Myths about the mutual exclusion problem. Inf. Process. Lett., 12(3):115-
116, 1981.

83

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

A. Pnueli. In transition from global to modular temporal reasoning about programs. In

Logics and models of concurrent systems, pages 123—144. Springer, 1985.

C. Popeea and A. Rybalchenko. Compositional termination proofs for multi-threaded
programs. In Tools and Algorithms for the Construction and Analysis of Systems - 18th
International Conference, TACAS 2012, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1,
2012. Proceedings, volume 7214 of Lecture Notes in Computer Science, pages 237-251.
Springer, 2012.

C. Popeea and A. Rybalchenko. Threader: A verifier for multi-threaded programs -
(competition contribution). In Tools and Algorithms for the Construction and Analysis of
Systems - 19th International Conference, TACAS 2013, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24,
2013. Proceedings, volume 7795 of Lecture Notes in Computer Science, pages 633-636.
Springer, 2013.

C. Popeea, A. Rybalchenko, and A. Wilhelm. Reduction for compositional verification of
multi-threaded programs. In Formal Methods in Computer-Aided Design, FMCAD 2014,
Lausanne, Switzerland, October 21-24, 2014, pages 187-194. IEEE, 2014.

S. Qadeer and D. Wu. Kiss: Keep it simple and sequential. In Proceedings of the ACM
SIGPLAN 2004 Conference on Programming Language Design and Implementation, PLDI
’04, pages 14-24, New York, NY, USA, 2004. ACM.

I. Rabinovitz and O. Grumberg. Bounded model checking of concurrent programs. In Com-
puter Aided Verification, 17th International Conference, CAV 2005, Edinburgh, Scotland,
UK, July 6-10, 2005, Proceedings, pages 82-97, 2005.

A. J. Robinson and A. Voronkov. Handbook of automated reasoning, volume 1. Elsevier,
2001.

N. Sinha and E. M. Clarke. Sat-based compositional verification using lazy learning. In
Computer Aided Verification, 19th International Conference, CAV 2007, Berlin, Germany,
July 3-7, 2007, Proceedings, pages 39-54, 2007.

E. Tomasco, O. Inverso, B. Fischer, S. La Torre, and G. Parlato. Verifying concurrent
programs by memory unwinding. In Tools and Algorithms for the Construction and
Analysis of Systems - 21st International Conference, TACAS 2015, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2015, London,
UK, April 11-18, 2015. Proceedings, pages 551-565, 2015.

E. Tomasco, T. L. Nguyen, O. Inverso, B. Fischer, S. La Torre, and G. Parlato. Lazy
sequentialization for TSO and PSO via shared memory abstractions. In 2016 Formal
Methods in Computer-Aided Design, FMCAD 2016, Mountain View, CA, USA, October
3-6, 2016, pages 193-200, 2016.

84

[44] B. Wachter, D. Kroening, and J. Ouaknine. Verifying multi-threaded software with
impact. In Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA,
October 20-23, 2013, pages 210-217. IEEE, 2013.

[45] M. Zheng, J. G. Edenhofner, Z. Luo, M. J. Gerrard, M. S. Rogers, M. B. Dwyer, and
S. F. Siegel. CIVL: applying a general concurrency verification framework to c/pthreads
programs (competition contribution). In Tools and Algorithms for the Construction and
Analysis of Systems - 22nd International Conference, TACAS 2016, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven,
The Netherlands, April 2-8, 2016, Proceedings, pages 908-911, 2016.

85

,INT DY NI NII0N NIRYINN NIX A'¥N (NIRAY WI9'N IX7 NnIon 7T Nz' T2 wnnwnn)
.DNKRN D'0INND 7¥Un NP N0 NIRXIN axn TV CoMuS

NNTON NIDNN NXIWNL NN YWX ,NNANN NIMIT NIMDN ApTa 2NN ARIvNn
D'0INN |2 VTN DNAT [N NIMDN DpTA nRIwnn N7 .SV-COMP nnnnnn *fib_bench
NwNl L NYavn NX "Mag" 7 ann 'Y D2 NIfdN P, NYA0 7w NI7I910 NN DRIYN
71 D"I7N D'UIND 12 ,X71 DI 1T D'VIND NIX 1TO07 N1 ,NI7) NMwY 7w nni7io10
75 ,NYaon NUaI71910 1Y . TA7 NINR 7Y ARIYA YN LI7R NfDN Y (DN Dapiva
nwI NnIT Nixa 7ye Threader 1> > .n%7yni 0'0IN NY2IX DY NIYDN NIM'RA 17W01 DY9ON
JINT N7 (AN Do NI7NN 1) NMwAwn Na71010 1y uo'w axa VVT 19'R1,0Mpnn
N"A7I910 MY D'7DN XY NNV? Mivawn 'Y a1 % jpime ,CoMuS
qQX 112y 0110 0'ixa axn X7 UL-CSeq .0'uin mimw ni7ya nifdn nnx? n9xni ,nvavn

T NNODYN2A NIdNNN NNX

D'WIN'AN 2ANY7 19X NINON 7Y D77 nirfapn nirdn v 0'7on DR NPT DYHYUN ARIYAN
.0NKRN 0" 7wn onino 1'n CoMuS v

N2 NIYV N2I9N IX NN2INYT NN NNYITIM ,N'VNIVIX NV'Y 1INN'D IT ATIAY2A ,0I1D'0Y7
D'a¥N 2NN DY NIDNA DN N0'YN .0"NNTo 7Tm '‘pTia 721xa My nirapn nirona
N210Y7 V712 YW ,CoMuS nwa 121I'01 722 NV'WN NX IYN'M .ANIoN K71 NNIX) X' .'9I01'X
L7 NRINY 19D NIMDN YW Nntion Apnn 11y ,0NNK 0'7'am 7Tm T 72m axnwna
1 (SeaHorn ,7wn%) 'maT0n 7TMn pTIA MY QOKI TWK 'M9 YT 7¥17 011dNN XK ,TNYA

JIMIRXIN DX NI Y'RNT

117 MYONN LI7Y D'1'2N NPT NIZN DIFNTTO NN XN 17Y DNMRZRAY DTN
anNn oy NI'7'apn NirdNa 7907 0'7a10n AR ,0191 C"gTNn" TN TR 702 wnnwn?
782 NI'1DNA JRIN 'MYTOoN 7TIMN PTIAY 'KINA L'DI01'X D'AXN

NIM'R 1Y 0'7'am 07 T2 ‘220 X nnat ,"CoMuS" nwa 11r'on "1 nu'wn DR nunm
17w MAToN 7TIMN pTIAd SeaHorn -A p'wnnwn nxk nir'zapn C nidn 2w nion 'Ma
NIN1 NNYLVN NNR OXN 771 (assertions) "nnyv™ nimionn C nidn 73 SeaHorn
X7 N95N QX D YT RIN,NONK .N907 722amn 71700 'tnn RIn,PE DTN .NN9NY
Jwnnn

NTAY X'N D IXIN YXAY 07100 X D770 N1ON 727 TIAYNY 0 NaxXIyn NNU'Y ,0INX
VYT 20 170 0IN 7D TWKRDE, MWW NAAI7I9I0] DATION D'OINN N2 NIYDN 1Y TN 210
NIYIYA [IYXIN 0INN N2 N'YA0 DI DY DT T .NYWIWA 2RIy uINn "'y IxIMmn
D'20 DN Y'9IN DT N12N .AX7N 21,0202 'WRIN VINN KN YN VINN L'UKRIN VINN KN
20T 1DN MNNRAYR 7w 01'7'apn D'win'na

1707 [0 NNTAY Y niMpvn nimnnn Lnin'oY

NIM'RN DXPITY NYXAN WK, NIM'APA NINDN NIN'K? NWTN D27 NWa DN DK e
UNNWN? N1 ,27 .NIFMITO NIMDN 1Y NIN'R NIYa 7w ANT0Y7 N'7'apnn NYdNN
JI'MATO NINDN 1A 7Tm-pTia D2

D'N2N D'UINN 227 TI7 VIN 72 AWRD ,NDI'N VAN NTEY N7XIN N7Y DYWan e
INTMY DX NININY7 NN 7Y N'DINA DTN D'OINND MY NININA TIXALL,NDINA

77NN ,7%V1 'ONIVIX 91X ,N'DNN TP 1K) VIN 7Y D20N A7 WNT yTn e
.DNMIN7RN N¥YN

ANI' DRIV OWIN DAY KD L7TA D'OIND 190N TWROY 1'RIN1 DNO'Y DX Dun'n e
MNNIAYR W DM DI (120,000 N1an W' [N NIFDN 1IAY 0NDIm 0fon
22T 10N

MWD . NNTOo 7Tm pTIad SeaHorn -2 wnnwn WX ,CoMuS nwa "1 nnu'w NX nwnm
n'»n an .UL-CSeq. T -1 VVT, Threader :p'anx nnom o' nwitw 72m CoMuS nx
y¥an D DA WX LM77 YD INT NuY? N animn nnixa v Threader ,0mnxn
757 1T NVYON AwWNNI ,NMVN'0 NNIXA D'VINN 727 ON"'NN KIN X ,N20 NI'IANINNT NLVYWON
.0M71mm n1'Rk UL-CSeq -1 VTT n*on .(hnX vin 7y y'own? 710' 0'ion 0in T¥') D'OIN AIT
NPT D'YNXINN DN [fan NIf7Rapn NN NIN'RA NI NIRAN DIPNn MITY 0790 17X
.(Mxnn1) 2017 -1 2016 nawa ,SV-COMP nnnna ,nnion X7 7TIn

NYI7Y 7V D'790 NIANINN DR NPT ,NIYRIN 0700 NDIWN NIX7 NIKNYA WI7Y yxa
.0'0IN 7@ 910 1901 757 N'YAL NNTAN W' 7R DMNNIATRY .07 1T 10N MNNIYR
,D'NNMA7RN NYI7WUN TR 727 .071Y D'0INN 190N TWKRD NI DY KIN NIN'RN L'019'0 91X
Iwn 7y y'own Nt 190N TXD 11N21L,D'0IN 7Y NINWN 190N DY NIMDN 72y 00N DX NPT
D'¥1 [OX D'0IND ,0N170) NYIRIIMV K7 NI''APN DA'YN NNIY DMNNIRTRN NYI7Y NIn'RN
D'7713 21 (J*OI707 DNXY DX IN"O' DMI7N DN DN D'UINY ['NANY D'WIT X7 D'OINE 7' 27N
DAPIVA 711 X D7D D'0INNE X701 1TO '9% D'UINN DX 1TO07 N1 12 ,0N2 DI N1an
NI NIRXINN .AXRAY 177OW NIDN DAL NNV NIDN DA NPT ,ARIYAN IXY .0nY
VTT ,nixaw nx'¥n 1Ay .n71y 0'0INN 1901 TUXD NN nim'ka CoMusS -7 ana jnne

AN Y'X N

,NI'MITO NIIDN NIN'RA DRAINN DNANKYT 90112 AN NWR DA X' NI'7\apn NINdN Nin'N
['AN'0Y7 DO'¥1 D'UINN DN ,DIW'N 7w (DION X7 2NY7) NIA2 190N AWNNN7 IXN 9o
MIX7 [N7W M72TMN N1ann DX X171 NI017 wpann L1980 NN OIY .0NNWN DT
NNX 72W 7D NNRDN NXAR? Apin? NI X7 a0 NONN YW NN ,aN%w RIX . NIm'R
127 D'Ion YT NYAIT D'0IND TR 1Ay NIDNN NNDIN L PY .0'0INn TR 1Y Nmipnm
IN210 DY 17¥ DXPRIVI'RN

NI'DN NIAR XY NITIAYA Y95W DX N7¥IN WWKR AYTN DY D'NNSN X LIT DTy
'ONIVIX |DIN2 NYX¥IN N7W N0'wD N NIMDN 7Y A7) Nim'k 10N NIrmATo
,)2'97 .NIMNTO NIMdN 7w NIR'R NI'YYa NNTOY ,N'Y7'Apn NN NIN'K 7¢ nvann a'xpim
STNTO NIN'R 7Y DINNA ,NIFTNY NFINNSNNN |21 ,NMI00'Y NINNSNN 721 N'INNT 701

DY ,TTIA VIN 7Y NIN'R7 2022 DNIT D'NNTO DMK NN'wn 75 2 ,NN2Imm 17w nwnan
N¥M 170N '0NI0IX DIXA 072NN 17X DRIND .7V19 XIN N2 D200 217 0901 DN 17K '
NIXD P97, 0NMINTRN

D'VINN TNX N'97 ,N'1DNN 227 NN VAN NTIRA NXIN XK'WY KINLINWA 7Y TN |9
NIN'R NIYYNIX] 'WURIN VIND DX D'NNIN X .IN207 D'AwN) XY ""URIN uIN"? awn)
naw "y (over-approximated) niowsim na'200 NINAYNN 72 ,NINIK] 112Y WWRD ,'NNTO
) "wEn N97NN 71pw7 NIX w12 27w 701 'wran uinn My XKapn nnawn L"nanno-Tuy" nwa
.(context switch

5% (havoc NTIPO Niy¥nxa) D"VOIMIVT-'R 0DV NAND "Nano-Tvy" MY ,n7'nn
D> MITIVA NNAYN ,ONMIZRN DY 17002 .N2001 'URIN VINND 7¢ 0'9NIvnNn DNYNn
AN NPT NNIXD N2'A0N DX AT

AWKR 71700 'TNN KIN'URIN 0N NIRID] NWO 7 D190 N7an 'MYToN 77NN 7T AWUXD
NnIn% NNy N1onn Nt NpEnat L"nano Tvx" niknp 2170% twy 1%onn Lt nnont mam
DNNIATRD L7 D200 7w nVWONN Ay L(NNIEAN NDNA NNte K7W 1T i) nnim
19¥1 TWK ,NINY0A NI'QIYNN DXN Z1ITA7 NNy 'URIN 0IND 7¢ D207 nNin7'xy ol
NNAYN . NMYOR-'M71d N7aNN NIQYNN QWKRD .N2'202 NIMWON PR ;1900 717000 IRT
AT NI2WNN 72190N X7 > maTivn "nano Tux"

NN NMIDNN W XM NIM'R YWOKT? NIn 7y 'oon N N'wyl "nano Tyx" 91017
N'TA XNAIT NI7AY WY DNMNZRN L'917'N7 .N2'0N 7¢ nowONNI 'URIN VINN NIYXNAR]
JURIN VIND (NNITA NI'RY) N'MMR

27 .1 91X IMIKA (D'0IN 190N NNV 71707 N'IYYY) N210N 1Y NPT NIN'RYN
N¥M 7NNy Nroan N7Y DL'YN 7Y DN 'DIRD DI M2ITIR NIRYK DY 1R
D'VINA NININA TI¥A1 ,N'DIN'NA O'RAN D'VINND A7 'Y YT TRI? vIN 75 ,DNMINYRN
ANTMY NX NININY NIN-7V A DMTIR

NI21D1 NINY DA N7 X'D,NI7D .0I0N-"N72 NIN'K NyXanl |'uI7N7 N'ONIVIX N7Y N0'YUN
N7ANNN YT NINDN 7Y Ipnn-TI NN NTAW XD C.JNMPN NIMDNA NIRAY KIXNY DAl
") mimni ("assertions") nnyv W NIIXa 'WRIN VIND 7Y TIRA AN N2R0N 1Y
."Nano Tvy" mawn ma ("assumptions

AYNNN 'WTN? n071791 , 001V [NY 1" T 2121012 NIR 110919 7¢ [NT'NINA YXIA pNnn

NnITin

NN'NTN NNIN DA DN 7Y ,202N072 N1X .99 LW NNINYT NITINT XN IR ,MIYRIAL UKD
1ONWNYT "7 NTY TNNY D 7V ,NRIUNN DNIYN DI'YIAYN NIYASN 7Y NTIN .X791 OTX DAl
,ANINS NN"N T'NAN N7TY D 72V NTIN .APNN NN 20?1 PN7 MIR NTTIYY D 791 ,'MTIaya
TINT71 AN'R TIAY7 NIy 71Ta TIRA T2 D AT LTI NINNY 0'TIMY0 NYIin DX 1907 N1ty
Jnn

2V NTIN LT ATIAYA DIXYN P70 Y 00 [NY "T e noonn nnnt NIminG axn ax
TN AT .0TN NQ'WNI D'WTN NIRIYY DY NNI97 Nwad 7D 1907 N0 w1 ,)7w nintonn
NTIN Y'OX 'INI X791 DTRI X791 NNIN NIX .[1'1D02 DAl X"N2 02 NIXK WIAD7 NIay n1nn N
ANADNNTY 7Y

MIX DNTA™Y DTN .N'DI01'KN DNO'ANI DNANK 7V ,2%1 117 7w 0N NImn% nxn X
'N2 27w 701 "7'awa W DNTAY YD 7WI,N00a2 (DY

DIVN D' DA ITN NDIPNN 170N 'MIX N7 NP 7Y DNAN? DITING DX R L9107
,)'wUNNT Y7 NNTYIE A NDAN TN 070011 NIND DIV DA DAlL,DTRNN? 'MNY¥N DN NI
.NX¥17 7D 7V NTIN 'OXK N'NI

JNIN7NYNA NA'TIN D900 Nd'NNN 7V |I']DU'7 NTIN "IXR

NI'7'2n NINDN 7Y 1IN hIRX
N'NNTO 77TIN NZ' T2 NIYXNNA

NN 7y 11an

ARINN N7277 NIYA TN 7 @90 17 Wt
AwNnn 'YTnl 0'v? 100an

'O |T

7RWY7 171100 |1DN - [1'1DVN V10T YAIN

2017 "anan no9'n n"ywnn 170>

NI'7'2an NINDN 7Y 1IN hIRX
N'NNTO 77TIN NZ'TA NIYXNNA

'O | T

	List of Figures
	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Organization

	2 Preliminaries
	3 Reduction to Sequential Verification
	3.1 From Concurrent to Sequential Programs
	3.2 Interface Between Main and the Environment
	3.3 What's Next

	4 Analyzing the Main Thread
	4.1 The Structure of PM
	4.2 Representation of P Within PM
	4.3 Initial Construction of PM
	4.4 Iteration of the MainThreadCheck Algorithm
	4.5 Analyzing a Potentially Spurious Violating Path
	4.6 Generalizing an Environment Query

	5 Soundness and Progress of the Main Thread Analysis
	5.1 Soundness
	5.2 Progress and Termination

	6 Answering Environment Queries
	6.1 Sequential Program for Answering Environment Queries
	6.2 Correctness of Environment Query

	7 Extending the Algorithm
	7.1 Extending to Multiple Threads
	7.2 Environment Queries with Multiple Threads
	7.3 Extending Assertions to all Threads of P

	8 Optimizations
	8.1 General Optimization
	8.2 Optimizations for Generalizing Environment Information
	8.3 Multiple Threads Optimizations

	9 Experimental Results
	10 Conclusion and Future Work
	10.1 Conclusion
	10.2 Future Work

