
Scalable Data Extraction via Program
Synthesis

Adi Omari





Scalable Data Extraction via Program
Synthesis

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Adi Omari

Submitted to the Senate

of the Technion — Israel Institute of Technology

Nissan 5778 Haifa March 2018





This research was carried out under the supervision of Prof. Eran Yahav and Dr. Sharon Shoham,

in the Faculty of Computer Science.

Some results in this thesis have been published as articles by the author and research collaborators

in conferences and journals during the course of the author’s doctoral research period, the most

up-to-date versions of which being:

Adi Omari, David Carmel, Oleg Rokhlenko, and Idan Szpektor. Novelty based ranking of human answers
for community questions. In Proceedings of the 39th International ACM SIGIR conference on Research
and Development in Information Retrieval, pages 215–224. ACM, 2016.

Adi Omari, Benny Kimelfeld, Eran Yahav, and Sharon Shoham. Lossless separation of web pages into
layout code and data. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1805–1814. ACM, 2016.

Adi Omari, Sharon Shoham, and Eran Yahav. Cross-supervised synthesis of web-crawlers. In Software
Engineering (ICSE), 2016 IEEE/ACM 38th International Conference on, pages 368–379. IEEE, 2016.

Adi Omari, Sharon Shoham, and Eran Yahav. Synthesis of forgiving data extractors. In Proceedings of
the Tenth ACM International Conference on Web Search and Data Mining, pages 385–394. ACM, 2017.

ACKNOWLEDGEMENTS

The Technion’s funding of this research is hereby acknowledged.





Contents

List of Figures

Abstract 1

1 Introduction 3
1.1 Cross-Supervised Synthesis of Web-Crawlers . . . . . . . . . . . . . . . . . . 4

1.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Existing Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.4 Key Aspects of the Approach . . . . . . . . . . . . . . . . . . . . . . 6

1.1.5 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Synthesis of Forgiving Data Extractors . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.3 Existing Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.4 Key Aspects of the Approach . . . . . . . . . . . . . . . . . . . . . . 8

1.2.5 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Lossless Separation of Web Pages into Layout Code and Data . . . . . . . . . 10

1.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.3 Existing Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.4 Key Aspects of the Approach . . . . . . . . . . . . . . . . . . . . . . 12

1.3.5 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Separation of Web Sites into Layout Code and Data . . . . . . . . . . . . . . . 13

1.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4.3 Existing Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4.4 Key Aspects of the Approach . . . . . . . . . . . . . . . . . . . . . . 14

1.4.5 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Cross-Supervised Synthesis of Web-Crawlers 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19



2.2.1 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Cross-Supervised Learning of Crawling Schemes . . . . . . . . . . . . 20

2.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Logical Structure of Webpages . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2 Concrete Layout of Webpages . . . . . . . . . . . . . . . . . . . . . . 24

2.3.3 XPath as a Data Extraction Language . . . . . . . . . . . . . . . . . . 25

2.4 The Crawler Synthesis Problem . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Data Extractor Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.2 Implementation using sequential XPaths . . . . . . . . . . . . . . . . . 30

2.6 Crawler Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7.2 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Synthesis of Forgiving Data Extractors 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Motivating example . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Decision Tree Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.2 Decision Tree Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Forgiving XPath Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.1 Decision Trees with Varying Precision . . . . . . . . . . . . . . . . . . 48

3.4.2 Translation of Decision Trees to Forgiving XPaths . . . . . . . . . . . 49

3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.2 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.3 Evaluating the Different Performance Aspects . . . . . . . . . . . . . . 51

3.5.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



4 Lossless Separation of Web Pages into Layout Code and Data 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Overview: Problem and Solution . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.3 Key Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Preliminaries and Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5.1 Separation and Solution Space . . . . . . . . . . . . . . . . . . . . . . 68

4.5.2 Separation Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6.1 The General Separation Algorithm . . . . . . . . . . . . . . . . . . . . 69

4.6.2 Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6.3 Folding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6.4 Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.7.1 Evaluation of Data Extraction . . . . . . . . . . . . . . . . . . . . . . 74

4.7.2 Evaluation of Code and Data Separation . . . . . . . . . . . . . . . . . 76

4.7.3 Running Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.8 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Separation of Web Sites into Layout Code and Data 81
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Overview: Problem and Solution . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.1 Motivating example . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4.1 Separation and Solution Space . . . . . . . . . . . . . . . . . . . . . . 88

5.4.2 Separation Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5.1 Building the Guide Set . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.5.2 Website Separation based on Guide Set . . . . . . . . . . . . . . . . . 92

5.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.6.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.6.2 Representative set selection evaluation . . . . . . . . . . . . . . . . . . 93

5.6.3 Page Classification and Clustering . . . . . . . . . . . . . . . . . . . . 94

5.6.4 Separation Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



6 Conclusion and Open Questions 99
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Hebrew Abstract i



List of Figures

1.1 “Through the looking glass” book in Amazon.com and Barnes & Noble . . . . 5

1.2 Automatic synthesis of web-crawlers for a group of site given a web-crawler for

a site from the same category. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Forgiving XPath synthesis process. . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 A list of books from Barnes & Noble . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Lossless separation of an HTML page to code and data. . . . . . . . . . . . . . 12

2.1 Fragments of webpages with the similar attribute values for a book on two

different book shopping sites. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Crawler for java books from Barnes&Noble. . . . . . . . . . . . . . . . . . . . 21

2.3 Example DOM trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Crawling scheme for BLACKWELL. . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Crawling scheme for B&N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Results: Crawling scheme completeness (left), URL filtering (middle) and

Attribute extraction (right) for each category. . . . . . . . . . . . . . . . . . . 34

2.7 Attribute extraction precision and recall, and crawling scheme completeness,

as a function of the threshold of Jaccard similarity used to define equivalence

between instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Fragments of webpages with the author attribute values for a book on three

different book seller sites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Example decision trees over XPath predicates and their respective XPath trans-

lations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Fragment of a modified book information page. . . . . . . . . . . . . . . . . . 45

3.4 The F-measure values of different approaches for seen sites, as a function of

number of sites in training set. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 The F-measure values of different approaches for unseen sites, as a function of

number of sites in training set. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 The F-measure values when evaluated on different page versions, as a function

of number of versions in training set. . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 A simple webpage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 A sample static html snippet that we would like to separate into code and data. 63



4.3 (a) The DOM tree of the original HTML document, and (b) the layout tree

produced by our approach from this DOM tree. . . . . . . . . . . . . . . . . . 64

4.4 Code synthesized for the given static HTML. . . . . . . . . . . . . . . . . . . 64

4.5 The data extracted for the given static HTML. . . . . . . . . . . . . . . . . . . 64

4.6 Example steps of the separation algorithm. . . . . . . . . . . . . . . . . . . . . 65

4.7 Running times as a function of the nodes count for the different documents in

the two datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1 Snippets of static HTML pages. . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Code synthesized for the given static HTML pages. . . . . . . . . . . . . . . . 86

5.3 Data synthesized for the given static HTML pages. . . . . . . . . . . . . . . . 86

5.4 Main steps of the separation algorithm. . . . . . . . . . . . . . . . . . . . . . . 87

5.5 (a) Two DOM trees of the original HTML documents, and (b) the layout tree

produced by our approach from these DOM trees. . . . . . . . . . . . . . . . . 87



Abstract

Web extraction is an important research topic that has been studied extensively, receiving a

lot of attention and focus. Large amounts of data are produced and consumed online in a

continuous and growing rate. The ability to collect and analyze these data has become essential

for enabling a wide range of applications and improving the effectiveness of modern businesses.

Web extraction methods facilitate the collection and analysis of these data by transforming

the human friendly data available online into structured information that can be automatically

manipulated and analyzed.

In this work we address the data extraction problem from a software synthesis perspective.

Our goal is not only to extract data from web-sites, but also to synthesize programs that extract

the data from these sites. The growing popularity of data extraction query languages and their

increasing use in a wide variety of applications make them a natural target for automatic synthesis

methods. Another motivation for using synthesis for web extraction related applications is

the fact that web applications are often generated dynamically using template code. Reverse

engineering web pages at the page and site level may facilitate - among other applications -

unsupervised web extraction.

First, we focus on the problem of automatic synthesis of web-crawlers for a family of

web-sites that contain the same kind of information but differ on layout and formatting. We

propose a method that uses the data shared among sites from the same category in order to

decrease or eliminate the manual tagging needed for generating extraction schemes for these

sites. We use the data on one site to identify data on another site. The identified data is then used

to learn the website structure and synthesize an appropriate extraction scheme. This process

iterates, as synthesized extraction schemes result in additional data to be used for re-learning the

website structure.

In our second work, we address the problem of synthesizing robust data extractors from

a family of web-sites that contain the same kind of information. Robust data extractors are

more likely to withstand structural changes in the data-source, and can therefore reduce the data

extractor’s maintenance cost. We introduce and implement the idea of forgiving extractors that

dynamically adjust their precision to handle structural changes, without the need to sacrifice

precision upfront.

Finally, to address the unsupervised data extraction problem, we propose a solution to the

more general problem of separation of web-pages into template-code and data. Web pages

are often served by running layout code on data, producing an HTML document that formats

the data into a human readable and elegant presentation. We considered the opposite task:

1



separating a given web page into a data component and a layout program. This separation has

various important applications including unsupervised data extraction, traffic compression, data

migration and template-code simplification. In our last work, we generalized our separation

approach to address the problem of site-level separation.

2



Chapter 1

Introduction

In this thesis, we address the problem of scalable data extraction via program synthesis. The

work is composed of four chapters:

1. Cross-Supervised Synthesis of Web-Crawlers (Chapter 2) addresses the problem of

automatically synthesizing web-crawlers for a family of websites that contain the same

kind of information but may significantly differ on layout and formatting.

2. Synthesis of Forgiving Data Extractors (Chapter 3) addresses the problem of synthesizing

a robust data-extractor from a family of websites that contain the same kind of information.

3. Lossless Separation of Web Pages into Layout Code and Data (Chapter 4) addresses the

issue of separating a given web page into a data component and a layout program.

4. Separation of Web Sites into Layout Code and Data (Chapter 5) addresses the separation

of a website into a small number of layout programs and structured data sources

Program synthesis for data-extraction: In this work we explore different ways in which

program synthesis can facilitate data-extraction. One direction is to use program-synthesis

techniques to automatically synthesize web-extraction programs. We explore this direction in

Chapter 2 where we propose a method for automatic synthesis of data-extraction oriented web

crawlers for a group of sites, and in Chapter 3 we propose a method for automatic synthesis

of robust web-extraction queries. Another direction that we explore in Chapters 4 and 5 is to

separate web-pages into template code and data. Our separation approach outperforms state of

the art methods for unsupervised record-level data extraction.

Many different techniques has been developed to deal with the data-extraction problem,

leveraging methods coming from various disciplines including Machine Learning and Natu-

ral Language Processing. Ferrera et. al. [FDMFB14] review some of these data-extraction

approaches, and classify them into categories. All of the method proposed in this thesis can

be classified (According to [FDMFB14]) as tree-based techniques. We represent web-pages

as labeled ordered rooted trees, where labels represent the HTML tags, and the tree hierarchy

represents the nesting structure of the web-page elements. Our extractor synthesis methods

(detailed in Chapters 2 and 3) use XPath to address the document elements, while our separation

based methods (detailed in Chapters 4 and 5) use a variance of tree-alignment algorithm to

3



perform the separation. We compare the input, output and type of our different methods in

Table 1.1.

Work Type Input Output
Cross-Supervised
Synthesis of Web-
Crawlers (Chapter
2)

Extractor
synthesis

A set of websites contain-
ing the same type of data,
and a web-crawler for one
of these sites.

Set of web-crawlers, one
for each site in the input
set.

Synthesis of Forgiv-
ing Data Extractors
(Chapter 3)

Extractor
synthesis

A set of tagged documents
from different sites

A single data extractor that
works on all the different
input sites

Lossless Separation
of Web Pages into
Layout Code and
Data (Chapter 4)

Separation an HTML page A layout-code file and a
data file

Separation of Web
Sites into Layout
Code and Data
(Chapter 5)

Separation A sample set of web pages
from a single web site

A set of layout code pages
and their respective data
files.

Table 1.1: A summary of the techniques presented in this dissertation.

In the rest of this section, we introduce each of our works separately.

1.1 Cross-Supervised Synthesis of Web-Crawlers

1.1.1 Motivation

The world wide web is a rich source with growing amounts of unstructured and semi-structured

of valuable data. Lately, a lot of efforts were put in order to enable web crawlers to identify and

extract these unstructured data. Due to the different formats of websites, the crawling scheme

for different sites can differ dramatically. Manually customizing a crawler for each specific site

is time consuming and error-prone. Furthermore, because sites periodically change their format

and presentation, crawling schemes have to be manually updated and adjusted.

While the structure of documents is significantly different between different sites, we found

that sites from the same category often have shared data instances. For example, Fig. 1.1 shows

two different bookseller web sites. Documents of these web sites have significantly different

structure and style. However, these bookseller web sites have many shared book titles and

authors names. In this work, we use this fact to enable automatic synthesis of web crawlers for

a group of web sites based on a web crawler for a single site from the same category.

1.1.2 Problem Definition

Chapter 2 considers websites whose data-containing webpages share the following logical

structure: each webpage describes one main relation, denoted data. As such, data items are

tuples of the data relation. Further, the set Att of attributes consists of the columns of the data

relation.

We define the problem of crawler synthesis w.r.t. a set Att of attributes as follows: Given a

4



Figure 1.1: “Through the looking glass” book in Amazon.com and Barnes & Noble

set S of websites, where each website s ∈ S is associated with a set of webpages, denoted P (s),

and with a data extractor, denoted E(s), which might be partial or even empty. The goal is to

synthesize a complete data extractor for every s ∈ S. A data extractor is a mapping between the

logical structure of a webpage - defined by the set Att of attributes each data item conatins - and

its concrete layout.

1.1.3 Existing Techniques

One of the related problems to crawler synthesis is the problem of wrapper induction [KWD].

The goal of wrapper induction is to automatically generate extraction rules for a website

based on the regularity of pages inside the site. In contrast to supervised wrapper-induction

techniques [KWD, LG14, LPH00, CH04], which require labeled examples, and unsupervised

wrapper-induction techniques [AGM03, CL, CMM01, MK07, MTH+09, RGSL04, ZL05] that

frequently require manual annotation of the extracted data, our approach uses cross supervision,

where the learned extraction rules of one site are used to produce labeled examples for learning

5



the extraction rules in another site.

Our crawler synthesis technique is also related to corpus-based schema matching techniques

[MBDH05, HCH04] and distant-supervision relation extraction techniques [HZL+11, MBSJ09].

In contrast to corpus-based schema matching methods that match two structured (or annotated)

data sources, our technique matches an unstructured data-source with a target data-scheme and

synthesizes extraction queries to extract the data into a target structured data-source. Distant-

supervision relation extraction techniques use weak-supervision to solve the different problem

of automatically learning entity-relation extractors (e.g. learn a regular expression to extract

company-founder information from text).

Our main idea is to try and leverage a similar regularity across multiple sites. However,

because different sites may significantly differ on their layout, we have to capture this regularity

at a more semantic level. Towards that end, we use the shared data instances among these

different websites, which allows us to identify commonality even in the face of different

formatting details.

The technique described in chapter 2 generates XPath [CD+99] expressions, a widely used

web documents query language along with regular expressions. This makes our resulting

extraction schemes human readable and easy to modify when needed. XPath robustness to

site changes [DBS09a, LSRT14, LWLY12] is another related problem to our work. While

robustness is a desirable property, our ability to efficiently synthesize a crawler circumvents this

challenge as a crawler can be regenerated whenever a site changes.

1.1.4 Key Aspects of the Approach

Despite the significant differences in the concrete layout of websites, the pages of websites that

present the same product category often share the same logical structure; they present similar

attributes for each product. The main idea is to exploit this data overlap across sites in order to

learn the concrete structure of a new website s based on other websites.

Iterative synthesis of crawling schemes Our approach (illustrated in Fig. 1.2) considers a set of

websites, and a set of attributes to extract. To bootstrap the synthesis process, the user is required

to provide the set of websites for which crawler synthesis is desired, as well as a crawling

scheme for at least one of these sites. Our iterative algorithm consists of three main steps:

Extraction: For each site (denoted sdone) that have a new web-crawler (that we have as input

or from the previous iteration) run the web-crawler on sdone to extract data instances for each

data-attribute and add them to our attribute instances-database.

Identification of data-attribute instances: For each site s that is still without a web-crawler.

We use the concrete data extracted from other sites (instances database) to identify attribute

occurrences in s and as such learn the structure in which this data is represented in s. We do

not require a precise match of data across sites, as our technique also handles noisy data. (For

example, prices do not have to be identical; any number can be a match.)

Crawler synthesis using the identified occurrences as examples: We then use multiple exam-

ples of the structure in which the data appears in s in order to generalize and get an extraction

6



Figure 1.2: Automatic synthesis of web-crawlers for a group of site given a web-crawler for a
site from the same category.

query for s. This enables our algorithm to extrapolate a crawler for s.

Crawling schemes Given a set of attributes, a crawling scheme consists of the following two

components: (i) A data extraction query that defines how to obtain values of the attributes for

each item listed on the site. (ii) A starting point URL and a URL filtering pattern which let

the crawler locate “relevant” pages and filter out irrelevant pages without downloading and

processing them.

Two-level data extraction schemes We assume that the data extraction query has two levels:

The first level query describes the item container. Intuitively, a container is a sub-tree that

contains all the attribute values we would like to extract. The second level queries contain an

extraction XPath for values of each individual attribute. These XPaths are relative to the root of

the container.

1.1.5 Main Contributions

The contributions in Chapter 2 are:

• A framework for automatic synthesis of web-crawlers. The main idea is to use hand-

crafted crawlers for a number of websites as the basis for crawling other sites that contain

the same kind of information.

• A new cross-supervised crawler synthesis algorithm that extrapolates crawling schemes

from one web-site to another. The algorithm handles pages with multiple items and

synthesizes crawlers using only positive examples.

• An implementation and evaluation of our approach, automatically synthesizing 30 crawlers

for websites from nine different categories: books, TVs, conferences, universities, cam-

eras, phones, movies, songs and hotels. The crawlers that we synthesize are real crawlers

that were used to crawl more than 12, 000 webpages over all categories.

7



1.2 Synthesis of Forgiving Data Extractors

1.2.1 Motivation

Web sites often change their formatting and structure, even when their semantic content remains

the same. This change in structure causes extractors to break repeatedly, which results in high

maintenance costs for these extractors. A robust extractor [DBS09b, LSRT14, LWLY12] can

withstand modifications to the target site. A non-robust extractor would have to be adjusted

(typically manually) every time the formatting of a site changes.

When constructing a data extractor, there is a natural tradeoff between accuracy and ro-

bustness. Constructing a precise extractor may prevent it from being robust to future changes.

Constructing a loose extractor makes it more robust, but would yield results of poor accuracy.

Forgiving extractors can dynamically adjust their precision to handle structural changes, without

sacrificing precision when it is unnecessary.

1.2.2 Problem Definition

Given a set of example annotated web pages from multiple sites in a family, our goal is to

synthesize a robust data extractor that performs well on all sites in the family (not only on the

provided example pages).

1.2.3 Existing Techniques

Manually writing a data extractor is extremely challenging. This motivated techniques for

automatic generation of extraction queries from examples [KWD]. Automated techniques

reduce the burden of writing extractors, but still require manual effort (e.g., providing tagged

samples for each site).

There has been a lot of work on pattern based techniques, using alignment of XPaths

(e.g., [RGSL04, NDMBDT14, NBdT16]). These techniques learn paths to the annotated data

items and generalize them to generate an extraction query. When provided with items that have

significantly different paths (e.g., originate from different sites) these techniques may result in

an overly relaxed query expression, and significant loss of precision. As a result, pattern based

techniques are often limited to a single web site, and are sensitive to formatting changes.

Model based techniques [HCPZ11, FK04, SWL+12, Kus00], use features of DOM elements

to learn a model that classifies DOM items to data and noise. These methods have several

drawbacks. First, they lack a standard execution mechanism for extraction (in contrast to XPath

queries that are available for pattern based techniques). Second, the classifiers trained by these

techniques are often hard to understand and modify. Last, but not least, the generalization in

these models is performed at training time and thus presents the standard dilemma between

precision and generality.

1.2.4 Key Aspects of the Approach

Our approach is based on the assumption that, despite the structural differences between sites

from the same semantic family, the data locations in these sites still share some local structural

features (e.g., a book title may appear under some heading class, or its parent may be of some

8



Figure 1.3: Forgiving XPath synthesis process.

particular class). Training on few sites from the family will cover most of these shared local

structural patterns. Our forgiving XPath generation process (illustrated in Fig. 1.3) consists of

three steps:

XPath features extraction: Given a set of tagged HTML documents, our method extracts a

large set of XPath features from these documents. The extracted features are expressible by

valid XPath queries. These features are used as the building blocks for generating the XPaths.

Each feature is defined by an XPath predicate, such that the value of the feature in a document

node is 1 iff the value of the XPath predicate on the same node is true.

Precise extractor learning using decision-trees given a set of annotated pages from different

sites, we use decision tree learning to synthesize a common XPath query that precisely extracts

the data items from these pages. Intuitively, the decision tree is used as a generalization

mechanism that picks the important features for precise extraction. The overall set of features

consists of XPath predicates that capture local syntactic structural properties. The decision

tree is used to synthesize a query with high robustness, while maintaining its precision on the

training set.

Forgiving XPath synthesis The XPath query constructed in the previous step is precise for pages

in the training set, but may be overly restrictive for extraction from other pages. To generalize

to other pages, we introduce the novel notion of forgiving XPaths—a query that dynamically

relaxes its requirements, trading off precision to make sure that target items are extracted. Given

the decision tree we learnt earlier, we create a sequence of decision trees with a monotonically

decreasing precision and a monotonically increasing recall by pruning the resulting decision tree

in steps with decreasing minimal precision threshold. This sequence of monotonically pruned

decision trees is used to generate a sequence of XPaths with decreasing precision and increasing

recall. The forgiving XPath is then generated by concatenating these XPath into a single XPath

in a way that guarantees that highest precision XPath is invoked first, and only if it returns no

results the following XPath with next lower precision is invoked.

The query generated by our approach has the benefits of both pattern based techniques

and model based techniques. On the one hand, it is a standard XPath query, which has a wide

support from web-browsers, programming languages and DOM parsers. This also makes it

9



human readable, easy to review and modify by a programmer. On the other hand, the query has

the flexibility and generalization ability of the techniques based on learning models. Table 1.2

compares our method to other popular extraction methods.

XPath alignment Classifier based Forgiving XPath

Readable/Editable Yes No Yes
Standard XPath Yes No Yes
Generalization No Yes Yes
Robustness No Yes Yes
Forgiveness/ Dynamic precision No No Yes

Table 1.2: Comparison between our forgiving XPaths and the different popular data-extraction
approaches

1.2.5 Main Contributions

Main Contributions The contributions in Chapter 3 are:

• A novel framework for synthesis of robust data extractors for a family of sites from

examples (annotated web pages).

• A new technique for generalization of XPath queries using decision trees and “forgiving

XPaths”, which adjust precision dynamically.

• An implementation of our technique in a tool called TRACY and an experimental evaluation

of the robustness and generality of the forgiving extractors. We evaluate precision and

recall on: (i) different pages from sites in the training set (ii) pages from different versions

of sites in the training set (iii) pages from different (unseen) sites. Our evaluation shows

that TRACY is able to synthesize robust extractors with high precision and recall based on

a small number of examples. Further, comparison to existing pattern based and model

based techniques shows that TRACY provides a significant improvement.

1.3 Lossless Separation of Web Pages into Layout Code and Data

1.3.1 Motivation

A modern web page is often served by running layout code on data, producing an HTML

document that enhances the data with front/back matters and layout/style operations. While

templates are useful for the human user, improving readability and providing uniformity among

the different pages of a web site, they are considered a problem for web crawlers and data

extractors. Templates often contain irrelevant information that makes crawling less efficient

and can affect the indexing accuracy. Fig. 1.4 shows a bookseller web page snippet (from

barnesandnoble.com). The snippet contains three book items, each contains the book title, the

author name and the book price among other info. These items share the same template, that is

used to format the book information into a human readable listing.

In this work we consider the web-page separation task: separating a given web page into

a data component and a layout program. We use the shared template among different page

items as a guide for separating these items back into template and data items. This separation

has various important applications: template removal, unsupervised data extraction, and page

10



Figure 1.4: A list of books from Barnes & Noble

encoding may be significantly more compact (reducing traffic). Many of these applications are

not limited to static web pages but can also be applied to dynamically generated pages (e.g., by

using a headless browser to obtain a static HTML page).

1.3.2 Problem Definition

We define the problem of lossless separation of web-pages as follows: Given an HTML page,

our goal is to separate it into a layout code component and a data component such that: (i) the

separation is lossless, running the extracted layout code on the extracted data reproduces the

original page, and (ii) the separation is efficient such that common elements become part of the

layout code, and varying values are represented as data. .

A separation of a web page w is a pair (π, E), where π is a layout tree and E is a data-

component (which is a mapping from the variables in π to values), such that π(E) = w.

Separating w is the process of constructing a separation (π, E) of w. Note that a web page may

have infinitely many separations.

1.3.3 Existing Techniques

The separation problem is related to the problems of page-level data extraction [AGM03, KC10,

SC13, SC+14, WLF15, CKGS06, FWB+11b] and record-level extraction [TW13, WL03,

CL01, ZL05, LMM06, SL05, LMM10, CYWM03, LGZ03a, FWB+11a]. A lot of related

work has dealt with these two problems. However, the focus has been on the unsupervised

data-extraction aspect only. More importantly, the resulting separation into templates and

records is lossy; that is, we cannot recover the original HTML document from the output records

11



and template.

Template identification and removal is another related problem. Templates are considered

harmful for many automated tasks like semantic-clustering, classification and indexing by search

engines. A lot of past work tackled the challenges of template identification [RGSL04, LGZ03a,

ZL05, BYR02, KFN10] and template-extraction [KS11, VdSP+06, CKP07, GPT05, GF14, DC,

GM13]. Typically, the goal of these works is to identify or extract the template so it can be

ignored/discarded, and the data could be passed to further processing.

Figure 1.5: Lossless separation of an HTML page to code and data.

1.3.4 Key Aspects of the Approach

Lossless separation: Instead of focusing solely on the data-extraction problem, we solve

the web-page lossless separation problem (illustrated in Fig. 1.5). Separation combines, and

generalizes, two aspects of the extraction problem that are typically considered separately-record

extraction, and template extraction-and seeks to balance them. Rather than treating the template

as noise when extracting data, or eliminating data when extracting a template, separation seeks

to extract both at the same time.

Minimum description length: There are many possible ways to separate a web-page into

layout code and data. We guide our choice of separation by attempting to minimize the joint

representation size of the page, according to the minimum description length (MDL) [Ris78]

principle. Therefore, the separation computed by our solution is tailored to minimizing the

description cost of the result.

Bottom-up separation process: An HTML page can also be viewed as a Tree (called DOM tree).

Our separation approach works by folding adjacent subtrees of this DOM tree in a bottom-up

manner producing a layout tree, which represents the resulting template code. Initially, the

layout tree is simply the DOM tree representing the web page. As subtrees are being folded

(starting from leaf nodes up to the root), we synthesize unified code that represents their common

structure, and create separate data elements to represent their different content values.

The synthesized layout tree may include loops to generalize repetition of layout across

items and conditionals to allow these loops to format elements that exhibited a loosely similar

12



structure.

Data-aware tree alignment algorithm: We present a novel tree-alignment algorithm that is

tailored to handling layout trees, enabling it to handle loops, conditions and variables in the

template. This tree-alignment algorithm enables us to represent (and calculate the cost of

representing) two layout-subtrees as a single one. The tree alignment algorithm performs data

extraction and modifies the data representation, to match the changes in the layout trees, so that

invoking the layout trees on the data will result in the original HTML.

Extraction of hierarchical data: Our solution supports nested repetitions (e.g., a list of cate-

gories, each containing a list of products) by allowing nesting of loops in data trees alongside

hierarchical structures of environments.

1.3.5 Main Contributions

The contributions in Chapter 4 are:

• We present a framework for defining the web-page separation task, and explain its

importance for various application.

• We devise an algorithm for synthesizing layout code from a web page while distilling its

data in a lossless manner.

• We have implemented our approach and conducted a thorough experimental study of

its effectiveness. Our experiments show that our approach features state of the art (and

higher) performance in both representation compression and record extraction.

1.4 Separation of Web Sites into Layout Code and Data

1.4.1 Motivation

Many of the popular data-extraction methods are applicable on a small set of user selected pages,

or a single page. While these methods may be useful for record-level (from a single page) data

extraction, they are often unapplicable for large scale modern websites. Modern websites often

have millions of template generated pages. These pages are generated by applying a small set

of template files to a structured data source, producing the set of HTML pages that are then

presented to the user.

In this work we address the problem of scalable data-extraction by introducing the concept

of site-level separation. Given a website, our technique separates it to a small number of layout

programs and structured data sources.

Separation of website pages has many important applications such as data extraction,

webpage clustering, template removal, and web traffic optimization. For example, the data files

generated by our approach can be used for unsupervised data extraction (facilitating wrapping

and retrieval). The resulting separation can also be used for traffic reduction and automatic

conversion of web applications to Ajax applications. These applications are not limited to

server-side generated sites but can also be applied to client-side (Angular or Ajax in general)

generated sites (e.g., by using a headless browser to obtain a static HTML page).

13



1.4.2 Problem Definition

Given a set of HTML pages, our goal is to separate them into a small set of layout programs and

a set of structured data sources such that: (i) each layout program represents a subset of HTML

pages sharing the same (or a lot of) the formatting elements (ii) running the corresponding layout

program of a page on its extracted data source reproduces the original page (the separation is

lossless), and (iii) the separation is efficient such that the entire set of pages is represented using

a small number of layout code files, where common elements among pages become part of their

representative layout code file, and their varying values are represented as data.

1.4.3 Existing Techniques

There has been a lot of work on data extraction from web pages [AGM03, KC10, SC13,

SC+14, TW13, WL03, CL01, ZL05, SL05, LMM10, CYWM03, LGZ03a, LWLY12, DBS09b,

HCPZ11, MTH+09]. Record-level extraction handles the case where a single page has a

list of records, where there is repetition within the same page. Our approach deals with the

complementary problem where the repetition is not only within the same page, but also across

different pages. Previous work [OKYS16], applied the idea of separation to separate single

page and perform record-level extraction. In this paper, we address the challenging problem of

separating a set of web pages.

1.4.4 Key Aspects of the Approach

Given a sample set of pages from a website, our solution generates a more efficient representation

using a smaller set of template pages and structured data-sources.

To generate the website separation we need to identify pages in the sample that have similar

formatting and can thus be formatted using the same layout code, and only differ on the data. We

also need to select a representative set that efficiently covers the variety of different templates

that are used in a website.

Unification-guided similarity between pages: We define a page similarity function that captures

the effort required to unify two pages. This similarity function is an important aspect of our

solution as ability to assess structural similarity of pages is essential to our approach.

To assess the effort requited for unifying two given pages, our similarity function measures

their similarity at the layout-code level. To that end, it applies a preprocessing step of page-level

separation in which it applies a tree folding algorithm [OKYS16] on each page individually in

order to fold item lists and unify their representation among the different pages. Then it measures

the similarity between the two resulting layout-codes by using a tree-alignment algorithm to

calculate their shared representation cost.

Representative set selection: We propose a novelty-based summarization algorithm that finds a

small set of representative pages that cover the different page templates in the input set. These

representatives are used by our clustering algorithm to compute clusters of pages that share a

common template.

Our novelty-based algorithm uses a greedy iterative process, which measures the novelty

of each unselected page, as well as the coverage it provides. At each iteration the algorithm

14



selects as an additional representative the page that contributes the highest total coverage of

novel pages, and penalizes their novelty accordingly.

Clustering: After a representative set is selected, each page in the input set is associated with

the representative that is most structurally similar to it, forming clusters of structurally similar

webpages. We use the same unification-guided similarity function we use in the representative

selection process.

Cluster level separation: We align together pages from each resulting cluster. The alignment

process starts with the layout-code of the representative page, obtained by page-level separation,

as the current layout-code. In each iteration, the layout code is updated based on a new page

whose layout-code is aligned with the current layout-code. Further, a new data component is

generated for the newly aligned page.

1.4.5 Main Contributions

Main Contributions The contributions in Chapter 5 are:

• We present a novel algorithm for efficient separation of a set of webpages into layout

code files and structured data sources.

• We propose a representative selection algorithm that identifies a guide set of webpages

that represent all the templates used in a larger set of webpages. The main idea of our

algorithm is to use novelty-based summarization based on a structure-aware similarity

function for picking the representative pages efficiently, to enable coverage of the different

templates via a typically small number of representatives.

• We implement and evaluate our approach. Our evaluation shows that our approach

is effective in capturing the different templates present in a site, and in extracting the

structured data from pages with different templates.

15



16



Chapter 2

Cross-Supervised Synthesis of Web-Crawlers

Abstract
A web-crawler is a program that automatically and systematically tracks the links of a

website and extracts information from its pages. Due to the different formats of websites, the

crawling scheme for different sites can differ dramatically. Manually customizing a crawler for

each specific site is time consuming and error-prone. Furthermore, because sites periodically

change their format and presentation, crawling schemes have to be manually updated and

adjusted. In this paper, we present a technique for automatic synthesis of web-crawlers from

examples. The main idea is to use hand-crafted (possibly partial) crawlers for some websites as

the basis for crawling other sites that contain the same kind of information. Technically, we use

the data on one site to identify data on another site. We then use the identified data to learn the

website structure and synthesize an appropriate extraction scheme. We iterate this process, as

synthesized extraction schemes result in additional data to be used for re-learning the website

structure. We implemented our approach and automatically synthesized 30 crawlers for websites

from nine different categories: books, TVs, conferences, universities, cameras, phones, movies,

songs, and hotels.

2.1 Introduction

A web-crawler is a program that automatically and systematically tracks the links of a website

and extracts information from its pages. One of the challenges of modern crawlers is to extract

complex structured information from different websites, where the information on each site may

be represented and rendered in a different manner and where each data item may have multiple

attributes.

For example, price comparison sites use custom crawlers for gathering information about

products and their prices across the web. These crawlers have to extract the structured informa-

tion describing products and their prices from sites with different formats and representations.

The differences between sites often force a programmer to create a customized crawler for

each site, a task that is time consuming and error-prone. Furthermore, websites may eventually

change their format and presentation, therefore the crawling schemes have to be manually

maintained and adjusted.

Goal The goal of this work is to automatically synthesize web-crawlers for a family of websites

that contain the same kind of information but may significantly differ on layout and formatting.

17



We assume that the programmer provides one or more hand-crafted web-crawlers for some of

the sites in the family, and would like to automatically generate crawlers for other sites in the

family. For example, given a family of four websites of online book stores (each containing tens

of thousands of books), and a hand-crafted crawler for one of them, we automatically generate

crawlers for the other three. Note that our goal is not only to extract data from web-sites, but to

synthesize the programs that extract the data.

Existing Techniques Our work is related to wrapper induction [KWD]. The goal of wrapper

induction is to automatically generate extraction rules for a website based on the regularity of

pages inside the site. Our main idea is to try and leverage a similar regularity across multiple

sites. However, because different sites may significantly differ on their layout, we have to

capture this regularity at a more abstract level. Towards that end, we define an abstract logical

representation of a website that allows us to identify commonality even in the face of different

formatting details.

In contrast to supervised techniques [KWD, LG14, LPH00, CH04], which require labeled

examples, and unsupervised techniques [AGM03, CL, CMM01, MK07, MTH+09, RGSL04,

ZL05] that frequently require manual annotation of the extracted data, our approach uses cross

supervision, where the learned extraction rules of one site are used to produce labeled examples

for learning the extraction rules in another site.

Our technique uses XPath [CD+99], a widely used web documents query language along

with regular expressions. This makes our resulting extraction schemes human readable and

easy to modify when needed. There has been some work on the problem of XPath robustness

to site changes [DBS09a, LSRT14, LWLY12], trying to pick the most robust XPath query for

extracting a particular piece of information. While robustness is a desirable property, our ability

to efficiently synthesize a crawler circumvents this challenge as a crawler can be regenerated

whenever a site changes.

Our Approach: Cross-Supervised Learning of Crawling Schemes We present a technique for

automatically synthesizing data-extracting crawlers. Our technique is based on two observations:

(i) sites with similar content have data overlaps, and (ii) in a given site, information with similar

semantics is usually located in nodes with a similar location in the document tree.

Using these observations, we synthesize data-extracting crawlers for a group of sites sharing

the same type of information. Starting from one or more hand-crafted crawlers which provide a

relatively small initial set of crawled data, we use an iterative approach to discover data instances

in new websites and extrapolate data extraction schemes which are in turn used to extract

new data. We refer to this process as cross-supervised learning, as data from one web-site is

repeatedly used to guide synthesis in other sites.

Our crawlers extract data describing different attributes of items. We introduce the notion of

a container to maintain relationships between different attributes that refer to the same item. We

use containers, which are automatically selected without any prior knowledge of the structure of

the website, to handle pages with multiple items, and to filter out irrelevant data. This allows us

to synthesize extraction schemes from positive examples only.

18



Our approach is scalable and practical: we used cross-supervision to synthesize crawlers

for several product review websites, e.g., tvexp.com, weppir.com, camexp.com and

phonesum.com.

Main Contributions The contributions of this paper are:

• A framework for automatic synthesis of web-crawlers. The main idea is to use hand-

crafted crawlers for a number of websites as the basis for crawling other sites that contain

the same kind of information.

• A new cross-supervised crawler synthesis algorithm that extrapolates crawling schemes

from one web-site to another. The algorithm handles pages with multiple items and

synthesizes crawlers using only positive examples.

• An implementation and evaluation of our approach, automatically synthesizing 30 crawlers

for websites from nine different categories: books, TVs, conferences, universities, cam-

eras, phones, movies, songs and hotels. The crawlers that we synthesize are real crawlers

that were used to crawl more than 12, 000 webpages over all categories.

2.2 Overview

2.2.1 Motivating Example

Consider a price comparison service for books, which crawls book seller websites and provides

a list of sellers and corresponding prices for each book. Examples of such book seller sites

include barnesandnoble.com (B&N), blackwell.co.uk (BLACKWELL) and abebooks.

com (ABE). Each of these sites lists a wide collection of books, typically presented in template

generated webpages feeding from a database. Since these pages are template generated, they

present structured information for each book in a format that is repeated across books. By

recognizing this repetitive structure for a given site, one can synthesize a data extraction query

and use it to automatically extract the entire book collection.

While the format within a single site is typically stable, the formats between sites differ

considerably. Fig. 3.1 shows a small and simplified fragment of the page structure on B&N

and BLACKWELL in HTML. Fig. 2.3 shows part of the tree representation of the corresponding

sites (as well as of ABE), where D1, . . . , D4 denote different pages. Due to the differences

in structure, the data extraction query can differ dramatically. For example, in BLACKWELL

and ABE, each of the pages (D2, D3, D4) presents a single book, whereas in B&N the page D1

shows a list of several books.

The goal of this work is to automatically synthesize crawlers for new sites based on some

existing hand-crafted crawler(s). For example, given a crawler for the BLACKWELL site, our

technique synthesizes a crawler for B&N website. The synthesized crawler is depicted in

Fig. 2.2. We show that this can be done despite the significant differences between the sites

BLACKWELL, and B&N, in terms of HTML structure. We note that the examples that we present

in this section are abbreviated and simplified. For example, the real DOM tree for the B&N

page we show here contains around 1, 000 nodes. The structure of the full trees, and the XPaths

required for processing them are more involved than what is shown here.

19

tvexp.com
weppir.com
camexp.com
phonesum.com
barnesandnoble.com
blackwell.co.uk
abebooks.com
abebooks.com


barnesandnoble.com
<ol class="result-set box">

<li class="result box">..
<div class="details below-axis" >
<a href="..." data-bntrack="Title_9781628718980"

class="title" >
THROUGH THE LOOKING GLASS</a>
<a href=".."
data-bntrack="Contributor_9781628718980"
class="contributor" >

David Winston Busch</a>
...
<div class="price-format">

<a href="..." data-bntrack="Paperback_Format">
<span class="format">Paperback</span>
<span class="price">$9.91</span>

</a>
</div>
</div>
...</li>
<li class="result box">..
<div class="details below-axis" >
<a href="..." data-bntrack="Title_9780071633604"

class="title">
Alice’s Adventures in Wonderland</a>
<a href=".." data-bntrack="Contributor_9780071633604"
class="contributor" >Lewis Carroll</a>
...
<div class="price-format">
<a href="..." data-bntrack="Paperback_Format">

<span class="format">Paperback</span>
<span class="price">$6.49</span>

</a>
</div>
</div>
...</li>
</ol>

blackwell.com
<div id="product-biblio">

<h1>Through the looking glass</h1>
<a class="link_type1" href="/jsp/a/Lewis_Carroll">

David Winston Busch
</a>
<div class="price-info" align="center">
<span class="price">
£8.99</span>
</div>

</div>

Figure 2.1: Fragments of webpages with the similar attribute values for a book on two different
book shopping sites.

2.2.2 Cross-Supervised Learning of Crawling Schemes

Our main observation is that despite the significant differences in the concrete layout of websites,

the pages of websites that exhibit the same product category often share the same logical

structure; they present similar attributes for each product. For example, each of the pages

of Fig. 3.1 presents the same important attributes about the book, including its title, author name

and price. Moreover, there is a large number of shared products between these websites. The

book “Through the looking glass” is one such example for B&N and BLACKWELL.

20



c l a s s MySpider ( C r a w l S p i d e r ) :
name = ” b a r n e s a n d n o b l e ”
a l l o w e d d o m a i n s = [ ”www. b a r n e s a n d n o b l e . com ” ]
s t a r t u r l s = [

( (∗@\ t e x t b f {” h t t p : / / www. b a r n e s a n d n o b l e . com / s / j ava−programming}\\
\ t e x t b f {? s t o r e = a l l p r o d u c t s\&keyword= j a v a +programming ”}@∗ ) )

]

r u l e s = (
Rule ( L i n k E x t r a c t o r (

a l l o w =((∗@\ t e x t b f {” / s / .∗”}@∗ ) ) , c a l l b a c k =” p a r s e i t e m ” , f o l l o w =True
) ,

)

d e f p a r s e i t e m ( s e l f , r e s p o n s e ) :
s e l = S e l e c t o r ( r e s p o n s e )
rows = s e l . XPath ( (∗@\ t e x t b f { ’ / / body / d i v / . . . / d i v [ @class =” d e t a i l s below−a x i s ”] ’}@∗ ) )
f o r r i n rows :

i t em = BooksI tem ( )
i t em [ ’ t i t l e ’ ] = r . XPath (

(∗@ \ t e x t b f { ’ / / a [ @class =” t i t l e ”] ’} @∗)
) . e x t r a c t ( )
i t em [ ’ a u t h o r ’ ] = r . XPath (

(∗@ \ t e x t b f { ’ / / a [ @class =” c o n t r i b u t o r ”] ’} @∗)
) . e x t r a c t ( )
i t em [ ’ p r i c e ’ ] = r . XPath (

(∗@ \ t e x t b f { ’ / / d i v [ @class =” p r i c e−f o r m a t ” ] / a / span [ @class =” p r i c e ”] ’} @∗)
) . e x t r a c t ( )
y i e l d i t em

Figure 2.2: Crawler for java books from Barnes&Noble.

Our technique exploits data overlaps across sites in order to learn the concrete structure of a

new website s based on other websites. Specifically, we identify in s concrete data extracted

from other sites and as such learn the structure in which this data is represented in s. We then

use multiple examples of the structure in which the data appears in s in order to generalize and

get an extraction query for s. This enables our algorithm to extrapolate a crawler for s.

We do not require a precise match of data across sites, as our technique also handles noisy

data. (For example, prices do not have to be identical; any number can be a match.)

Crawling schemes A crawler, such as the one of Fig. 2.2, contains some boilerplate code

defining the crawler class and its operations. However, the essence of the crawler is its crawling

scheme. For example, in Fig. 2.2 the crawling scheme is highlighted in boldface.

A crawling scheme is defined with respect to a set of semantic groups, called attributes,

which define the types of data to be extracted. In the books example, the attributes are: book

title, author and price.

Given a set of attributes, a crawling scheme consists of the following two components: (i) A

data extraction query that defines how to obtain values of the attributes for each item listed

on the site. (ii) A starting point URL and a URL filtering pattern which let the crawler locate

“relevant” pages and filter out irrelevant pages without downloading and processing them.

Our crawlers use XPath as a query language for data extraction. XPath is a query language

for selecting nodes from an XML document which is based on the tree representation of the XML

document, and provides the ability to navigate around the tree, selecting nodes by describing

their path from the document tree root node. For example, Fig. 2.4 and Fig. 2.5 show the

crawling schemes for crawling books from BLACKWELL and B&N respectively, where the data

extraction query is expressed using XPaths.

Two-level data extraction schemes We assume that the data extraction query has two levels: The

21



body

div
id=“bookInfo"

h1
Id = “book-title”

a

div
class=“basket.."

span
class="price“

id=“book-price”

author-ztitle-z price

body

td

div
class=“buy-options"

span
class="price"

price

h1
id=“book-title"

title-x

a
class=“link_type1”

span
class=“large”

author-x

div

body

ol
class=“result-set box"

body

td

h1
id=“book-title"

title-y

a
class=“link_type1”

span
class=“large”

author-y

div

D4D2 D3D1

span
class=“price"

price

a
class=“title”

title-x

a
class=

“contributor”

author-x

a

author-x
lili

class=“result box”

div
class=“details below-axis”

div
class=“price-format"

span
class=“price"

price

a
class=“title”

title-z

a
class=

“contributor”

author-z

li
class=“result box”

div
class=“details below-axis”

div
class=“price-format"

div
class=“price-info”

div
class=“buy-options"

span
class="price"

price

div
class=“price-info”

h2
Id = “book-author”

B&N Blackwell Abe

Figure 2.3: Example DOM trees

Container: //body/div[@class="content maincore--shop"]

/table[@class="main-page"]/tr/

td[@class="two-col-right"]/table/tr/td

Title: //div/h1/

Author: //div/a[@class="link type1"]

Price: //div[@id="buy-options"]/div/span

URL Pattern: .*jsp/id/.*

Figure 2.4: Crawling scheme for BLACKWELL.

Container: //body/div/div/section/div/ol["result-set box"]

/li[@class="result box"]/div

/div[@class="details below-axis"]

Title: //a[@class="title"]

Author: //a[@class="contributor"]

Price: //div[@class="price-format"]

/a/span[@class="price"]

URL Pattern: /s/.*

Figure 2.5: Crawling scheme for B&N.

first level query is an XPath describing an item container. Intuitively, a container is a sub-tree that

contains all the attribute values we would like to extract (defined more formally in Sec. 2.5.) For

example, in Fig. 2.4, the XPath //body/div[@class="content maincore--shop"]...

describes a container of book attributes on BLACKWELL pages.

The second level queries contain an extraction XPath for values of each individual attribute.

These XPaths are relative to the root of the container. For example, //div/h1/ in Fig. 2.4 is

used to pick the node that has type h1 (heading 1), containing the book title.

Iterative synthesis of crawling schemes Our approach considers a set of websites, and a set of

attributes to extract. To bootstrap the synthesis process, the user is required to provide the set of

websites for which crawler synthesis is desired, as well as a crawling scheme for at least one of

these sites. Alternatively, the user can provide multiple partial crawling schemes for different

sites, that together cover all the different item attributes.

The synthesis process starts by invoking the provided extraction scheme(s) on the corre-

sponding sites to obtain an initial set of values for each one of the attributes. These values are

then used to locate nodes that contain attribute values in the document trees of webpages of new

22



sites. The nodes that contain attribute values reveal the structure of pages of the corresponding

websites. In particular, smallest subtrees that exhibit all the attributes amount to containers. This

allows for synthesis of data extraction schemes for new websites. The newly learned extraction

schemes are used to extract more values and add them to the set of values of each attribute,

possibly allowing for additional websites to be handled. This process is repeated until complete

extraction schemes are obtained for all websites, or until no additional values are extracted.

In our example, the algorithm starts with the data extraction scheme for BLACKWELL (see

Fig. 2.4), provided by a user. It extracts from D2 author-x, title-x, and price as values of

the book title, author, and price attributes, respectively (see Fig. 2.3). These values are identified

in D1 (B&N) within the subtree of the left most node represented by
//body/.../ol["result-set box"]

/li[@class="result box"]/...

/div[@class="details below-axis"],
which then points to the latter node as a possible container. Additional values taken from D3 and

other pages in BLACKWELL identify additional nodes in the B&N tree as attribute and container

nodes. Note that author-x is also found in another subtree in D1. However, there are no

instances of the remaining attributes in that subtree; Therefore, the subtree is not considered a

container and the corresponding node is treated as noise.

By identifying the commonality between the identified containers and between nodes of

the same attribute, a data extraction scheme for B&N is synthesized (see below). In the next

iteration, the new data scheme is used to extract from B&N the values author-z, title-z

and price as additional values for book title, author, and price respectively (that did not exist

in BLACKWELL). The new values are located in ABE (see D4 in Fig. 2.3), allowing to learn an

extraction scheme for ABE as well.

XPath synthesis for two-level queries Our approach synthesizes a two level extraction scheme

for each website from a set of attribute nodes and candidate containers identified in its webpages.

The two-level query structure is reflected also in the synthesis process of the extraction scheme.

Technically, we use a two-phase approach to synthesize the extraction scheme. In each site, we

first generate an XPath query for the containers. We then filter the attribute nodes keeping only

those reachable from containers that agree with the container XPath, and generate XPaths for

their extraction relatively to the container nodes.

To generate an XPath query for a set of nodes (e.g., for the set of containers), we consider

the concrete XPath of each node—this is an XPath that extracts exactly this node. We unify

these concrete XPaths by a greedy algorithm that aims to find the most concrete (most strict)

XPath query that agrees with a majority of the concrete XPaths. Keeping the unified XPath as

concrete as possible prevents the addition of noise to the extraction scheme.

The generated XPaths for B&N are depicted in Fig. 2.5. In this example, unification is trivial

since the XPaths are identical. However, if for example each of the container nodes labeled div

in D1 had different id’s, the id feature would have been removed during unification. Note that

even if the subtree that contains the noisy instance of author-x in D1 had been identified as a

candidate container (e.g., if it had contained values of the other attributes), it would have been

23



discarded during the unification.

URL pattern synthesis In order to synthesize a URL pattern for the crawling scheme of a new

site, we extend the iterative technique used for synthesis of data extraction schemes; In each

iteration of the algorithm, for each website we identify a set of pages of interest as pages that

contain attribute data. We filter these pages in accordance with the filtering of container and

attribute nodes. We then unify the URLs of remaining pages similarly to XPath unification.

Fig. 2.5 depicts the URL pattern generated by our approach for B&N. This pattern identifies

webpages in B&N that present a list of books—these are the pages whose structure conforms

with the synthesized extraction scheme. Note that B&N also presents the same books in a

separate page each, but such pages require a different crawling scheme.

2.3 Preliminaries

In this section we define some terms that will later be used to describe our approach.

2.3.1 Logical Structure of Webpages

Each webpage implements some logical structure. Following [HAF+10], we use relations as

a logical description of data which is independent of its concrete representation. A relational

specification is a set of relations, where each relation is defined by a set of column names

and a set of values for the columns. A tuple t = 〈c1 : d1, c2 : d2, . . .〉 maps a set of columns

{c1, c2, . . .} to values. A relation r is a set of tuples {t1, t2, . . .} such that the columns of every

t, t′ ∈ r are the same.

For example, B&N, BLACKWELL and ABE described in Section 2.2 implement a relational

description of a list of books, where each book has a title, an author and a price. Then “book

title”, “author” and “price” are columns, and the set of books is modeled as a relation with these

columns, where each tuple is a book item.

Data items, attributes and instances We refer to each tuple of a relation r as a data item. The

columns of a relation r are called attributes, denoted Att. Each attribute defines a class of

data sharing semantic similarities, such as meaning and/or extraction scheme. The value of

attribute a ∈ Att in some tuple of r is also called an instance of a. The set of all values of all

attributes is denoted V . Each attribute a is associated with an equivalence relation ≡a that

determines if two values are equivalent or not as instances of a. (The notion of “equivalence”

may differ between different attributes.) By default (if not specified by the user) we use the bag

of words representation of each value d, denotedW (d), and use Jaccard similarity function [Jac],

J(d1, d2), with a threshold of 0.5 as an equivalence indicator between values d1 and d2:

d1 ≡a d2 iff J(d1, d2) > 0.5 where J(d1, d2) =
|W (d1) ∩W (d2)|
|W (d1) ∪W (d2)|

.

2.3.2 Concrete Layout of Webpages

Technically, webpages are documents with structured data, such as XML or HTML documents.

The concrete layout of the webpage implements its logical structure, where attribute instances

are presented as nodes in the DOM tree.

24



XML documents as DOM trees A well formed XML document, describing a webpage of some

website, can be represented by a DOM tree. A DOM tree is a labeled ordered tree with a set

of nodes N and a labeling function that labels each node with a set of node features (not to be

confused with data attributes), where some of the features might be unspecified. Common node

features include tag, class and id.

For example, Fig. 2.3 depicts part of the tree representation of pages of B&N, BLACKWELL

and ABE. A node labeled by a, class=title is a node whose tag is a, class is title, and

id is unspecified.

Node descriptors A node descriptor is an expression x in some language defining a set of nodes

in the DOM tree. We use Expr to denote the set of node descriptors. For a node descriptor

x ∈ Expr and a webpage p, we define JxKp to be the set of nodes described by x from p. When

p is clear from the context, we omit it from the notation. A node descriptor is concrete if it

represents exactly one node. We sometimes also refer to node descriptors as extraction schemes.

In this work, we use XPath as a specification language for node descriptors.

2.3.3 XPath as a Data Extraction Language

XPath [CD+99] is a query language for traversing XML documents. XPath expressions (XPaths

in short) are used to select nodes from the DOM tree representation of an XML document. An

XPath expression is a sequence of instructions, x = x1 . . . xk. Each instruction xi defines how

to obtain the next set of nodes given the set of nodes selected by the prefix x1 . . . xi−1, where

the empty sequence selects the root node only. Roughly speaking, each instruction xi consists

of (i) axis defining where to look relatively to the current nodes: at children (“/”), descendants

(“//”), parent, siblings, (ii) node filters describing which tag to look for (these can be “all”,

“text”, “comment”, etc.), and (iii) predicates that can restrict the selected nodes further, for

example by referring to values of additional node features (e.g. class) that should be matched.

For example, the XPath //div/*/a[@class="link type1"] selects all nodes that fol-

low a sequence of nodes that can start anywhere in the DOM tree, and has to consist of a node

with tag=div followed by some node whose features are unspecified and is followed by a node

with tag=a and class=link type1.

2.4 The Crawler Synthesis Problem

In this section we formulate the crawler synthesis problem. A crawler for a website can be

divided into two parts: a page crawler, and a data extractor. The page crawler is responsible for

grabbing the pages of the site that contain relevant information. The data extractor is responsible

for extracting data of interest from each page.

Logical structure of interest Our work considers websites whose data-containing webpages

share the following logical structure: each webpage describes one main relation, denoted data.

As such, data items are tuples of the data relation. Further, the set Att of attributes consists of

the columns of the data relation.

Note that different concrete layouts can implement this simple logical structure. For example,

if we consider a webpage that exhibits a list of books, then the concrete layout can first group

25



books by author, and for each author list the books, or it can avoid the partition based on authors.

Further, some websites will present each book in a separate webpage, whereas others will list

several books in the same page. Even for websites that are structured similarly by the former

parameters, the mapping of attribute instances to nodes in the DOM tree can vary significantly.

Page crawlers A page crawler for a website s is given by a URL pattern, denoted U(s), which

identifies the set of webpages of interest. These are the webpages of the website that contain

data of the relevant kind. We denote by P (s) the set of webpages whose URL matches U(s).

Data Extractors Recall that we consider webpages where instances of different attributes are

grouped into tuples of some relation, denoted data. We are guided by the observation that data

in such webpages is typically stored in subtrees, where each subtree contains instances of all

attributes for some data item (i.e., tuple of the data relation). We refer to the roots of such

subtrees as containers:

Containers: A node in the DOM tree whose subtree contains all the entries of a single data item

(i.e., a single tuple of data) is called a container. Note that any ancestor of a container is also a

container. We therefore also define the notion of a best container to be a container such that

none of its predecessors is a container. Depending on the concrete layout of the webpage, a best

container might correspond to an element in a list or in another data structure. It might also be

the root of a webpage, if each webpage presents only one data item.

For example, in the treeD1 depicted in Fig. 2.3, both of the nodes selected by //body/.../div[@class="details

below-axis"] are containers, and as such so are their ancestors, including the root. However,

the latter are not best containers since they include strict subtrees that are also containers.

Attribute nodes: A node in the DOM tree that holds an instance of an attribute a ∈ Att is called

an a-attribute node, or simply an attribute node when a is clear from the context or does not

matter.

Data extractors: A data extractor for the relation data over columns Att in some website s can be

described by a pair (container, f) where container ∈ Expr is a node descriptor representing

containers, and f : Att ↪→ Expr is a possibly partial function that maps each attribute name to a

node descriptor, with the meaning that this descriptor represents the attribute nodes relatively to

the container node, i.e., the attribute descriptor considers the container node as the root. The data

extractor is partial if f is partial. If container is empty, it is interpreted as a node descriptor

that extracts the root of the page. If container is empty and f is undefined for every attribute,

we say that the data extractor is empty.

Examples of data extractors appear in Fig. 2.5 and Fig. 2.4.

Crawler synthesis The crawler synthesis problem w.r.t. a set Att of attributes is defined as

follows. Its input is a set S of websites, where each website s ∈ S is associated with a data

extractor, denoted E(s), over Att. E(s) might be partial or even empty. The desired output is a

page crawler, along with a complete data extractor for every s ∈ S.

26



2.5 Data Extractor Synthesis

In this section we focus on synthesizing data extractors, as a first step towards synthesizing

crawlers. We temporarily assume that the page crawler is given, i.e., for each website we have

the set of webpages of interest, and present our approach for synthesizing data extractors. We

will remove this assumption later, and also address synthesis of the page crawler, using similar

techniques.

The input to the data extractor synthesis is therefore a set S of websites, where each website

s ∈ S is associated with a set of webpages, denoted P (s), and with a data extractor, denoted

E(s), which might be partial or even empty. The goal is to synthesize a complete data extractor

for every s ∈ S. The main challenge in synthesizing a data extractor is identifying the mapping

between the logical structure of a webpage, and its concrete layout as a DOM tree. The key to

understanding this mapping amounts to identifying the container nodes in the DOM tree that

contain all the attributes of a single data item (tuple). Once this mapping is learnt, the next step

is to capture it by synthesizing extraction schemes in the form of XPaths.

The data extractor synthesis algorithm is first described using the generic notion of node

descriptors. In Section 2.5.2 we then instantiate it for the case where node descriptors are

provided by XPaths.

Before we describe our algorithm, we review its main ingredients. In the following, we use

N(p) to denote the set of nodes in the DOM tree of a webpage p ∈ P (s).

Knowledge base of data across websites Our synthesizer maintains a knowledge baseO : Att→
2V which consists of a set of observed instances for each attribute a ∈ Att. These are instances

collected across different websites from S. They enable the synthesizer to locate potential

a-attribute nodes in webpages for which the data extractor of a is unspecified.

Data to node mapping per website In addition to the global knowledge base, for each website

s ∈ S our synthesizer maintains: (i) a set N cont(p) ⊆ N(p) of (candidate) container nodes for

each webpage p ∈ P (s), and (ii) a set Na(p) ⊆ N(p) of (candidate) attribute nodes for each

webpage p ∈ P (s) and attribute a ∈ Att.

Deriving extraction schemes per website The synthesis algorithm iteratively updates the con-

tainer and attribute node sets for each webpage in P (s), and attempts to generate a data extractor

E(s) : Expr× (Att ↪→ Expr) for s by generating node descriptors for the set of containers, and

for each of the attributes. The extraction scheme is shared by all webpages of the website. The

updates of the sets and the attempts to generate node descriptors from the sets are interleaved,

as one can affect the other; on the one hand node descriptors are generated in an attempt to

represent the sets; on the other hand, once descriptors are generated, elements of the sets that do

not conform to them are removed.

While attribute instances are used to identify attribute nodes across different websites, the

synthesis of node descriptors is performed for each website separately and independently of

others (while considering all of the webpages associated with the website).

27



2.5.1 Algorithm

Algorithm 1 presents our data extractor synthesis algorithm. The algorithm is iterative, where

each iteration consists of two phases:

Phase 1: Data extraction for knowledge base extension. Initially, the sets O(a) of instances

of all attributes a ∈ Att are empty. In each iteration, we use yet un-crawled extraction schemes

to extract attribute nodes in all webpages of all websites and extend the sets O(a) for every

attribute a based on the content of the extracted nodes. At the first iteration, input extraction

schemes are used. In later iterations, we use newly learnt extraction schemes, generated in phase

2 of the previous iteration.

Phase 2: Synthesis of data extractors. For every website s ∈ S for which the extraction scheme

is not yet satisfactory, we attempt to generate an extraction scheme by performing the following

steps:

(1) Locating attribute nodes per page: We traverse all webpages p ∈ P (s) and for each

attribute a we use the instances O(a) collected in phase 1 (from this iteration and previous ones)

to identify potential a-attribute nodes in p. Technically, for every p ∈ P (s) we iterate on all

n ∈ N(p) and use the (default or user-specified) equivalence relation ≡a to decide whether n

contains data that matches the attribute instances in O(a). If so, n is added to Na(p).

(2) Locating container nodes per page: In every webpage p ∈ P (s) we locate potential

container nodes, and collect them in N cont(p). A container is expected to contain instances of

all attributes Att. However, since our knowledge of the attribute instances is incomplete, we

need to also consider subsets of Att. In each webpage, we define the “best” set of attributes to

be the set of all attributes whose instances appear in it. Potential containers are nodes whose

subtree contains attribute nodes of the “best” set of attributes, and no strict subtree contains

nodes of the same set of attributes. The latter ensures that the container is best. Technically, for

every node n ∈ N(p) we compute the set of reachable attributes a ∈ Att such that an a-attribute

node in Na(p) is reachable from n. Nodes n whose set is best and no other node reachable from

n has the same set of reachable attributes are collected in N cont(p). For each container node

nc ∈ N cont(p) we also maintain its support - the number of attribute nodes reachable from it.

(3) Generating container descriptor: We consider the concrete node descriptor of every

container node nc ∈ N cont(p) in every webpage p ∈ P (s). We unify the concrete node

descriptors across all webpages into a single node descriptor, and use it to update E(s), relying

on the observation that containers are typically elements of some data structure and are therefore

accessed similarly.

(4) Filtering attribute nodes based on container descriptor: We filter the sets N cont(p) of

containers in all webpages to keep only containers that match the unified node descriptor, and

accordingly filter the sets Na(p) of attribute nodes in all webpages to contain only nodes that are

reachable from the filtered sets of containers. This step enables us to automatically distinguish

the nodes we are interested in from others that accidentally contain attribute instances, without

any a-priori knowledge.

(5) Generating attribute descriptors: For each attribute a ∈ Att, we consider the concrete

28



Algorithm 1: Data Extractor Synthesizer
Input: set of attributes Att
Input: set of websites S
Input: a map E : S → (Expr× (Att ↪→ Expr)) mapping a website s to a data extractor E(s)

which consists of a (possibly empty) container descriptor as well as a (possibly partial)
mapping of attributes to node descriptors

O = [];
while there is change in O or E do

/* Data extraction phase */
foreach s ∈ S s.t. E(s) is uncrawled do

O = O ∪ ExtractInstances (Att, P (s), E(s), O) ;
/* Synthesis phase */
foreach s ∈ S s.t. E(s) is incomplete do

/* Locate attribute nodes */
foreach p ∈ P (s) do

foreach a ∈ Att do
Na(p) = FindAttNodes (N(p), a, O(a)) ;

/* Locate container nodes */
foreach p ∈ P (s) do

bestAttSet = {a ∈ Att | Na(p) 6= ∅} ;
foreach n ∈ N(p) do

reachAtt[p][n] = {a ∈ Att | ∃n′ ∈ reach(n) : n′ ∈ Na(p)} ;
support[p][n] = #{n′ ∈ reach(n) | ∃a ∈ Att : n′ ∈ Na(p)} ;

N cont(p) = candidates = {n ∈ N(p) | reachAtt[n] = bestAttSet} ;
foreach n ∈ candidates do

foreach n′ ∈ children(n) do
if n′ ∈ candidates then

N cont(p) = N cont(p) \ {n} ;
break ;

/* Generate container descriptor */
Exprs = {(relativeExpr(p, emptyExpr, n), support[p][n]) | p ∈ P (s), n ∈
N cont(p)} ;
containerExpr = UnifyExpr (Exprs) ;
FilterAttributeNodes() ;
/* Generate attribute descriptors */
foreach a ∈ Att do

Exprs = {(relativeExpr(p, containerExpr, n), 1) | p ∈ P (s), n ∈ Na(p)} ;
attExpr[a] = UnifyExpr (Exprs) ;

E(s) = (containerExpr, attExpr) ;
return E ;

node descriptors of all the nodes in the filtered sets Na(p) of all webpages p ∈ P (s), where the

concrete node descriptor of n is computed relatively to the container node whose subtree contains

n. For each attribute a, we find a unified node descriptor for these concrete node descriptors,

and use it to update E(s). Again, we use the observation that containers are structured similarly

and therefore attribute data within them is accessed similarly.

Remark. For a successful application of our algorithm, at least one extraction scheme should be

provided for every attribute. Our approach is also applicable if a user provides a set of annotated

webpages instead of a set of initial extraction expressions. �

Section 2.2 describes a running example of our algorithm.

29



Node descriptor unification Node descriptors for the container and attributes are generated by

unifying concrete node descriptors of the nodes in N cont(p) and Na(p) respectively. Roughly

speaking, the purpose of the unification is to derive a node descriptor that is general enough to

describe as many of the concrete node descriptors as possible, but also as concrete as possible in

order to introduce as little noise as possible. “Concreteness” of a node descriptor x is measured

by an abstraction score, denoted abs(x). The node descriptor unification algorithm is parametric

in the abstraction score. In Section 2.5.2, we provide a definition of this score when the node

descriptors are given by XPaths.

Definition 2.5.1. For a set X of concrete node descriptors and a weight function support that

associates each x ∈ X with its support, the unification problem aims to find a node descriptor

xg, s.t.:

1. support({x∈X|JxK⊆JxgK})
support(X) > δ, i.e., xg captures at least δ of the total support of the node

descriptors in X .

2. abs(xg) is minimal.

In container descriptor unification (step 3), the given node descriptors represent container

nodes. The support of each descriptor represents the number of attribute nodes reachable from

the container. In attribute descriptors unification (step 5), the given descriptors represent attribute

nodes for some attribute, all of which are reachable from a set of containers of interest. The

attribute node descriptors are relative to the container nodes.

2.5.2 Implementation using sequential XPaths

In order to complete the description of our data extractor synthesizer, we describe how the

ingredients of Algorithm 1 are implemented when node descriptors are given by XPaths.

Specifically, our approach uses sequential XPaths:

Sequential XPaths A path π in the DOM tree is a sequence of nodes n1, . . . , nk, where for

every 1 ≤ i < k, there is an edge from ni to ni+1. Such a path can naturally be encoded

using an XPath XS(π) = x1 . . . xk where each xi starts with “/”. x1 may start with “//” rather

than “/” if π does not necessarily start at the root of the tree. Further, each xi uses node filters

and predicates to describe the features of ni. Therefore, xi can be described via equalities

f1 = v1, . . . , fm = vm, such that fj ∈ F , where F is the set of node features used. We consider

F = {tag, class, id} for simplicity, but our approach is not limited to these features. A

feature might be unspecified for ni, in which case no corresponding equality will be included in

xi.

For example, let π be the left most path inD2 (Fig. 2.3). Then XS(π) = //body/.../td/div/h1.

XS(π) can also be described as a sequence 〈tag=body〉 . . . 〈tag=td〉〈tag=div〉〈tag=h1〉.
We refer to XPaths of the above form as sequential. The XPaths that our approach generates

as node descriptors are all sequential.

Concrete XPaths Each node n in the DOM tree can be uniquely described by the unique path,

denoted πn, leading from the root to n. The XPath XS(πn) is a sequential XPath such that

JXS(πn)K ⊇ {n}, and JXS(πn)K is minimal (i.e., every other sequential XPath that also describes

30



n, describes a superset of JXS(πn)K). We therefore refer to XS(πn) as the concrete XPath of

n, denoted XS(n) with abuse of notation. (If we include in F the position of a node among

its siblings as an additional node feature, and encode it by an XPath instruction using sibling

predicates then we will have JXS(πn)K = {n}).

Agreement of sequential XPaths We observe that for sequential XPaths, checking if a node n

matches a node descriptor xg (i.e. n ∈ JxgK) can be done by checking if the concrete XPath

XS(n) agrees with the XPath xg, where agreement is defined as follows.

Definition 2.5.2. Let x = x1 . . . xk and xg = xg1 . . . x
g
m be sequential XPaths. The instruction

xi agrees with instruction xgi if whenever some feature is specified in xi, it either has the same

value in xgi or it is unspecified in xgi . The XPath x agrees with the XPath xg if m ≤ k, and for

every i ≤ m, xi agrees with xgi .

For example, //body/.../td/div[id=name1]/h1 agrees with both //body/.../td/div/h1,

and //body/.../td/div.

Node descriptor unification via XPath unification We now describe our solution to the node

descriptor unification problem in the setting of sequential XPaths. We first define the abstraction

score:

Abstraction score For a sequential XPath instruction xi we define spec(xi) to be the subset of

features whose value is specified in xi, and unspec(xi) = F \ spec(xi) is the set of unspecified

features in xi. We define the abstraction score of xi to be the number of features in unspec(xi),

that is, abs(xi) = |unspec(xi)|.
For a sequential XPath x = x1 . . . xk, we define abs(x) to be the sum of abs(xi).

Greedy algorithm for unification Algorithm 2 presents our unification algorithm. We use the

observation that for sequential XPaths, the condition JxK ⊆ JxgK that appears in item 1 of the

unification problem (see Definition 2.5.1) can be reduced to checking if the XPath x agrees with

the XPath xg.

Let X be a weighted set of sequential XPaths, with a weight function support that associates

each XPath inX with its support. Let TS = support(X) denote the total support of XPaths inX .

The unification algorithm selects k to be the length of the longest XPath in X . It then constructs

a unified XPath xg = xg1, . . . , x
g
m top down, from i = 1 to k (possibly stopping at i = m < k).

Intuitively, in each step the algorithm tries to select the most “concrete” instruction whose

support is high enough. Note that there is a tradeoff between the high-support requirement and

the high-concreteness requirement. We use the threshold as a way to balance these measures.

At iteration i of the algorithm, Xi−1 is the restriction of X to the XPaths whose prefix

agrees with the prefix xg1, . . . , x
g
i−1 of xg computed so far (Initially, X0 = X). We inspect

the i’th instructions of all XPaths in Xi−1. The corresponding set of instructions is denoted

by Ii = {xi | x ∈ Xi−1}. The support of an instruction xB w.r.t. Ii is support({x ∈ Xi−1 |
xi agrees with xB}).

To select the most “concrete” instruction whose support is high enough, we consider a

predefined order on sets of feature-value pairs, where sets that are considered more “concrete”

31



(i.e., more “specified”) precede sets considered more “abstract”. Technically, we consider only

feature-value sets where each feature has a unique value. The order on such sets used in the

algorithm is defined such that if |B1| > |B2| then B1 precedes B2. In particular, we make sure

that sets where all features are specified are first in that order.

For every set B of feature-value pairs, ordered by the predefined order, we consider the

instruction xB that is specified exactly on the features in B, as defined by B. If its support

exceeds δ, we set xgi to xB and Xi to {x ∈ Xi−1 | xi agrees with xB}. Otherwise, xB is not

yet satisfactory and the search continues with the next B. There is always a B for which the

support of the xB exceeds the threshold, for instance, the last set B is always the empty set with

xB = /*, which agrees with all the concrete XPaths in Xi−1 .

If at some iteration Ii = ∅, i.e. the XPaths in Xi−1 are all of length < i and therefore there

is no “next” instruction to discover, the algorithm terminates. Otherwise, it terminates when

i = k.

Example 1. Given the following concrete XPaths as an input:

cx1 = /div[class=‘‘title’’]/span/a[id=‘‘t1’’]

cx2 = /div[class=‘‘title’’]/span/a[id=‘‘t2’’]

cx3 = /div[class=‘‘note’’]/span/a[id=‘‘n1’’]

The unification starts with X0 = {cx1, cx2, cx3}, and i = 1. To select xg1, recall that the

algorithm first considers the most specific feature-value sets (in order to find the most specific

instruction). In our example it starts from B1 = {tag=div, class=note} for which xB1 =

/div[class=‘‘note’’]. However, cx3 is the only XPath in X0 which agrees with xB1 .

Therefore it has support of 1/3. We use a threshold of δ = 1/2. Thus, the support of xB1 is in-

sufficient. The algorithm skips to the next option, obtaining xB2 = /div[class=‘‘title’’].

This instruction is as specific as xB1 and has a sufficient support of 2/3 (it agrees with cx1 and

cx2). Therefore, for i = 1, the algorithm selects xg1 = xB2 and X1 = {cx1, cx2}. For i = 2,

the algorithm selects xg2 = /span as the most specific instruction, which also has support of

2/2 (both cx1 and cx3 from X1 agree with it). For i = 3, the algorithm selects xg3 = /a as none

of the more specific instructions (/a[id=‘‘t1’’] or /a[id=‘‘t2’’]) has a support greater

than δ = 1/2. The resulting unified XPath is x = /div[class="title"]/span/a.

2.6 Crawler Synthesis

In this section we complete the description of our crawler synthesizer. To do so, we describe

the synthesis of a page crawler for each website s. Recall that a page crawler corresponds to a

URL pattern U(s) which defines the webpages of interest. The synthesis of a page crawler is

intertwined with the data extractor synthesis, and uses similar unification techniques to generate

the URL pattern.

Initialization We assume that each website s ∈ S is given by a “main” webpage pmain(s).

Initially, the set P (s) of webpages of s is the set of all webpages obtained by following links in

pmain(s) and recursively following links in the resulting pages, where the traversed links are

32



Algorithm 2: Top-Down XPath Unification
Input: set X of sequential XPaths
Input: support function support : X → N
Input: threshold δ
TS = support(X)
k = maxx∈X |x|
X0 = X
foreach i = 1, . . . , k do

Ii = {xi | x ∈ Xi−1}
if Ii = ∅ then

i = i− 1
break

foreach B ⊆ F in decreasing order of |B| do
supportB = FindSupport(xB , Xi−1, i, support)
if supportB > δ · TS then

xgi = xB
Xi = {x ∈ Xi−1 | xi agrees with xB}
break

return xg1, . . . , x
g
i

selected based on some heuristic function which determines which links are more likely to lead

to relevant pages.

Iterations We apply the data extractor synthesis algorithm of Section 2.5 using the sets P (s).

At the end of phase 2 of each iteration, we update U(s) using the steps described below. At the

beginning of phase 1 of the subsequent iteration we then update P (s) to the set of webpages

whose URLs conform with U(s).

(6) Filtering webpage sets: Based on the observation that relevant webpages of a website s

have a similar structure, we keep in P (s) only webpages that contain container and attribute

nodes that match the generated E(s) and are reachable from pmain(s) via such webpages.

(7) Generating URL patterns: For each webpage p ∈ P (s) we consider its URL. We

unify the URLs into U(s) by a variation of Algorithm 2 which views a URL as a sequence of

instructions, similarly to a sequential XPath.

2.7 Evaluation

In this section we evaluate the effectiveness of our approach. We used it to synthesize data

extracting web-crawlers for real-world websites containing structured data of different categories.

Our experiments focus on two different aspects: (i) the ability to successfully synthesize web-

crawlers, and (ii) the performance of the resulting web crawlers.

2.7.1 Experimental Settings

We have implemented our tool in C#. All experiments ran on a machine with a quad core CPU

and 32GB memory. Our experiments were run on 30 different websites, related to nine different

categories: books, TVs, conferences, universities, cameras, phones, movies, songs and hotels.

For each category we selected a group of 3-4 known sites, which appear in the first page of

Google search results.

33



Figure 2.6: Results: Crawling scheme completeness (left), URL filtering (middle) and Attribute
extraction (right) for each category.

Figure 2.7: Attribute extraction precision and recall, and crawling scheme completeness, as a
function of the threshold of Jaccard similarity used to define equivalence between instances.

The sites in each category have a different structure, but they share at least some of their

instances, which makes our approach applicable. The complexity of the data extracted from

different categories is also different. For instance a movie has four attributes: title, genre,

director and list of actors. For a book, the set of attributes consists of title, author and price,

while the attribute set of a camera consists of the name and price only. In each category we used

one manually written crawler and automatically synthesized the others (for the books category

we also experimented with 3 partial extraction schemes, one for each attribute). To synthesize

the web crawlers, our tool processed over 12, 000 webpages from the 30 different sites.

To evaluate the effectiveness of our tool we consider 4 aspects of synthesized crawlers:

(i) Crawling scheme completeness, (ii) URL filtering, (iii) Container extraction, and (iv) At-

tributes extraction.

2.7.2 Experiments and Results

Crawling Scheme Completeness A complete crawling scheme defines extraction queries for all

of the data attributes. The completeness of the synthesized crawling schemes is an indicator for

the success of our approach in synthesizing crawlers. To measure completeness, we calculated

34



for each category the average number of attributes covered by the schemes, divided by the

number of attributes of the category. The results are reported in Fig. 2.6 (left). The results

show that the resulting extraction schemes are mostly complete, with a few missing attribute

extraction queries.

URL Filtering The ability to locate pages containing data is an important aspect of a crawler’s

performance. To evaluate the URL filtering performance of the synthesized crawlers, we

measure the recall and precision of the synthesized URL pattern for each site:

recall =
|Rel ∩ Sol|
|Rel|

precision =
|Rel ∩ Sol|
|Sol|

(2.1)

To do so, we have manually generated two sets of URLs for each site: one containing URLs for

pages that contain relevant data, comprising the Rel set (ground truth), and another, denoted

Irr, contains a mixture of irrelevant URLs from the same site. Sol contains the URLs from

Rel ∪ Irr that match the synthesized URL pattern for the site (i.e., the URLs accepted by the

synthesised URL pattern). A good performing URL filtering pattern should match all the URLs

from Rel and should not match any from Irr. The average recall and precision scores of the

sites of each category are calculated and reported in Fig. 2.6 (middle).

Container Extraction To check the correctness of the synthesized container extraction query,

we have manually reviewed the resulting container XPaths against the HTML sources of the

relevant webpages for each site, to verify that each extracted container contains exactly one data

item. We found that the containers always contained no more than one item. However, in a few

cameras and songs websites, the container query was too specific and did not extract some of

the containers (this happened in tables containing class=“odd” in some rows and class=“even”

in others), which affected the recall scores of attribute extraction.

Attributes Extraction We calculate the recall and precision (see equation (2.1)) of the extraction

query for each attribute. Technically, for each category of sites, we have manually written

extraction queries for each attribute in every one of the category related sites. For each attribute

a, we used these extraction queries to extract the instances of a from a set of sample pages from

each site. The extracted instances are collected in Rel. We have also applied the synthesized

extraction queries (as a concatenation of the container XPath and attribute XPath) to extract

instances of a from the same pages into Sol. For each site, the precision and recall are calculated

according to equation (2.1). The average (over sites of the same category) recall and precision

scores of all attributes of each category are reported in Fig. 2.6 (right).

Equivalence Relation To evaluate the effect of the threshold used in the equivalence relation,

≡a, on the synthesized crawlers, we have measured the average completeness, as well as the

average recall and precision scores of attribute extraction as a function of the threshold. The

results appear in Fig. 2.7.

Remark. The reported attribute extraction recalls in Fig. 2.6 and Fig. 2.7 are computed based

on queries for which synthesis succeeded (missing queries affect only completeness, and not

recall). �

35



2.7.3 Discussion

The completeness of the synthesized extraction schemes is highly dependent upon the ability to

identify instances in pages of some site by comparison to instances gathered from other sites.

For most categories, completeness is high. For the conferences category, however, completeness

is low. This is due to the use of acronyms in conference names (e.g., ICSE) in some sites vs.

full names (e.g., International Conference on Software Engineering) in others, which makes it

hard for our syntax-based equivalence relation to identify matches. This could be improved by

using semantic equivalence relations (such as ESA [GM07] or W2V [MCCD13]).

As for the quality of the resulting extraction schemes and URL filtering patterns, most of the

categories have perfect recall (Fig. 2.6). However, some have a slightly lower recall due to our

attempt to keep the synthesized XPaths (or regular expressions, for URL filtering) as concrete

as possible while having majority agreement. This design choice makes our method tolerant

to small noises in the identified data instances, and prevents such noises from causing drifting,

without negative examples. Yet, in some cases, the resulting XPaths are too specific and result

in a sub-optimal recall.

For precision, most categories have good scores, while a few have lower scores. Loss of

precision can be attributed to the majority-based unification and the lack of negative examples.

For the books category, for instance, the synthesized extraction XPath of price for some sites

is too general, since they list multiple price instances (original price, discount amount, and

new price). All are listed in the same “parent container” with the author and book title, and

are therefore not filtered by the container, hence affecting XPath unification. This could be

improved with user guidance.

The results in Fig. 2.7 reflect the tradeoff between precision and crawling scheme complete-

ness. A more strict equivalence relation (with higher threshold) leads to a better precision but

has negative effect on the scheme completeness, whereas the use of a forgiving equivalence

relation (with lower threshold) severely affects the precision. We use a threshold of 0.5 as a

balanced threshold value. According to our findings, the attribute queries suffer from a low

recall for both low and high threshold values. In low threshold, it is due to wrong queries, that

extract wrong nodes (e.g., menu nodes), without including attribute nodes. For higher threshold

values, the tool identified less instances of attribute nodes (sometimes only one), leading to a

lower quality generalization.

Real-World Use Case We used our crawler synthesis process as a basis for data extraction for

several product reviews websites. For instance, tvexp.com, weppir.com, camexp.com

and phonesum.com extract product names and specifications (specs) using our approach. We

manually added another layer of specs scoring, and created comparison sites for product specs.

These websites have a continually updated database with over 20,000 products.

2.8 Related Work

In this section, we briefly survey closely-related work. While there has been a lot of past work

on various aspects of mining and data extraction, our technique has the following unique combi-

nation of features: (i) works across multiple websites, (ii) synthesizes both the extraction XPath

36

tvexp.com
weppir.com
camexp.com
phonesum.com


queries, and the URL pattern, (iii) is automatic and does not require user interaction, (iv) works

with only positive examples, (v) does not require an external database, and (vi) synthesizes a

working crawler.

Data Mining and Wrapper Induction Our work is related to data mining and wrapper induction.

In contrast to supervised techniques (e.g., [KWD, LG14, LPH00, CH04, GMM+11]), our

approach only requires an initial crawler (or partial crawling scheme) and requires no tagged

examples. FlashExtract [LG14] allows end-users to give examples via an interaction model

to extract various fields and to link them using special constructs. It then applies an inductive

synthesis algorithm to synthesize the intended data extraction program from the given examples.

In contrast, our starting point is a crawler for one (or more) sites, which we then extrapolate

from. Further, our technique only requires positive examples (obtained by bootstrapping our

knowledge base by crawling other sites).

Unsupervised extraction techniques [AGM03, CL, CMM01, MK07, MTH+09, RGSL04,

ZL05, SC13] have been proposed. Several works [CL, MTH+09, AGM03, DKS11, TW14,

LGZ03b, TW13] propose methods that use repeated pattern mining to discover data records,

while [RGSL04, ZL05] use tree-edit distance as the basis for record recognition and extraction

in a single given page. These methods require manual annotation of the extracted data or rely on

knowledge bases [GZAC13, Hon11]. Roadrunner [CMM01] uses similarities and differences

between webpages to discover data extraction pattern. Similarities are used to cluster similar

pages together and dissimilarities between pages in the same cluster are used to identify relevant

structures. Other information extraction techniques rely on textual, or use visual features of the

document [ZNW+06, LMM10] for data extraction. ClustVX [Gri13] renders the webpage in

contemporary web browser, for processing all visual styling information. Visual and structural

features are then used as similarity metric to cluster webpage elements. Tag paths of the clustered

webpages are then used to derive extraction rules. In contrast, our approach does not use visual

styling, but relies on similar content between the different sites.

HAO et al. [HCPZ11] present a method for data extraction from a group of sites. Their

method is based on a classifier that is trained on a seed site using a set of predefined feature

types. The classifier is then used as a base for identification and extraction of attribute instances

in unseen sites. In contrast, our goal is to synthesize XPaths that are human-readable, editable,

and efficient. Further, with the lack of an attribute grouping mechanism (such as our notion of

container), the method cannot handle pages with multiple data items.

Program Synthesis Several works on automatic synthesis of programs [JGS+10, GRB+14,

LG14, GJTV11] were recently proposed, aiming for automating repetitive programming tasks.

Programming by example, for instance, is a technique used in [JGS+10, LG14] for synthesizing

a program by asking the user to demonstrate actions on concrete examples. Inspired by these

works, our approach automatically synthesizes data extracting web crawlers. However, we

require no user interaction.

Semantic Annotation Many works in this area attempt to automatically annotate webpages with

semantic meta-data.

37



Seeker [DEG+03] is a platform for large-scale text analysis, and an application written

on the platform called SemTag that performs automated semantic tagging of large corpora.

Ciravegna et al. [CCDW04] propose a methodology based on adaptive information extraction

and implement it in a tool called Armadillo [CDC04]. The learning process is seeded by a user

defined lexicon or an external data source. In contrast to these works, our approach does not

require external knowledge base and works by bootstrapping its knowledge base.

Other Aspects of Web Crawling There are a lot of works dealing with different aspects of

web crawlers. Jiang et al. [JWF+10] and Jung et al. [AGWC07] deal with deep-web related

issues, like the problem of discovering webpages that cannot be reached by traditional web

crawlers mostly because they are results of a query submitted to a dynamic form and they are

not reachable via direct links from other pages. Some other works like [RM+99, VS05] address

the problem of efficient navigation of website pages to reach pages of specific type by training a

decision model and using it do decide which links to follow in each step. Our paper focuses on

the different problem of data extraction, and is complementary to these techniques.

2.9 Conclusion

We presented an automatic synthesis of data extracting web crawlers by extrapolating existing

crawlers for the same category of data from other websites. Our technique relies only on data

overlaps between the websites and not on their concrete representation. As such we manage to

handle significantly different websites. Technically, we automatically label data in one site based

on others and synthesize a crawler from the labeled data. Unlike techniques that synthesize

crawlers from user provided annotated data, we cannot assume that all annotations are correct

(hence some of the examples might be false positives), and we cannot assume that unannotated

data is noise (hence we have no negative examples). We overcome these difficulties by a notion

of containers that filters the labeling.

We have implemented our approach and used it to automatically synthesize 30 crawlers for

websites in nine different product categories. We used the synthesized crawlers to crawl more

than 12, 000 webpages over all categories. In addition, we used our method to build crawlers

for real product reviews websites.

38



Chapter 3

Synthesis of Forgiving Data Extractors

Abstract
We address the problem of synthesizing a robust data-extractor from a family of websites that

contain the same kind of information. This problem is common when trying to aggregate infor-

mation from many web sites, for example, when extracting information for a price-comparison

site.

Given a set of example annotated web pages from multiple sites in a family, our goal is to

synthesize a robust data extractor that performs well on all sites in the family (not only on the

provided example pages). The main challenge is the need to trade off precision for generality

and robustness. Our key contribution is the introduction of forgiving extractors that dynamically

adjust their precision to handle structural changes, without sacrificing precision on the training

set. Our approach uses decision tree learning to create a generalized extractor and converts it

into a forgiving extractor, in the form of an XPath query. The forgiving extractor captures a

series of pruned decision trees with monotonically decreasing precision, and monotonically

increasing recall, and dynamically adjusts precision to guarantee sufficient recall.

We have implemented our approach in a tool called TRACY and applied it to synthesize

extractors for real-world large scale web sites. We evaluate the robustness and generality of

the forgiving extractors by evaluating their precision and recall on: (i) different pages from

sites in the training set (ii) pages from different versions of sites in the training set (iii) pages

from different (unseen) sites. We compare the results of our synthesized extractor to those

of classifier-based extractors, and pattern-based extractors, and show that TRACY significantly

improves extraction accuracy.

3.1 Introduction

We address the problem of synthesizing a robust data extractor based on a set of annotated

web pages. Web sites often change their formatting and structure, even when their semantic

content remains the same. A robust extractor [DBS09b, LSRT14, LWLY12] can withstand

modifications to the target site. A non-robust extractor would have to be adjusted (typically

manually) every time the formatting of a site changes.

Our idea is to construct a robust extractor by training it on a family of sites that have content

that is semantically similar. We conjecture that the ability of a single extractor to handle multiple

different sites means that the extractor is likely robust, as it is able to overcome differences

39



between sites, and thus possibly also differences due to future changes of the same site.

The notion of a family of sites is somewhat vague, and we assume that it is user-defined.

The intent is that sites of the same family contain the same kind of information, even if they

differ on the way it is presented. Sites of the same family could be, for example, a family of

book-selling sites, hotel reservation sites, etc. We conjecture that despite the fact that sites in a

family may differ, they have a similar set of underlying semantic concepts, that a generalized

extractor will be able to capture. For example, for book-selling sites, the notions of author, title,

and price are likely to be presented in some way on all sites in the family.

Goal Given a set of training pages (HTML documents) within a family, where each page is

annotated by tagging data items of interest, our goal is to synthesize a robust extractor that

maximizes accuracy over the training set.

When constructing the generalized extractor for a family, there is a natural tradeoff between

accuracy and generality. Constructing a precise extractor may prevent it from being robust to

future changes. Constructing a loose extractor makes it more robust, but would yield results

of poor accuracy. Both of these options are undesirable. Instead, our key contribution is the

construction of forgiving extractors that adjust their precision dynamically and do not commit

to a specific generalization tradeoff upfront.

Existing Techniques Manually writing a data extractor is extremely challenging. This moti-

vated techniques for automatic “wrapper induction”, learning extraction queries from exam-

ples [KWD]. Automated techniques reduce the burden of writing extractors, but still require

manual effort (e.g., providing tagged samples for each site).

There has been a lot of work on pattern based techniques, using alignment of XPaths

(e.g., [RGSL04, NDMBDT14, NBdT16]). These techniques learn paths to the annotated data

items and generalize them to generate an extraction query. When provided with items that have

significantly different paths (e.g., originate from different sites) these techniques may result in

an overly relaxed query expression, and significant loss of precision. As a result, pattern based

techniques are often limited to a single web site, and are sensitive to formatting changes.

Model based techniques [HCPZ11, FK04, SWL+12, Kus00], use features of DOM elements

to learn a model that classifies DOM items to data and noise. These methods have several

drawbacks. First, they lack a standard execution mechanism for extraction (in contrast to XPath

queries that are available for pattern based techniques). Second, the classifiers trained by these

techniques are often hard to understand and modify. Last, but not least, the generalization in

these models is performed at training time and thus presents the standard dilemma between

precision and generality.

Our Approach Our approach is based on the assumption that, despite differences in presentation,

some sites in the family do share some local syntactic structural similarity (e.g., a book title

may appear under some heading class, or its parent may be of some particular class). Our claim

(which we support empirically) is that training on a few sites from the family will cover most of

the local structural patterns. Following this insight, our approach tackles the problem in two

steps:

40



(1) Precise generalization for the training set: given a set of annotated pages from different sites,

we use decision tree learning to synthesize a common XPath query that precisely extracts the

data items from all sites. Intuitively, the decision tree is used as a generalization mechanism that

picks the important features for precise extraction. The overall set of features consists of XPath

predicates that capture local syntactic structural properties. The synthesized query increases

robustness, while maintaining precision on the training set.

(2) Dynamic generalization: the XPath query constructed in the previous step is precise for

pages in the training set, but may be overly restrictive for extraction from other pages. To

generalize to other pages, we introduce the novel notion of forgiving XPaths—a query that

dynamically relaxes its requirements, trading off precision to make sure that target items are

extracted.

The query generated by our approach has the benefits of both pattern based techniques

and model based techniques. On the one hand, it is a standard XPath query, which has a wide

support from web-browsers, programming languages and DOM parsers. This also makes it

human readable, easy to review and modify by a programmer. On the other hand, the query has

the flexibility and generalization ability of the techniques based on learning models.

Main Contributions The contributions of this paper are:

• A novel framework for synthesis of robust data extractors for a family of sites from

examples (annotated web pages).

• A new technique for generalization of XPath queries using decision trees and “forgiving

XPaths”, which adjust precision dynamically.

• An implementation of our technique in a tool called TRACY and an experimental evaluation

of the robustness and generality of the forgiving extractors. We evaluate precision and

recall on: (i) different pages from sites in the training set (ii) pages from different versions

of sites in the training set (iii) pages from different (unseen) sites. Our evaluation shows

that TRACY is able to synthesize robust extractors with high precision and recall based on

a small number of examples. Further, comparison to existing pattern based and model

based techniques shows that TRACY provides a significant improvement.

3.2 Overview

In this section, we provide an informal overview of our approach. We elaborate on the formal

details in later sections.

3.2.1 Motivating example

Consider the problem of synthesizing an extractor of book information based on exam-

ples from three book-seller sites: abebooks.com (ABE), alibris.com (ALIBRIS) and

barnesandnoble.com (B&N). To simplify presentation, we focus on an extractor for the

author attribute.

Fig. 3.1 shows simplified fragments of HTML documents presenting book information from

the three different sites. We annotated these documents by tagging the HTML nodes that contain

instances of the author attribute with a special HTML-attribute, userselected.

41

abebooks.com
alibris.com
barnesandnoble.com


(∗@\ u n d e r l i n e {\emph{Abe}}@∗ )
<div id =” b o o k I n f o ”>
<h1 id =” book− t i t l e ”>Rachae l Ray 30−Minute Meals 2< / h1>
<h2>
<a u s e r s e l e c t e d hre f =” / s e r v l e t / Se . . −a u t h o r ”>

Ray , Rachae l< / a>
< / h2> . . .
< / div>

(∗@\ u n d e r l i n e {\emph{B\&N}}@∗ )
<s e c t i o n id =” prodSummary ”>
<h1 i t e m p r o p =”name”>H i s t o r y o f I n t e r i o r Des ign< / h1>
<span>

by <a u s e r s e l e c t e d hre f =” / s / . . c o n t r i b u t o r . . ”>
J e a n n i e I r e l a n d< / a>

< / span> . . .
< / s e c t i o n>

(∗@\ u n d e r l i n e {\emph{ A l i b r i s }}@∗ )
<div c l a s s =” p r o d u c t− t i t l e ”>
<h1 i t e m p r o p =”name”>La Baba d e l C a r a c o l< / h1>
<h2>by
<a u s e r s e l e c t e d i t e m p r o p =” a u t h o r ” i t e m s c o p e hre f =” . . ”>

C . M a i l l a r d< / a>
< / h2>
< / div>

Figure 3.1: Fragments of webpages with the author attribute values for a book on three different
book seller sites.

Note that the three different sites have different structure, and that the attribute of interest

(author) appears differently in each site. There are many ways to write an XPath query that

extracts the author from each site. For example:

• //div[@id="bookInfo"//a for ABE

• //section/span/a for B&N

• //a[@itemprop="author"] for ALIBRIS

Alternatively, other example queries could be:

• //a[@*[contains(.,"author")]] for ABE and ALIBRIS

• //*[contains(text(),"by")/a for B&N (also ALIBRIS).

Some of these queries are more robust than others, and some would generalize better across

site versions. For example, the query

//*[contains(text(),"by")/a for extracting the author name in B&N is more general

than the query //section/span/a, which relies on a specific nesting structure of section,

span, and anchor. Because there are many possible queries that extract the same information,

it may be possible to use the different sites to pick queries that would be more robust. However,

it is not clear how to do this.

For example, using an alignment based XPath generation technique on our three training

42



p: 0.003

aos::*[@*[contains(.,’author’)]]

p: 0.001

aos::*[@*[contains(.,’contributer’)]]

p: 1

[accept]

p: 0

[reject]

p: 0.75

aos::h2

p: 1

[accept]

p: 0

[reject]

x1://*[((aos::*[@*[contains(.,’author’)]] and aos::h2) or
(not (aos::*[@*[contains(.,’author’)]]) 

and aos::*[@*[contains(.,’contributer’)]]))]

T1
p: 0.003

aos::*[@*[contains(.,’author’)]]

p: 0.001

aos::*[@*[contains(.,’contributer’)]]

p: 1

[accept]

p: 0

[reject]

p: 0.75

[accept]

x2://*[((aos::*[@*[contains(.,’author’)]]) or
(not (aos::*[@*[contains(.,’author’)]]) 

and aos::*[@*[contains(.,’contributer’)]]))]

T2
p: 0.003

[accept]

x3://*

T3

Figure 3.2: Example decision trees over XPath predicates and their respective XPath translations.

pages would result in an XPath like //*/*/a, which is too general, and would lead to significant

loss of precision (as shown in Section 5.6). This is because alignment based techniques (and

pattern based techniques in general) assume that documents in the training set have a shared

template. They therefore fail to handle significant structural differences between documents

in the training set, as occur when the training set contains documents from multiple sites.

Pattern-based generalization techniques also produce queries that are sensitive to changes, and

are therefore not robust.

3.2.2 Our Approach

Our extractor synthesis process attempts to automatically pick the queries that would be more

robust and general. The synthesis starts by a precise query generalization for the training set,

which is obtained by learning a decision tree for identification of the tagged nodes. This is

followed by a dynamic generalization, which is obtained by creating XPath queries which we

call forgiving.

Precise Generalization for the Training Set Synthesis starts by using the annotated documents

to learn a decision tree which correctly identifies all the tagged HTML nodes. To do so, our

method first extracts features that describe the tagged HTML nodes.

Extracting features: Feature extraction is done by traversing the paths from tagged nodes to the

root and collecting features from nodes on the path and from their surrounding context. The

extracted features are all valid XPath predicates (explained in Section 3.3.1). These features are

used as tests in the inner nodes of the decision tree, and are the building blocks of our XPath

queries.

Consider the author node in the ALIBRIS website (Fig. 3.1). Our feature extraction step

starts from the a node having the userselected attribute, and traverses the path to the HTML

root node though the nodes h2 and div, while collecting features both from the nodes on the

path and from their surrounding context. Among the extracted features are the following:

• ancestor-or-self::h2, which matches nodes of type h2 or an ancestor of type h2

(later, e.g., in Fig. 3.2, we write aos as a shorthand for ancestor-or-self),

• @itemprop="author", which matches nodes with the attribute itemprop having the

value author, and

• @*[contains(.,"author")], which matches nodes that contain the value author.

43



The feature @*[contains(.,"author")] is a generalization of the feature @itemprop="author".

Our feature extraction step generates such generalized features, in addition to the precise ones, in

order to later enable the use of generalized structural features in the decision tree when possible

(when the generalization does not result in loss of precision).

Learning a Decision Tree: Once the feature extraction step is complete, our method uses a

recursive procedure to learn the decision tree, based on the extracted features. Our algorithm

is a variant of the ID3 algorithm [Qui]. One of the differences is that our algorithm prioritizes

generalized features when selecting the feature to use as a test in inner nodes. Technically, this

is done by assigning costs to features, with generalized features having lower costs. Additional

details and differences are described in Section 3.3.2.

Fig. 3.2 (T1) presents the decision tree generated by our algorithm to identify author nodes

in ABE, B&N and ALIBRIS. The root node of T1 has @*[contains(.,"author")] as a

test. This is because this feature has the highest improvement-to-cost ratio: it results in the

highest information gain, when prioritizing low-cost (generalized) features. The true-branch of

the root leads to a node with test aos::h2, while the false-branch leads to @*[contains(.,

"contributer")] as a test.

A decision tree has a natural recursive translation into a valid XPath query that extracts the

nodes identified by the decision tree. The XPath query x1 presented at the bottom of Fig. 3.2 is

the extraction query generated from T1 for the author attribute.

Dynamic Generalization using Forgiving XPaths The decision tree learned from the annotated

HTML documents, and the corresponding XPath query, identify the annotated nodes as precisely

as possible (depending on the extracted features). However, in order to improve the ability to

extract semantically similar nodes in other versions of the web pages, some generalization is

desired. A natural generalization is by pruning the decision tree, turning some inner nodes to

accepting nodes. Such generalization trades off precision on the training set for a potentially

higher recall on other pages. However, the question remains where to prune the decision tree,

and how much precision to sacrifice.

As an example, consider a modified version of one of the sites where books also contain an

author attribute. Fig. 3.3 shows such an example HTML fragment. Fig. 3.2 shows three trees

T1, T2 and T3 and their respective XPath translations x1,x2 and x3. As explained above, T1

is the tree learned by our algorithm when applied on ABE, B&N and ALIBRIS. T2 is a pruned

version of T1, with a slightly lower precision, while T3 is a fully-pruned tree accepting every

node. Running x1 on the modified site returns no results. Using x2 will have better performance

on the modified site, however, it will have a lower precision on sites from the training set.

Forgiving XPaths: Our goal is to find the highest level of precision that obtains sufficient recall.

As the books example demonstrates, this level might be different for different sites. An important

aspect of our approach is the introduction of forgiving XPaths, which allow us to postpone the

decision of how much precision to sacrifice to the evaluation time of the XPath, and hence adjust

the generalization to the web page at hand.

Technically, a forgiving XPath query is an XPath query obtained as a union of several

44



<p id =” p r o d u c t s u b t i t l e ”> . . i n Simple Words< / p>
<p id =” p r o d u c t a u t h o r ”>By
<a c l a s s =” b l u e l i n k ” hre f =” . . . ”>R a n d a l l Munroe< / a>< / p>

Figure 3.3: Fragment of a modified book information page.

queries (using the “|” XPath operator). Each query exhibits a different precision level on the

training set, and is conditioned by the more precise queries not extracting any nodes. This means

that at run time, when invoked on a HTML document, the forgiving XPath will evaluate to the

query with the maximal precision level that extracts a non-empty set of nodes. This property

allows the forgiving XPath to perform well on both seen and unseen documents, avoiding the

trade-off between precision on seen data and recall on unseen data. It is important to note that

our forgiving XPath query is a standard XPath query that may be used in any XPath interpreter

without the need for modifications of any kind.

We construct the forgiving XPaths from a series of XPaths with monotonically decreasing

precision, such as x1, x2 and x3 above. In the books example, we derive the following forgiving

XPath:

fx = /*/x1|/*[not(x1)]/x2.

fx uses the root node (which never contains data), to enable returning the result of invoking x2

only when x1 returns no results.

3.3 Decision Tree Learning

In this section we present the first step of our approach for synthesizing forgiving XPaths, which

constructs a decision tree based on a given set of annotated web pages.

Notation Given a set of web documents D = {d1, . . . , dn}, where each di is represented as a

DOM tree with a set statesi of nodes, and given a target set Ni ⊆ statesi of nodes of interest

for each di ∈ D, we denote by states =
⋃n
i=1 statesi the global set of DOM nodes, and by

N =
⋃n
i=1Ni the global target set of nodes of interest. We also denote the remainder of the

nodes by N = states \N .

Our approach starts with a feature extraction phase, where we generate a set F of features

based on the DOM nodes in N . We then construct a decision tree that uses the features in F

to classify states into N and N . The decision tree will serve as the basis for the creation of a

forgiving XPath, as described in Section 3.4.

3.3.1 Feature Extraction

For every individual document di in the training set D, there are many correct XPaths for the

extraction of Ni. Each such XPath might use different structural features of the document. To

improve the ability to generate a concise common XPath for all of the documents in D, we first

generate a large set of structural features.

In the feature extraction phase, our method extracts features of N that are expressible by

45



valid XPath queries. Each feature f is defined by an XPath predicate, with the meaning that the

value of f in a DOM node is 1 iff the value of the XPath predicate on the same node is true.

The extracted features of a node in N are divided to node features, and context features.

The extent of the surrounding context that we consider is configurable. In our implementation,

context features consist of children features and ancestor features.

Node features consist of:

• Node Name the node name is used to create a node-test feature (for instance, self::a).

• Text Content the text content of the text children of a node is used to define text-equality

features and text-containment features. For instance, the predicate text()="Sale

price:" is a text-equality feature, which holds iff the current node has a text

child node whose value equals “Sale price:”. On the other hand, the predicate

contains(text(),"price") is a text-containment feature, that requires the current

node to have a text child node containing the string “price”.

• Node Attributes the node attributes define attribute features. Each attribute consists of a

name and value pair (for instance, id = "product title"). Attribute features are of

three different types:

1. Attribute name features (e.g. @class requires having an attribute with name “class”)

2. Attribute value features with or without conditions on the attribute name (e.g.

@*="title" requires having an attribute with value “title”, while @id="title"

requires having an attribute named “id” and value “title”)

3. Text-containment features on attribute values, with or without conditions on the

attribute name. For instance, @*[contains(.,"title")] requires that some

attribute has a value that contains the token “title”.

Context features are divided to:

• Children Features node features as defined above are extracted also for the children

of the node (e.g., child::div is a predicate that evaluates to true on nodes that have

children with node name ‘div’).

• Ancestor Features node features and children features as defined above are extracted

also for ancestors of the node (e.g., ancestor-or-self::*[child::span] evaluates

to true on nodes with ancestors that have children named ‘span’).

Technically, the feature extraction process is performed on each document di ∈ D separately.

For each document di, our method starts from the nodes in Ni. For each node it computes

its node and children features and ascends up the path to the DOM tree root, while gathering

ancestor features. To generate text-containment features we tokenize the relevant text and use

the resulting tokens to define containment conditions contains(text(),token).

Features as XPath Queries Each of the extracted features f is an XPath predicate. It induces

an XPath query //*[f] that, when invoked on the root of a DOM tree, extracts the set of all

nodes in the DOM tree that satisfy f . With abuse of notation we sometimes refer to the feature

f itself as the induced XPath query.

46



3.3.2 Decision Tree Learning

Given the extracted set of features F , we use a variant of ID3 to learn a decision tree that

classifies A into N and N .

Decision tree A decision tree T is a complete binary labeled directed tree, in which each inner

node (including the root) is labeled by a feature f ∈ F , and has exactly two children: a 0-child,

and a 1-child (each child corresponds to a value of f ). We also refer to the children as branches.

The leaves in the tree are labeled by 0 or 1, where each value corresponds to a possible class.

The elements in A whose feature vectors match paths in T from the root to a leaf labeled by 1

form the 1-class induced by T . The 0-class is dual.

Decision Tree Learning Given the partitioning of A into N and N , and given a set of features

F , ID3 constructs a decision tree T whose 1-class is N and whose 0-class is N . (Note that a

correct classifier exists only if whenever two elements elem1, elem2 ∈ A share a feature vector,

they also share a class.)

The construction of the decision tree is recursive, starting from the root. Each node t in the

tree represents the subset of the samples, denoted S(t), whose feature vector matches the path

from the root to t. If all samples in S(t) have the same classification, then t becomes a leaf with

the corresponding label. Otherwise, ID3 may choose to partition S(t) based on the value of

some feature f ∈ F . The node t is then labeled by the feature f , and the construction continues

recursively with its children, where its 1-child represents the subset of S(t), denoted S(t)f , in

which f has value 1, and its 0-child represents the set S(t)f = S(t) \ S(t)f where f has value

0. In our setting these sets are computed by running the feature f ∈ F on every d ∈ D and

computing S(t)f = (
⋃
d∈DJfKd) ∩ S(t), and S(t)f = S(t) \ S(t)f .

ID3 selects the feature f ∈ F to split on as the feature with the highest information gain for

S(t), where the information gain [Mit97], denoted IG(S(t), f), of S(t) based on f measures

the reduction in uncertainty after splitting S(t) into S(t)f and S(t)f . Our learning algorithm

modifies ID3 in two ways: (i) features have costs that are taken into account in the computation

of the information gain. (ii) the choice of a feature f to split on is restricted in a way that ensures

a correlation between an element having value 1 for f in the feature vector and the element

being classified into the 1-class. We elaborate on these modifications below.

Feature Costs We consider features with different costs. Intuitively, the more specific the feature

is, the higher its cost. We denote the cost of f ∈ F byCost(f). In order to prioritize generalized

features over more specific ones, we define the information-gain-to-cost ratio and use it instead

of the information gain:

Definition 3.3.1. The information-gain-to-cost ratio of a feature f for a set S ⊆ A, denoted

IGR(S, f), is:

IGR(S, f) = IG(S, f)/Cost(f)

Feature-Class Correlation Guided by the intuition that, in many cases, existence of features is

important for being classified as part of the 1-class, while their nonexistence is incidental, we

47



create a decision tree that correlates feature values with the classification: specifically, value 1

for a feature is correlated with class 1.

The feature-class correlation is obtained by restricting the set of features to split S(t) on

only to the subset Ft ⊆ F for which S(t)f (which will form the 1-branch if the split by f takes

place) has more instances from N than S(t)f (which will form the 0-branch).

Among all the features in Ft, the feature f with the highest IGR(S(t), f) is selected as the

feature to split t.

3.4 Forgiving XPath Synthesis

Building a decision tree is an intermediate step towards synthesizing a forgiving XPath query.

In this section we define the notion of forgiving XPaths and describe their synthesis.

Forgiving XPaths A forgiving XPath is constructed based on a series of XPaths x0, x1, . . . , xk

s.t. for every 0 ≤ j < k and d ∈ D, JxjKd ⊆ Jxj+1Kd, where JxKd is the set of nodes extracted

by x from d. Note that if x0 is precise for every seen document, then the precision of the XPaths

in the sequence is monotonically decreasing, but the recall on unseen documents is potentially

increasing.

Definition 3.4.1. Given a series of XPaths x0, x1, . . . , xk as defined above, a forgiving XPath

is defined by

fx = / ∗ /x0 | / ∗ [not(x0)]/x1 | . . . | / ∗ [not(xk−1)]/xk

We say that x0 is the base of fx.

fx uses the union operator (“|”), which means that it extracts the union of the nodes extracted

by the individual queries. However, the queries are constructed in such a way that for every

document d, seen or unseen, JfxKd = JxjKd for the least j such that JxjKd 6= ∅. This is ensured

since the XPath xj is applied on / ∗ [not(xj−1)], which will extract an empty set of nodes if

Jxj−1Kd 6= ∅, and will extract the root node of d otherwise. Therefore, at run time, for every

document, fx evaluates to the most precise query in the series that actually extracts some nodes.

In particular, if x0 has perfect precision and recall for the training set, so will fx.

In the following, we present the construction of a forgiving XPath from a sequence of

XPaths that are monotonically decreasing in their precision. We obtain such a sequence by first

obtaining a sequence of decision trees with monotonically decreasing precision.

3.4.1 Decision Trees with Varying Precision

We measure the precision and recall of a decision tree T by the precision and recall of its

1-class w.r.t. the “real” class, N . We use pruning to define a sequence of decision trees with

monotonically decreasing precision scores. Our motivation for doing so is to gradually trade

off precision (on the training set) for a better recall on new documents. Pruning is based on the

nodes precision:

Definition 3.4.2. The precision of a node t ∈ T is defined as precision(T, t) = |S(t)∩N |
|S(t)| .

48



In Fig. 3.2, the “p” labels of the inner nodes denote their precision. For instance, the node

aso::h2 in T1 has a precision of 0.75, which means that 75% of the elements in the training

set that reach it when classified by T1, are from N .

Tree Pruning: Limiting Precision In the construction of the decision tree, a node with precision

1 becomes a 1-labeled leaf. We prune a tree by limiting the maximal precision of its nodes;

Formally, given a precision threshold α, the method prune(T, α) prunes every subtree of T

whose root t has precision(T, t) ≥ α, and turns t to a leaf labeled by 1. Thus, the induced

1-class is increased.

For example, T2 in Fig. 3.2 results from pruning T1 by limiting the precision of its nodes to

0.75.

Clearly, the tree T ′ obtained after pruning has a lower precision score than T (since the

1-class defined by T ′ is a superset of the 1-class defined by T ). However, the recall score of T ′

can only increase compared to T : The recall score of T on the training set is already maximal,

hence it is not improved by pruning. However, when considering new documents, the recall

score of the pruned tree, T ′, can be strictly higher than that of T .

Layered Decision Tree Sequence Given the decision tree T learnt in Section 3.3.2, we create

a sequence of decision trees with a monotonically decreasing precision and a monotonically

increasing recall as follows:

Definition 3.4.3. Let α0 > α1 > . . . > αk be the sequence of precision scores of nodes in T ,

in decreasing order, i.e., {α0, . . . , αk} = {precision(T, t) | t ∈ T}. The layered decision tree

sequence based on T is the sequence T0, T1, . . . , Tk of decision trees, such that T0 = T , and for

every 0 ≤ i < k, Ti+1 = prune(Ti, αi+1).

Note that it is possible that as a result of pruning, a node with precision score αi+1 no longer

exists in Ti. In this case, the definition implies that Ti+1 = Ti. However, we will simply omit

Ti+1 from the sequence. Therefore, each layer in the layered sequence reflects a “one step”

reduction in the precision of the decision tree (and hence, potentially, an increase in the recall).

For example, the decision trees T1, T2 and T3 depicted in Fig. 3.2 form a layered decision

tree sequence based on T1.

3.4.2 Translation of Decision Trees to Forgiving XPaths

The features used in the decision trees are all XPath predicates. This allows for a natural

translation of a decision tree to an XPath query that extracts the set of nodes classified as

belonging to the 1-class by the decision tree. In the following we describe this translation,

which we use to generate a series of XPaths from the layered decision tree sequence generated

from T (see Definition 3.4.3). We use the series to construct a forgiving XPath as defined in

Definition 3.4.1

Decision Tree to XPath The translation of a decision tree T̃ to an XPath is performed by a

recursive procedure, GetXPath(t), which is invoked on the root t of T̃ and returns an XPath

predicate.

The procedure GetXPath(t) works as follows:

49



1. if t is a leaf node, return true() if it labeled 1, and false() if it is labeled 0.

2. if t is an inner node, labeled by feature f , then call GetXPath on its 0-child, t0, and on

its 1-child, t1. Let p0 = GetXPath(t0), and p1 = GetXPath(t1). Then return the XPath

predicate:

(f and p1) or (not(f) and p0) (3.1)

Finally, from the XPath predicate p returned by the invocation of GetXPath on the root of

T̃ , an XPath query //*[p] is constructed. When invoked on the root of a DOM tree, //*[p]

extracts the set of all nodes in the DOM tree that satisfy p. We denote the XPath query //*[p]

by XPath(T̃ ). The translation ensures that a DOM node is in the 1-class induced by T̃ iff it is in

JXPath(T̃ )K.

Fig. 3.2 shows the XPath queries x1, x2, x3 generated from T1, T2, T3, respectively.

3.5 Evaluation

In this section we evaluate the effectiveness of our approach. Our experiments focus on three

different aspects: (i) the accuracy of the synthesized queries on different pages from sites that

have some pages in the training set (seen sites), (ii) their accuracy on different versions (newer

and older versions) of the same pages, and (iii) their accuracy on pages from sites that have no

pages in the training set (unseen sites).

3.5.1 Implementation

We implemented our approach in a tool called TRACY, and used it to synthesize extraction

queries for multiple websites. For comparison, we also implemented four other extractors:

• To represent model-based approaches we trained two classifiers, C4.5 [Qui14] (J48 imple-

mentation) and naive bayes (NB) [JL95] (using Weka [HFH+09]). In each experiment we

train the classifiers on the same training set based on the same features used to construct

our extractor.

• To represent other XPath-based approaches, we have implemented an alignment-based

XPath (XA) generation technique proposed in [NDMBDT14].

• In addition to forgiving XPath (FX) queries, we used our approach to generate non-

forgiving XPath queries (NFX) by directly generating an XPath from the obtained decision

trees.

3.5.2 Experimental Settings

Datasets We constructed three datasets (available at: goo.gl/a16tiG) to evaluate our approach

and the baselines. The first dataset, denoted DS1, contains pages from 30 real-life largescale

websites divided to four different categories: books, shopping, hotels and movies. For each

category, a set of (typically 2 or 3) common attributes were selected as the target data to be

extracted. DS1 contains 166 manually annotated pages. To construct the second dataset, denoted

DS2, we used archive.org to obtain five different versions (current version and four older ones)

of the same page from four sites (with two or three different attributes to extract). DS2 contains

55 manually tagged webpages. The third dataset, denoted DS3, contains 5025 product pages

50

https://goo.gl/a16tiG


Figure 3.4: The F-measure values of different approaches for seen sites, as a function of number
of sites in training set.

from five widely known websites. The pages were annotated (with two attributes, product name

and price) using manually written XPaths.

In our experiments we used different subsets of the dataset as training sets and evaluation

sets.

Performance Metrics Given a page d from one of the datasets and a target attribute for extraction

attr, we denote by Nattr(d) the set of tagged nodes containing instances of attr in d. For a data

extractor x extracting instances of attr, we measure the precision, recall and F-measure of x on

d by considering Nattr(d) as a target set. The precision, recall and F-measure of x (for attr)

are defined as the averages over all pages d in the evaluation set containing instances of attr.

The reported precision (P), recall (R) and F-measure (F1) for each approach are the averages

over all the data extractors x that it synthesizes (for all categories and all attributes).

s = 2 s = 3 s = 4 s = 5 s = 6

FX 0.6% 0.8% -0.8% -1.5% -2.6%
NFX -3.9% -3.0% -4.2% -5.0% -5.8%
C4.5 -1.8% -5.6% -6.5% -7.7% -10.6%

NB 6.8% -7.3% -17.9% -26.0% -34.4%
XA -51.3% -70.1% -77.8% -83.3% -89.2%

Table 3.1: Performance (F-measure) decrease on seen sites as a function of the size of the
training set (s). Lower decreases (negative values with smaller absolute value) indicate higher
robustness to structural differences in the training set.

3.5.3 Evaluating the Different Performance Aspects

Accuracy on Seen Sites We evaluated the effectiveness of our approach (and the baseline

approaches) for data extraction by evaluating the accuracy of the queries it generates on the

different sites in the dataset. This is the standard use case, where we generate a query and

evaluate it on each site separately.

51



Figure 3.5: The F-measure values of different approaches for unseen sites, as a function of
number of sites in training set.

Figure 3.6: The F-measure values when evaluated on different page versions, as a function of
number of versions in training set.

s = 1 s = 2 s = 3 s = 4 s = 5 s = 6
P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Performance on Documents from Seen Sites
FX 0.86 0.93 0.87 0.86 0.94 0.87 0.87 0.93 0.88 0.86 0.91 0.86 0.85 0.90 0.86 0.85 0.89 0.85

NFX 0.86 0.90 0.87 0.83 0.87 0.84 0.84 0.87 0.85 0.84 0.85 0.83 0.83 0.85 0.83 0.84 0.84 0.82
C4.5 0.80 0.87 0.81 0.72 0.93 0.79 0.69 0.91 0.76 0.68 0.91 0.76 0.67 0.92 0.75 0.65 0.91 0.72

NB 0.55 0.92 0.60 0.55 0.93 0.64 0.45 0.93 0.56 0.39 0.92 0.49 0.34 0.92 0.45 0.29 0.92 0.40
XA 0.53 0.54 0.52 0.24 0.38 0.25 0.14 0.33 0.15 0.10 0.29 0.11 0.07 0.28 0.09 0.04 0.26 0.06

Performance on Documents from Unseen Sites
FX 0.31 0.66 0.35 0.48 0.75 0.53 0.56 0.79 0.60 0.60 0.79 0.62 0.60 0.77 0.61 0.63 0.78 0.62

NFX 0.30 0.31 0.29 0.36 0.38 0.36 0.39 0.38 0.36 0.41 0.40 0.38 0.42 0.40 0.38 0.43 0.41 0.39
C4.5 0.28 0.32 0.28 0.38 0.48 0.40 0.43 0.56 0.45 0.46 0.60 0.49 0.48 0.63 0.51 0.51 0.66 0.53

NB 0.01 0.01 0.01 0.26 0.35 0.27 0.31 0.49 0.34 0.34 0.56 0.37 0.34 0.62 0.38 0.32 0.65 0.35
XA 0.01 0.01 0.01 0.04 0.07 0.04 0.05 0.12 0.06 0.04 0.14 0.04 0.03 0.14 0.03 0.01 0.11 0.01

Table 3.2: The average precision (P), recall (R) and F-measure (F1) of different approaches on
seen and unseen sites, for different numbers of sites (s) in the dataset

52



s = 1 3 s = 2 s = 3 s = 4 s = 5 s = 6
author 0.18 0.25 0.52 0.68 0.78 0.82

price 0.36 0.62 0.66 0.66 0.62 0.55
title 0.94 0.92 0.93 0.93 0.96 0.98

Table 3.3: The average F-measure (F1) for forgiving XPaths (FX) on different book attributes in
unseen sites.

s = 1 s = 2 s = 3 s = 4
P R F1 P R F1 P R F1 P R F1

FX 0.53 0.88 0.58 0.72 0.88 0.74 0.81 0.88 0.80 0.87 0.93 0.86
NFX 0.52 0.52 0.51 0.69 0.67 0.67 0.78 0.75 0.75 0.85 0.84 0.82
C4.5 0.46 0.48 0.46 0.53 0.75 0.59 0.52 0.80 0.58 0.55 0.84 0.60

NB 0.11 0.27 0.13 0.18 0.59 0.23 0.18 0.71 0.23 0.15 0.76 0.19
XA 0.04 0.04 0.04 0.17 0.23 0.17 0.14 0.20 0.14 0.13 0.21 0.12

Table 3.4: The average precision (P), recall (R) and F-measure (F1) of different approaches
trained on a set of size s of page versions and tested on the rest.

FX XA
Name Price Name Price

P R F1 P R F1 P R F1 P R F1
currys 1.00 1.00 1.00 0.92 1.00 0.96 1.00 1.00 1.00 1.00 0.65 0.79

pricespy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.26 0.42
bestbuy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99

pricerunner 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.67 0.80 1.00 0.67 0.80
ebuyer 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.26 0.42 1.00 1.00 1.00
overall 1.00 1.00 1.00 0.98 1.00 0.99 1.00 0.79 0.84 1.00 0.71 0.80

Table 3.5: Performance of forgiving-XPath (FX) and Alignment based approach (XA) on the
XPath generated data set (DS3)

In addition, we used our approach (and the baselines) for synthesizing a single generalized

query for multiple sites. In particular, this allowed us to evaluate the robustness of our approach

to structural differences in the training set. Such robustness is important to allow training the

tool on a larger training set with a variety of websites without harming accuracy.

Accuracy on Different Page Versions To evaluate the robustness of queries generated by our

method (and other baselines) to structural changes in the pages, we synthesized the queries

using some versions of the page and evaluated them on different versions. Robustness to future

changes on the page structure is important, as a more robust query will break less frequently.

Accuracy on Unseen Sites One major advantage of our technique compared to other XPath-

based extraction techniques (in addition to its ability to synthesize a single query for multiple

sites) is its generalization ability and the flexibility of its resulting queries. Other XPath based

techniques work on pages from a single site, and generate XPath expressions that are strictly

related to the structure of these pages.

To evaluate the generalization ability of our approach, we evaluated the extractors on unseen

sites. Note that our goal is only to compare the generality of queries synthesized by our method

to the other baselines; we do not expect the accuracy on unseen sites to be as good as for seen

sites, as this is a much more challenging task.

53



3.5.4 Methodology

We evaluated our approach on seen and unseen sites by applying it on sets of sites from the DS1

dataset of different sizes (i.e., with different number of sites in the training set). We denote the

number of sites in the training set in each experiment by s.

For every category among books, shopping, hotels and movies, for which the dataset contains

documents from 7 to 8 sites (we denote by n the number of sites in the category), we considered

all the possible
(
n
s

)
subsets of size s of sites in the dataset, where s ∈ [1, 6] (while s can be as

large as 8, we limit it to 6 to be consistent with the unseen case). For each subset of s sites,

we created the subset of the dataset restricted to the pages of the selected sites. We denote the

corresponding subset of the dataset by D. For evaluating the performance on seen sites, we split

D to two disjoint subsets Dt (for training) and De (for evaluation). Each of the two subsets Dt

and De contains document pages from each website. Hence the training set and the evaluation

set refer to exactly the same sites (allowing us to evaluate the performance on seen sites), but

they have no documents in common. We used our approach to synthesize an extraction query

with Dt as a training set, and evaluated the precision, recall and F-measure of the resulting query

on De.

In addition, we used DS3 to compare the performance of our approach to that of the

alignment based approach [NDMBDT14]. For each site and attribute (among product name and

price) DS3 contains 1005 pages, five of which are used for training and the rest are used for

testing.

For evaluating the performance on unseen sites, we used our approach to synthesize an

extraction query with D as a training set and evaluated the precision, recall and F-measure of

the resulting query on D. The set D contains documents in the dataset from the rest of the sites

from the same category (these sites are considered unseen – as their documents are not in D).

We did the same for all the other baseline approaches we have implemented. For every value

of s ∈ [1, 6] and for every category, we calculated the average precision, recall and F-measure

over the different subsets D of the dataset obtained with s sites for both seen and unseen cases.

Finally, for each value of s ∈ [1, 6], we calculated the average over all categories. The results

obtained for the two variants of our approach, as well as for the baselines, are reported in

Table 3.2, Fig. 3.4 and Fig. 3.5 (as a function of s).

To evaluate our approach (and the baselines) on different page versions, we used a similar

process as before, this time on pages from the DS2 dataset. In these experiments, s refers to the

number of versions considered in the training set, D consists of a subset of page versions and D

consists of the remaining versions. Results are reported in Table 3.4 and Fig. 3.6.

3.5.5 Results

Results for Seen Sites The results for performance on seen sites are reported in Fig. 3.4 and

Table 3.2. The results show that the XPath queries generated by our approach (FX and NFX)

have the best accuracy (F-measure) among the different approaches for all different values of

s, well ahead of the closest competing approach C4.5. Both classifier based methods (C4.5

and NB) suffer from loss in precision, especially for higher s values. The alignment-based

54



XPath generation (XA), which has the lowest precision and recall among all the approaches,

suffers from significant decrease in precision for s > 1. According to Table 3.1, which reports

the performance loss on seen sites as a function of the number of sites in the training set, our

forgiving XPath method (FX) is the most robust approach to diversity in the training set. The

results for performance of the alignment based XPath generation (XA) and our forgiving-XPath

(FX) on DS3 are reported in Table 3.5. The XPath queries generated by our approach have

better precision and recall than those generated by the alignment based approach. However,

both approaches perform better on DS3 than on DS1 (our approach has perfect recall and close

to perfect precision). This is because pages in DS3 were annotated using XPaths while pages in

DS1 were manually annotated. It is therefore hard even for a human programmer to write an

XPath that accurately extracts the data from them.

Results for Different Page Versions The results of invoking the data extractors on different

(older and newer) versions of pages are reported in Fig. 3.6 and Table 3.4. The results show that

when trained with a large enough set of different archived versions of a page, our forgiving-XPath

(FX) has an F-measure of 0.86 on newer (different) yet unseen version of the page (0.93 recall

and 0.87 precision, which is close to its performance on seen pages). This shows the usefulness

of our approach for generating a robust extractor when used on a set containing a variety of

previous versions of a target page. That is, it is more tolerant to structural changes in future

versions of the page. Classifier-based methods show poor precision for higher s values, making

them unsuitable for such an application (of generating robust extractor). Alignment-based XPath

generation (XA) has the lowest scores (for all values of s).

Results for Unseen Sites Fig. 3.5 shows that our forgiving XPath approach (FX) has the best

accuracy (F-measure) for every number of sites in the training set. Table 3.2 shows that our

forgiving XPath technique significantly outperforms the other approaches in terms of both

precision and recall.

While the non-forgiving XPath (NFX) performs well (very close to the forgiving XPath),

and outperforms C4.5 on seen sites, it is outperformed by C4.5 in the case of unseen sites. This

is because we use a pruned C4.5 tree, while we keep our non-forgiving XPath strict. This is also

the reason that C4.5 is the closest competing approach to NFX. This highlights the trade-off

between accuracy on seen and unseen sites when pruning is used (or not, as in NFX).

Table 3.3 shows an interesting aspect of the evaluation. The accuracy results that we report

are averaged over all categories and all attributes extracted from a site. However, it is common

for some attributes to be more robust and generalizable than others. For example, in sites listing

books, the accuracy of extracting the book author and the book title is very high, and improves

as more sites are added to the training set. In contrast, the accuracy of extracting the price, might

deteriorate with more sites, as the sites may really have very little in common in the way that a

price is represented (sites may even differ on the number of prices that they present, e.g., special

discounts, shipping, etc.).

55



3.5.6 Discussion

The evaluation results show that forgiving XPath queries, synthesized by our approach, beat the

accuracy of other approaches for all the three different performance aspects.

While some approaches (like NB and C4.5) have a trade-off between precision and generality

(performance on seen and unseen sites), the use of forgiving XPaths enables our approach to

have good performance on unseen sites without noticeable loss of precision on seen sites. In

addition, the robustness of our approach to the structural differences of documents in the training

set enables using datasets with high structural variety (containing different versions of the page),

which improves the robustness of the synthesized XPath to future structural changes.

3.6 Related Work

There has been a lot of work on data extraction from web pages. In the following we survey

closely-related work.

XPath Data Extractors The adaptation of XPath based data extractors has been studied widely.

Several works on automatic generation of XPath based data extractors have been proposed

[RGSL04, NDMBDT14, NBdT16, ZSWG09, Ant05]. Nielandt et al. [NDMBDT14] propose

a method for generating XPath wrappers, which revolves around aligning the steps within the

XPaths. Given a set of XPath samples describing the data nodes of interest in a DOM tree, the

method uses an alignment algorithm based on a modification of the Levenshtein edit distance to

align the sample XPaths and merge them to a single generalized XPath. The XPaths generated

by this method are not robust to structural changes. Our evaluation show that our technique

outperforms this method both on seen and unseen sites. Their latest work [NBdT16] builds on

[NDMBDT14] and enriches the resulting generalised XPaths with predicates, based on context

and structure of the data sources, to improve the precision of the resulting XPath on the training

data with minimal recall decrease. While this method generates richer XPaths compared to

[NDMBDT14], and yields more precise queries in some cases, the resulting XPaths are still

too specific and suffer from the same robustness issue. This results from using an alignment

based algorithm which finds the most specific generalized XPath, keeping unnecessary features

as long as they do not affect its recall. Zheng et al. [ZSWG09] propose a record-level wrapper

system. The generated wrappers include the complete tag-path from the root to record boundary

nodes, making them sensitive to tag modifications. The major weakness of these techniques

is related to the lack of flexibility of their generated XPath queries. These techniques work on

pages from a single site, and generate XPath expressions that are strictly related to the structure

of the pages from the site on top of which they are defined. Omari et al.[OSY16] propose a

method for generating XPath extraction queries for a family of websites that contain the same

type of information. They learn the logical representation of a website by utilizing the shared

data instances among these sites, which allows them to identify commonality even when the

structure is different.

Robustness There has been some work on the problem of XPath robustness to site changes [DBS09b,

LSRT14, LWLY12], trying to pick the most robust XPath query for extracting a particular piece

56



of information. The generalization applied by these techniques is based on alignment of XPaths,

and picks a single query with a fixed generalization/precision tradeoff. In contrast, our approach

uses decision-trees and forgiving XPaths to adjust precision dynamically.

Cohen et al. [CDB15] propose an extension of XPath called XTPath. XTPath stores

additional information from the DOM tree and uses recursive tree matching to fix XPath

wrappers automatically when shifts in the tree structure happen. Instead of constructing a robust

XPath, the method uses the XTPath whenever an XPath fails.

Pattern based techniques Several works [CL01, AGM03, DKS11, LGZ03b, TW13] propose

methods that use repeated pattern mining to discover and extract data records. Kayed et

al. [KC10] propose a technique that works on a set of pages to automatically detect their

shared schema and extract the data. Their method (called FivaTech) uses techniques such as

alignment and pattern mining to construct a “fixed/variant pattern tree,” which can be used

to construct an extraction regular expression. DEPTA [ZL05] uses partial tree alignment to

align generalized nodes and extract their data. DeLa [WL03] automatically generate regular

expression wrappers based on the page HTML-tag structures to extract data objects from the

result pages. IEPAD [CL01] discovers repeated patterns in a document by coding it into a

binary sequence and mining maximal repeated patterns. These patterns are then used for data

extraction. Omari et al. [OKYS16] propose a method for separating webpages into layout code

and data. Their method uses a tree alignment based algorithm to calculate the cost of the shared

representation of two given sub-trees, then it uses the calculated shared representation cost to

decide whether it should fold them or not in order to minimize the representation cost of the

given DOM tree. The result of the folding process is a separation of the page to a layout-code

component and a data component. Chang el al. [CCCD16] propose a system for page-level

schema induction, and uses wrapper verification to extract data. Given a large amount of

webpages, they use a subset of these pages to learn the schema in unsupervised manner, and

then use scheme verification procedure to extract data from the rest of the pages.

Model based techniques Several approaches relying on Machine Learning algorithms were

presented for data extraction [HCPZ11, FK04, SWL+12, Kus00]. HAO et al. [HCPZ11] present

a method for data extraction from a group of sites. Their method is based on a classifier that

is trained on a seed site using a set of predefined feature types. The classifier is then used as

a base for identification and extraction of attribute instances in unseen sites. [FK04] foucses

on detecting the boundaries of interesting entities in the text and treats information extraction

as a classification problem. It uses an SVM classifier to identify the start and end tags of

the data. Song et al. [SWL+12] propose a dynamic learning framework to extract structured

data of various verticals from web pages without human effort. The technique is based on the

observation that there is adequate information with similar layout structures among different web

sites that can be learned for structured data extraction. In contrast to model based techniques,

our method synthesizes a (standard) XPath query, that is human readable and easy to understand

and modify, while maintaining the generalization ability and flexibility of these techniques. In

addition, the use of forgiving XPath queries enables our technique to avoid the tradeoff that

57



classifier based techniques have, between precision on seen sites and precision on unseen sites.

3.7 Conclusion

We have presented, and implemented, a novel approach for synthesizing a robust cross-site data

extractor for a family of sites.

The cross-site extractor that we synthesize combines the benefits of generalization based on

decision tree learning, with the efficient realization of a query as a forgiving XPath that can be

directly and efficiently executed by browsers (and extraction tools).

As our experiments show, the synthesized extractor manages to remain precise for the

training set, despite its generality. In addition, it can extract information from unseen pages

and sites with a relatively high accuracy due to its novel forgiveness property, which allows

it to dynamically adjust its precision for the web page at hand. Interestingly, our extractors

outperform not only other pattern-based extractors, but also classifier-based extractors which

are typically more suited for handling unseen sites. This is achieved while keeping the many

benefits of XPath queries such as readability and efficient execution.

58



Chapter 4

Lossless Separation of Web Pages into Layout Code and
Data

Abstract A modern web page is often served by running layout code on data, producing an

HTML document that enhances the data with front/back matters and layout/style operations. In

this paper, we consider the opposite task: separating a given web page into a data component

and a layout program. This separation has various important applications: page encoding may

be significantly more compact (reducing web traffic), data representation is normalized across

web designs (facilitating wrapping, retrieval and extraction), and repetitions are diminished

(expediting updates and redesign).

We present a framework for defining the separation task, and devise an algorithm for

synthesizing layout code from a web page while distilling its data in a lossless manner. The

main idea is to synthesize layout code hierarchically for parts of the page, and use a combined

program-data representation cost to decide whether to align intermediate programs. When

intermediate programs are aligned, they are transformed into a single program, possibly with

loops and conditionals. At the same time, differences between the aligned programs are captured

by the data component such that executing the layout code on the data results in the original

page.

We have implemented our approach and conducted a thorough experimental study of its

effectiveness. Our experiments show that our approach features state of the art (and higher)

performance in both size compression and record extraction.

4.1 Introduction

Many modern webpages are served by applying layout code to structured data, producing an

HTML page that is presented to the user. The resulting HTML page contains both formatting

elements inserted by the layout code, and values that are obtained from the structured data. The

page is therefore a blend of formatting elements, and actual data.

Goal Our goal is to separate a given HTML page into a layout code component and a data

component such that: (i) the separation is lossless, running the extracted layout code on the

extracted data reproduces the original page, and (ii) the separation is efficient such that common

elements become part of the layout code, and varying values are represented as data.

This separation has various important applications: page encoding may be significantly

59



more compact (reducing traffic), data representation is normalized across different Web designs

(facilitating wrapping, retrieval and extraction), and repetitions are diminished (expediting

updates and redesign). Many of these applications are not limited to static web pages but can

also be applied to dynamically generated pages (e.g., by using a headless browser to obtain a

static HTML page).

Existing Techniques

There has been a lot of past work on data extraction from web pages [AGM03, KC10,

SC13, SC+14, TW13, WL03, CL01, ZL05, LMM06, SL05, LMM10, CYWM03, LGZ03a,

LWLY12, DBS09b, HCPZ11, MTH+09]. Techniques have also been presented for wrapper

induction, using the template structure of a page to produce a wrapper that extracts particular

data elements [KWD, FFT05, CMM01]. While the use of templates is essential for improving

uniformity, readability, and maintainability of web-pages, templates are considered harmful for

many automated tasks like semantic-clustering, classification and indexing by search engines.

Therefore, a lot of past work tackled the challenges of template identification [RGSL04, LGZ03a,

ZL05, BYR02, KFN10] and template-extraction [KS11, VdSP+06, CKP07, GPT05, GF14, DC,

GM13]. Typically, the goal of these works is to identify or extract the template so it can be

ignored/discarded, and the data could be passed to further processing.

Separation combines, and generalizes, two aspects of the extraction problem that are typically

considered separately—record extraction, and template extraction—and seeks to balance them.

Rather than treating the template as noise when extracting data, or eliminating data when

extracting a template, separation seeks to extract both at the same time. The separation algorithm

we present extracts layout code and not a static template. Furthermore, it attempts to maintain a

balance between the quality of extracted layout code, and the structure of the extracted data.

Our Approach We present, implement, and evaluate a method for automatically separating a

static template-generated HTML page into a template layout-code and data. The main idea of

the separation algorithm is to synthesize layout code hierarchically for parts of the page, and use

a combined program-data representation cost to decide whether to align intermediate programs.

When intermediate programs are aligned, they are transformed into a single program, possibly

with loops and conditionals. At the same time, differences between the aligned programs are

captured by the data component.

In contrast to previous work on template extraction, which identifies template-chunks to

remove or extract as features, we synthesize fully working template-code which when invoked

on the extracted data reproduces the original static HTML page. There are many possible ways

to represent a page as a layout-code and data. We guide our choice of separation by attempting to

minimize the joint representation size of the page, according to the MDL [Ris78] principle. Our

approach could be applied to any form of tree-structured data, and can be used for applications

such as tree retrieval [LLYZ08].

We have implemented our approach in a tool called SYNTHIA, and conducted a thorough

experimental study of its effectiveness. Our experiments show that SYNTHIA features state of

the art (and higher) performance in both size compression and record extraction.

60



4.2 Related Work

There has been a considerable amount of work on page-level data extraction (e.g., [AGM03,

KC10, SC13, SC+14, WLF15, CKGS06, FWB+11b]) and record-level extraction (e.g., [TW13,

WL03, CL01, ZL05, LMM06, SL05, LMM10, CYWM03, LGZ03a, FWB+11a]). In the fol-

lowing, we focus on closely related work.

A lot of related work has dealt with the problem of template extraction or wrapper induction,

for record extraction. As such, the focus has been on templates that are based on regular

expressions, and more importantly, the resulting separation into templates and records is lossy;

that is, we cannot recover the original HTML document from the output records and template.

We focus on lossless separations into data and code, where the code involves (nested) loops

and conditions. The notion of wrappers and patterns is different from our notion of code, since

the former describes how to access the DOM tree to extract data, whereas the latter states how

data is processed to generate the DOM tree. Moreover, we aim at finding separations of a short

description; traditionally there has not been much focus on the complexity of the template,

but rather mainly on its ability to perform high-quality record extraction. Another distinction

between our solution and many existing ones is that those require multiple different pages (of

the same template) as input, whereas our solution already works on a single page. Next, we

describe some of these systems.

FiVaTech [KC10] works on a set of pages to automatically detect their shared schema and

extract the data. Their solution applies several techniques such as alignment and pattern mining

to construct a structure called “fixed/variant pattern tree,” which can be used to identify the

template and detect the schema. TEX [SC13] extracts data, but does not extract the template or

the schema of the data. Trinity [SC+14] builds on TEX and improves it by using the template

tokens to partition the document into prefixes, separators and suffixes. They recursively analyze

the results to discover patterns and build a “Trinity tree,” which is later transformed into a

regular expression for data extraction. RoadRunner [CMM01] uses a matching algorithm to

identify differences between the input documents and build a common regular expression. It

starts by considering one page as a wrapper, and matches it with another page. It then refines it

using generalization rules to compensate for mismatches. EXALG [AGM03] uses the concept

of equivalence classes and “differentiating roles” to discover a template, which is a regular

expression. TPC [MTH+09] considers a web document as a string of HTML tag paths. It detects

the repeated patterns of tags paths called “visual signals” within a page, clusters them based on

a similarity measure that captures how closely the visual signals appear in the document. For

each one of the clusters the method uses the paths of its visual signal to extract records from the

page. RSP [TW13] takes as an input a web page and a sample subject string which is used to

help identify subject nodes. The method uses the repetitive pattern of subject items in a page

to identify the boundary of data records. It aligns data records to find a generalized pattern,

which is used to generate a wrapper. The method generates a template wrapper that describes

the location of data records and can be used to extract them.

MDR [LGZ03a] and DEPTA [ZL05] use tag strings representation of DOM nodes to

61



Figure 4.1: A simple webpage.

compare individual nodes and combinations of adjacent nodes. Similar individual nodes or

node combinations are considered as generalized nodes, and sequences of generalized nodes are

considered as a data region. DEPTA [ZL05] uses partial tree alignment to align generalized nodes

and extract their data. DeLa [WL03] automatically generate regular expression wrappers based

on the page HTML-tag structures to extract data objects from the result pages. IEPAD [CL01]

discovers repeated patterns in a document by coding it into a binary sequence and mining

maximal repeated patterns. These patterns are then used for data extraction.

In contrast to alignment algorithms used in other works (e.g., [KC10, MTH+09, ZL05,

TW13]), our tree-alignment algorithm operates on layout code trees with their data, and updates

both the code and the data components. In addition, as opposed to classical alignment algorithms,

which define a fixed cost per alignment operation, the costs in our algorithm are context

dependent.

To the best of our knowledge, none of the related works are able to produce runnable layout

code and provide lossless separation into layout code and data.

4.3 Overview: Problem and Solution

In this section, we give an informal overview of the problem we formulate in this paper, and of

our solution SYNTHIA. We provide a formal treatment in the following sections.

4.3.1 Motivating Example

Fig. 4.1 shows part of a navigation web page taken from www.viewpoints.com/explore

(we focus on a part of a page for illustrative purposes; the solution of this paper works on

full pages). Given this page, our goal is to separate it to a layout-code component, and a data

component. Technically, a layout tree is a tree representation of a program that formats data

into a web page. We formally define layout trees in Section 4.4.

62

www.viewpoints.com/explore


<div><img s r c =” / h e a l t h . j p g ” /><h2>HEALTH< / h2>
<ul c l a s s =” s t r i p p e d ”>
< l i><a hre f =” / Medic ine ”>Medcic ine< / a>( 1 7 6 )< / l i>
< l i><a hre f =” / D i e t P i l l s ”>D i e t P i l l s< / a>( 6 9 )< / l i>
< l i><a hre f =” / D i e t s ”>D i e t s< / a>( 7 0 )< / l i>
< l i><a hre f =” / T o o t h b r u s h e s ”>T o o t h b r u s h e s< / a>( 6 5 )< / l i>
< l i><a hre f =” / M u l t i v i t a m i n s ”>M u l t i v i t a m i n s< / a>( 1 0 9 )< / l i>
< / ul>
< / div>
<div><img s r c =” / b a b i e s . j p g ” /><h2>BABIES< / h2>
<ul c l a s s =” s t r i p p e d ”>
< l i><a hre f =” / B o t t l e s ”>B o t t l e s< / a>( 5 4 )< / l i>
< l i><a hre f =” / Baby Formula ”>Baby Formula< / a>( 8 2 )< / l i>
< l i><a hre f =” / D i a p e r s ”>D i a p e r s< / a>( 7 4 )< / l i>
< l i><a hre f =” / S t r o l l e r s ”>S t r o l l e r s< / a>( 2 6 4 )< / l i>
< / ul>
< / div>

Figure 4.2: A sample static html snippet that we would like to separate into code and data.

Fig. 4.2 shows the HTML document of Fig. 4.1. This HTML contains repeated format-

ting elements for the listed items. For example, the items Medicine, Diet Pills, Diets,

Toothbrushes, and Multivitamins are formatted in a similar HTML structure.

The HTML document can be viewed as a DOM tree [W+98]. Fig. 5.5(a) shows the DOM

tree for the HTML document of Fig. 4.2. In this tree, the subtrees of the div elements share a

similar structure, and so do the subtrees under the ul elements. SYNTHIA is able to detect these

common structures, synthesize the corresponding layout trees, and extract hierarchical data that

captures the different contents that are laid in the common structures.

Synthesized layout tree Fig. 5.2 shows the code synthesized by our technique for the page of

Fig. 4.2. The code can also be viewed in tree form as the layout tree shown in Fig. 5.5(b).

This code uses two iteration (for) instructions to create a nested loop structure that is used

to format the data. Our layout tree uses standard control constructs common in any layout

language, and uses a syntax similar to JSP. The tree refers to variables, such as f1 and v1, that

are assigned actual values in the extracted data.

Extracted data Fig. 5.3 shows the data extracted by our technique. Data is extracted as a

hierarchical structure, where data elements are labeled by their corresponding loop or variable.

For example, the data elements under the label f1 are the elements that are iterated over by

the for operation in line 1 of the extracted code. The data elements under the label f2 (in

lines 3 and 7 of Fig. 5.3) are the elements that are iterated over by the for operation in line

4 of the code. As our data is viewed as an assignment of values to variables that are used in

the layout tree, we refer to a data instance as an environment. An important feature of our

approach is the fact that the separation is lossless—executing the synthesized layout tree on the

extracted environment reproduces an exact copy of the original HTML document. This should

be contrasted with common lossy techniques for wrapper induction and record extraction.

4.3.2 Our Approach

From a high-level perspective, SYNTHIA works by folding adjacent subtrees of a layout tree.

Initially, the layout tree is simply the DOM tree representing the web page. As subtrees are

being folded, we synthesize unified code that represents their common structure, and create

separate data elements to represent their different values. There are two trivial solutions to this

63



Figure 4.3: (a) The DOM tree of the original HTML document, and (b) the layout tree produced
by our approach from this DOM tree.

<% f o r ( v a r loop1 : f1 ){ %>
<div>
<img s r c =”/<%=loop1 . v1%>. j p g ”/><h2><%=loop1 . v2%></h2>
<u l c l a s s =” s t r i p p e d ”>
<% f o r ( v a r loop1 : loop2 : f2 ){
< l i><a h r e f =”/<%=loop2 . v3%>”>
<%=loop2 . v3%></a>(<%=loop2 . v4%>)</ l i>
<% } %>
</ u l>
</ d iv>
<% } %>

Figure 4.4: Code synthesized for the given static HTML.

f1 :{
{v1 : ” h e a l t h ” , v2 : ”HEALTH” ,

f2 :{{ v3 : ” Medc ic ine ” , v4 : ” 176 ” } ,{ v3 : ” D i e t P i l l s ” , v4 : ” 69 ” } ,
{v3 : ” D i e t s ” , v4 : ” 70 ” } ,{ v3 : ” T o o t h b r u s h e s ” , v4 : ” 65 ” } ,
{v3 : ” M u l t i v i t a m i n s ” , v4 : ” 109 ”}}

} ,
{v1 : ” b a b i e s ” , v2 : ”BABIES” ,

f2 :{{ v3 : ” B o t t l e s ” , v4 : ” 54 ” } ,{ v3 : ” Baby Formula ” , v4 : ” 82 ” } ,
{v3 : ” D i a p e r s ” , v4 : ” 74 ” } ,{ v3 : ” S t r o l l e r s ” , v4 : ” 264 ”}}

}}

Figure 4.5: The data extracted for the given static HTML.

problem. The first is where all subtrees are folded, forcing a single layout tree and effectively

pushing all differences into the data. The other trivial solution applies no folding at all, and then

the layout tree effectively dumps the entire web page. Naturally, we are not interested in the

trivial solutions, but rather in a solution that minimizes the representation cost. Intuitively, this

means that we should only fold subtrees when they share a sufficiently common structure.

To find a folding that minimizes the representation cost, we have to answer two technical

questions:

• When should we fold given layout subtrees?

64



L1 L2 L3

D3D2D1

Figure 4.6: Example steps of the separation algorithm.

• How should we fold such subtrees to produce the desired separation of code and data?

We address both of these questions using a novel alignment algorithm. We use the alignment

algorithm as a building block for deciding when to fold subtrees, and also for computing the

separation into layout tree and data when subtrees are folded.

Subtree folding In a bottom-up manner, we analyze adjacent layout subtrees by evaluating their

structural similarity. This is done by calculating the representation cost for representing the

subtrees using a shared single layout tree and two data components. That is, we estimate the

benefit of forcing the subtrees into using the same layout tree with separate data.

To that end, we use our alignment algorithm to compute an alignment that attempts to

minimize the resulting representation cost, and also returns the cost. We fold together adjacent

subtrees which are found to be similar (based on the calculated shared representation cost).

Folding is done by (i) applying the calculated alignment. The result may include conditional

instructions and variable references in text nodes and attributes to overcome differences; (ii) in-

troducing a for instruction whose body is the resulting shared layout tree while verifying

losslessness (i.e., when invoked on the data, the result is the same as that of the sequence of

folded subtrees).

Alignment We present a novel tree-alignment algorithm, that is tailored to handling layout trees,

enabling it to handle loops, conditions and variables in the template. In addition, we enable it to

perform data extraction and modifications to the data representation, in order to fit changes in

the layout trees, so that invoking the layout trees on the data will result in the original HTML.

Example 4.3.1. Fig. 4.6 shows a few steps of our algorithm applied to the (partial) tree of Fig. 5.5.

Initially, the layout tree is the original DOM tree (L1), with no folding, and no extracted

data (D1). The algorithm works in a bottom-up manner, looking for folding opportuni-

ties. The algorithm detects that the subtrees rooted at list items (<li>) for Medicine,Diet

Pills,Diets,Toothbrushes, and Multivitamins could be folded with common structure

and extracting the varying data. The algorithm folds the subtrees corresponding to the following

items:

< l i><a hre f =” / Medic ine ”>Medcic ine< / a>( 1 7 6 )< / l i>

65



< l i><a hre f =” / D i e t P i l l s ”>D i e t P i l l s< / a>( 6 9 )< / l i>
< l i><a hre f =” / D i e t s ”>D i e t s< / a>( 7 0 )< / l i>
< l i><a hre f =” / T o o t h b r u s h e s ”>T o o t h b r u s h e s< / a>( 6 5 )< / l i>
< l i><a hre f =” / M u l t i v i t a m i n s ”>M u l t i v i t a m i n s< / a>( 1 0 9 )< / l i>

By introducing new layout trees and extracted data. The layout tree is as follows:

<% f o r ( var l oop : f1 ){
< l i>
<a hre f =”/<%=loop . v1%>”><%=loop . v1%>< / a>

(<%=loop . v2%>)

< / l i>
<% } %>

This synthesized layout tree uses variables v1 and v2 to refer to data elements in the

extracted data. The synthesized code is shown in Fig. 4.6 (L2) as the subtree rooted at FOR:f1.

The extracted data is shown at the bottom part of the figure (D2). The data is structured and is

labeled by names corresponding to the variables in the layout tree. For example, the data maps

the variable f1, used at FOR:f1, to a sequence of four possible values, each providing the data

for one invocation of the loop body, resulting in one of the four aligned subtrees. The inner data

values provide the interpretation of variables v1 and v2.

This folding reduces the original combined description length of the code and data, as the

template part that repeats in all four items is described only once, in the code, and only the

differentiating details are described for each item (in the data).

The subtrees rooted at list items for Bottles,. . .,Strollers are folded in a similar manner,

resulting with the layout subtree rooted at FOR:f2 (this is also depicted in L2 in Fig. 4.6).

After creating the layout trees rooted at FOR:f1 and FOR:f2, the algorithm proceeds by

identifying that these subtrees could be folded together. This folding renames variables of

the two subtrees to match each other (e.g., f1 is renamed to f2, unifying it with the existing

f2 variable of the subtree on the right). Folding also introduces new variables, v1 and v2, to

account for differences (note that these are fresh variables, as the previously used v1 and v2

were renamed). Finally, folding introduces an additional external for loop with variable f1

(recall that the previous f1 was renamed). The produced layout tree is shown in Fig. 5.2. A

graphical representation is shown in Fig. 4.6 (L3). The corresponding extracted data is shown in

(D3). Note that folding also adds another layer to the data, corresponding to the nested loop

structure.

In this simple example folding does not introduce conditional constructs. However, if, for

example, all items in the first list had an additional attribute, the folding of the two for subtrees

depicted in L2 would introduce a conditional construct guarded by a boolean variable, with

“true” in the first loop and ”false” in the second.

4.3.3 Key Aspects

The example of the previous section highlights a few key aspects of our approach:

66



• Lossless separation: In contrast to other extraction schemes, the separation to layout

tree and data performed by SYNTHIA is lossless. That is, applying the synthesized layout

tree on the extracted environment reproduces the original web page.

• Minimization of representation cost: The separation computed by SYNTHIA is tailored

to minimizing the description cost of the result.

• Synthesis of loops and conditionals: SYNTHIA synthesizes layout trees that may include

loops to generalize repetition of layout across items. When some of the layout differs

between items that could otherwise be formatted using looping code, SYNTHIA is able

to insert conditional formatting. With that, SYNTHIA allows for a compact (and lossless)

looping structure for formatting elements that exhibit a loosely similar structure.

• Extraction of hierarchical data: SYNTHIA supports nested repetitions (e.g., a list of

categories, each containing a list of products) by allowing nesting of loops in data trees

alongside hierarchical structures of environments.

4.4 Preliminaries and Model

In this section we formally define the notions of a webpage, data and template code which is

used to generate webpages by invoking it on a given data.

DOM Trees We model an HTML document as a DOM tree, which is a tree of elements and

textual values. Formally, a DOM tree is a rooted and ordered tree with two types of nodes. An

element node has a name, and an attribute set, which is a mapping from a finite set of attribute

names to values (strings). The children of an element node form an (ordered) sequence of

nodes. A text node is associated with a textual value. We require all text nodes to be leaves (i.e.,

childless).

Environment As we explain later, we model the construction of DOM trees by executing

programs over data. We model data by means of an environment, which is a hierarchy of

assignments to variables. Formally, we assume an infinite set Var of variables. An environment

is inductively defined as follows. It is a mapping from a finite set of variables to values, where a

value is either (i) a text item, or (ii) a list of environments.

Layout Trees We now define our model of a program, namely the layout tree, that executes over

an environment to produce a DOM tree. This model is very simple, and is straightforward to

translate into common languages that embed code with HTML/XML (e.g., server side like ASP

and JSP, or client side like Javascript, AngularJS and XSLT).

Recall that a DOM tree has two types of nodes: element and text nodes. A layout tree is

similar to a DOM tree, except that it has a third type of nodes, namely instruction nodes. An

instruction node v is associated with a type and a variable. The type of an instruction node can

be one of three: condition, iteration, and reference. The variable of an instruction node is a

member of Var. We refer to an instruction node with the variable x and the type condition,

iteration and reference as if(x), for(x) and ref(x), respectively. The root of a layout tree is

67



either an element node or a text node.1

Semantics of a Layout Tree The result of executing a layout program π over an environment E
is a DOM tree that we denote by π(E). To define π(E) formally, we need some notation.

A DOM hedge is a sequence of DOM trees. Similarly, a layout hedge is a sequence of

layout trees, except that we allow each layout tree to be rooted at an instruction node. For

hedges h = t1, . . . , tk and g = u1, . . . , um, we denote by h · g the hedge that is obtained by

concatenating g to h (i.e., t1, . . . , tk, u1, . . . , um). If v is a node and h is a hedge, then we

denote by v[h] the tree that is obtained by adding v to h as the root (with the roots of h being

the children of v). If t is a tree with the root v, then we denote by t−v the hedge that is obtained

from t by removing v.

To define π(E), we give a more general (inductive) definition of the semantics of executing

a layout hedge Π over E , again denoted by Π(E), and is generally a DOM hedge.

• If Π consists of a single tree π with a non-instruction root v, then Π(E) is the tree

v[π−v(E)].

• If Π consists of a single tree π with the root if(x), then the following holds. If E(x) is

defined and E(x) = 1, then Π(E) is the hedge π−v(E); otherwise, Π(E) is the empty

hedge.

• If Π consists of a single tree π with the root for(x), then the following holds. If E(x)

is defined and E(x) is a list (E1, . . . , Em), then Π(E) is the hedge π−v(E1) · · ·π−v(Em);

otherwise, Π(E) is the empty hedge.

• If Π consists of a single tree π with the root ref(x), then the following holds. If E(x) is

defined and E(x) is a string, then Π(E) = E(x); otherwise, Π(E) is the empty hedge.

• If Π is a hedge π1, . . . , πk where k > 1, then Π(E) is the hedge π1(E) · · ·πk(E).

Finally, recall that a layout tree has a non-instruction root. Then the above definition implies

that the result of executing a layout tree over an environment is always a single DOM tree.

4.5 Problem Definition

In this section we formally define the space of separation solutions, and the desirable separation

solutions in that space.

4.5.1 Separation and Solution Space

Our goal is to describe a given DOM tree by a layout tree and an environment. Formally, a

separation of a DOM tree t is a pair (π, E), where π is a layout tree and E is an environment,

such that π(E) = t. Separating t is the process of constructing a separation (π, E) of t. Note

that a DOM tree may have many separations (in fact, infinitely many separations). We denote

by Sep(t) the set of all separations of t.

Sep(t)
def
= {(π, E) | π(E) = t}

1Our approach creates layout trees by folding subtrees of a DOM tree. As the root is never folded, it remains a
non-instruction node.

68



A special case of a separation in Sep(t) is the trivial one (π, E) where π is identical to t and E
is empty.

4.5.2 Separation Quality

Since there are many possible ways to separate a given DOM tree, it is important to define what

makes one separation better than another. In this work, we define a quality metric that is inspired

by the principle of Minimal Description Length (MDL) [Ris78]. According to MDL, one should

favor the model that gives the shortest description of the observed data [HY01]. MDL is well-

suited for dealing with model selection, estimation, and prediction problems in situations where

the models under consideration can be arbitrarily complex, and overfitting the data is a serious

concern [Grü07]. In particular, SYNTHIA aims at synthesizing a separation that minimizes the

length of the representation of the separation. To define the length of the separation, we define a

size measure for a given separation (π, E). The description length of (π, E) is defined based on

the size in characters of the string representations of π and E , denoted sizeof(π) and sizeof(E),

respectively. Hence, we define the following: cost(π, E)
def
= sizeof(π) + sizeof(E).

Our algorithm (defined in the next section) does not guarantee a separation of minimal

cost. Instead, it applies a heuristic approach that uses the above cost for guiding intermediate

decisions along the way. We leave for future work the challenge of obtaining optimality and

analyzing the associated computational complexity.

4.6 Our Approach

In this section we describe our algorithm for folding a DOM tree into a layout tree and an

associated environment.

4.6.1 The General Separation Algorithm

Given a DOM tree t, our algorithm constructs the separation (π, E) recursively, as we describe

below. We denote the input DOM tree t as v[t1, . . . , tn] (that is, the root is v and it has n

children, each is the root of a subtree ti). The separation algorithm goes as follows.

1. Recursively separate each ti into a separation si = (πi, Ei).

2. Split s1, . . . , sn into m chunks (s1, . . . , sj1−1),

(sj1 , . . . , sj2−1), . . . , (sjm , . . . , sn) where, intuitively, each chunk consists of “similar”

separations.

3. Fold each chunk (sjl , . . . , sjl+1−1) into a single separation (π′l, E ′l). Roughly speaking,

π′l will be rooted at a for(x) node, and E ′l will map its variable x to a list of environments

(one for each of the folded trees) such that π′l(E ′l) = πjl(Ejl) · · ·πjl+1−1(Ejl+1−1). That

is, executing π′l on E ′l will result in the same hedge as the concatenation of the hedges

obtained by executing the layouts of each si in the chunk on its environment.

4. Return the separation (π, E) where π = v[π′1 · · ·π′m], and E = E ′1 ∪ · · · ∪ E ′m.

Note that in step 4, the different E ′l use pairwise-disjoint sets of variables; hence, their union

E is a legal environment.

We denote by fold(s1, . . . , sk) the procedure used in step 3 for folding a sequence s1, . . . , sk

of separations si = (πi, Ei) into a new separation s = (π, E). Next, we explain how splitting

69



and folding are implemented (In practice, they are weaved together).

4.6.2 Splitting

To split a sequence s1, . . . , sn of separations into chunks, we define a pairwise similarity function

σ that assigns a score to each pair of separations. We define a chunk to be a maximal continuous

subsequence sjl , . . . , sjl+ql of s1, . . . , sn where σ(si, si+1) is larger than some fixed threshold

for every i = jl, . . . , jl + ql − 1. That is, the chunks are broken where similarity is below

the threshold. The similarity function σ is based on the fold procedure, as follows. For two

separations s and s′, let sf = fold(s, s′). Recall the definition of cost(s) in . Then σ(s, s′) is

the relative reduction of cost gained by replacing s and s′ with sf ; that is,

σ(s, s′) =
cost(s) + cost(s′)− cost(sf )

cost(s) + cost(s′)
.

4.6.3 Folding

In the rest of the section, we describe the procedure fold. Recall that the input is a sequence

s1, . . . , sk of separations si = (πi, Ei), and the output is a single separation (π, E) with the

property that π(E) is the hedge π1(E1) · · ·πk(Ek).

fold(s1, . . . , sk) is performed by introducing a new for(x) node with a single child πc. The

single child πc captures the common layout of π1, . . . , πk. The differences between them

are captured by conditional and reference nodes in πc, along with an environment, Eci , that

is generated for each πi. The environment Eci is based on Ei (the environment that πi was

accompanied with), but also includes the values of the new conditional and reference variables

that are introduced in πci . Finally, the output environment E that accompanies π is constructed

by

E = {x 7→ Ec1(x) · . . . · Eck(x)}.

Remark. Splitting is aimed at identifying separations that will be unified by fold into a new for

root with a single child that generates all of them (with proper environments). If the number of

chunks exceeds some threshold (above 30% of the number of children number), we consider

folding into a for node with d > 1 children. To do so, SYNTHIA looks for chunks in which

separations in distance d from each other are similar. Folding is adapted accordingly to collapse

separations in distance d from each other to one child of the for node (rather than collapsing all

separations in the chunk to a single child). This enables SYNTHIA to deal with data items that

correspond to a sequence of adjacent nodes in the tree.

The crux of folding is the construction of πc (the child of the for node), along with the

environments Ec1, . . . , Eck. This construction is done by applying on the input trees π1, . . . , πk

and their environments E1, . . . , Ek an alignment algorithm, which we describe next. Alignment

operations may introduce conditional and reference nodes, and may align trees (or hedges) with

for nodes, but they never introduce new for nodes. for nodes are introduced by folding (the

procedure fold).

70



4.6.4 Alignment

We consider alignment of two layout trees with their environments. To handle a larger number

of layout trees, we apply alignment incrementally: we first align two layout trees (and their

environments), then align the result with another and so on, until all are aligned.

Intuitively, when given two separations (π1, E1) and (π2, E2), alignment unifies their layout

trees by establishing a common layout tree and updating the environments. The result is a triple

(π′, E ′1, E ′2) such that π′(E ′1) = π1(E1) and π′(E′2) = π2(E2). In order to allow an incremen-

tal alignment (as needed for the alignment of more than two layout trees), where we apply

alignment on the result of a previous alignment which consists of two environments, we work

with environment series E = (E1, . . . , Ek) instead of environments E . Alignment is defined

inductively, and for that another generalization is required. Namely, instead of two layout trees π

we work with two layout hedges Π. The need for this generalization will later become apparent.

We denote by Π(E) the series (Π(E1), . . . ,Π(Ek)) of DOM hedges.

Definition 4.6.1. Let Π1 and Π2 be layout hedges and E1 and E2 be two environment series. An

alignment of (Π1,E1) and

(Π2,E2) is a triple (Π′,E′1,E
′
2) such that Π′(E′1) = Π1(E1) and Π′(E′2) = Π2(E2).

The objective of our alignment is to minimize the combined description length of the unified

layout tree and the corresponding environments. We therefore define an alignment cost, similarly

to the notion of separation cost:

cost(Π′,E′1,E
′
2) =

∑
π∈Π′

sizeof(π) +
∑
E∈E′1

sizeof(E) +
∑
E∈E′2

sizeof(E)

Scope Environments

The most tricky part of the alignment is the update of the environments. To explain this update

we need the following definitions.

Scope. Given a layout tree π, each iteration node in π defines a scope. The scope of a node v

in π is determined by its lowest ancestor vs which is an iteration node for(x) (or by the root

if no such ancestor exists). In the former case, we say that vs is the scope node and x is the

scope variable of v. To simplify matters and prevent ambiguity, we do not allow two iteration

nodes to have the same variable. We define the scope node and variable of a hedge similarly by

considering the lowest common ancestor.

Scope environments. Given a layout tree π and an environment E , the scope environments of

a node v in π, denoted S(v), are defined inductively based on the scope of v. If the scope of

v is the root, then S(v) = {E}. Otherwise, let vs and x be the scope node and scope variable

of v, respectively (i.e., v resides in the subtree of vs = for(x)). Then S(v) =
⋃
Es∈S(vs){Ei |

Es(x) = E1 · . . . · Em}. That is, that scope environments of v are all the environments in the

lists that x is mapped to.

71



Example 4.6.1. Consider the layout tree L3 in Fig. 4.6 and the environment depicted in D3.

The node <li> resides in the subtree of the node FOR:f2. Therefore, its scope environments

are the nine environments consisting of the five environments in the first list of environments

associated with variable f2: E11 = {v3 : “Medcicine′′, v4 : “176′′}, . . . , E15 = {v3 :

“Multivitamins′′,

v4 : “109′′}, along with the four additional environments in the second list, E21 = {v3 :

“Bottles′′, v4 : “54′′}, . . . , E24 = {v3 : “Strollers′′, v4 : “264′′}.

Alignment Operations

Alignment of two hedges Π1 and Π2, (usually these are children hedges of two nodes that are

being aligned) with environment series E1 and E2 respectively, is performed using a dynamic

programming algorithm. The algorithm advances along the two given hedges simultaneously

and aligns their trees.

The operations considered by our alignment algorithm are: Align, Skip and AlignFor,

which we describe next. Align and Skip are conventional operations in alignment algorithms

(unlike traditional alignments, in our case special care is taken to ensure that the alignment is

lossless). The AlignFor operation enables for-rooted trees to be aligned with a hedge rather

than a single tree.

Align. aligns (π1,E1) with (π2,E2) where π1 and π2 are two single trees with matching roots,

which means that they have the same name and type. In this case, we introduce a new root node

v which unifies the roots v1 and v2 of π1 and π2 (as demonstrated below). The children of the

new root are the result of recursively aligning the children hedges Π1 and Π2 into a hedge Π. In

particular, the recursive operation might update E1 and E2.

For example, if v1 and v2 are both text nodes (meaning that Π1 and Π2 are empty) and

text(v1) = text(v2), then the unified root v is identical to (both of) them and E1 and E2 remain

unchanged. However, if text(v1) 6= text(v2), then v is a reference node of the form ref(x),

where x is a fresh variable. For i = 1, 2, we add to each scope environment of vi in Ei the

mapping x 7→ text(vi).

If v1 and v2 are for(x1) and for(x2), then v is for(x), where x is a fresh variable, and we

update all the scope environments of v1 and v2 in E1 and E2 respectively by renaming every

occurrence of xi with x.

Skip. aligns (Π1,E1) with (π2,E2) where Π1 is an empty hedge and π2 is a tree by introducing

a conditional node v of the form if(x), where x is a fresh variable. The alignment result

is then the tree π′ = v[π2], with E1 updated by adding the mapping x 7→ 0 to each scope

environment of Π1, and E2 updated by adding the mapping x 7→ 1 to each scope environment

of π2. Technically, in this case, we also receive the scope node (and variable) of Π1 (the empty

hedge) as input (in other cases this input is not needed since it is uniquely defined given the tree

or hedge).

AlignFor. aligns (π1,E1) and (π2,E2) where π1 is a for-rooted tree (which is possibly the

result of alignment with previous trees from Π2). Intuitively, the result of the alignment will

72



be a for-rooted tree that in addition to the trees captured by π1 also generates π2. Repeated

applications of AlignFor enable aligning a for tree with a hedge. This operation has some

resemblance to fold, yet it utilizes an existing for node (from π1), rather than introducing a new

one. The tricky part in this operation is that it breaks up existing scopes in π2 due to the import

of the for-node from π1. As a result, a new hierarchical level is also created in the environments

in E2. Due to space constraints we omit the detailed description.

Alignment Algorithm

Given (Π1,E1) and (Π2,E2) our algorithm computes an alignment while trying to minimize

its cost. It also calculates the resulting cost. It uses dynamic programming to find the sequence

of alignment operations which minimizes the alignment cost.

The algorithm gradually fills a two dimensional matrixB of size n×m, where n = |Π1| and

m = |Π2|. For each 1 ≤ i ≤ n and 1 ≤ j ≤ mB[i, j].cost contains the minimal alignment cost

of the prefix hedge Πi
1 of Π1 of length i, and the prefix hedge Πj

2 of Π2 of length j. B[i, j].op

contains the operation for πi1 and πj2 that resulted in the minimal cost.

The algorithm calculates B[i, j].cost and B[i, j].op by calculating the cost of all possible

alignment operations for πi1 and πj2 and by using the costs calculated in B for i′<i and j′<j.

The algorithm picks the option with the minimal cost. Finally, B[n,m].cost is the alignment

cost of (Π1,E1) and (Π2,E2).

The cost of operations The cost of an operation reflects the change in both the layout tree and

environment costs. As the following example demonstrates, the latter is not fixed per operation,

but depends on E1 and E2.

Example 4.6.2. Consider the alignment of two subtrees, πl and πr, where πl is a subtree residing

under a loop node for(x) which has 10 scope environments and πr is an element subtree with a

single scope environment. A conditional subtree insertion during the alignment will introduce a

new conditional value in these 11 environments (one of πr and 10 of πl). As such, its effect on

the cost depends on the number of scope environments.

We demonstrate the cost calculation on some of the operations.

Align (aligning single trees). The algorithm recursively calculates the minimal alignment cost

for (πi1,E1) and (πj2,E2), where πi1 is rooted at v1 and πj2 is rooted at v2.

• Two text nodes alignment. If v1 and v2 are text nodes with different text, the cost of apply-

ing the two text nodes alignment operation isB[i−1, j−1].cost+ sizeof(text1)|S(v1)|+
sizeof(text2)|S(v2)| − sizeof(text1) − sizeof(text2), where S(vi) is the set of scope

environments of vi in Ei.

• Two element nodes alignment. If v1 and v2 are element nodes, the cost of applying the two

element nodes alignment is B[i− 1, j − 1].cost plus the cost of aligning their children,

subtracting the cost of one of them.

Skip (aligning an empty hedge with a tree (to left)). We calculate the code cost of wrapping πi1
with a conditional node vc, and the data cost of updating every scope environment in E1 and E2.

73



We denote the cost of adding the conditional subtree and updating the environments as costleftc .

Then the cost of applying the skip alignment operation is costleftc +B[i− 1, j].cost.

Example 4.6.3. Consider the folding of the left-most sequence of <li> nodes in the layout

tree L1 from Fig. 4.6. Each of these nodes is accompanied by an environment capturing the

mapping of the variables in its subtree. In our case these environments are initially empty, as the

<li> subtrees have no variables (yet). The fold operation first aligns these subtrees. Alignment

recursively aligns the respective text nodes under the <a> nodes from different subtrees. These

text nodes have different values (e.g., Medicine vs. Multi-vitamins). Therefore alignment

introduces a reference node with variable name v1 and updates the scope environments of the

different subtrees to include a mapping of v1 to the respective value. Similarly, v2 is introduced.

Therefore, each of the environments includes a mapping of both v1 and v2. The fold operation

then wraps the resulting aligned subtree with a for node FOR:f1 (introduced in layout tree L2)

and adds a mapping of the variable f1 in the main environment to a list containing the updated

environments (as reflected in the environment D2).

Remark. As a post-processing phase, SYNTHIA identifies variables that always have the same

value whenever they appear together in the same environment. Such variables are renamed to

the same variable to avoid duplications in the data.

4.7 Evaluation

In this section, we evaluate our approach across multiple dimensions. First, we show that our

technique is good for data extraction by evaluating it on standard datasets, and comparing it to

three other state of the art data extraction techniques. Then, we show that our technique is good

for separation of code and data by computing the combined representation size (MDL).

4.7.1 Evaluation of Data Extraction

Methodology

To evaluate the effectiveness of our approach for data extraction, we have used the common

testbeds TBDW [YCNH04] and RISE [RIS98]. We compare our approach to DEPTA [ZL05],

a technique that works on single pages, as well as to techniques that handle multiple pages:

MDR [LGZ03a], TPC [MTH+09], FivaTech, and Trinity (as reported by [SC+14]).

Testbed 1: TBDW The TBDW testbed contains 253 web pages from 51 sites. Each web page in

the testbed is manually labeled with the correct number of records, and the content of the first

record. We use TBDW to compare the performance of our algorithm with that of DEPTA [ZL05],

MDR [LGZ03a], and TPC [MTH+09]. For DEPTA, where the code is available, we reproduce

the results by running the DEPTA tool. For MDR and TPC, we compare our results to those

reported in [LGZ03a, MTH+09].

Testbed 2: RISE The RISE testbed contains 663 pages from 5 different site. We use it to

compare the performance of SYNTHIA to FivaTech and Trinity as reported by [SC+14]. RISE

checks the performance of page-level record extractors. It contains pages with single records,

something that SYNTHIA is not meant to handle, but is able to handle if pages are merged into a

74



single page. To enable our tool to deal with single record pages, we put all the DOM trees of

these different pages as children subtrees under a shared “root” node, and apply SYNTHIA on the

resulting tree. DEPTA is excluded from the comparison on RISE, because it was not designed

to handle multiple pages, and applying it to our single merged page produces very poor results

(which we consider unfair comparison).

Experiment We run SYNTHIA on the 253 pages from TBDW and 663 pages from RISE, and

collect the records extracted from each page. For each page, our approach extracts a hierarchical

representation (json) of the data on the page. We consider the list of environments in the data

corresponding to a “for” variable as a table of records. If the relevant data was separated to two

or more different tables, we only consider the table containing the biggest number of relevant

records as the table of records identified by SYNTHIA.

Ground Truth As suggested in TBDW, the first record on a page, together with the page itself,

defines the ground truth of the set of data records of the page. The ground truth for each site is

obtained by the union of all ground truth sets of its pages.

Comparing Results We ran both our algorithm and DEPTA [ZL05] on the 253 webpages from

the 51 websites in the testbed. We compare the set of records extracted by each approach to the

ground truth. For the comparison, we consider the ground truth over all websites, as well as the

set of true positives, which consists of data records correctly extracted by the algorithms, and

the set of false positives, which consists of items that are wrongfully identified as data records.

We report the precision and recall of each approach:

Precision =
|true-positives|

|true-positives|+ |false-positives|

Recall =
|true-positives|
|ground-truth|

In addition, to compare our results with TPC [MTH+09] and MDR [LGZ03a], we use the

same partial set of 43 websites containing 213 web pages from TBDW used in [MTH+09]. In

this case, the ground truth, true positives and false positives, are computed per website. The

results are the average recall and precision aggregated for all sites.

To compare to FivaTech and Trinity, we ran our tool on RISE dataset and compared its

results to those reported by Trinity in [SC+14].

Results

The results of SYNTHIA when compared to DEPTA on the whole TBDW dataset are reported in

Table 4.1. As seen from the table, SYNTHIA is favorable in both recall and precision. We found

that in many cases DEPTA fails to find the boundaries of the data records, frequently merging

several records into one.

Table 4.2 shows the results of our tool when compared to DEPTA, MDR and TPC on a

partial set of 43 websites containing 213 web pages from TBDW (we denote it TBDW-P). The

TBDW-P is suggested by TPC [MTH+09] and it excludes pages from TBDW containing nested

75



Table 4.1: Accuracy comparison with DEPTA on the TBDW dataset

DEPTA SYNTHIA

Ground Truth 4620
True Positives 2506 4445
False Positives 27 23

Precision 98.9% 99.5%
Recall 54.2% 96.2%

F-Score 70% 97.8%

Table 4.2: Accuracy comparison on TBDW-P dataset

Algorithm Precision Recall F-score

DEPTA 97.6% 59.5% 73.9%
MDR 93.2% 61.8% 74.3%
TPC 96.2% 93.1% 94.6%

SYNTHIA 99.7% 95.6% 97.6%

structures, in order to provide a fair comparison with the MDR algorithm, which is designed

for flat data records. The As can be seen from the results, MDR suffers from similar recall

issues as DEPTA, while having a lower recall. Generally speaking, our algorithm has the best

performance, both in precision and recall compared to the three other algorithms.

The TBDW dataset contains a few pages with a single result record. Our algorithm fails to

extract such records since it works on a single page and not on a group of pages generated using

a similar template. This contributes to the small loss of recall (95.6% and 96.2% on the partial

and full sets respectively) of our algorithm.

The results for running our tool on RISE dataset are reported in Table 4.3. Our tool

outperforms both Trinity and FivaTech in most of the sites of this dataset. Trinity is the closest

among the two in terms of performance. Our tool has low recall when extracting the records

from IAF. We reviewed the web pages, and found that different data records are not of the same

length. While our tool is capable of dealing with data records of length¿1 (not wrapped by a

single html tag, which is not so common), our tool does not deal with records of varying lengths.

Table 4.3: Record extraction performance comparison between SYNTHIA, Trinity and FivaTech
on RISE dataset.

SYNTHIA Trinity FivaTech
P R F1 P R F1 P R F1

BigBook 0.99 1 0.99 0.95 0.94 0.94 - - -
IAF 1 0.11 0.2 0.84 0.38 0.52 0.53 0.69 0.6
Okra 1 1 1 1 0.82 0.9 0.49 0.34 0.4

LA.W 1 0.75 0.86 0.97 0.92 0.94 0.83 0.57 0.68
Zagat 1 1 1 1 0.86 0.92 1 0.98 0.99

4.7.2 Evaluation of Code and Data Separation

Methodology

The TBDW dataset contains the search results generated by searchable databases, also called

search result records (SRRs). These pages are always of a common format of list of results. In

this dataset, our approach recognizes that the format does not vary between records, and that

76



formatting is part of the template. To evaluate the quality of the resulting code/data on general

websites, we consider benchmarks with more significant page structure. We created our own

dataset(available at: https://goo.gl/PKY0VI) by collecting 200 pages from 40 popular websites

in 8 categories, with 5 different pages from each site. In all of our experiments we also verify

that the separation computed by SYNTHIA is indeed lossless by running the extracted code on

the extracted data and comparing the result to the original page.

Quality of Separation Inspired by the MDL principle [DC], we consider the length of the

combined code/data representation as an indicator for the quality of separation. On the one

hand, considering similar code subtrees as separate subtrees will prevent potential reduction

in representation size due to the code representation. On the other hand, folding together

different subtrees and representing them using a single code tree will introduce many conditional

constructs and dynamic references, resulting in a more complicated and bigger data. A good

solution will know when to fold two subtrees and when to keep them separate, in a way that

keeps the representation length minimal.

For each page we compute the size in bytes of the data and code representation produced by

our approach, denoted |data(page)| and |code(page)| respectively. We use these to compute

Reduction-Ratio =
|code(page)|+ |data(page)|

|page|

When the entire page is considered code (this is one of the trivial solutions for separation),

the reduction-ratio is 1. The reduction in representation size results from deduplication of the

shared template repeating in a code-generated page. The reduction is bigger in pages having

more regularity. Previous work on template extraction [GPT05] reported that the template size is

around 40%-50% of the page size. If this template is regular, we can expect to obtain significant

savings in representation from this part of the page.

Comparing Results Since we are not aware of any other approach that separates a single page

into data and code, we compute the reduction-ratio of our approach and compare it to 2 other

simplified implementations with different features (referred to as basic and w/nesting in the

table). The first implementation is inspired by RTDM [RGSL04, VdSP+06] and is based on a

traditional tree edit distance metric both for the decision which subtrees to fold and for folding

them. The second algorithm is based on a bottom-up tree edit distance computation. The main

difference between the two is that the latter can deal with nested data regions by first running on

a node’s children before trying to fold them. In contrast, our algorithm calculates the minimal

shared representation size of two subtrees, and uses it as the basis for deciding which subtrees

to fold. In addition, folding minimizes the shared representation of the folded subtrees.

Results

The results in Table 4.4 show that using a bottom-up algorithm, which enables dealing with

nested data-regions, improves the reduction-ratio compared to the simpler approach based on

tree edit distance. Furthermore, the results show that our algorithm significantly outperforms

both of the algorithms that are based on tree edit distance in terms of representation size.

77

https://goo.gl/PKY0VI


Table 4.4: Ratio of reduced size to original size (reduction ratio). Lower numbers represent
better reduction.

basic w/nesting SYNTHIA

Movie 87.8% 66.4% 65.3%
Cars 81.6% 74.1% 59.1%

Real-estate 96.2% 86% 68.9%
Forums 92.7% 77.4% 61.3%
Sports 94.9% 80.4% 64.5%

Jobs 97% 90.5% 81.8%
E-commerce 71.9% 62.5% 43.5%
Photography 82.1% 78.3% 67.5%

Overall 87.4% 75.5% 62.8%
TBDW 93.9% 89.9% 65.8%

Figure 4.7: Running times as a function of the nodes count for the different documents in the
two datasets

4.7.3 Running Time

We recorded the running time of our algorithm on the 453 different web pages from both TBDW

and our dataset. All experiments were run in a single thread on a Macbook Pro with Core i7

CPU and 16GB memory. The running time is reported in Fig. 4.7. We found that our tool has

an average run-time of 53ms on pages from the two datasets. It processes 95.9% of the pages

in the two datasets in less than 150ms and 99.5% of the documents in less than 1sec.

4.8 Conclusion and Future Work

We presented a technique for separating a webpage into layout code and structured data. Our

technique computes a separation that is lossless, which means that running the extracted code

on the extracted data reproduces the original page. Because there are many ways to separate a

webpage into layout code and data, we make sure that our separation is efficient by aiming to

minimize the joint description length of code and data. What this means intuitively, is that our

technique attempts to find a separation such that common elements become part of the layout

78



code, and varying values are represented as data. The ability to separate webpages has various

important applications: page encoding may be significantly more compact (reducing Web traffic),

data representation is normalized across different Web designs (facilitating wrapping, retrieval

and extraction), and repetitions are diminished (expediting site updates and redesign). We

show the effectiveness of our approach by evaluating its performance both for size compression

and record extraction. Despite the fact that our approach is not specifically tailored to these

applications, it outperforms state of the art data extraction tools, and achieves impressive

compression ratios.

As code becomes increasingly important in producing the content of a page [WPC+15],

we believe that layout code (more generally, page code) and the problem of code extraction

should receive more attention. In future work, we plan to address the separation problem with

primitives for data generalization.

79



80



Chapter 5

Separation of Web Sites into Layout Code and Data

Abstract We present a novel technique for separating a website into layout code and data. Given

a website, our technique separates it to a small number of layout programs and structured data

sources. The main idea is to define a distance measure between web pages such that the distance

measures the cost of unifying the pages into a common template. We then use this distance to

pick representative pages in a way that increases coverage of the different templates used in the

site. Each representative forms a cluster, for which we generate a single unified layout code,

accompanied with a data component for each of the pages in the cluster. The combination of

separation to layout code and data with the concrete representatives for each template allows

to benefit both from automatic manipulations of the extracted data and code, as well as from

manual ones which require user input. For example, a user who is interested in data extraction

of certain items may use the concrete representatives for tagging them. We have implemented

our approach in a tool called SAPPORO and evaluated its effectiveness.

5.1 Introduction

Pages in many modern websites are template generated by applying a small set of layout code

files to a structured data source, producing the set of HTML pages that are then presented to the

user. These pages are therefore a blend of formatting elements inserted by the specific layout

code file that is used to generate them, and actual values that are obtained from the structured

data. It is common that many HTML pages in a website are produced using the same layout

code (template) and therefore share a lot of the formatting elements.

Goal Given a set of HTML pages, our goal is to separate them into a small set of layout

programs and a set of structured data sources such that: (i) each layout program represents a

subset of HTML pages sharing the same (or a lot of) the formatting elements (ii) running the

corresponding layout program of a page on its extracted data source reproduces the original page

(the separation is lossless), and (iii) the separation is efficient such that the entire set of pages is

represented using a small number of layout code files, where common elements among pages

become part of their representative layout code file, and their varying values are represented as

data.

Applications Separation of website pages has many important applications such as data extrac-

tion, webpage clustering, template removal, and web traffic optimization. For example, the

data files generated by our approach can be used for unsupervised data extraction (facilitating

81



wrapping and retrieval). The resulting separation can also be used for traffic reduction and

automatic conversion of web applications to Ajax applications. These applications are not

limited to server-side generated sites but can also be applied to client-side (Angular or Ajax in

general) generated sites (e.g., by using a headless browser to obtain a static HTML page).

Challenges Separating a website into layout code and data requires that we identify pages that

have similar formatting and can thus be formatted using the same layout code, and only differ

on the data. It also requires that we efficiently cover the variety of different templates that are

used in a website.

Existing Techniques There has been a lot of work on data extraction from web pages [AGM03,

KC10, SC13, SC+14, TW13, WL03, CL01, ZL05, SL05, LMM10, CYWM03, LGZ03a, LWLY12,

DBS09b, HCPZ11, MTH+09]. Record-level extraction handles the case where a single page

has a list of records, where there is repetition within the same page. Our approach deals with the

complementary problem where the repetition is not only within the same page, but also across

different pages. Previous work [OKYS16], applied the idea of separation to separate single

page and perform record-level extraction. In this paper, we address the challenging problem of

separating a set of web pages.

While the use of templates is essential for improving uniformity, readability, and main-

tainability of web-pages, templates are considered harmful for many automated tasks like

semantic-clustering, classification and indexing by search engines. Therefore, a lot of past work

tackled the challenges of template identification [RGSL04, LGZ03a, ZL05, BYR02, KFN10]

and template-extraction [KS11, CKP07, GF14, DC, GM13]. Typically, the goal of these works

is to identify or extract the template so it can be ignored/discarded, and the data could be passed

to further processing.

Our Approach Our approach is based on the assumption that, pages produced by the same

HTML layout code share more of the formatting elements than they share with pages generated

by different layout code files, or in other words they have higher structural similarity.

We therefore use a unification-guided similarity between pages—a similarity function that

captures the effort required to unify two pages. Further, we use novelty-based summarization

algorithm that finds representatives for different templates present in the input set of pages. We

use these representatives together with the same similarity function to compute clusters of pages

that share a common template. We then unify the pages in each cluster to produce the separation

of pages in the cluster into common layout code and data.

Our algorithm has the additional advantage that it computes not only a separated represen-

tation of code and data, but also maintains a concrete representative page for each template

class.

The fact that we maintain concrete representatives provides a convenient way to involve a

user. For example: (i) it allows human supervision as part of a summarization process, where

the user can label certain templates as important, and dismiss others. (ii) it allows a human

to label data for extraction on concrete (representative) pages instead of working with more

involved internal representations.

82



We implement and evaluate a method for automatically separating a set of static template-

generated HTML pages into a set of layout code files and a set of data sources (each associated

with a single code file). The main idea, is to use a novelty based summarization algorithm to

select a set of representatives which are the cores of the layout code files, then align the rest of

the HTML files each with the most structurally similar representative, producing a single layout

code file and list of data sources from each representative and its associated HTML files.

Main Contributions The contributions of this paper are:

• We present a novel algorithm for efficient separation of a set of webpages into layout

code files and structured data sources.

• We propose a representative selection algorithm that identifies a guide set of webpages

that represent all the templates used in a larger set of webpages. The main idea of our

algorithm is to use novelty-based summarization based on a structure-aware similarity

function for picking the representative pages efficiently, to enable coverage of the different

templates via a typically small number of representatives.

• We implement and evaluate our approach. Our evaluation shows that our approach

is effective in capturing the different templates present in a site, and in extracting the

structured data from pages with different templates.

5.2 Related Work

In this section, we briefly survey closely-related work on web structure mining and data

extraction.

Data extraction a lot of research has been done on page-level data extraction (e.g., [AGM03,

KC10, SC13, SC+14, CMM01])

EXALG [AGM03] gets as an input a set of pages sharing the same unknown template and

deduces the template and uses it for data extraction. Trinity [SC+14] is an unsupervised web

data extraction technique that learns extraction rules from a set of similar web documents. It

uses the template tokens to partition each document into prefixes, separators and suffixes. It

then recursively analyzes the results to discover patterns and build a “Trinity tree” which is later

transformed into a regular expression for data extraction. Roadrunner [CMM01] uses similarities

and differences between webpages to discover data extraction pattern. Similarities are used

to cluster similar pages together, it then uses a matching algorithm to identify dissimilarities

between pages in the same cluster and build a common regular expression for data extraction.

FiVaTech [KC10] extracts data from a set of pages by automatically detect their shared schema

and using it for data extraction. Their solution uses pattern mining and alignment to construct

a structure called “fixed/variant pattern tree,” which can be used to identify the template and

detect the schema. These techniques focus solely on data extraction without generating a layout

code component. In addition, [SC+14, KC10, AGM03] assume that pages in the input set are

all generated using the same template and do not deal with cases when the provided documents

83



have multiple templates. Our tool, in comparison, does not make such assumptions and is able

to extract data and generate layout code also for page sets with multiple templates.

Record-level data extraction is another related problem. Given a single page containing

multiple data records as an input, the goal is to to extract these records. Many techniques have

been proposed dealing with this problem [ZL05, WL03, CL01, MTH+09]. DEPTA [ZL05] use

tag strings representation of DOM nodes and partial tree alignment to align generalized nodes

and extract their data. IEPAD [CL01] discovers repeated patterns in a document by coding it into

a binary sequence and mining maximal repeated patterns. These patterns are then used for data

extraction. Compared to our method which can work on multiple pages with different templates,

these methods are limited to a single page only and can not align records from different pages,

something essential for making the data annotation process more efficient.

A lot of supervised data extraction techniques (e.g., [KWD, LG14, OSY17, DBS09b]) has

been proposed in literature. FlashExtract [LG14] for instance, allows end-users to give examples

via an interaction model to extract various fields and to link them using special constructs. It

then applies an inductive synthesis algorithm to synthesize the intended data extraction program

from the given examples. [NDMBDT14] propose a method for generating XPath wrappers.

Given a user selected set of XPath samples describing the data nodes of interest in a DOM

tree, the method uses an alignment algorithm based on a modification of the Levenshtein edit

distance to align the sample XPaths and merge them to a single generalized XPath. In contrast

to these techniques which require user annotation and interaction, our approach can work in an

unsupervised manner allowing for later annotation of the extracted data.

Web structure mining is a family of web mining tasks that deal with the problem of discovery

and analysis of the hyper-link structure between pages and sites in the web. Such analysis has

a wide range of applications including web page importance scoring and ranking as proposed

by Page Rank [PBMW99] and HITS [Kle99]. These techniques can be used along with graph

mining techniques for web clustering. However, these techniques assume that page links are

available, and that the link structure between pages can be discovered, assumptions that are not

true in cases like web-mail clustering. Our approach, on the other hand, relies solely on the

document structure without making such assumptions.

XML similarity A lot of XML similarity metrics [SM02, CMM+02, But04, RMS06, DCWS06]

has been proposed in literature. Information retrieval based techniques [SM02, CMM+02]

are tolerated more towards measuring content similarity. While edit distance (ED) and tag-

based techniques [But04, RMS06, DCWS06] are more tolerated towards structural similarity.

Compared to these methods our approach uses a similarity function that assesses its ability

to efficiently represent the two input pages as a single layout-code (template) and data. We

use [But04, RMS06] for clustering and compare the quality of the resulting clustering to that of

ours. Our clustering show better clustering quality compared to these baselines.

Novelty based ranking Novelty based ranking is an important problem in the information

retrieval field [CJL+11, OCRS16, CKC+08a]. It is used by search engines for ranking of search

results [CJL+11] in a way the promotes diversity, and in answer ranking as well [OCRS16].

84



These works are focused on semantic diversification, while we propose a novel method that

promotes structural novelty of the selected representatives.

5.3 Overview: Problem and Solution

In this section, we illustrate our approach using an example.

5.3.1 Motivating example

Consider the problem of separating pages of pricespy.co.uk (PriceSpy) into layout code and

data.

Goal Given a set of webpages from PriceSpy, our goal is to generate a set of layout programs

(code files), representing the different templates that generate the provided pages. For each of the

generated layout programs we also generate a list of data files (which we also call environments),

such that invoking each layout program on its corresponding data files will generate the original

input pages. We refer to the layout programs and the data files associated with them as a

separation of a set of webpages.

When running our approach on 40 pages from PriceSpy, it generated four different layout-

code files, each with 10 corresponding data files.

Fig. 5.1 shows two HTML snippets from two different product pages in PriceSpy. These two

pages share a similar template (product page template) while presenting information of different

products. Therefore, in the separation computed by our approach, these pages are generated by

the same layout-code file. Fig. 5.2 shows the synthesized layout-code for these pages. As can be

seen in Fig. 5.2, the generated layout code contains the shared formatting elements (template)

while the differing data is replaced with variable references.

In order to generate the original pages in Fig. 5.1 using the code-template in Fig. 5.2, the

layout-code needs to be invoked on a data source with value-assignments to every variable

referenced in the layout code file. Fig. 5.3 shows snippets from the two data files generated by

our method for the two HTML pages in Fig. 5.1. These data files contain assignments to the

variables referenced in the generated layout-code in Fig. 5.2, and contain the data it needs in

order to generate the two original HTML snippets.

Tree representation for convenience we often use tree representation of the HTML pages (DOM

tree) and the layout code files (layout code tree). Fig. 5.5(a) shows the DOM tree representation

of the HTML snippets from Fig. 5.1, and Fig. 5.5(b) shows the layout code tree representation

of their synthesized layout code.

5.3.2 Our Approach

Our separation process attempts to represent a given set of pages of a website in an efficient and

minimal way as layout programs and data files, exploiting the property that typically the pages

are generated by a small number of layout programs, invoked on different data elements.

Fig. 5.4 illustrates our separation process for a set of pages. The separation process starts

by selecting a set of representative pages to cover the different page structures present in the

provided sample set. This is obtained using a novelty-based summarization algorithm, which

aims to achieve coverage of the different templates present in the sample set with a small number

85

https://pricespy.co.uk


<div c l a s s =” i n t r o b o d y ”>
<h1 c l a s s =” i n t r o h e a d e r ”>HTC One M10 32G< / h1>. . .
<div c l a s s =” p r o d u c t−brand−box ”>

Compare p r i c e on a l l
<a hre f =” branda851 . h tml ”>HTC Mobile Phones< / a> ( 1 1 3 )
< / div>
< / div>

<div c l a s s =” i n t r o b o d y ”>
<h1 c l a s s =” i n t r o h e a d e r ”>Apple iPhone 7 64GB< / h1>. . .
<div c l a s s =” p r o d u c t−brand−box ”>

Compare p r i c e on a l l
<a hre f =” brandb9c2 . h tml ”>Apple Mobile Phones< / a> ( 4 0 )
< / div>
< / div>

Figure 5.1: Snippets of static HTML pages.

<div c l a s s =” i n t r o b o d y ”>
<h1 c l a s s =” i n t r o h e a d e r ”>{ va r1}< / h1>. . .
<div c l a s s =” p r o d u c t−brand−box ”>

Compare p r i c e on a l l
<a hre f =” brandb{ va r2 } . h tml ”>

{ va r3} Mobile Phones< / a>({ va r4 } )
< / div>
< / div>

Figure 5.2: Code synthesized for the given static HTML pages.

{” va r1 ” : ”HTC One M10 32GB” ,
” va r3 ” : ”HTC” ,
” va r2 ” : ” a851 ” , ” va r4 ” : ” 113 ”}

{” va r1 ” : ” Apple iPhone 7 64GB” ,
” va r3 ” : ” Apple ” ,
” va r2 ” : ” b9c2 ” , ” va r4 ” : ” 40 ”}

Figure 5.3: Data synthesized for the given static HTML pages.

of representatives. Towards that end, we define a similarity function that measures structural

similarity between two pages, and propose a novelty-based representative-selection algorithm.

A user can inspect the representatives and determine which of them are of interest, allowing

the algorithm to focus on the pages for which separation is desired.

The representative selection step is followed by a classification step which is applied on all

the pages in the sample set. The classification forms clusters of similar pages by associating

each page in the provided sample with a single, most similar, representative among the selected

representatives.

Finally, separation is performed within each cluster of interest (determined by the represen-

tatives), by iteratively aligning each page in the cluster with the representative. The alignment

process results in a set of layout-code files, each associated with a list of data files.

Next, we provide additional details on the different steps.

Webpage similarity The ability to assess structural similarity of pages is essential to our approach.

Therefore we define a page similarity function that captures structural similarity of the pages.

86



Figure 5.4: Main steps of the separation algorithm.

Figure 5.5: (a) Two DOM trees of the original HTML documents, and (b) the layout tree
produced by our approach from these DOM trees.

An important aspect of our similarity function is that it strives to measure the similarity at

the layout-code level. To do so, we apply a preprocessing step of page-level separation in which

we apply a tree folding algorithm [OKYS16] on each page individually in order to fold item

lists and unify their representation among the different pages. The tree folding algorithm works

in a bottom-up manner: it analyzes adjacent layout subtrees and folds similar ones by aligning

them and representing them using a single template subtree while introducing their differences

as variable assignments in the data.

Guide set selection We present a novelty-based structural summarization algorithm and use it

to generate a representative set, also called a guide set, for a given set of pages. The goal of the

algorithm is to find a small set of representative pages that cover the different page templates in

the input set.

The novelty-based algorithm uses a greedy iterative process, which measures the novelty

of each unselected page, as well as the coverage it provides. Initially, all pages have the same

novelty measure. At each iteration the algorithm selects as an additional representative the page

that contributes the highest total coverage of novel pages, and updates the novelty accordingly.

Technically, the selection happens in two steps:

1. Representative selection: the algorithm calculates a novelty aware coverage score (which

87



we call support) for each yet-unselected page in the provided set. The coverage that a

page d1 contributes to another page d2 is their similarity-value multiplied by the novelty

of page d2. The new representative is selected as the one with the maximal support.

2. Penalization: the algorithm penalizes the novelty of the pages that are similar to the

newly selected representative.

The representative selection process stops when a specific threshold of coverage is reached,

or when we reach the number of representatives (budget) specified by the user.

Classification After a guide set is selected, each page in the input set is associated with the rep-

resentative in the guide set that is most structurally similar to it, forming clusters of structurally

similar webpages. We use the same structural similarity function we use in the representative

selection process.

Template-code synthesis and data extraction Pages in each resulting cluster are sequentially

aligned with their corresponding representative, where alignment identifies a common layout

code and introduces variables and assignments to account for the differences. The alignment

process starts with the layout-code of the representative page, obtained by page-level separation,

as the current layout-code. In each iteration, the layout code (as well as the data of the previously

aligned pages) is updated based on a new page whose layout-code is aligned with the current

layout-code. Further, a new data component is generated for the newly aligned page.

5.4 Problem Definition

In this section we formally define the problem of separating a web site into layout code and data.

5.4.1 Separation and Solution Space

Our goal is to describe a website by a set of layout code trees, each associated with a set of

environments that generate the original pages of the website.

Definition 5.4.1 (Separation). Given a set of webpages D = {d1, . . . , dk} of some website of

interest, a separation of D is a set of pairs {(π1,E1) . . . (πN ,EN )}, where

1. πi is a layout tree,

2. Ei = {Ei1 . . . Eimi} is a set of environments,

3. for every d ∈ D there exist (a unique) 1 ≤ i ≤ N and (a unique) 1 ≤ j ≤ mi such that

πi(Eij) = d, and

4.
⋃N
i=1

⋃mi
j=1 πi(Eij) = D.

Namely, invoking each layout tree on the set of environments associated with it results in the

input set of pages, D. If πi(Eij) = d, we say that d is represented by πi. Separating D is the

process of constructing a separation {(π1,E1) . . . (πN ,EN )} of D.

Note that a set of pages may have many possible separations. For example, {(d1, ∅), . . . , (dk, ∅)}
is a trivial separation of D where each page forms its own layout tree with an empty set of

environments. We denote by Sep(D) the set of all separations of D.

88



5.4.2 Separation Quality

Since there are many possible ways to separate a given web site, it is important to define

what makes one separation better than another. In this work, we focus on two quality aspects:

(i) simplicity of the resulting layout code: in terms of the number and the structure of the

resulting layout code files, and (ii) description length: the size of the resulting separation.

Inspired by the principle of Minimal Description Length (MDL) [Ris78], we define the cost

of the separation based on its description length and aim to minimize it in our separation process.

To do so, we consider the size in characters of the string representations of a layout tree π and

an environment E , denoted sizeof(π) and sizeof(E), respectively. We define

cost({(π1,E1) . . . (πN ,EN )}) def
=

N∑
i=1

(sizeof(πi) +
∑
E∈Ei

sizeof(E)).

We use the cost function to assess the similarity of two pages by calculating the reduction in

cost that can be gained by their alignment. In addition, it is used by our alignment algorithm to

decide whether or not to align two sub-trees and to calculate the most efficient alignment.

5.5 Our Approach

Our approach for separating a set D of webpages consists of three main steps: (i) building a

guide set which consists of a small number of representative pages from D, (ii) partitioning D

into clusters based on the representatives in the guide set, and (iii) synthesising a layout code

template and a set of environments for each cluster.

These steps use the page separation algorithm and the tree alignment algorithm developed

in [OKYS16]. We therefore start with a short explanation of these algorithms.

Tree alignment A tree alignment algorithm aligns two (or more) DOM trees, or layout trees,

into a single layout tree while storing the differences between them as variable assignments in

corresponding environments. Formally, an alignment of trees, accompanied by environments, is

defined as follows:

Definition 5.5.1. Let π1 and π2 be layout trees and let E1 = (E11, . . . , E1m1) and E2 =

(E21, . . . , E2m2) be two series of environments. An alignment of (π1,E1) and (π2,E2) is a pair

(π′,E′) where π′ is the unified layout tree of π1 and π2 and E′ = (E ′11, . . . , E ′1m1
, E ′21, . . . , E ′2m2

)

is the joint series of updated environments such that for every j = 1, . . . ,m1, π′(E ′1j) = π1(E ′1j)
and for every j = 1, . . . ,m2, π′(E ′2j) = π2(E ′2j).

The objective of the tree alignment algorithm of [OKYS16] is to minimize the combined

description length of the unified layout tree and the corresponding environments. To do so, it

unifies the trees by establishing a common layout tree and updating the environments. In the

following we consider alignments computed by the algorithm of [OKYS16].

Page-level separation The page separation algorithm of [OKYS16] separates a single page

d into a layout tree π and data E such that π(E) = d, while trying to minimize combined

description length of π and E . This is done in a bottom-up manner, where it analyzes adjacent

89



subtrees (starting from the leaves) and folds together similar ones by aligning them. In the

following we refer to (π, E) obtained by the separation algorithm of [OKYS16] as the separation

of d. We compute these separations for the given set of pages as a preprocessing step of our

algorithm.

We are now ready to explain our website separation algorithm in detail. In the sequel, we fix

a set D of webpages from a website of interest.

5.5.1 Building the Guide Set

A guide set G is a subset of the pages from the set D, each representing the set of pages created

by the same layout code template. The pages in the guide set have to efficiently summarize the

different templates of all the pages in D without representing the same template twice.

To construct a guide set, we develop a novelty based summarization algorithm that constructs

the guide set while ensuring coverage and avoiding redundancy. The algorithm computes a

novelty score for each page, as well as a coverage (support) score, which is based on a similarity

measure between pages. Before we describe the algorithm, we first define the similarity function

as well as the novelty and support score.

Page Similarity

The similarity of two pages attempts to estimate how efficiently they can be represented using

a single layout code template. To calculate how similar two pages d1 and d2 are, we first

separate them into (π1, E1) and (π2, E2) respectively, and then use the tree alignment algorithm

to calculate their most efficient shared representation. Formally, let (π1, E1) be the separation of

d1, (π2, E2) the separation of d2 and let (π′, (E ′1, E ′2)) be the alignment of (π1, E1) and (π2, E2).

We define Sim(d1, d2) =

cost({(π1, {E1}), (π2, {E2})})− cost({(π′, {E ′1, E ′2})})
1
2 ∗ (cost({(π1, {E1}), (π2, {E2})}))

Where cost({(π1, {E1}), (π2, {E2})}) denotes the accumulative representation cost of d1 and

d2 when each of them is kept separately, while cost({(π′, {E ′1, E ′2})}) denotes their shared

representation cost.

Intuitively, the similarity of d1 and d2 is the reduction in representation cost when they are

represented as a single layout code compared to the cost when they are represented as separate

layout codes, normalized by their average initial cost.

Note that the similarity is calculated based on the separations of the pages, where similar

subtrees within a single page are already folded together. This is important in order to account

for, e.g., pages that contain list items with different numbers of items.

Support and Novelty of a Page

In the following we define the support score and the novelty score of a page used to select the

pages in the guide set.

The novelty of a page d with respect to a given set G of already selected representatives

measures how unique d is compared to the pages in G. Formally:

90



Definition 5.5.2. Given a set of already selected representatives G, the novelty of a page d with

respect to G is calculated as follows:

Nov(d,G) =
∏
di∈G

(1− Sim(d, di))

Note that for d ∈ G, Nov(d,G) = 0. Namely, the novelty of a page that already belongs to the

guide set is 0.

The support of a page d in a sample D given a set of already selected representatives G is

the average amount of additional coverage it contributes to other novel pages in D relative to G.

Formally:

Definition 5.5.3. Given a set of pages D and a set of already selected representatives G, we

calculate the support of a page d as follows

Supp(d,D,G) =

∑
di∈D\G Sim(d, di)

1+c ∗Nov(di, G)∑
di∈D\G Sim(d, di)c

The support score is used by our greedy algorithm for representatives (guide set) selection

to decide which additional representative to select at each iteration, given the set of D pages and

the set of already selected representatives G. The higher the support the page has, the greater its

contribution to the coverage of D is. Therefore, the more likely it is to be selected and added to

the guide set.

The c parameter A page can cover a large number of pages that are moderately similar to it,

adding a small coverage to each one of them. Alternatively, ir can also cover a small set of pages

that are highly similar to it (completely covering this small set of pages). The question “what is

considered a better coverage” may have different answers depending on the application. The c

parameter gives a user control over what to choose. A lower c-value gives priority to the former

possibility (where a large number of supporters can compensate for lower similarity), while a

higher c-value gives higher priority to the latter (where the similarity of the supporters is more

important than their number).

Algorithm 3: Guide Set Selection

G = ∅;
foreach di ∈ D do

Nov(di, G) = 1
repeat

d = arg maxd∈D\G Supp(d,D,G);
G = G ∪ {d};
foreach di ∈ D \G do

Nov(di, G) = Nov(di, G \ {d}) ∗ (1− Sim(d, di))
until Supp(d,D,G) < threshold;
return G;

91



Guide Set Selection Algorithm

Given a set of pages D , we use (the greedy) Algorithm 3 to build a guide set. The algorithm

starts with an empty guide set G = ∅ and with the novelty of each page di ∈ D set to 1. It then

gradually adds pages that have the highest support score, while continually updating the novelty

score of the remaining pages in D \G. Namely, in each iteration the algorithm selects the page

d ∈ D \G with the highest support score, adds it to the guide set G , and penalizes all pages

similar to d by reducing their novelty score by the amount of their similarity to the newly added

page. Note that the algorithm does not update the novelty of the existing representatives in G,

nor does it update the novelty of the new representative d ∈ G to 0, since in any case pages in

G do not affect the support of other pages.

5.5.2 Website Separation based on Guide Set

Given the guide set G, we synthesize layout code templates, and data, for the pages in D by

grouping them according to their similarity to the pages from G.

To that end, we first partition the pages of D to clusters by classifying each page in D to the

cluster of the most similar page from G. Similarity is measured by the same function as before.

The result is a set of clusters, where each cluster contains exactly one page from G.

Within each cluster C, we use the unique page from G as a starting point, and align it with

the other pages in C. The result of these alignments is a layout code template πC and a set

of environments {EC1 , . . . , EC|C|}, one for each of the aligned pages. Technically, we apply the

alignment on the page level separations of the pages in the cluster. Algorithm 4 summarizes the

cluster-level separation algorithm. In the algorithm, the initial layout-code π∗ is the layout-code

of the representative d1 ∈ G of C, and the single data component is its environment. In each

alignment step, the separation (πi, Ei) of another page di ∈ C is aligned with πC , while updating

all the existing environments {EC1 , . . . , ECi−1} and appending a new one ECi for the newly aligned

page.

Algorithm 4: Cluster-level Separation of C

Let C = {d1, . . . , d|C|} s.t. {d1} = C ∩G ;
for i = 1 . . . |C| do

Let (πi, Ei) be the page-level separation of di
πC = π1, EC = E1;
for i = 2 . . . |C| do

(πC ,EC) = align((πC ,EC), (πi, Ei))
return (πC ,EC);

Finally, the separation of the given set D of pages consists of the cluster-level separations

(πC ,EC) of all clusters.

5.6 Evaluation

In this section we evaluate the effectiveness of our approach. Our experiments in this work focus

on three main aspects: (i) evaluating our representative set selection algorithm, and (ii) evaluating

our page classification and the resulting clustering, and (iii) evaluating the separation quality

92



5.6.1 Implementation

We implemented our approach in a tool called SAPPORO in java, and used it separate multiple

sets of web pages from different real-life websites. For comparing the performance of our tool in

each one of the aspects, we use the following baselines: For representative selection comparison,

we have implemented a perfect ranker baseline. The perfect ranker is aware of the real templates

of the provided HTML files and aware of the scoring metric -unlike our solution which has no

such prior knowledge-, it ranks the representatives in a way the guarantees maximal (perfect)

score in the ranking metrics. We have implemented page-level alignment algorithm presented in

[OKYS16], and used it as a baseline to evaluate the effectiveness of our site-level alignment

algorithm. In addition, we have implemented two custom web page clustering algorithms

to compare our resulting clustering to. They are based on Expectation-Maximization (EM)

clustering with two different representations: tag based representation [But04] and XPath based

representation [RMS06].

Dataset To evaluate our approach and the different baselines, we have constructed a data set

that contains 318 pages from ten real-life websites, these pages are manually grouped in folders

according to their template. For each site, the dataset contains pages from 2-4 different templates.

This dataset is used in the evaluation of all the different aspects of the site. It is available for

download at: goo.gl/hII1n4.

5.6.2 Representative set selection evaluation

In this section we evaluate the performance of our representative selection algorithm by evaluat-

ing the order in which it selects representatives. Given an ordered sequence of representatives as

selected by out algorithm, we calculate the amount of additional coverage each representative in

the sequence adds, and compare it to the optimal possible order under the same metric.

Evaluation metrics

Normalized discounted cumulative gain (αNDCG) [CKC+08b, CCSA11] is a ranking qual-

ity metric designed specifically for evaluation of novelty based ranking. Given a sequence

of representatives, the metric calculates for each representative its additional coverage gain

(template coverage) normalized by its position, while promoting yet uncovered by penalizing

already covered templates by a factor of (1-α).

αDCG =
k∑
j=1

(1− α)r(t(j))/(1 + log(j))

. The final step is to normalize it against the gain sum of the optimal representatives order to get

αNDCG. In addition to the original αNDCG, we use a modified version of αNDCG that

gives different weights to the clusters (templates) according to the number of document they

contain in the set.

Weighted-αDCG =

k∑
j=1

W (t(j))(1− α)r(t(j))/(1 + log(j))

93

https://goo.gl/hII1n4


Where W(t(j)) is the number of pages in the cluster covered by the j-th element in the represen-

tatives sequence, and r(t(j)) is the number of previous representatives that cover it.

Templates Coverage Given an ordered sequence of representatives, we calculate the number of

different templates (original layout codes) covered by each prefix of the sequence up to prefix

length of 5. At each length we normalize by the maximal number of templates that can be

covered (optimal order).

Document Coverage Calculated and normalized similarly to the template coverage metric, the

only difference is that the templates are weighted, each the number of documents associated

with it in the data set by our manual clustering.

Representative selection results

The αNDCG performance results for our representative selection algorithm are reported in

Table 5.1. The results show the optimality scores of our ranking algorithm (since αNDCG is

-by definition- normalized by the optimal possible gain). According to the results in Table 5.1, for

α = 1 (full penalization of already covered clusters), our solution (TRACY) selects representatives

in a close to optimal order according to the (non weighted) αNDCG metric. For the weighted

αNDCG metric however, TRACY has better performance when the value of parameter c is

closer to 0. This is expected, as a higher c value gives less importance to the amount of similar

documents to a representative and more importance to how similar and how novel they are.

α=0 α=0.2 α=0.4 α=0.6 α=0.8 α=1
αNDCG

c=0 1.00 0.94 0.92 0.93 0.96 0.98
c=0.5 1.00 0.94 0.93 0.94 0.96 0.99

c=1 1.00 0.94 0.92 0.94 0.96 0.99
Weighted αNDCG

c=0 1.00 0.93 0.93 0.94 0.96 0.99
c=0.5 0.92 0.91 0.90 0.90 0.91 0.93

c=1 0.92 0.90 0.88 0.89 0.90 0.92

Table 5.1: αNDCG results for our representative selection algorithm, for different values of α
and c.

Table 5.2 shows coverage performance results for representative sequences as selected by our

tool (SAPPORO), normalized by the coverage of optimal sequence of the same length (according

to each metric) as a function of the sequence length. The results show close to optimal coverage

by sequences generated by our tool for the non-weighted case. In the weighted case however

(where templates with more pages should appear first), our tool has better coverage (close to

optimal) when c values are closer to 0 (which is expected as we explained earlier).

5.6.3 Page Classification and Clustering

In this section we evaluate the classification accuracy and the quality of the clustering generated

by our approach, and compare it to two clustering baselines: (i) EM-TagCount (tags), which

uses tag representation of the pages [But04] and uses expectation-maximization (EM) clustering

94



l = 1 l = 2 l = 3 l = 4 l = 5

Template Coverage
c=0 1.00 0.95 0.97 0.97 0.97

c=0.5 1.00 0.95 0.97 1.00 1.00
c=1 1.00 0.95 0.97 1.00 1.00

Pages Coverage
c=0 1.00 0.97 0.97 0.97 0.97

c=0.5 0.80 0.86 0.92 1.00 1.00
c=1 0.80 0.80 0.92 1.00 1.00

Table 5.2: Template coverage and pages coverage (normalized by optimal) as a function of the
representatives sequence length l.

algorithm to cluster them , (ii) EM-PathCount (paths), which does the same, but uses tag-path

representation instead [RMS06].

Clustering evaluation metrics

Cluster purity given a set of clusters generated by our method (as representatives with their

associated pages) and the other baselines for each site in DS1, we measure the purity of

each one by counting the number of correctly assigned pages (have the same template as the

representative) and dividing by the cluster size. The average purity over all clusters is then

calculated.

Rand index (RI) measures the percentage of pairs of pages that are correctly classified in the

same cluster and in different clusters. It is calculated in the following way:

RI =
TP + TN

TP + FP + TN + FN

Where TP is the number of pairs correctly clustered in the same (different for TN) clusters ,

while FP is falsely clustered together (in different clusters for FN) pairs.

Clusters number We compare resulting number of clusters of our approach and the other

baselines, and the real number of templates for each site. Our approach uses threshold on

the support value to decide when to stop adding representatives. We test the resulting clusters

number for multiple different low threshold values to assess the sensitivity of the clusters number

to this parameter.

Clustering evaluation results

Clustering quality results of our tool (SAPPORO) and the two clustering baselines are reported in

Table 5.3. For each clustering tool, the table contains the quality of its resulting clustering for

each site in our data set individually, and its aggregated average score. The results indicate that

our tool has higher purity and IR scores compared to the two other baselines. Where among the

two baselines, the EM with tag-path based representation has a better clustering quality.

Table 5.4 shows the number of resulting clusters created by our approach for different

threshold values compared to the other baselines. For low threshold values (0.1 and 0.3) our

95



Purity Rand index
Tool Paths Tags Our Paths Tags Our

idealo 0.50 0.50 1.00 0.50 0.50 1.00
aria.co.uk 0.83 0.83 1.00 0.88 0.88 1.00

pricerunner 0.96 0.67 0.89 0.30 0.30 0.79
cclonline 0.36 0.36 0.91 0.75 0.52 0.95
priceme 0.72 0.83 1.00 0.78 0.88 1.00
shopbot 1.00 1.00 1.00 0.95 1.00 1.00

direct 1.00 1.00 1.00 1.00 1.00 1.00
pricespy 1.00 0.69 0.96 0.96 0.86 1.00

currys 1.00 1.00 1.00 1.00 0.76 0.96
ebuyer 0.50 0.50 1.00 0.50 0.50 1.00

average 0.79 0.74 0.98 0.76 0.72 0.97

Table 5.3: Cluster purity and RI values for our tool and the baselines.

approach results in perfect number of clusters, this shows that our clustering is not too sensitive

to the threshold parameter, and will not be hard to train it to find a global good threshold value.

The other baselines have less accurate number of clusters.

Count GT Path Tag our-0.1 our-0.3 our-0.5
idealo 2 1 1 2 2 2

aria.co.uk 4 3 3 4 4 3
pricerunner 3 3 1 3 3 3

cclonline 4 1 1 4 4 3
priceme 4 3 3 4 4 4
shopbot 3 4 3 3 3 3

direct 2 2 2 2 2 2
pricespy 4 4 3 4 4 3

currys 3 4 4 3 3 2
ebuyer 2 1 1 2 2 2

difference 0.9 1.1 0 0 0.4

Table 5.4: Number of clusters created by our approach with different support threshold values,
and the two clustering baselines compared to the ground truth (GT).

5.6.4 Separation Quality

In this section we evaluate the quality of the resulting separation by checking its validity and

comparing the size of resulting separation to the original non-separated representation and to

page-level separation produced by [OKYS16].

We have used our representative selection and classification algorithms to cluster the web

pages of each one of the websites in the dataset, each cluster containing files with similar

template. We then aligned pages in each cluster, producing a single template file and multiple

data files, one for each page of the original pages.

We have implemented the page-level separation algorithm presented in [OKYS16] and used

it to separate pages of each website into layout-code and data. We use the resulting page-level

96



separation as a reference point and compare the gain in reduction in representation size between

our site-level approach and page-level one.

Separation quality results

The size of representations produced by our approach and the baselines are reported in Table 5.5.

The results show that our site-level separation approach reduces the representation size to 42.3%

of the original representation size, while the size of representations produced by page-level

separation is 64.6% of the original size. The results show 34.5% improvement in reduction of

the representation size by our site-level approach compared to the page-level approach.

size in MB original page-level site-level
idealo 2.43 1.89 1.41

aria.co.uk 2.75 2.03 1.02
pricerunner 6.68 3.59 2.91

cclonline 6.22 4.07 2.57
priceme 4.34 2.48 1.42
shopbot 6.51 1.48 1.1

direct 4.33 4.19 3.11
pricespy 5.71 4.45 3.14

currys 13.8 9.08 5.04
ebuyer 3.62 3.15 2.12

total 56.39 36.41 23.84
size/original 100 64.6 42.3

Table 5.5: The file sizes in MB of representations of webpages of each site produced by our
site-level separation approach compared to page-level approach and original files.

5.6.5 Discussion

The evaluation results show that our approach (SAPPORO) has a close to perfect representative

selection order in novelty oriented metrics such as the coverage metrics and αNDCG (with

α-values close to 1). In addition to the contribution a good representative selection order can

bring to the clustering quality (which we assess separately), it can save manual effort and make

more convenient tasks involving a human reviewer, who can review fewer representatives to

cover all the different templates in the provided page set. Such task can be, for instance, manual

modification or selection the set of clusters, or annotation of less pages for data extraction.

The clustering quality results show that our approach has a superior clustering quality in

terms of purity, IR and number of clusters compared to the two other clustering baselines. The

clustering quality is important for our approach as it directly affects the quality of the resulting

separation. A clustering with poor quality may result in a higher number of layout-code files

that are too general, and will result in more complicated data files, whereas a high quality

clustering will result in a relatively (compared to a lower quality clustering) small number of

clean layout code files, and will result in a relatively simple data sources which makes the

resulting representation more efficient and more useful for important applications like data

extraction, and traffic reduction.

97



The separation quality results show that our site-level has an improved reduction in represen-

tation size compared to page-level separation. The representation resulting from our site-level

separation can be used to automatically generate AJAX versions of websites to optimise traf-

fic.and reduce load times.

5.7 Conclusion

We propose a novel approach for separation of websites into layout code files and data files.

The approach uses a novelty based algorithm to rank pages according to their novelty and

contribution to the coverage of the different templates. It selects a set of representative pages

and uses them to classify the rest of the pages to template clusters. It then aligns pages in each

cluster with their representative to synthesize a layout code file and extract a list of structured

data sources. We have implemented our approach in a tool called SAPPORO and evaluated its

effectiveness. The evaluation shows high effectiveness of our tool for structural summarization,

clustering and alignment of web pages.

98



Chapter 6

Conclusion and Open Questions

6.1 Conclusion

The goal of this work was to address the problem of scalable data-extraction via automatic

synthesis of data extraction programs and web applications. Our work explores two different

types of solutions: one that uses program synthesis techniques to automatically synthesize web

extractors, and another that uses program synthesis to separate a website back into layout code

and data.

In our first work (Chapter 2), we present an automatic synthesis approach for generating

extraction web crawlers for a group of websites. This chapter introduces a new cross-supervised

crawler synthesis algorithm that extrapolates crawling schemes from one web-site to another.

The main idea is to automatically label data in one site based on others and synthesize a crawler

from the labeled data. Since the annotation is done automatically, we cannot assume that

all annotations are correct (hence some of the examples might be false positives), and we

cannot assume that un-annotated data is noise (hence we have no negative examples). We

use a voting approach and the notion of containers to overcome these difficulties. The idea of

cross-supervised synthesis allows us to use a single handcrafted web-crawler to automatically

synthesize a set of web crawlers for a group of websites from the same category. In addition, it

allows us to automatically regenerate a new web crawler for a website in case its web-crawler

broke as a result of structural changes of the web-site template.

In chapter 3 we have presented and implemented a novel approach for automatically syn-

thesizing forgiving-xpaths. These forgiving xpaths combine the benefits of XPath queries with

the generality of classifier-based extractors. The synthesis process uses a modified decision

tree construction algorithm to build general yet accurate XPath. It then iteratively prunes the

resulting tree producing a sequence of decision trees with decreasing precision and increasing

recall. These threes are then translated to XPaths and combined together into a forgiving XPath.

In our evaluation we found that extractors produced using this approach outperform not only

other pattern-based extractors, but also classifier-based extractors which are typically more

suited for handling unseen sites. This accuracy was achieved while maintaining the readability

and efficiency of the XPath.

In chapters 4 and 5 we presented a technique for separating a website into layout code

and data. The separation has many possible application, including page-level and record-level

99



data extraction. In chapter 4 we propose a technique for separation of a single page. The

separation that our method calculates is lossless, which means that running the extracted code

on the extracted data reproduces the original page. Because there are many ways to separate a

webpage into layout code and data, we make sure that our separation is efficient by aiming to

minimize the joint description length of code and data. Despite the fact that our approach is not

specifically tailored towards data-extraction, it outperforms state of the art data extraction tools,

and achieves impressive compression ratios. In chapter 5 we present a technique for separating

a website into a group of layout pages and structured data sources. The approach uses a novelty

based algorithm to select a set of representative pages and uses them to classify the rest of

the pages to template clusters. It then aligns pages in each cluster with their representative

to synthesize a layout code file and extract a list of structured data sources. Our evaluation

shows high effectiveness of our site-level separation for structural summarization, clustering

and alignment of web pages.

6.2 Open Questions

Separation of web-applications into components: We addressed the problem of page-level and

site-level separation into layout code and data. We showed that the resulting separation has

a lot of interesting applications, like representation compression and data-extraction. While,

this separation is useful for extraction from websites, it could be less efficient for extracting

data in more complicated cases. Data extraction from e-mail, as an example, requires dealing

with dynamically changing templates. While these templates change more frequently than

web-page templates in websites, they are often built from a pre-defined set of components that

do not change (or change much less frequently). Identifying these shared components among

different e-mail templates can help produce an efficient and automatic data-extractor that not

only deals with seen e-mail templates, but also with future ones. Another interesting application

for separation of web-applications into components, is cross-site data extractors: while page

templates may differ among different sites, many sites share fragments of their page templates

with other sites (thanks to open source publishing platforms and the use of pre-built plugins and

components). Learning to identify and understand the structure of these shared components can

facilitate cross-site data extraction.

Automatic synthesis of web-scale data extractors:

The goal of web-scale data extraction is to construct a unified Web knowledge base that gives

us access to data aggregated from all websites available online. While the methods we proposed

in this work address the problems of page-level and record-level extraction from websites, it

would be interesting to research the possibility of integrating them (or other solutions inspired

by them) inside a system for web-scale data extraction.

Separation beyond web applications: In our separation work in chapter 4 and chapter 3, we

address the separation problem on web-pages. What enables such separation is our knowledge

about the syntax of these template scripting languages, in addition to the similarities and the

functional equivalence of most these scripting languages. Other document types (logs for

100



example) in the other hand, do not have the same level of shared similarities and often lack the

well-defined scripting constructs that facilitate the separation of web-applications.

101



102



Bibliography

[AGM03] Arvind Arasu and Hector Garcia-Molina. Extracting structured data from

web pages. In SIGMOD, 2003.

[AGWC07] Yoo Jung An, James Geller, Yi-Ta Wu, and Soon Chun. Semantic deep

web: automatic attribute extraction from the deep web data sources. In

Proceedings of the 2007 ACM symposium on Applied computing, pages

1667–1672. ACM, 2007.

[Ant05] Tobias Anton. Xpath-wrapper induction by generalizing tree traversal

patterns. In Lernen, Wissensentdeckung und Adaptivitt (LWA) 2005, GI

Workshops, Saarbrcken, pages 126–133, 2005.

[But04] David Buttler. A short survey of document structure similarity algorithms.

In ICOMP, pages 3–9, 2004.

[BYR02] Ziv Bar-Yossef and Sridhar Rajagopalan. Template detection via data

mining and its applications. In WWW’02, 2002.

[CCCD16] Chia-Hui Chang, Tian-Sheng Chen, Ming-Chuan Chen, and Jhung-Li

Ding. Efficient page-level data extraction via schema induction and

verification. In Pacific-Asia Conference on Knowledge Discovery and

Data Mining, pages 478–490. Springer, 2016.

[CCDW04] Fabio Ciravegna, Sam Chapman, Alexiei Dingli, and Yorick Wilks. Learn-

ing to harvest information for the semantic web. In The Semantic Web:

Research and Applications, pages 312–326. Springer, 2004.

[CCSA11] Charles L.A. Clarke, Nick Craswell, Ian Soboroff, and Azin Ashkan. A

comparative analysis of cascade measures for novelty and diversity. In

WSDM, 2011.

[CD+99] James Clark, Steve DeRose, et al. Xml path language (xpath). W3C

recommendation, 16, 1999.

[CDB15] Joseph Paul Cohen, Wei Ding, and Abraham Bagherjeiran. Semi-

supervised web wrapper repair via recursive tree matching. arXiv preprint

arXiv:1505.01303, 2015.

103



[CDC04] Sam Chapman, Alexiei Dingli, and Fabio Ciravegna. Armadillo: harvest-

ing information for the semantic web. In Proceedings of the 27th annual

international ACM SIGIR conference on Research and development in

information retrieval, pages 598–598. ACM, 2004.

[CH04] Shui-Lung Chuang and JY-j Hsu. Tree-structured template genera-

tion for web pages. In Web Intelligence, 2004. WI 2004. Proceedings.

IEEE/WIC/ACM International Conference on, pages 327–333. IEEE,

2004.

[CJL+11] Olivier Chapelle, Shihao Ji, Ciya Liao, Emre Velipasaoglu, Larry Lai, and

Su-Lin Wu. Intent-based diversification of web search results: metrics

and algorithms. Information Retrieval, 14(6):572–592, 2011.

[CKC+08a] Charles LA Clarke, Maheedhar Kolla, Gordon V Cormack, Olga Vechto-

mova, Azin Ashkan, Stefan Büttcher, and Ian MacKinnon. Novelty and

diversity in information retrieval evaluation. In SIGIR, 2008.

[CKC+08b] Charles L.A. Clarke, Maheedhar Kolla, Gordon V. Cormack, Olga Vech-

tomova, Azin Ashkan, Stefan Büttcher, and Ian MacKinnon. Novelty and

diversity in information retrieval evaluation. In SIGIR, 2008.

[CKGS06] Chia Hui Chang, Mohammed Kayed, M.R. Girgis, and K.F. Shaalan. A

survey of web information extraction systems. IEEE Trans. on Knowledge

and Data Engineering, 18(10), 2006.

[CKP07] Deepayan Chakrabarti, Ravi Kumar, and Kunal Punera. Page-level

template detection via isotonic smoothing. In Proc. of the international

conf. on World Wide Web, 2007.

[CL] Chia-Hui Chang and Shao-Chen Lui. IEPAD: Information extraction

based on pattern discovery. In WWW ’01.

[CL01] Chia-Hui Chang and Shao-Chen Lui. IEPAD: information extraction

based on pattern discovery. In WWW, 2001.

[CMM01] Valter Crescenzi, Giansalvatore Mecca, and Paolo Merialdo. Roadrunner:

Towards automatic data extraction from large web sites. In VLDB, pages

109–118, 2001.

[CMM+02] David Carmel, YS Maarek, Y Mass, N Efraty, and GM Landau. An

extension of the vector space model for querying xml documents via xml

fragments. In SIGIR Workshop on XML and Information Retrieval, 2002.

[CYWM03] Deng Cai, Shipeng Yu, Ji-Rong Wen, and Wei-Ying Ma. Vips: a vision-

based page segmentation algorithm. Technical report, Microsoft technical

report, MSR-TR-2003-79, 2003.

104



[DBS09a] Nilesh Dalvi, Philip Bohannon, and Fei Sha. Robust web extraction: An

approach based on a probabilistic tree-edit model. In Proceedings of the

2009 ACM SIGMOD International Conference on Management of Data,

SIGMOD ’09, pages 335–348, New York, NY, USA, 2009. ACM.

[DBS09b] Nilesh Dalvi, Philip Bohannon, and Fei Sha. Robust web extraction: an

approach based on a probabilistic tree-edit model. In SIGMOD, pages

335–348. ACM, 2009.

[DC] Miss Poonam Rangnath Dholi and KP Chaudhari. Template extraction

from heterogeneous web pages using MDL principle.

[DCWS06] Theodore Dalamagas, Tao Cheng, Klaas-Jan Winkel, and Timos Sellis.

A methodology for clustering xml documents by structure. Information

Systems, 31(3):187–228, 2006.

[DEG+03] Stephen Dill, Nadav Eiron, David Gibson, Daniel Gruhl, R Guha, Anant

Jhingran, Tapas Kanungo, Sridhar Rajagopalan, Andrew Tomkins, John A

Tomlin, et al. Semtag and seeker: Bootstrapping the semantic web via

automated semantic annotation. In Proceedings of the 12th international

conference on World Wide Web, pages 178–186. ACM, 2003.

[DKS11] Nilesh Dalvi, Ravi Kumar, and Mohamed Soliman. Automatic wrappers

for large scale web extraction. Proceedings of the VLDB Endowment,

4(4):219–230, 2011.

[FDMFB14] Emilio Ferrara, Pasquale De Meo, Giacomo Fiumara, and Robert Baum-

gartner. Web data extraction, applications and techniques: A survey.

Knowledge-based systems, 70:301–323, 2014.

[FFT05] Bettina Fazzinga, Sergio Flesca, and Andrea Tagarelli. Learning robust

web wrappers. In Database and Expert Systems Applications, pages

736–745. Springer, 2005.

[FK04] Aidan Finn and Nicholas Kushmerick. Multi-level boundary classifica-

tion for information extraction. Springer, 2004.

[FWB+11a] Fabio Fumarola, Tim Weninger, Rick Barber, Donato Malerba, and Jiawei

Han. Extracting general lists from web documents: A hybrid approach.

In IEA/AIE’11, 2011.

[FWB+11b] Fabio Fumarola, Tim Weninger, Rick Barber, Donato Malerba, and Jiawei

Han. Hylien: a hybrid approach to general list extraction on the web. In

WWW, pages 35–36. ACM, 2011.

105



[GF14] Bo Gao and Qifeng Fan. Multiple template detection based on segments.

In Advances in Data Mining. Applications and Theoretical Aspects, pages

24–38. Springer, 2014.

[GJTV11] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkate-

san. Synthesis of loop-free programs. In ACM SIGPLAN Notices, vol-

ume 46, pages 62–73. ACM, 2011.

[GM07] Evgeniy Gabrilovich and Shaul Markovitch. Computing semantic re-

latedness using wikipedia-based explicit semantic analysis. In IJCAI,

volume 7, pages 1606–1611, 2007.

[GM13] Filippo Geraci and Marco Maggini. A fast method for web template

extraction via a multi-sequence alignment approach. In Knowledge

Discovery, Knowledge Engineering and Knowledge Management, pages

172–184. Springer, 2013.

[GMM+11] Pankaj Gulhane, Amit Madaan, Rupesh Mehta, Jeyashankher Ra-

mamirtham, Rajeev Rastogi, Sandeepkumar Satpal, Srinivasan H Sen-

gamedu, Ashwin Tengli, and Charu Tiwari. Web-scale information

extraction with vertex. In Data Engineering (ICDE), 2011 IEEE 27th

International Conference on, pages 1209–1220. IEEE, 2011.

[GPT05] David Gibson, Kunal Punera, and Andrew Tomkins. The volume and

evolution of web page templates. In Special interest tracks and posters

of WWW, pages 830–839. ACM, 2005.

[GRB+14] Joel Galenson, Philip Reames, Rastislav Bodik, Björn Hartmann, and

Koushik Sen. Codehint: Dynamic and interactive synthesis of code

snippets. In Proceedings of the 36th International Conference on Software

Engineering, pages 653–663. ACM, 2014.

[Gri13] Tomas Grigalis. Towards web-scale structured web data extraction. In

Proceedings of the sixth ACM international conference on Web search

and data mining, pages 753–758. ACM, 2013.

[Grü07] Peter D Grünwald. The minimum description length principle. MIT press,

2007.

[GZAC13] Anna Lisa Gentile, Ziqi Zhang, Isabelle Augenstein, and Fabio Ciravegna.

Unsupervised wrapper induction using linked data. In Proceedings of the

Seventh International Conference on Knowledge Capture, K-CAP ’13,

pages 41–48, New York, NY, USA, 2013. ACM.

106



[HAF+10] Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin C. Rinard, and

Mooly Sagiv. Data structure fusion. In Programming Languages and

Systems - 8th Asian Symposium, APLAS 2010, pages 204–221, 2010.

[HCH04] Bin He, Kevin Chen-Chuan Chang, and Jiawei Han. Discovering complex

matchings across web query interfaces: a correlation mining approach.

In Proceedings of the tenth ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 148–157. ACM, 2004.

[HCPZ11] Qiang Hao, Rui Cai, Yanwei Pang, and Lei Zhang. From one tree to a

forest: a unified solution for structured web data extraction. In SIGIR,

2011.

[HFH+09] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter

Reutemann, and Ian H Witten. The weka data mining software: an update.

ACM SIGKDD explorations newsletter, 11(1):10–18, 2009.

[Hon11] Jer Lang Hong. Data extraction for deep web using wordnet. Systems,

Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transac-

tions on, 41(6):854–868, 2011.

[HY01] Mark H Hansen and Bin Yu. Model selection and the principle of mini-

mum description length. Journal of the American Statistical Association,

96(454):746–774, 2001.

[HZL+11] Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke Zettlemoyer, and

Daniel S Weld. Knowledge-based weak supervision for information ex-

traction of overlapping relations. In Proceedings of the 49th Annual Meet-

ing of the Association for Computational Linguistics: Human Language

Technologies-Volume 1, pages 541–550. Association for Computational

Linguistics, 2011.

[Jac] Paul Jaccard. The distribution of the flora in the alpine zone. New

Phytologist, 11:37–50.

[JGS+10] Susmit Jha, Sumit Gulwani, Sanjit Seshia, Ashish Tiwari, et al. Oracle-

guided component-based program synthesis. In Software Engineering,

2010 ACM/IEEE 32nd International Conference on, volume 1, pages

215–224. IEEE, 2010.

[JL95] George H. John and Pat Langley. Estimating continuous distributions in

bayesian classifiers. In Eleventh Conference on Uncertainty in Artificial

Intelligence, pages 338–345, San Mateo, 1995. Morgan Kaufmann.

107



[JWF+10] Lu Jiang, Zhaohui Wu, Qian Feng, Jun Liu, and Qinghua Zheng. Effi-

cient deep web crawling using reinforcement learning. In Advances in

Knowledge Discovery and Data Mining, pages 428–439. Springer, 2010.

[KC10] Mohammed Kayed and Chia-Hui Chang. Fivatech: Page-level web data

extraction from template pages. Knowledge and Data Engineering, IEEE

Transactions on, 22(2):249–263, 2010.

[KFN10] Christian Kohlschütter, Peter Fankhauser, and Wolfgang Nejdl. Boil-

erplate detection using shallow text features. In Web Search and Data

Mining (WSDM), WSDM ’10, 2010.

[Kle99] Jon M Kleinberg. Authoritative sources in a hyperlinked environment.

Journal of the ACM (JACM), 46(5), 1999.

[KS11] Chulyun Kim and Kyuseok Shim. Text: Automatic template extraction

from heterogeneous web pages. Knowledge and Data Engineering, IEEE

Transactions on, 23(4), 2011.

[Kus00] Nicholas Kushmerick. Wrapper induction: Efficiency and expressiveness.

Artificial Intelligence, 118(1):15–68, 2000.

[KWD] Nicholas Kushmerick, Daniel S. Weld, and Robert B. Doorenbos. Wrap-

per induction for information extraction. In IJCAI’97, pages 729–737.

[LG14] Vu Le and Sumit Gulwani. Flashextract: a framework for data extraction

by examples. In Proceedings of the 35th ACM SIGPLAN Conference

on Programming Language Design and Implementation, page 55. ACM,

2014.

[LGZ03a] Bing Liu, Robert Grossman, and Yanhong Zhai. Mining data records in

web pages. In KDD, KDD ’03, pages 601–606, 2003.

[LGZ03b] Bing Liu, Robert Grossman, and Yanhong Zhai. Mining data records

in web pages. In Proceedings of the ninth ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 601–606.

ACM, 2003.

[LLYZ08] Jianxin Li, Chengfei Liu, Jeffrey Xu Yu, and Rui Zhou. Efficient top-k

search across heterogeneous XML data sources. In Database Systems

for Advanced Applications (DASFAA), 2008.

[LMM06] Wei Liu, Xiaofeng Meng, and Weiyi Meng. Vision-based web data

records extraction. In Proc. 9th International Workshop on the Web and

Databases, pages 20–25, 2006.

108



[LMM10] Wei Liu, Xiaofeng Meng, and Weiyi Meng. Vide: A vision-based ap-

proach for deep web data extraction. Knowledge and Data Engineering,

IEEE Transactions on, 22(3):447–460, 2010.

[LPH00] Ling Liu, Calton Pu, and Wei Han. Xwrap: An xml-enabled wrapper con-

struction system for web information sources. In Proc. of International

Conference on Data Engineering, pages 611–621, 2000.

[LSRT14] Maurizio Leotta, Andrea Stocco, Filippo Ricca, and Paolo Tonella. Re-

ducing web test cases aging by means of robust xpath locators. In

Software Reliability Engineering Workshops (ISSREW), 2014 IEEE Inter-

national Symposium on, pages 449–454. IEEE, 2014.

[LWLY12] Donglan Liu, Xinjun Wang, Hong Li, and Zhongmin Yan. Robust web ex-

traction based on minimum cost script edit model. Procedia Engineering,

29:1119–1125, 2012.

[MBDH05] Jayant Madhavan, Philip A Bernstein, AnHai Doan, and Alon Halevy.

Corpus-based schema matching. In Data Engineering, 2005. ICDE 2005.

Proceedings. 21st International Conference on, pages 57–68. IEEE, 2005.

[MBSJ09] Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. Distant su-

pervision for relation extraction without labeled data. In Proceedings

of the Joint Conference of the 47th Annual Meeting of the ACL and

the 4th International Joint Conference on Natural Language Processing

of the AFNLP: Volume 2-Volume 2, pages 1003–1011. Association for

Computational Linguistics, 2009.

[MCCD13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient

estimation of word representations in vector space. arXiv preprint

arXiv:1301.3781, 2013.

[Mit97] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York,

NY, USA, 1 edition, 1997.

[MK07] Matthew Michelson and Craig A Knoblock. Unsupervised information

extraction from unstructured, ungrammatical data sources on the world

wide web. International Journal of Document Analysis and Recognition

(IJDAR), 10(3-4):211–226, 2007.

[MTH+09] Gengxin Miao, Junichi Tatemura, Wang-Pin Hsiung, Arsany Sawires,

and Louise E. Moser. Extracting data records from the web using tag

path clustering. In WWW, WWW ’09, 2009.

109



[NBdT16] Joachim Nielandt, Antoon Bronselaer, and Guy de Tré. Predicate en-

richment of aligned xpaths for wrapper induction. Expert Systems with

Applications, 2016.

[NDMBDT14] Joachim Nielandt, Robin De Mol, Antoon Bronselaer, and Guy De Tré.

Wrapper induction by xpath alignment. In 6th International Confer-

ence on Knowledge Discovery and Information Retrieval (KDIR 2014),

volume 6, pages 492–500. Science and Technology Publications, 2014.

[OCRS16] Adi Omari, David Carmel, Oleg Rokhlenko, and Idan Szpektor. Novelty

based ranking of human answers for community questions. In SIGIR.

ACM, 2016.

[OKYS16] Adi Omari, Benny Kimelfeld, Eran Yahav, and Sharon Shoham. Lossless

separation of web pages into layout code and data. In Proceedings of the

22Nd ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, KDD ’16. ACM, 2016.

[OSY16] Adi Omari, Sharon Shoham, and Eran Yahav. Cross-supervised synthesis

of web-crawlers. In Proceedings of the 38th International Conference on

Software Engineering, pages 368–379. ACM, 2016.

[OSY17] Adi Omari, Sharon Shoham, and Eran Yahav. Synthesis of forgiving data

extractors. In WSDM, 2017.

[PBMW99] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The

pagerank citation ranking: Bringing order to the web. Technical report,

Stanford InfoLab, 1999.

[Qui] J.R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–

106.

[Qui14] J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

[RGSL04] Davi De Castro Reis, Paulo Braz Golgher, Altigran Soares Silva, and

AF Laender. Automatic web news extraction using tree edit distance. In

WWW, pages 502–511. ACM, 2004.

[Ris78] Jorma Rissanen. Modeling by shortest data description. Automatica,

14(5):465–471, 1978.

[RIS98] RISE. Rise: A repository of online information sources used in informa-

tion extraction tasks. [http://www.isi.edu/integration/RISE/index.html],

1998.

[RM+99] Jason Rennie, Andrew McCallum, et al. Using reinforcement learning to

spider the web efficiently. In ICML, volume 99, pages 335–343, 1999.

110



[RMS06] Davood Rafiei, Daniel L Moise, and Dabo Sun. Finding syntactic simi-

larities between xml documents. In DEXA’06, 2006.

[SC13] Hassan A Sleiman and Rafael Corchuelo. Tex: An efficient and effective

unsupervised web information extractor. Knowledge-Based Systems,

39:109–123, 2013.

[SC+14] Hassan Sleiman, Rafael Corchuelo, et al. Trinity: on using trinary trees

for unsupervised web data extraction. IEEE Trans. on Knowledge and

Data Engineering, 26(6), 2014.

[SL05] Kai Simon and Georg Lausen. Viper: augmenting automatic informa-

tion extraction with visual perceptions. In Information and knowledge

management, 2005.

[SM02] Torsten Schlieder and Holger Meuss. Querying and ranking xml docu-

ments. Journal of the Association for Information Science and Technol-

ogy, 53(6):489–503, 2002.

[SWL+12] Dandan Song, Yunpeng Wu, Lejian Liao, Long Li, and Fei Sun. A

dynamic learning framework to thoroughly extract structured data from

web pages without human efforts. In Proceedings of the ACM SIGKDD

Workshop on Mining Data Semantics, page 9. ACM, 2012.

[TW13] Wachirawut Thamviset and Sartra Wongthanavasu. Information extrac-

tion for deep web using repetitive subject pattern. World Wide Web, pages

1–31, 2013.

[TW14] Wachirawut Thamviset and Sartra Wongthanavasu. Information extrac-

tion for deep web using repetitive subject pattern. World Wide Web,

17(5):1109–1139, 2014.

[VdSP+06] Karane Vieira, Altigran S da Silva, Nick Pinto, Edleno S de Moura,

Joao Cavalcanti, and Juliana Freire. A fast and robust method for web

page template detection and removal. In Information and knowledge

management, 2006.

[VS05] VG Vinod Vydiswaran and Sunita Sarawagi. Learning to extract infor-

mation from large websites using sequential models. In COMAD, pages

3–14, 2005.

[W+98] Lauren Wood et al. Document object model (dom) level 1 specification.

W3C Recommendation, 1, 1998.

[WL03] Jiying Wang and Fred H Lochovsky. Data extraction and label assignment

for web databases. In WWW, 2003.

111



[WLF15] Shanchan Wu, Jerry Liu, and Jian Fan. Automatic web content extraction

by combination of learning and grouping. In Proc. of the International

Conf. on World Wide Web, 2015.

[WPC+15] Tim Weninger, Rodrigo Palácios, Valter Crescenzi, Thomas Gottron, and

Paolo Merialdo. Web content extraction - a meta-analysis of its past and

thoughts on its future. CoRR, abs/1508.04066, 2015.

[YCNH04] Yasuhiro Yamada, Nick Craswell, Tetsuya Nakatoh, and Sachio Hi-

rokawa. Testbed for information extraction from deep web. In Pro-

ceedings of the international World Wide Web conference on Alternate

track papers & posters, 2004.

[ZL05] Yanhong Zhai and Bing Liu. Web data extraction based on partial tree

alignment. In WWW, 2005.

[ZNW+06] Jun Zhu, Zaiqing Nie, Ji-Rong Wen, Bo Zhang, and Wei-Ying Ma. Si-

multaneous record detection and attribute labeling in web data extraction.

In Proceedings of the 12th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’06, 2006.

[ZSWG09] Shuyi Zheng, Ruihua Song, Ji-Rong Wen, and C Lee Giles. Efficient

record-level wrapper induction. In Proceedings of the 18th ACM confer-

ence on Information and knowledge management, pages 47–56. ACM,

2009.

112



של הדיוק את לקבוע היכולת המידע. חילוץ שאילתות חיי ארוך את ולהאריך קיימים והם במקרה

וכלליות דיוק בין לבחור הצורך בלי מבניים שינויים עם להסתכל להן מאפשרת דינמי, באופן השאילות

לצורך. ושלא מראש דיוק על לוותר ובלי מההתחלה

בעיית את לפתור כדי מידע. של מונחה הבלתי החילוץ לבעיית התייחסנו האחרונים הפרקים בשני

חזרה דפי־אינטרנט פיצול של כללית היותר לבעיה פתרון הצענו מידע, של מונחה הבלתי החילוץ

ליצור כדי נתונים על קוד־תבנית הרצת ידי על לרוב מיוצרים אינטרנט דפי ונתונים. לקוד־תבנית

שלנו בפתרון אנושיים. משתמשים ידי על לצריכה שנוחה בצורה הנתונים את שמציג מעוצב מסמך

של ומרכיב תבנית של למרכיב חזרה נתון אינטרנט דף של פיצול ההפוכה: למשימה מתייחסים אנחנו

של דחיסה נתונים, של מונחה לא חילוץ חשובות: אפליקציות של רחב מגוון יש זה לפיצול נתונים.

ועוד. למשתמש, והתאמתן תבניות של הפשטה התעבורה, לייעול אינטרנט דפי ייצוג

ii



תקציר

בשנים לב צומת הרבה ומקבל בהרחבה שנחקר חשוב מחקר נושא הוא מהאינטרנט מידע חילוץ

וגדל. שהולך בקצב באינטרנט יומי באופן ונצרכות מיוצרות נתונים של גדולות כמויות האחרונות.

האפקטיביות ולשיפור יישומים, של רחב למגוון חיונית ליכולת הפכה נתונים ולנתח לחלץ היכולת

ידי על נתונים של וניתוח איסוף על ומקלות מאפשרות המידע חילוץ שיטות מודרניים. עסקים של

לתוך המידע של שינום ייצוגים עם ומקורות אנושית לצריכה שנועדו ממקורות אלה נתונים חילוץ

מכונות. ידי על הבנתם על ומקל הנתונים של אוטומטי ניתוח שמאפשר מוגדר מבנה עם נתונים מסד

היא שלנו המטרה תוכנה. של סינתזה של כבעיה הנתונים חילוץ של לבעיה מתייחסים אנו זו בעבודה

לכתיבת השאילתות בשפות הנרחב והשימוש הפופולריות המידע. לחילוץ תוכנות אוטומטית לסנתז

נוספת סיבה תוכנה. של סינתזה שיטות עבור טבעית למטרה אותם הופכים מידע לחילוץ תוכנות

דפי מרבית כי העובדה היא תוכנה של סנתיזה של מבט מנקודת המידע חילוץ בעיית על להסתכל

בעובדה משתמשים אנחנו מהעובדה בחלק תבנית. קוד באמצעות נבנים המידע ומקורות האינטרנט

לאפשר כדי אחרות( לשיטות )בנוסף לאחור הנדסה בשיטות שימוש של התרומה את ובודקים זו

מידע. של מונחה בלתי חילוץ ולשפר

לחילוץ אינטרנט סורקי של האוטומטית הסנתיזה בבעיית מתמקד זה מחקר של הראשון הפרק

של סוג אותו מכילים אך ומבנה עיצוב מבחינת שונים בקבוצה האתרים אתרים. של מקבוצה מידע

קטגוריה מאותה אתרים בין המשותפים בנתונים שמשתמשת סינתזה שיטת מציעים אנחנו מידע.

כקלט מקבלת השיטה אנושי. סוקר או במתכנת הצורך את לבטל( אפילו פעמים )והרבה למזער כדי

כדוגמאות זה מאתר מחלצת שהיא בנתונים ומשתמשת בקבוצה, האתרים מאחד מידע לחילוץ תוכנה

באתרים דוגמאות אותן זיהוי ידי )על אחרים באתרים הנתונים של מופעים מזהה היא שבעזרתן

הנתונים מופעי מזוהים שבו המיקום ללמידת כבסיס משמים אלה מופעים מכן לאחר האחרים(.

חילוץ תוכנות סבב, כל בסוף זוהו. בו מהאתר מידע לחילוץ תוכנה של אוטומטית ולסנתיזה באתר

ולהרחיב חדשים נתונים לשלוף כדי שלה היעד אתר על אחת כל מופעלות שנלמדו, החדשות המידע

אתר לכל מידע חילוץ תוכנת שיש עד עצמו על חוזר הזה התהליך הדוגמאות. של הנתונים מסד את

חדשות. דוגמאות לחלץ מצליחים שלא עד או בקבוצה

האספקט הוא שלנו בעבודה אליו שהתייחסנו מידע חילוץ תוכנות של הסנתיזה בעיית של נוסף אספקט

של במקרה נכתבו )או נוצרו שבשבילו באתר מבניים שינויים בפני המידע חילוץ תוכנת עמידות של

שלנו ההתמקדות היא מבניים שינויים בפני עמידות חילוץ תוכנות של הסנתיזה בעיית אנושי(. מתכנת

משפחה מאותה אינטרנט( )אתרי מידע מקורות של קבוצה הוא הקלט זה. מחקר של השני בפרק

עם להשתנות יכול המידע את שמכילים שלהם הדפים של שהמבנה נתונים( של סוג אותו )מכילים

המידע חילוץ שאילתות רעיון את וממשים מציעים אנו אותם. שבונה התבנית משינוי כתוצאה הזמן

המבניים השינויים עם ולהסתגל לטפל כדי דינמי באופו שלהן הדיוק את לשנות שמסוגלות הסלחניות,

i





המחשב למדעי בפקולטה שוהם, שרון ודוקטור יהב ערן פרופסור של בהנחייתם בוצע המחקר

ובכתבי־עת בכנסים למחקר ושותפיו המחבר מאת כמאמרים פורסמו זה בחיבור התוצאות מן חלק

הינן: ביותר העדכניות גרסאותיהם אשר המחבר, של הדוקטורט מחקר תקופת במהלך

Adi Omari, David Carmel, Oleg Rokhlenko, and Idan Szpektor. Novelty based ranking of human answers
for community questions. In Proceedings of the 39th International ACM SIGIR conference on Research
and Development in Information Retrieval, pages 215–224. ACM, 2016.

Adi Omari, Benny Kimelfeld, Eran Yahav, and Sharon Shoham. Lossless separation of web pages into
layout code and data. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1805–1814. ACM, 2016.

Adi Omari, Sharon Shoham, and Eran Yahav. Cross-supervised synthesis of web-crawlers. In Software
Engineering (ICSE), 2016 IEEE/ACM 38th International Conference on, pages 368–379. IEEE, 2016.

Adi Omari, Sharon Shoham, and Eran Yahav. Synthesis of forgiving data extractors. In Proceedings of
the Tenth ACM International Conference on Web Search and Data Mining, pages 385–394. ACM, 2017.

תודות

זה. מחקר מימון על לטכניון מסורה תודה הכרת





תכניות של סינטזה באמצעות מידע חילוץ

מחקר על חיבור

התואר לקבלת הדרישות של חלקי מילוי לשם

לפילוסופיה דוקטור

עומרי עדי

לישראל טכנולוגי מכון – הטכניון לסנט הוגש

2018 מרץ חיפה תשע"ח ניסן





תכניות של סינטזה באמצעות מידע חילוץ

עומרי עדי


	List of Figures
	Abstract
	1 Introduction
	1.1 Cross-Supervised Synthesis of Web-Crawlers
	1.1.1 Motivation
	1.1.2 Problem Definition
	1.1.3 Existing Techniques
	1.1.4 Key Aspects of the Approach
	1.1.5 Main Contributions

	1.2 Synthesis of Forgiving Data Extractors
	1.2.1 Motivation
	1.2.2 Problem Definition
	1.2.3 Existing Techniques
	1.2.4 Key Aspects of the Approach
	1.2.5 Main Contributions

	1.3 Lossless Separation of Web Pages into Layout Code and Data
	1.3.1 Motivation
	1.3.2 Problem Definition
	1.3.3 Existing Techniques
	1.3.4 Key Aspects of the Approach
	1.3.5 Main Contributions

	1.4 Separation of Web Sites into Layout Code and Data
	1.4.1 Motivation
	1.4.2 Problem Definition
	1.4.3 Existing Techniques
	1.4.4 Key Aspects of the Approach
	1.4.5 Main Contributions


	2 Cross-Supervised Synthesis of Web-Crawlers
	2.1 Introduction
	2.2 Overview
	2.2.1 Motivating Example
	2.2.2 Cross-Supervised Learning of Crawling Schemes

	2.3 Preliminaries
	2.3.1 Logical Structure of Webpages
	2.3.2 Concrete Layout of Webpages
	2.3.3 XPath as a Data Extraction Language

	2.4 The Crawler Synthesis Problem
	2.5 Data Extractor Synthesis
	2.5.1 Algorithm
	2.5.2 Implementation using sequential XPaths

	2.6 Crawler Synthesis
	2.7 Evaluation
	2.7.1 Experimental Settings
	2.7.2 Experiments and Results
	2.7.3 Discussion

	2.8 Related Work
	2.9 Conclusion

	3 Synthesis of Forgiving Data Extractors
	3.1 Introduction
	3.2 Overview
	3.2.1 Motivating example
	3.2.2 Our Approach

	3.3 Decision Tree Learning
	3.3.1 Feature Extraction
	3.3.2 Decision Tree Learning

	3.4 Forgiving XPath Synthesis
	3.4.1 Decision Trees with Varying Precision
	3.4.2 Translation of Decision Trees to Forgiving XPaths

	3.5 Evaluation
	3.5.1 Implementation
	3.5.2 Experimental Settings
	3.5.3 Evaluating the Different Performance Aspects
	3.5.4 Methodology
	3.5.5 Results
	3.5.6 Discussion

	3.6 Related Work
	3.7 Conclusion

	4 Lossless Separation of Web Pages into Layout Code and Data
	4.1 Introduction
	4.2 Related Work
	4.3 Overview: Problem and Solution
	4.3.1 Motivating Example
	4.3.2 Our Approach
	4.3.3 Key Aspects

	4.4 Preliminaries and Model
	4.5 Problem Definition
	4.5.1 Separation and Solution Space
	4.5.2 Separation Quality

	4.6 Our Approach
	4.6.1 The General Separation Algorithm
	4.6.2 Splitting
	4.6.3 Folding
	4.6.4 Alignment

	4.7 Evaluation
	4.7.1 Evaluation of Data Extraction
	4.7.2 Evaluation of Code and Data Separation
	4.7.3 Running Time

	4.8 Conclusion and Future Work

	5 Separation of Web Sites into Layout Code and Data
	5.1 Introduction
	5.2 Related Work
	5.3 Overview: Problem and Solution
	5.3.1 Motivating example
	5.3.2 Our Approach

	5.4 Problem Definition
	5.4.1 Separation and Solution Space
	5.4.2 Separation Quality

	5.5 Our Approach
	5.5.1 Building the Guide Set
	5.5.2 Website Separation based on Guide Set

	5.6 Evaluation
	5.6.1 Implementation
	5.6.2 Representative set selection evaluation
	5.6.3 Page Classification and Clustering
	5.6.4 Separation Quality
	5.6.5 Discussion

	5.7 Conclusion

	6 Conclusion and Open Questions
	6.1 Conclusion
	6.2 Open Questions

	Bibliography
	Hebrew Abstract

