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SAT-Based Invariant Inference

redicate abstraction

CAV’97, POPL02]

symbolic abstraction
[VMCAI'04,'16]

interpolation
[CAV’03, TACAS'06]

IC3/PDR
[VMCAI'11, FMCAD’11]

abduction
[OOPSLA’13]

SyGusS
[FMCAD’13,...]

ICE Iearning
[CAV’14, POPL15]

-

Why do they succeed?
Why do they fail?

(How can we make them
better?)




Goal

Shed light on the principles underlying IC3/PDR

[POPL'20] Complexity and information in invariant inference. Feldman,
Immerman, Sagiv, Shoham

[POPL'21] Learning the boundary of inductive invariants. Feldman, Sagiv,
Shoham, Wilcox

[POPL'22] Property-directed reachability as abstract interpretation in the
monotone theory. Feldman, Sagiv, Shoham, Wilcox

[SAS’22] Invariant Inference With Provable Complexity From the
Monotone Theory. Feldman, Shoham



Safety of Transition Systems

No bad state is reachable from the initial states

Init: J:
(Xp, ey X9) = 00..00  (xp, .o, Xg) = (xp, ..., Xp) +00...10
Bad:

(X, .., X9) = 10..01




Inductive Invariants

No bad state is reachable from the initial states
Init; J:

(Xp, ey X9) = 00..00  (xp, .o, Xg) = (xp, ..., Xp) +00...10
Bad:
(X, .., X9) = 10..01

Initiation: Init < |
Safety: INBad=0
Consecution: 6(I) € I




Inductive Invariants

Goal:
Find inductive invariants automatically

I: (x,,...,%x9) # 10...01
Not inductive:

) =l

I: x0=0

Inductive: c

I )




Invariant Inference with IC3/PDR

The HVC 2012 Award Committee, chaired by Prof. Daniel Kroening, has
decided to give this year's award to Prof. Aaron R. Bradley of CU
Boulder for the invention of the IC3 algorithm.

IC3 is an algorithm for verifying reachability properties on finite-state
transition systems, and has been proposed by Aaron Bradley, CU Boulder.
There are independent reports of leading performance on hardware-
verification problems, which is impressive given the decades of research
on competing techniques, including BDDs and recent innovations such as Craig interpolation
with propositional SAT. The technique has been picked up by others, as evidenced by a
variant of the algorithm for software presented at CAV this year. The committee believes that
IC3 has innovated this mature research area, and produced new impulses for numerous
adjacent research problems.

Prof. Aaron R. Bradley

[VMCAI'11] SAT-Based Model Checking Without Unrolling. Bradley
[FMCAD’11] Efficient Implementation of Property Directed Reachability. Ean, Mishchenko, Brayton
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Invariant Inference with IC3/PDR

The HVC 2012 Award Committee, chaired by Prof. Daniel Kroening, has
decided to give this year's award to Prof. Aaron R. Bradley of CU
Boulder for the invention of the IC3 algorithm.

IC3 is an algorithm for verifying reachability properties on finite-state
transition systems, and has been proposed by Aaron Bradley, CU Boulder.
There are independent reports of leading performance on hardware-
verification problems, which is impressive given the decades of research
on competing techniques, including BDDs and recent innovations such as Craig interpolation

with propositional SAT. The technique has been picked up by others, as evidenced by a
variant of the alaorithm for software nresented at CAV this vear. The committee believes that

What makes IC3/PDR so effective? *

Prof. Aaron R. Bradley

IC3 has innov
adjacent rese

[VMCAI'11] SAT-Based Model Checking Without Unrolling. Bradley
[FMCAD’11] Efficient Implementation of Property Directed Reachability. Ean, Mishchenko, Brayton



|IC3/PDR

A sequence of frames (formulas) Fy, F1, Fo, ...
(1) Fo = Init
(2)  Fi=Fin
3)  O0(F) = Fisa
(4) F; = —Bad
inductive invariant
F3=Fy
F
F1
Fo

6(F2)




Lemmas Block Counterexamples

Example:
some b € By, b=10..01

T3 7 Bk

(By,: states reaching Bad in k steps)
proof obligations



Lemmas Block Counterexamples

Firq = F;1 A c for some cs.t.
Example:
b # c for some b € By b=10..01

F3 C B
X | k

(By,: states reaching Bad in k steps)
proof obligations



Lemmas Block Counterexamples

Firq = F;1 A c for some cs.t.

§(F; ) € ¢ and Init < ¢ and Example:
b # c for some b € By b=10..01
F3 c B
F : ~~
£ 6(F2)

Fi

(By,: states reaching Bad in k steps)
proof obligations



Lemmas Block Counterexamples

c: (xp=0)V(p_1=1D)V--V(x=1)V(xy=0)

Firq = F;1 A c for some cs.t.

§(F; ) € ¢ and Init < ¢ and Example:
b # c for some b € By b=10..01
F3 c B
F : ~~
£ 6(F2)

Fi

(By,: states reaching Bad in k steps)
proof obligations



Lemmas Block Counterexamples

c: (x, = O)V(x%ﬂv "V (x;=1) V (xq = 0)

Firq = F;1 A c for some cs.t.

§(F; ) € ¢ and Init < ¢ and Example:
b # c for some b € By b=10..01
F3 c B
F : ~~
£ 6(F2)

Fi

(By,: states reaching Bad in k steps)
proof obligations



Lemmas Block Counterexamples

¢: (xp =0)V(xp-1=1)V(xo=0)

Firq = F;1 A c for some cs.t.

§(F; ) € ¢ and Init < ¢ and Example:
b # c for some b € By b=10..01
F3 c B,
5>

(By,: states reaching Bad in k steps)
proof obligations



This Talk

* SAT queries performed by IC3/PDR

* Generalization/overapproximation in IC3/PDR



Part |I: PDR’s SAT Queries

Invariant Inference Exact Concept Learning

dS

 Query-based learning models for SAT-based invariant inference

* Exponential complexity gap between different query models

The power of PDR’s SAT queries

[POPL'20] Complexity and information in invariant inference. Feldman, Immerman, Sagiv, Shoham



Exact Concept Learning with
Equivalence & Membership Queries

Goal: learn an unknown concept @

learning algorithm . oracle
5498 isityq?

V' / X+counterexample
isity,?

v/ X+counterexamplé
does g3 E?

AVIX \_
7

Membership  Equivalence

[ML'87] Queries and Concept Learning. Angluin



SAT-Based Invariant Inference as
Inference with Queries

Goal: infer an unknown inductive invariant I

learning algorithm — Q oracle —»
inference algorithm SAT-solver
» A
Q
A
Q

Which SAT queries?

Algorithms cannot access the transition relation directly,
only through SAT queries



Inductiveness-Query Model

inference algorithm inductiveness-query oracle

a4 inductive?
>

v’/ X+counterexample

Aoy, ir.1.<.:Iuctive? {ai}
>

v/ [/ X+counterexample

A

i}

a; A & A —a; unsat?

A

Cex to Induction (CTI):
Transition (o,0") of § s.t.
o E a;, o' E [04]

ICE framework - Learn from examples:

Positive : o k=1 (e.g. initial)
Negative: o ¥ I (e.g., bad)
Implication: o E I impliesa’ =1 (CTI)

*ai=a;[V - V']
[CAV’14] ICE: A Robust Framework for Learning Invariants. Garg, Loding, Madhusudan, Neider



Inductiveness-Query Model

inference algorithm inductiveness-query oracle

a4 inductive?

»

v’/ X+counterexample

Ay ir.1.<.:Iuctive? {ai}
>

v/ [/ X+counterexample

A

i}

a; A 8 A —a; unsat?

A

Cex to Induction (CTI):
Transition (o,0") of § s.t.
o E a;, o' E [04]

ICE framework - Learn from examples:

Positive : o k=1 (e.g. initial)
Negative: o ¥ I (e.g., bad)
Implication: o E I impliesa’ =1 (CTI)

s it sufficient to capture IC3/PDR?

*ai=a;[V - V']
[CAV’14] ICE: A Robust Framework for Learning Invariants. Garg, Loding, Madhusudan, Neider



PDR

Is it captured by the inductiveness query model?

{a;} {a;}

Firq = F;1 A c for some cs.t.
5(Tl- ) C c|and Init € ¢ and
b ¥ ¢ for some b € By,

(By,: states reaching Bad in k steps)
proof obligations



PDR

s it captured by the inductiveness query model? { l}

(c}

Firq = F;1 N c for somecs.t.
5(Tl- ) C c|and Init € ¢ and
b ¥ ¢ for some b € By,

(By,: states reaching Bad in k steps)
proof obligations



PDR

Is it captured by the inductiveness query model? { l}

(c}

Fiyq =F; 11 Nc forsomecs.t. [VMCAI'17]
5(F;) € cland Init S ¢ and ©XtendedICE-

Is it necessary?
b ¥ ¢ for some b € By,

TB C 7 Bk

(By,: states reaching Bad in k steps)
proof obligations

[VMCAI'17] IC3 - Flipping the E in ICE. Vizel, Gurfinkel, Shoham, Malik.



Hoare-Query Model

inference algorithm Hoare-query oracle

{a} 6 {B1)7

v/ X +counterexample

(@} 8 Buy {0}

v’/ X +counterexample

1Bi}

a; A& A —f3; unsat?

Transition (g,0") of § s.t.
o Ea;,c Ep;

Capable of modeling PDR, Interpolation-based
inference and more



Hoare > Inductiveness

Thm: There exists a class of transition systems 2P, so that for
solving inference:

1. d Hoare-query algorithm with poly(n) queries
2. Vinductiveness-query algorithm requires 2*("™ queries

[POPL'20] Complexity and Information in Invariant Inference. Feldman, Immerman, Shoham, Sagiv



Hoare > Inductiveness

Thm: There exists a class of transition systems 2P, so that for
solving inference:

1. d Hoare-query algorithm with poly(n) queries

2. 'V inductivenes<‘—query algorithm requires 2™ queries

a simple case of IC3/PDR
— |ICE cannot model PDR,

and the extension of [VMCAI'17] is necessary

[POPL'20] Complexity and Information in Invariant Inference. Feldman, Immerman, Shoham, Sagiv
[VMCAI'17] IC3 - Flipping the E in ICE. Vizel, Gurfinkel, Shoham, Malik.



Hoare > Inductiveness

Thm: There exists a class of transition systems 2P, so that for
solving inference:

1. I Hoare-query algorithm with poly(n) queries
2. Vinductiveness-query algorithm requires 2*("™) queries

Proof:

P = maximal transition systems for monotone CNF with n cubes

propositions appear only positively

@ =x1A(x3Vx3)

Maximal system for @:




Hoare > Inductiveness

Upper bound: : :

. generalize(—b):
PDR takes O(nz) QUETIES / drop literals from —b
while {Init} 6 {—b}

F; =F; Ac forsomecs.t.

d(Init) € ¢ and Init € ¢ and

b ¥ ¢ for some b € By

(Bj: states reaching
Bad in 1 steps)




Hoare > Inductiveness pr—

Upper bound: : :

. generalize(—b):
PDR takes O(nz) QUETIES / drop literals from —b
while {Init} 6 {—b}

F; =F; Ac forsomecs.t.

d(Init) € ¢ and Init € ¢ and @ = —b
b ¥ ¢ for some b € By
@ iIs monotone

1 iteration 1 iteration

(Bj: states reaching
Bad in 1 steps)




Hoare > Inductiveness

Lower bound:

V inductiveness-query algorithm requires 2*("™) queries
Proof:

inference algorithm inductiveness-query oracle

a4 inductive?

>

X+counterexample

U ir.m.c.zluctive? {ai}
>

1}

W\




Hoare > Inductiveness

Lower bound:

V inductiveness-query algorithm requires 2*("™) queries

Proof:

invariants in monotone CNF

Thm:

20 <

general systems
monotone CNF invariants

G

maximal systems
monotone CNF invariants

<




Hoare > Inductiveness

Thm: There exists a class of transition systems 2P, so that for
solving inference:

1. d Hoare-query algorithm with poly(n) queries
2. Vinductiveness-query algorithm requires 2*("™ queries

More generally:

Condition on (6, Inv) that allows efficient inference of:

* Monotone CNF invariants -- by Model-based ITP
* Almost-monotone CNF invariants

* CDNF invariants

[POPL'20] Complexity and Information in Invariant Inference. Feldman, Immerman, Shoham, Sagiv
[POPL'21] Learning the boundary of inductive invariants. Feldman, Sagiv, Shoham, Wilcox
[SAS’22] Invariant Inference With Provable Complexity From the Monotone Theory. Feldman, Shoham



Part II: PDR’s Generalization

PDR is (roughly) an abstract interpretation
based on Bshouty’s monotone theory from exact learning

PDR =~ > +
a

|
O

Abstract Monotone
Interpretation Theory

Principle of how PDR achieves
overapproximation

[POPL'22] PDR as abstract interpretation in the monotone theory. Feldman, Sagiv, Shoham, Wilcox
[SAS’22] Invariant Inference With Provable Complexity From the Monotone Theory. Feldman, Shoham



PDR’s Frames
A sequence of formulas F,, Fq, Fo, ...
(1) Fo = Init
(2)  Fi= Fi
3)  o(F) = Fits
(4) F; = —Bad
inductive invariant
F3=Fy
F
F1
Fo

6(F2)




PDR’s Frames

A sequence of formulas F,, Fq, Fo, ...
(1) Fo = Init
Rigg:i (2) Fi = Fisq
(R;: states (3) 0(Fi) = Fiss
reachable in i steps)  (4) F; = —Bad




PDR’s Frames

A sequence of formulas F,, Fq, Fo, ...
(1) Fo = Init
:Ri gjji (2) Fi = Fisq Ri << fFl'
(R;: states (3) 5(:7:1') — Ti+1
reachable in i steps)  (4) F; = —Bad




PDR’s Frames

00...00

10...01

O:

Xy, e X0) = (X, oer, Xg) + 00 ... 10




PDR’s Frames

How is overapproximation guaranteed?




Key |deas and Results

A-PDR: an algorithm that lower bounds the
overapproximation of PDR

7Y
A-PDR = +
o >
Abstract Monotone
Interpretation Theory

" Exponential gap between #frames in A-PDR
and exact forward reachability, interpolation

The same overapproximation is present in PDR



PDR’s Frames

F;,4 = conjunction of some clauses c s.t.
6(7—"i)ui7-"i C ¢ and
b ¥ c for some b € B,

F3 c B
X , k

T2 507y

F

(By,: states reaching Bad in k steps)



A-PDR’s Frames
FQ o= Init; i =0

while Ffy, # Fi:
fFl-ﬁl := conjunction of all clauses c s. .

6(7-"{\) UF? € ¢ and
b ¥ ¢ forany b € By, k is a parameter

C B
X k

A
A b
A o(F 2 )
(By,: states reaching Bad in k steps)




A-PDR’s Frames
FQ o= Init; i =0

while Ffy, # Fi:
fFl-ﬁl := conjunction of all clauses c s. .

6(7-"{\)UTL-A C ¢ and

_ b ¥ ¢ forany b € By, k is a parameter
Claim: F* € Tipdr
F3 c By,
X
A

R
(By,: states reaching Bad in k steps)




Key |deas and Results

A-PDR: an algorithm that lower bounds the
overapproximation of PDR

7Y
A-PDR = +
o >
Abstract Monotone
Interpretation Theory

" Exponential gap between #frames in A-PDR
and exact forward reachability, interpolation

The same overapproximation is present in PDR



Monotone Formulas

Def: U is monotone <

) has a DNF representation where
all variables appear positively

vEY = vlx;e 1]l EY



b-Monotone Formulas

Def: Y is b-monotone <

) has a DNF representation where
all variables are in polarity opposite to b

b = 00...00
(x, =DDA(x;=D)V (xo =1 00...00-monotone

((tn =D A =B) V (%0 = 1)

not 00 ... 00-monotone

[Inf. Comput. ‘95] Exact Learning Boolean Function via the Monotone Theory. Bshouty



b-Monotone Formulas

Def: Y is b-monotone <

) has a DNF representation where
all variables are in polarity opposite to b

b=00..10
(Gen =D Ay =B) V (% = 1)

not 00 ... 10-monotone

(xkn=DA(x1=D)V(&e=D 00...10-monotone

[Inf. Comput. ‘95] Exact Learning Boolean Function via the Monotone Theory. Bshouty



b-Monotone Formulas

Def: Y is b-monotone <

) has a DNF representation where
all variables are in polarity opposite to b

vEY = v|x;- ablx]]l EY

Y is closed under “walking away” from b in the Hamming cube

[Inf. Comput. ‘95] Exact Learning Boolean Function via the Monotone Theory. Bshouty



Monotone Span

Def: Y is b-monotone <

) has a DNF representation where
all variables are in polarity opposite to b

Def:
Y € MSpan(By) © Y =c; A Acy,
for some clauses ¢y, ..., ¢; S. t.
Vi. ¢; is b;-monotone for some b; € B,



Monotone Span

Def: Y is b-monotone <

) has a DNF representation where
all variables are in polarity opposite to b

In particular: MSpan({b}) = {y | Y is b-monotone}
MSpan(By) = ®pep, MSpan({b})

Def:
Y € MSpan(By) © Y =c; A Acy,
for some clauses ¢y, ..., ¢; S. t.
Vi. ¢; is b;-monotone for some b; € B,



Monotone Span and PDR

Def: Y is b-monotone <

) has a DNF representation where
all variables are in polarity opposite to b

Observation: a clause c is b-monotone iff b ¥ ¢

clause c inferred by PDR/A-PDR is b-monotone

Dot w.r.t. the proof obligation b € By,
er:

Y € MSpan(B,) © Y =cy A Acy,
for some clauses ¢4, ..., ¢; S. t.
b; ¥ ¢; Vi.|c; is b;-monotonel|for some b; € B,

d
FP, F € MSpan(By,)



(A-)PDR’s Frames

A sequence of formulas F,, Fq, Fo, ...
Fo = Init

Fi = Fiv1
0(F;) = Fia
?i — —Bad

F; € MSpan(By,)

(1)
(2)
(3)
(4)
(5)




Key |deas and Results

A-PDR: an algorithm that lower bounds the
overapproximation of PDR

7Y
A-PDR = +
o >
Abstract Monotone
Interpretation Theory

" Exponential gap between #frames in A-PDR
and exact forward reachability, interpolation

The same overapproximation is present in PDR



Monotone Span Abstract Domain

(C,C ) ° ;/ > (MSpan(By), =)

frue

false




Monotone Span Abstract Domain

(C,C ) ° ;/ > (MSpan(By), =)

a(S) = least (w.r.t. =) formula yy € MSpan(B;,) s.t. S =y

frue
X{ l/)

false



Monotone Span Abstract Domain

(C,C ) ° ;/ > (MSpan(By), =)

a(S) = least (w.r.t. =) formula yy € MSpan(B;,) s.t. S =y

frue

If B, =1{b}:

\

Def (Bshouty): Monotonization

My, (@) is the least (w.r.t. =) formula ¢ s.t.
- is b-monotone [ Y € MSpan({h}) ]

- = .




Monotone Span Abstract Domain

(C,C ) ° ;/ > (MSpan(By), =)

a(S) = least (w.r.t. =) formula yy € MSpan(B;,) s.t. S =y

frue

If B, ={b}: a(S)=M,(S)

\

Def (Bshouty): Monotonization

My, (@) is the least (w.r.t. =) formula ¢ s.t.
- is b-monotone [ Y € MSpan({h}) ]

- = .




Monotone Span Abstract Domain

(C,C ) ° ;/ > (MSpan(By), =)

a(S) = least (w.r.t. =) formula yy € MSpan(B;,) s.t. S =y

frue

If By ={b}: a(S)=M,(S)
\

General By: a(S)= A My(S)
beBy,

— MHUllBk (S)

false



Abstract Interpretation in MSpan

14
(C, S )3 > (MSpan(By),= )
a = MHU.HBR

7(S) =S U §(5)

frue

false




Abstract Interpretation in MSpan

14
(C, S )3 > (MSpan(By),= )
a = MHU.HBR

7(S) =S U §(5)

frue

false




Abstract Interpretation in MSpan

14
(C, S )3 > (MSpan(By),= )
a = MHU.HBR

7(S) = 5 U 6(S) () = a (t(y)))

frue

false




Best Abstract Transformer

(C,C ) ° ' > (MSpan(By), =)

a — MHU.HBR
7(S) = 5 U 8(S) () = a (<(y(W)))
true
y@) v (r@) W)
- — Y

false




Best Abstract Transformer

|4
(C,S) 3 > (MSpan(By), = )
a — MHU.HBR

7(S) = 5 U 6(S) () = a (t(y(y)))

=tMBlully, (Y U 5(1)))

y@u sr@) | o T (W)

o — P

Y

false



Best Abstract Transformer

|4
(C,S) 3 > (MSpan(By), = )
a — MHU.HBR

7(S) = 5 U 8(S) () = a (<(y(W)))
B = {10..01}  =MHully, (b U5

y@u sr@) | o T (W)

{00...00,00 ... 10}

o — P

Y

false



Best Abstract Transformer

14
(C, S )3 > (MSpan(By),= )
a = MHU.HBR

7(S) = 5 U 8(S) () = a (<(y(W)))
B = {10..01}  =MHully, (b U5

14
vy usr(®) @ o W) X, =0Ax9 =0

{00 ...00,00 ... 10}

o — P

Y

false



Best Abstract Transformer

14
(C, S )3 > (MSpan(By),= )
a = MHU.HBR ,

Thm: FAy = 9(FA) (= MHullg, (F U 8(FM)) )

A
A :Fi+1
F; y
A A
A-PDR
A
<« % — F
[POPL22] Property-directed reachability as abstract interpretation fal

dalse

in the monotone theory. Feldman, Sagiv, Shoham, Wilcox



A-PDR as Abstract Interpretation
|4
C,C) S > (MSpan(By),
(€, &) a=MHullBk< pan(Bg), = )

Thm: FAy = (FA) (= MHullg, (F U 8(FM)) )
Corollary: Frames in A-PDR are Kleene iterations

e T #A)
L 14 A-PDR
A-PDR #F1
§FY |« FA
A-PDR
. _ e

[POPL22] Property-directed reachability as abstract interpretation

in the monotone theory. Feldman, Sagiv, Shoham, Wilcox false



Abstraction & Monotone Theory

14
(C,<S ) S > (MSpan(By),= )
a = MHUllBk

Thm: 3’»'//,/\:.1 — T#(?lA) (: MHUllBk :FA U 6(TLA)

l
Def:  MHullg, (S) = A M;(S)
k

A
Ti+1

(shortest paths in
the Hamming cube)




Key |deas and Results

A-PDR: an algorithm that lower bounds the
overapproximation of PDR

7Y
A-PDR = +
o >
Abstract Monotone
Interpretation Theory

" Exponential gap between #frames in A-PDR
and exact forward reachability, interpolation



A-PDR’s Frames Overapproximate
Fo i (xp, ..., %) = 00...00 (k = 0,B, = Bad)
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A-PDR’s Frames Overapproximate
Fo i (xp, ..., %) = 00...00 (k = 0,B, = Bad)
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Thm: exponential gap T! interpolation
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PDR’s Frames Overapproximate
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:F]{\: .'X,'n=0/\ x():O
T?ET?: x0=0

Thm: exponential gap T
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Convergence Bounds for A-PDR
FL o (x,, ..., %9) = 00...00 (k = 0,B, = Bad)
FL: x,=0A x,=0
Fh=Fd: x,=0
Bound on #frames of A-PDR: linear in ‘M(!b,b) (5)‘
Bound on time of A-PDR: quadratic in ‘]V[(!b,b) ©)]
* new algorithm for computing M3, ()

dnf
dnf
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3 Bad:

(X, o, Xg) = 10...01
(
(Xp, oer Xg) = (Xp, o) Xg)
% %, +00...10
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Summary

* PDR uses rich SAT queries
* Exponential complexity gap between
Hoare queries (PDR) and
Inductiveness queries (ICE)

* Overapproximation in PDR
 A-PDR:

* Lower bound on the overapproximation of PDR
* Exponential gap between #frames in A-PDR and exact
forward reachability, interpolation



