Synthesizing Universally-Quantified
Inductive Invariants

Sharon Shoham

The Blav kSh |
,@. fcm
‘ ' The Ry d dB IyS ckler
\ y Faculty of bxa

Tel Aviv Uni ty

Tel Aviv University

Synthesizing Universally-Quantified

Inductive Invariants

Aleksandr Karbyshev Nikolaj Bjorner Shachar Itzhaky Noam Rinetzky

E 1=

: ~ -
B Microsoft vTechnlon @O@
I | Institute of
B Research \/ R

Aurojit Panda Mooly Sagiv

\ p=

“\
ke
|
Sy

B Microsoft B@I;kqlﬁy @O@

B Research UNIVERSITY OF CALIF TELAVIV ND'O12IN

000

TEL AVIV NU'D1X"]IN
UNIVERSITY 2'IN‘IN

UNIVERSITY 2'IN‘IN

Safety Verification

System State Space

Initial

System S is safe if all the reachable states satisfy the property P = —-Bad
System S is safe iff there exists an inductive invariant Inv:

Inv = P=—Bad (Safety)
Init = Inv (Initiation)
if o EInvand T(o, ¢’) then ¢’ = Inv (Consecution)

Safety Verification

System State Space

Initial

System S is safe if all the reachable states satisfy the property P = —-Bad
System S is safe iff there exists an inductive invariant Inv:

Inv = P=—Bad (Safety)
Init = Inv (Initiation)
if o EInvand T(o, o’) then ¢’ = Inv (Consecution)

Challenges

Infer inductive invariants for safety verification

But also

e Specification: reasoning about infinite-state systems
. Unbounded number of objects, threads, messages,...
. Quantification is useful

e Deduction: reasoning about inductive invariants
. Undecidability of implication checking

This talk

Specify systems and properties in decidable fragment
of first-order logic

— Allows quantifiers to reason about unbounded sets

— Decidable to check inductiveness

Synthesize quantified inductive invariants
— Automatically by universal property directed reachability

— Interactively by providing graphical Ul for gradually
strengthening the inductive invariant

Effectively Propositional Logic — EPR

a.k.a. Bernays-Schonfinkel-Ramsey class

Limited fragment of first-order logic

— Restricted quantifier prefix: 3*V* ¢ ¢
e No V* J*
e No recursive function symbols

e No arithmetic

Finite model property

— A formula is satisfiable iff it is holds on models
proportional to the number of existential variables

Satisfiability is decidable
Support from Z3, Iprover, Vampire

Example: Leader Election in a Ring

e Nodes are organized in a unidirectional ring o, next

e Each node has a unique numeric id
nex next

e Protocol:
— Each node sends its id to the next

— A node that receives a message passes it (to the next) if the id in
the message is higher than the node’s own id

— A node that receives its own id becomes the leader

e Theorem:
— The protocol selects at most one leader

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized
extrema-finding in circular configurations of processes

Example: Leader Election in a Ring

* Nodes are organized in a unidirectional ring aut

e Each node has a unique numeric id

nex next
e Protocol:

Proposition: This algorithm detects one and only one
— Ehighest number.
Argument: By the circular nature of the configuration | ext) if the id in
and the consistent direction of messages, any message
U must meet all other processes before it comes back to its
initiator. Only one message, that with the highest num- Br
ber, will not encounter a higher number on its way
e The ‘aroun-d. Thus, the: only process getting its own message
back is the one with the highest number.

— The protocol selects at most one leader

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized
extrema-finding in circular configurations of processes

Modeling with EPR

e State: finite first-order structure over vocabulary V

* < (ID, ID) — total order on node id’s Axiomatized in
* btw (Node, Node, Node) — the ring topology }

* id: Node = ID —relate a node to its id

* pending(ID, Node) — pending messages

* leader(Node) — leader(n) means n is the leader

first-order logic

protocol state structure
nex o=({m, .., ng idy,...,idg} I)
nex next [(<)={(idid,), (id,id,), (id,idy), (id,,id,) ...}

[(btw) ={(ny, n3, ng), (M, ng, n,), { Ny, N3, NY)... }
[(id) ={ny>id;, n, > idg, n; > id,, ... }

b gext I (pending) = {}

I (leader) = {}

Modeling with EPR

e State: finite first-order structure over vocabulary V

e |nitial states and safety property: EPR formulas over V
— Init(V) — initial states, e.g., V id, n. =pending(id, n)

— Bad(V) — bad states, e.g., 3 n,,n,.leader(n,) Aleader(n,) A n,#n,

e Transition relation:
EPR formula TR(V, V')
V'’ is a copy of V describing the next state
— e.g. Vn.leader’ (n) <— (leader(n) V pending (id[n],n))

Modeling with EPR

e State: finite first-order structure over vocabulary V

e |nitial states and safety property: EPR formulas over V
— Init(V) — initial states, e.g., V id, n. =pending(id, n)

— Bad(V) — bad states, e.g., 3 n,,n,.leader(n,) Aleader(n,) A n,#n,

Specify and verify the protocol for any number of nodes in the ring

v:;s.(){:}...

Using EPR for Verification

e System Model in EPR
Init(V), Bad(V), TR(V, V')

e |nv(V) is an inductive invariant if:

— |Initiation InitA—Inv unsat
— Consecution INVATRA—=INV' unsat
— Safety InvABad unsat

Decidable to check for Inv € V*

Useful for: linked lists, network routing, distributed protocols,...

Using EPR for Verification

e System Model in EPR

Init(V), Bad(V), TR(V, V')

e |nv(V) is an inductive invariant if:

-

_

Challenge: find Inv € V*

J

Decidable to check for Inv € V*

Useful for: linked lists, network routing, distributed protocols,...

Naive algorithm

| can decide
Iterative strengthening inductiveness!

Inv = —Bad

Check Inductiveness

| %

Counterexample To Induction (CTI)

Naive algorithm

Iterative strengthening

Inv = —Bad A “Avoid(o1)”

Check Inductiveness

Naive algorithm

Iterative strengthening

Inv = —Bad A “Avoid(c1)” A “Avoid(c2)”

Key challenge for invariant inference:
generalization

Generalization using Diagram

Use diagrams as abstract representation of states
e state o is a finite first-order structure

Diag(c) = 3 xvy. x #y A L(x) A=L(y)
A <(x, V) A =<Z(y, x)
A <(x, xX) A Z(y, V)

o' & Diag(o) iff o is a substructure of o'

o is obtained from ¢’ by removing elements
and projecting relations on remaining elements

IN

[CAV’15, JACM] Property-Directed Inference of Universal Invariants or Proving Their
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.

Use diagrams as abstract r \.‘\/‘/
* state o is a finite first-o

Diag(c) = 3 xvy. x #y A L(x) A=L(y)
A <(x,) A =<Z(y, x)
A <(x, x) A <[y, V)

o' & Diag(o) iff o is a substructure of o'

o is obtained from ¢’ by removing elements
and projecting relations on remaining elements

Avoid(c) = —Diag(o)

[CAV’15, JACM] Property-Directed Inference of Universal Invariants or Provinf}fheir
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.

Generalization using Diagram

Can generalize more
.« remove facts/conjuncts

Diag(c) = 3 xvy. x #y A L(x) A=L(y)
A <(x, V) A =<Z(y, x)
A <(x, xX) A Z(y, V)

gen(Diag(o)) = I xy.x#y
A <(x, v) A=<y, x)
A <(x, X) A <[y, V)

Avoid(c) = —gen(Diag(o))

[CAV’15, JACM] Property-Directed Inference of Universal Invariants or Provinf}fheir
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.

Universally-Quantified Invariant

Inv=VXx. (I, 1(X) V.. VI (X)) A AVXAL 1(X) v v (X))
\)

Y .
clause / conjecture

. J

IV == 3% (=l 1(2) A oo A=y (BDALA =T (=, 4 (F) A o A (7))
\)

Y
cube

Universally-Quantified Invariant

Inv = ‘\v’f. (I 1(X) v o VI (X)) A AV 1 () vl VI (X))
)

Y .
clause / conjecture

Questions:
* How to find the states to generalize from?
* How to select which facts to remove in the generalization?

Next

e UPDR: Semi-algorithm for inference of universal
inductive invariants

e |Vy: Interactive approach for inferring universal
inductive invariants

Automatic Synthesis of
Universal Invariants

[CAV’15, JACM] Property-Directed Inference of Universal Invariants or Proving Their
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.

[POPL'16] Decidability of Inferring Inductive Invariants, O. Padon, N. Immerman, S.
Shoham, A. Karbyshev and M. Sagiv.

[VMCAI’17] Property Directed Reachability for Proving Absence of Concurrent
Modification Errors, A. Frumkin, Y. Feldman, O. Lhotak, O. Padon, M. Sagiv and S. Shoham.

Universal Property Directed
Reachability (UPDR)

e Performs automatic generalization
e Based on Bradley’s IC3/PDR [vmcAI11,FMCAD11]

[CAV’15, JACM] Property-Directed Inference of Universal Invariants or Proving Their
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.

Property Directed Reachability

Fo = Init

I:i = I:i+1
FATR= (F,,)
Fi = —Bad

* F.over-approximates the states that are reachable in at most i steps
* IfF.,,=F, then F_is aninductive invariant
* Computation of F; is guided by the property P=—Bad

How is F,, computed in (U)PDR?

F,.. = true

- SAT(F.y A Bad)? \
\F\SAT(E A TR A Diag(o,,)’) ?
i-l sesse

If Diag(c,,,) is reachable from F.: continue backwards until Init

How is F,, computed in (U)PDR?

F.,,=trueA —U(Diag(c,,))

- SAT(F.y A Bad)? \
\F\SAT(E A TR A Diag(o,,)’) ?
i-l sesse

= FaA —|U(Diag(i+;i_1))
F. :==F, A—=U(Diag(c)))

If Diag(c,,,) is reachable from F.: continue backwards until Init
If Diag(o;) is unreachable from F, , : strengthen F; to exclude UnsatCore(Diag(c;))

UPDR: Possible Outcomes

* Fixpoint: universal inductive invariant found
e System is safe

e Abstract counterexample:

UPDR: Possible Outcomes

* Fixpoint: universal inductive invariant found
e System is safe

e Abstract counterexample:
e Safety not determined*
e But no universal inductive invariant exists!

* can use Bounded Model Checking to find real counterexamples

Proving the absence of universal Invariant

Suppose that a safety universal invariant I exists.

Then: ,
Gy # I Giy I Gt I |
ool o)l o | C; | o7 |
[satisfies safety: 0;+1 EBad = 0,1 ¥ I
[is universal: 0/,, E Diag(g;11) = 0,1 ¥
[satisfies consecution: o¢;,; ¥ 1 A TR(0;,0{,,) = 0; ¥ 1
[satisfies initiation: oo ¥ 1= oy H Init

If there is | € V¥, then any relaxed trace does not reach Init
=>» A relaxed trace from Init to Bad implies no I € V* exists

Experiments

Used to infer inductive invariants / procedure summaries of:

e Heap-manipulating programs, e.g.
— Singly-linked list
— Doubly-linked list
— Nested lists
— lIterators in Java - Concurrent modification error

No need for
user-defined
predicates/
templates!

e Distributed protocols
— Spanning tree
— Learning switch

e [CAV’15, JACM] Property-Directed Inference of Universal Invariants or Proving Their
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.

e [VMCAI'17] Property Directed Reachability for Proving Absence of Concurrent
Modification Errors, A. Frumkin, Y. Feldman, O. Lhotak, O. Padon, M. Sagiv, S. Shoham.

Termination?

Is it decidable to infer universal inductive invariants? [POPL 16]

e No, in the general case

— if the vocabulary contains at least one binary relation which is
unrestricted

e Yes, for linked lists

— if the vocabulary contains only one "transitive closure" binary
relation, but as many constants and unary predicates as desired

— UPDR will also terminate

— proof uses well-quasi-order and Kruskal’s tree theorem

e [POPL16] Decidability of Inferring Inductive Invariants, O. Padon, N. Immerman, S.
Shoham, A. Karbyshev, and M. Sagiv.

Interactive Synthesis of
Universal Invariants

https://github.com/Microsoft/ivy

[PLDI’16] Ivy: Interactive Verification of Parameterized Systems via Effectively
Propositional Reasoning, O.Padon, K. L. McMillan, A. Panda, M. Sagiv and S. Shoham.

[OOPSLA’17] Paxos Made EPR — Decidable Reasoning about Distributed Protocols.
O. Padon, G. Losa, M. Sagiv and S. Shoham.

Invariant Inference in IVy

Iterative strengthening

Inv = =Bad A “Avoid(c1)” A “Avoid(c2)”...

Key challenge for invariant inference:
generalization

UPDR: diagram + unsat core
IVy’s approach: put the user in the loop
interactive generalization

User |@»| Automation

[Generalize from CTI

https://www.quora.com/Human-Computer-Interaction
https://www.quora.com/Human-Computer-Interaction

Interactive Generalization from CTI

Generalize from CTI \4 n |
User le»| Automation i

1. Generalize by removing “irrelevant” facts to form a conjecture
e User graphically selects which facts to remove

2. Check if the conjecture is true up to K: BMC(K)
e User determines the right K to use
* [Vy uses a SAT solver

3. Automatically remove more facts: Interpolate(K)
* [Vy uses the SAT solver to discover more facts to remove
e User examines the result — it could be wrong

https://www.quora.com/Human-Computer-Interaction
https://www.quora.com/Human-Computer-Interaction

Summary

e Decidable deduction using EPR
— EPR transition system
— Inductive invariant Inv € V*
e Synthesis of Inv € V* by generalization
— Automatically: UPDR
— Interactively: IVy
e Key idea: use diagram to generalize from
counterexamples to induction

— Can sometimes prove absence of Inv € V*

