
Synthesizing Universally-Quantified
Inductive Invariants

Sharon Shoham

Tel Aviv University

Synthesizing Universally-Quantified
Inductive Invariants

Aleksandr Karbyshev Nikolaj Bjorner Shachar Itzhaky Noam Rinetzky

Oded Padon Kenneth McMillan Aurojit Panda Mooly Sagiv

Safety Verification

System State Space Safety
Property

Bad Inv

Initial

System S is safe iff there exists an inductive invariant Inv:

System S is safe if all the reachable states satisfy the property P = ¬Bad

Inv  P=Bad (Safety)
Init  Inv (Initiation)
if  ⊨ Inv and T(, ’) then ’ ⊨ Inv (Consecution)

Safety Verification

System State Space Safety
Property

Bad Inv

Initial

Reach

System S is safe iff there exists an inductive invariant Inv:

System S is safe if all the reachable states satisfy the property P = ¬Bad

Inv  P=Bad (Safety)
Init  Inv (Initiation)
if  ⊨ Inv and T(, ’) then ’ ⊨ Inv (Consecution)

Challenges

Infer inductive invariants for safety verification

But also

• Specification: reasoning about infinite-state systems
• Unbounded number of objects, threads, messages,…

• Quantification is useful

• Deduction: reasoning about inductive invariants
• Undecidability of implication checking

This talk

Specify systems and properties in decidable fragment
of first-order logic

– Allows quantifiers to reason about unbounded sets

– Decidable to check inductiveness

Synthesize quantified inductive invariants

– Automatically by universal property directed reachability

– Interactively by providing graphical UI for gradually
strengthening the inductive invariant

Effectively Propositional Logic – EPR
a.k.a. Bernays-Schönfinkel-Ramsey class

• Limited fragment of first-order logic

– Restricted quantifier prefix: ** φQ.F.

• No * *

• No recursive function symbols

• No arithmetic

• Finite model property
– A formula is satisfiable iff it is holds on models

proportional to the number of existential variables

• Satisfiability is decidable

• Support from Z3, Iprover, Vampire

Example: Leader Election in a Ring

• Nodes are organized in a unidirectional ring

• Each node has a unique numeric id

• Protocol:

– Each node sends its id to the next

– A node that receives a message passes it (to the next) if the id in

the message is higher than the node’s own id

– A node that receives its own id becomes the leader

• Theorem:

– The protocol selects at most one leader

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized
extrema-finding in circular configurations of processes

3 5

2

4

1

6
next

next next

next

next

next

Example: Leader Election in a Ring

• Nodes are organized in a unidirectional ring

• Each node has a unique numeric id

• Protocol:

– Each node sends its id to the next

– A node that receives a message passes it (to the next) if the id in

the message is higher than the node’s own id

– A node that receives its own id becomes the leader

• Theorem:

– The protocol selects at most one leader

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized
extrema-finding in circular configurations of processes

3 5

2

4

1

6
next

next next

next

next

next

Modeling with EPR

• State: finite first-order structure over vocabulary V

• ≤ (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node  ID – relate a node to its id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

structure

σ = ({n₁, …, n6, id1,...,id6}, I)

I (≤) = {〈 id1,id1〉, 〈 id1,id2〉, 〈 id1,id3〉, 〈 id1,id4〉 …}
I (btw) = {〈 n₁, n3, n5〉, 〈 n₁, n3, n2〉, 〈 n₁, n3, n4〉… }
I (id) = {n₁ ↦ id1, n2 ↦ id6, n3 ↦ id4 , … }
I (pending) = {}
I (leader) = {}

protocol state

Axiomatized in
first-order logic

3 5

2

4

1

6
next

next next

next

next

next

n1

Modeling with EPR

• State: finite first-order structure over vocabulary V

• Initial states and safety property: EPR formulas over V

– Init(V) – initial states, e.g., ∀ id, n.¬pending(id, n)

– Bad(V) – bad states, e.g., ∃ n1,n2.leader(n1) ∧ leader n2 ∧ n1≠n2

• Transition relation:
EPR formula TR(V, V’)
V’ is a copy of V describing the next state

– e.g. ∀ n. leader’(n) ⟷ (leader(n) ∨ pending (id[n],n))

Modeling with EPR

• State: finite first-order structure over vocabulary V

• Initial states and safety property: EPR formulas over V

– Init(V) – initial states, e.g., ∀ id, n.¬pending(id, n)

– Bad(V) – bad states, e.g., ∃ n1,n2.leader(n1) ∧ leader n2 ∧ n1≠n2

• Transition relation:
EPR formula TR(V, V’)
V’ is a copy of V describing the next state

– e.g. ∀ n. leader’(n) ⟷ (leader(n) ∨ pending (id[n],n))

…

Specify and verify the protocol for any number of nodes in the ring

Using EPR for Verification

• System Model in EPR

Init(V), Bad(V), TR(V, V’)

• Inv(V) is an inductive invariant if:

– Initiation InitInv unsat

– Consecution InvTRInv’ unsat

– Safety InvBad unsat

Useful for: linked lists, network routing, distributed protocols,…

Decidable to check for Inv ∈ *

Using EPR for Verification

• System Model in EPR

Init(V), Bad(V), TR(V, V’)

• Inv(V) is an inductive invariant if:

– Initiation InitInv unsat

– Consecution InvTRInv’ unsat

– Safety InvBad unsat

Useful for: linked lists, network routing, distributed protocols,…

Decidable to check for Inv ∈ *

Challenge: find Inv ∈ ∀*

Naïve algorithm

Inv = Bad

I can decide
inductiveness!

σ1

σ1’

Check Inductiveness

Counterexample To Induction (CTI)

Iterative strengthening

Naïve algorithm

σ1

σ1’

σ2

σ2’

Inv = Bad  “Avoid(σ1)”

Check Inductiveness

Counterexample To Induction (CTI)

Iterative strengthening

Naïve algorithm

σ1

σ1’

σ2

σ2’

Key challenge for invariant inference:

generalization

Inv = Bad  “Avoid(σ1)”  “Avoid(σ2)”

Iterative strengthening

[CAV’15, JACM] Property-Directed Inference of Universal Invariants or Proving Their
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.

Use diagrams as abstract representation of states

• state  is a finite first-order structure

L

≤

¬L 

Diag() = x ≠ y  L(x) ¬L(y)
 ≤(x, y)  ¬≤(y, x)
 ≤(x, x)  ≤(y, y)

 is obtained from ’ by removing elements
and projecting relations on remaining elements

∃ x y.

' ⊨ Diag() iff  is a substructure of ‘

Generalization using Diagram

[CAV’15, JACM] Property-Directed Inference of Universal Invariants or Proving Their
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.

Use diagrams as abstract representation of states

• state  is a finite first-order structure

≤

≤

L
…

L

≤

¬L 

’Diag() = x ≠ y  L(x) ¬L(y)
 ≤(x, y)  ¬≤(y, x)
 ≤(x, x)  ≤(y, y)

 is obtained from ’ by removing elements
and projecting relations on remaining elements

∃ x y.

' ⊨ Diag() iff  is a substructure of ‘

Avoid() = ¬Diag()

L ¬L

¬L

L

L¬L

Generalization using Diagram

[CAV’15, JACM] Property-Directed Inference of Universal Invariants or Proving Their
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.

Can generalize more

 remove facts/conjuncts

¬L

≤

¬L
…

≤



’

Avoid() = ¬gen(Diag())

≤

L

L

¬L

¬L ¬L ¬L

L

Generalization using Diagram

Diag() = x ≠ y  L(x) ¬L(y)
 ≤(x, y)  ¬≤(y, x)
 ≤(x, x)  ≤(y, y)

∃ x y.gen(Diag()) = x ≠ y
≤(x, y)  ¬≤(y, x)
≤(x, x) ≤(y, y)

∃ x y.

Universally-Quantified Invariant

Inv   𝑥. (l1,1(𝑥)  …  l1,m(𝑥))  …   𝑥. (ln,1(𝑥)  …  ln,m(𝑥))

Inv  ¬  𝑥. (l1,1(𝑥)  …  l1,m(𝑥))∧…∧ ¬ 𝑥. (ln,1(𝑥)  …  ln,m(𝑥))

clause / conjecture

cube

r

t*

Universally-Quantified Invariant

Inv   𝑥. (l1,1(𝑥)  …  l1,m(𝑥))  …   𝑥. (ln,1(𝑥)  …  ln,m(𝑥))

Inv  ¬  𝑥. (l1,1(𝑥)  …  l1,m(𝑥))∧…∧ ¬ 𝑥. (ln,1(𝑥)  …  ln,m(𝑥))

clause / conjecture

cube

r

t*

Questions:
• How to find the states to generalize from?
• How to select which facts to remove in the generalization?

Next

• UPDR: Semi-algorithm for inference of universal
inductive invariants

• IVy: Interactive approach for inferring universal
inductive invariants

Automatic Synthesis of
Universal Invariants

• [CAV’15, JACM] Property-Directed Inference of Universal Invariants or Proving Their
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.

• [POPL’16] Decidability of Inferring Inductive Invariants, O. Padon, N. Immerman, S.
Shoham, A. Karbyshev and M. Sagiv.

• [VMCAI’17] Property Directed Reachability for Proving Absence of Concurrent
Modification Errors, A. Frumkin, Y. Feldman, O. Lhoták, O. Padon, M. Sagiv and S. Shoham.

Universal Property Directed
Reachability (UPDR)

• Performs automatic generalization

• Based on Bradley’s IC3/PDR [VMCAI11,FMCAD11]

• [CAV’15, JACM] Property-Directed Inference of Universal Invariants or Proving Their
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.

Property Directed Reachability

P

Fi-1

Fi

Init

F₁
……

Bad

F0 = Init
Fi ⇒ Fi+1

Fi  TR ⇒ (Fi+1)’
Fi ⇒¬Bad

• Fi over-approximates the states that are reachable in at most i steps
• If Fk+1  Fk then Fk is an inductive invariant
• Computation of Fi is guided by the property P=¬Bad

Fi+1

How is Fi+1 computed in (U)PDR?

P Bad

Fi-1

i+1i-1

Init

F₁

If Diag(i+1) is reachable from Fi: continue backwards until Init

SAT(Fi  TR  Diag(i+1)’) ?

SAT(Fi+1  Bad) ?

…

Fi+1 = true

……

Fi

i

How is Fi+1 computed in (U)PDR?

P Bad

Fi-1

i+1i-1

Init

F₁

If Diag(i+1) is reachable from Fi: continue backwards until Init

If Diag(j) is unreachable from Fj-1 : strengthen Fj to exclude UnsatCore(Diag(j))

SAT(Fi  TR  Diag(i+1)’) ?

SAT(Fi+1  Bad) ?

Fi-1 := Fi-1 U(Diag(i-1))

Fi := Fi  U(Diag(i))

…

…

Fi+1 = true

……

Fi

i

 U(Diag(i+1))

UPDR: Possible Outcomes

• Fixpoint: universal inductive invariant found
• System is safe

• Abstract counterexample:

P Bad

Fi-1
Fi

Fi+1

i i+1i-1

Init

F₁
…

10

UPDR: Possible Outcomes

• Fixpoint: universal inductive invariant found
• System is safe

• Abstract counterexample:
• Safety not determined*

• But no universal inductive invariant exists!

* can use Bounded Model Checking to find real counterexamples

Proving the absence of universal Invariant

Bad

i i+1i-1

Init
…

10

⊆ ⊆ ⊆

1’ i-1’ i’ i+1’

⊭ I

Suppose that a safety universal invariant I exists.
Then:

⊭ I

⊭ I ⊭ I

⊭ I⊭ I

⊭ I

⊭ I

⊭ I

⊆

I satisfies safety: 𝜎𝑖+1 ⊨ Bad ⇒ 𝜎𝑖+1 ⊭ I
I is universal: 𝜎𝑖+1

′ ⊨ Diag(𝜎𝑖+1) ⇒ 𝜎𝑖+1
′ ⊭ I

I satisfies consecution: 𝜎𝑖+1
′ ⊭ I ∧ TR 𝜎𝑖 , 𝜎𝑖+1

′ ⇒ 𝜎𝑖 ⊭ I
I satisfies initiation: 𝜎0 ⊭ I ⇒𝜎0 ⊭ Init

If there is I ∈ ∀∗, then any relaxed trace does not reach Init
 A relaxed trace from Init to Bad implies no I ∈ ∀∗ exists

𝜎𝑖 ⊨ F ∧ TR ∧ Diag(𝜎𝑖)’

Experiments

Used to infer inductive invariants / procedure summaries of:

• Heap-manipulating programs, e.g.
– Singly-linked list

– Doubly-linked list

– Nested lists

– Iterators in Java - Concurrent modification error (CME)

• Distributed protocols
– Spanning tree

– Learning switch

• [CAV’15, JACM] Property-Directed Inference of Universal Invariants or Proving Their
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.

• [VMCAI’17] Property Directed Reachability for Proving Absence of Concurrent
Modification Errors, A. Frumkin, Y. Feldman, O. Lhoták, O. Padon, M. Sagiv, S. Shoham.

No need for
user-defined
predicates/
templates!

Termination?

• No, in the general case
– if the vocabulary contains at least one binary relation which is

unrestricted

• Yes, for linked lists
– if the vocabulary contains only one "transitive closure" binary

relation, but as many constants and unary predicates as desired

– UPDR will also terminate
– proof uses well-quasi-order and Kruskal’s tree theorem

Is it decidable to infer universal inductive invariants? [POPL’16]

• [POPL’16] Decidability of Inferring Inductive Invariants, O. Padon, N. Immerman, S.
Shoham, A. Karbyshev, and M. Sagiv.

Interactive Synthesis of
Universal Invariants

• [PLDI’16] Ivy: Interactive Verification of Parameterized Systems via Effectively
Propositional Reasoning, O.Padon, K. L. McMillan, A. Panda, M. Sagiv and S. Shoham.

• [OOPSLA’17] Paxos Made EPR — Decidable Reasoning about Distributed Protocols.
O. Padon, G. Losa, M. Sagiv and S. Shoham.

https://github.com/Microsoft/ivy

Key challenge for invariant inference:

generalization

UPDR: diagram + unsat core
IVy’s approach: put the user in the loop

interactive generalization

Generalize from CTI

User Automation

Invariant Inference in IVy

σ1

σ1’

σ2

σ2’

Inv = Bad  “Avoid(σ1)”  “Avoid(σ2)”…

Iterative strengthening

https://www.quora.com/Human-Computer-Interaction
https://www.quora.com/Human-Computer-Interaction

Interactive Generalization from CTI

1. Generalize by removing “irrelevant” facts to form a conjecture
• User graphically selects which facts to remove

2. Check if the conjecture is true up to K: BMC(K)
• User determines the right K to use
• IVy uses a SAT solver

3. Automatically remove more facts: Interpolate(K)
• IVy uses the SAT solver to discover more facts to remove
• User examines the result – it could be wrong

Generalize from CTI

User Automation

https://www.quora.com/Human-Computer-Interaction
https://www.quora.com/Human-Computer-Interaction

Summary

• Decidable deduction using EPR

– EPR transition system

– Inductive invariant Inv ∈ ∀*

• Synthesis of Inv ∈ ∀* by generalization

– Automatically: UPDR

– Interactively: IVy

• Key idea: use diagram to generalize from
counterexamples to induction

– Can sometimes prove absence of Inv ∈ ∀*

