Interactive Verification of Distributed
Protocols Using Decidable Logic

Sharon Shoham, Tel Aviv University

Static Analysis Symposium, 2018

el’C Supervised Verification of Infinite-State Systems

Why verify distributed protocols?

. . OB .
Distributed systems are everywhere [. |’“ /@_
* Safety-critical systems R

. o
gl w [
m[;

L]

e Cloud infrastructure

* Distributed systems are notoriously hard to get right
* Even small protocols can be tricky
* Bugs occur on rare scenarios

e Testing is costly and not sufficient

Verifying distributed protocols is hard

* Infinite state-space
e unbounded number of threads

* unbounded number of messages

* unbounded number of objects

* Asymptotic complexity of verification
* Rice theorem
* The ability of simple programs
to represent complex behaviors

| can’t decide!

State of the art in formal verification

e Automatic techniques

* Abstract Interpretation
* Model checking
Limited for infinite state systems due to undecidability

* Deductive techniques

* SMT-based deduction + manual program annotations (e.g. Dafny)
* Requires programmer effort to provide inductive invariants
* SMT solver may diverge (matching loops, arithmetic)
* Unpredictability, butterfly effect
* Interactive theorem provers (e.g. Coq, Isabelle/HOL, LEAN)
* Programmer gives inductive invariant and proves it
* Huge programmer effort (~10-50 lines of proof per line of code)

Expressiveness

State of the art in formal verification

Proof Assistants

Ultimately limited by human

proof/code:
Verdi: ~10
IronFleet: ~4

Ultimately limited by undecidability

Model Checking
Static Analysis

Automation

Expressiveness

State of the art in formal verification

Proof Assistants

Ultimately limited by human Interactive
oroof/code: Verification
Verdi: ~10
IronFleet: ~4

Ultimately limited by undecidability

Model Checking
Static Analysis

Automation

.oy
ot
LY M4
.
LS -l..,

LX) o

)

d
)
sne

erc Supervised Verification of Infinite-State Systems

.
. (J
Y
)
.
e
el
Jrrdepe0,
LR YA
. e
.........

Interactive Verification

Goals Questions
High degree of automation - What is the role of the human?
Expressiveness - What is the role of the machine?
Predictability - How do they interact?

Comprehensibility for users
Efficiency/scalability

el’C Supervised Verification of Infinite-State Systems

This talk

Interactive verification by

(1) Deductive verification with decidable logic

— Interaction based on candidate inductive invariants &
counterexamples to induction

(2) Interactive inference of universal invariants

— Fine-grained interaction based on counterexamples to
induction & diagrams

(3) User-guided inference of phase invariants

— Coarse-grained interaction based on phase sketches &
relaxed traces

Realization in IVy https://github.com/Microsoft/ivy

(2)4° [PLDI’16] IVy: Safety Verification by Interactive Generalization.
L 0. Padon, K. McMillan, A. Panda, M. Sagiv, S. Shoham

e [OOPSLA’17] Paxos Made EPR: Decidable Reasoning about
Distributed Protocols. O. Padon, G. Losa, M. Sagiv, S. Shoham

e [POPL'18] Reducing Liveness to Safety in First-Order Logic.
(1)1 O. Padon, J. Hoenicke, G. Losa, A. Podelski, M. Sagiv, S. Shoham

e [PLDI"18] Modularity for decidability of deductive verification with
applications to distributed systems. M. Taube, G. Losa,
K. McMillan, O. Padon, M. Sagiv, S. Shoham, J. Wilcox, D. Woos

3) e [sub] Inferring Phase Invariants from Phase Sketches.
Y. Feldman, J. Wilcox, S. Shoham, M. Sagiv

Safety Verification

System State Space

“at most

one client
holds lock”

Init

System S is safe if all the reachable states satisfy the property P = wBad

Inductive Invariants

System State Space

“at most
one client
holds lock”

Init

System S is safe if all the reachable states satisfy the property P = wBad
System S is safe iff there exists an inductive invariant /71v:

Init = Inv (Initiation)
Inv ATR = [nv' (Consecution)
Inv = =Bad (Safety)

Inductive Invariants

System State Space

“at most

one client
holds lock”

Init

System S is safe if all the reachable states satisfy the property P = wBad
System S is safe iff there exists an inductive invariant /71v:

Init = Inv (Initiation) o
Inv ATR= Inv' (Consecution) . Ver'f'F?t'On
Inv = =Bad (Safety) Conditions (VC)

Inductive Invariants

System State Space

“at most

one client
holds lock”

Init

System S is safe if all the reachable states satisfy the property P = wBad
System S is safe iff there exists an inductive invariant /71v:

Init = Inv (Initiation) Init A =lnv=1
Inv ATR= Inv" (Consecution) [nv ATRA=Inv' =1 }FvC
Inv = =Bad (Safety) Inv ABad = L

Challenges in Safety Verification

Formal specification: reasoning about infinite-state systems

* Modeling the system, the property and the inductive invariant

Deduction: checking validity of the VCs
» Undecidability of implication checking (unsatisfiability)

* Unbounded state (threads, messages), arithmetic, quantifiers,...

Inference: inferring inductive invariants (Inv)
* Hard to specify

 Hard to infer automatically

* Undecidable even when deduction is decidable

lvy: Restrict VC’s to decidable logic

Effectively Propositional Logic — EPR

Decidable fragment of first order logic
+ Quantification (3*v*) - Theories (e.g., arithmetic)

© Allows quantifiers to reason about unbounded sets
- Vx,y. holds_lock(x) A holds_lock(y) > x =y

© Satisfiability is decidable => Deduction is decidable

© Small model property => Finite cex to induction

© Turing complete modeling language

@ Limited language for safety and inductive invariants

» Suffices for many infinite-state systems

Successful verification with EPR

e Shape Analysis
[Itzhaky et al. CAV’13, POPL'14, CAV’14, Karbyshev et al. CAV’15]

e Software-Defined Networks
[Ball et al. PLDI’14]

e Distributed Protocols
[Padon et al. PLDI’16, OOPSLA’17, POPL’18, Taube et al. PLDI'18]

e Concurrent Modification Errors in Java
[Frumkin et al. VMCAI'17]

More in Ken & Oded’s tutorial

Challenges for verification with EPR

/Formal specification: reasoning about infinite-state systems

* Modeling the system, the property and the inductive invariant in EPR

/ Deduction: checking validity of the VCs
» Undecidability of implication checking (unsatisfiability)

* Unbounded state (threads, messages), arithmetic, quantifiers,...

Inference: inferring inductive invariants (Inv)
* Hard to specify
 Hard to infer automatically

* Undecidable even when deduction is decidable

Challenges for verification with EPR

/Formal specification: reasoning about infinite-state systems

* Modeling the system, the property and the inductive invariant in EPR

/ Deduction: checking validity of the VCs
» Undecidability of implication checking (unsatisfiability)

* Unbounded state (threads, messages), arithmetic, quantifiers,...

Inference: inferring inductive invariants (Inv) interactively
* Hard to specify
 Hard to infer automatically

* Undecidable even when deduction is decidable

Example: Lock Server

snd_lock() A @
g) A
AT
‘ 0
lock | |
7 _
X ; \H X

[PLDI15] Verdi: a framework for implementing and formally verifying distributed
systems. J. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. Ernst, T. Anderson

Example: Lock Server

grant() @ @
R ®
N t
0 Sy pl(E

lock /) g |

X ; X H X
o ° D_ o

[PLDI15] Verdi: a framework for implementing and formally verifying distributed
systems. J. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. Ernst, T. Anderson

Example: Lock Server

rcv_lock() @
D @®
N
0 R (e

grant | | |
: |
gL

[PLDI15] Verdi: a framework for implementing and formally verifying distributed
systems. J. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. Ernst, T. Anderson

B

4
l
il

Example: Lock Server

snd_unlock() @
D ®
W9
) 1
g ‘ |
unlock | |
S 5 [N F

[PLDI15] Verdi: a framework for implementing and formally verifying distributed
systems. J. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. Ernst, T. Anderson

Example: Lock Server

rcv_unlock() @
N
0] B M
(g

D 0
e unlock | ‘

Safety: each lock held
by at most one client

X ; XX H
o ° D_

yaL

[PLDI15] Verdi: a framework for implementing and formally verifying distributed
systems. J. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. Ernst, T. Anderson

server

Modeling in Ivy (EPR) clients

network

e State: finite first-order structure over vocabulary V

* free (LOCK)

* held_by (LOCK, CLIENT)
[« Jock_msg (CLIENT, LOCK)

e grant_msg (CLIENT, LOCK)
_ * unlock_msg (CLIENT, LOCK)

Global state of messages in flight

server

Modeling in Ivy (EPR) clients

network

e State: finite first-order structure over vocabulary V

* Transition relation: EPR formula TR(V, V)

actiongrant (c:C, ¢: L){... }

action snd_lock(c: C, £: L){
lock_msg(c,) := true |

} action snd_unlock (c: C, £: L){ ...}

@ action rcv_unlock(c: C, £: L){ ... }

dc, €. Vx,y. lock_msg’(x,y) <= (lock_msg(x,y) V (x=c Ay =%))
A grant_msg’(x,y) <= grant_msg(x,y)
A free’(y) <« free(y)
Vg, f. ...

actionrev_lock (c: C, £: L){ ... }

server

Modeling in Ivy (EPR) clients

network

e State: finite first-order structure over vocabulary V
e Transition relation: EPR formula TR(V, V')

e |nitial states and safety property: EPR formulas over V
— Init(V) —initial states, e.g., V¢, €. =lock_msg(c, £)
— Bad(V) — bad states, e.g.,
3 ,c,,c,. held_by (€,c,) A held_by (£,c,) A c1 # ¢

e State: finite first-order structure over vocabulary V

Verification in lvy (EPR)

e Transition relation: EPR formula TR(V, V')

e |nitial states and safety property: EPR formulas over V

— Init(V) —initial states, e.g., V¢, €. =lock_msg(c, £)

— Bad(V) — bad states, e.g.,

3 ,c,,c,. held_by (€,c,) A held_by (£,c,) A c1 # ¢

Inductive invariant s.t. VC € EPR

nit(V) A =alnv(V)
Inv(V)ATR(WV, V") A alnv(V')
Inv(V) A Bad(V)

Solver

server
clients
network

server

Verification in lvy (EPR) clients

network

e State: finite first-order structure over vocabulary V
e Transition relation: EPR formula TR(V, V')

e |nitial states and safety property: EPR formulas over V
— Init(V) —initial states, e.g., V¢, €. =lock_msg(c, £)
— Bad(V) — bad states, e.g.,

Specify and verify the protocol for any number of clients and locks

& &
& affe @@@ @@@

Interactive Invariant
Inference

(1) Interaction based on CTls

PropertyD %

Inductive
Invariant Inv

Protocol S

Check inductiveness U
. o : A
Is Inv an inductive invariant | [)
of S that proves ¢? >
l |
Proof CEX to Induction (CTI)

Lock Server Example

Cnvariant) Proper(;cy:
—Bad —Ba

—Bad = V ¥,c,,c,. held_by (£,c,)
A held_by (¢,c,) = ¢1=¢;

Check inductiveness
Is Inv an inductive invariant
of S that proves ¢?

Lock Server Example

Cnvariant) Proper(;cy:
—Bad —Ba

—Bad = V ¥,c,,c,. held_by (£,c,)
A held_by (¢,c,) = ¢1=¢;

Check inductiveness
Is Inv an inductive invariant
of S that proves ¢?

No!

server

Inductive Invariant for Lock Server clients

15 =V‘€, C1,C>.

network

. held_by(?, ¢;) A held_by(#, c;) = ¢; = ¢y

. =(grant_msg(c{,?) A held_by(¥€, ¢5))

. —=(unlock_msg(cq,£) A held _by(¥€, c,))

. —=(unlock_msg(cq,£) A grant_msg(c,,?))

. grant_msg(cq,£) A grant_msg(c,,?) = ¢; = ¢y

unlock_msg(cq{,€) A unlock_msg(c,,f) = ¢c1 = ¢,

I =V £, c. =(grant_msg(c,f) A free(f))
I =V £, c. =(held_by(€,c) A free(?))
Ig =V £, c. =(unlock_msg(c,?) A free(£))

[PLDI15] Verdi: a framework for implementing and formally verifying distributed
systems. J. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. Ernst, T. Anderson

server

Inductive Invariant for Lock Server clients

[h=V4¥,cq,Co
I,=V4cqcy
I,=VY7%, cqcCy
I3=V7%,cq,cCy
[,=V7%, cqcCy

15 =V‘€, C1,C>.

network

. held_by(?, ¢;) A held_by(#, c;) = ¢; = ¢y

. =(grant_msg(c{,?) A held_by(¥€, ¢5))

. —=(unlock_msg(cq,£) A held _by(¥€, c,))

. =(unlock_msg(cq,£) A grant_msg(c,,¥))

. grant_msg(cq,£) A grant_msg(c,,?) = ¢; = ¢y

unlock_msg(cq{,€) A unlock_msg(c,,f) = ¢c1 = ¢,

Io =V £, c. =(grant_msg(c,?) A free(?))
I =V £, c. =(held_by(€,c) A free(?)) | can decide EPR!

Ig =V £, c. =(unlock_msg(c,?) A free(£))

nit(V) A =alnv(V)
Inv(V)ATR(WV, V") A alnv(V')
Inv(V) A Bad(V)

EPR Proof

Solver

Model Invarlant Time

Leader in Ring

Learning Switch 50 5 1.5
DB Chain Replication 143 9 1.7
Chord 155 12 2.4
Lock Server (500 Coq lines - . 5 Proof / code ratio:
[Verdi]) IronFleet: ~4
Distributed Lock (1 week a1 v 14 Verdi: ~10
[IronFleet])
Single Decree Paxos Ivy:~0.2
(+liveness) £ 1L 1oL
Multi-Paxos (+liveness 98 12 14.6 . .

: () * first mechanized
Vertical Paxos* 123 18 2.2

proof

Fast Paxos 117 17 6.2
Flexible Paxos 88 11 2.2
Stoppable Paxos (+liveness) * 132 16 18.4
Ticket Protocol (+liveness) 86 37 6
Alternating Bit Protocol
(+liveness) s = e
TLB Shootdown (+liveness) * 385 91 2l

(FOL)

Model Invarlant Time

Leader in Ring

Learning Switch 50 5 1.5
DB Chain Replication 143 9 1.7
Chord 155 12 2.4
Lock Server (500 Coq lines - . 5 Proof / code ratio:
[Verdi]) IronFleet: ~4
Distributed Lock (1 week a1 v 14 Verdi: ~10
[IronFleet]) '

_ lvy: ~0.2
Single Decree Paxos or o in

Can we further assist the user in finding Inv?

Stoppable Paxos (+liveness) * 132 16 18.4
Ticket Protocol (+liveness) 86 37 6
Alternating Bit Protocol

(+liveness) s = e
TLB Shootdown (+liveness) * 385 91 2l

(FOL)

IVy: Safety Verification by Interactive
Generalization [PLDI'16]

Oded Kenneth Aurojit Mooly Sharon
Padon McMillan Panda Sagiv Shoham

A

.
- \jb
|
P

b

000 gu Vit Berkeley @OQO

TELAVIV U012 2IN Research UNIVERSITY OF CALIF
UNIVERSITY TAN'TN JELAI NOOLMIN

IVy: https://github.com/Microsoft/ivy

V* Inductive Invariant for Lock Server

—Bad =1, =V ¥, c{,Ccy. held_by(¥, ¢;) A held _by(#, c;) = ¢; = ¢y
Iy = =34, ¢y, c,. held _by(€, c;) A held_by(#, c,) Acy # ¢y

V* Inductive Invariant for Lock Server

—Bad =1, =V ¥, c{,Ccy. held_by(¥, ¢;) A held _by(#, c;) = ¢; = ¢y
Iy = =34, ¢y, c,. held _by(€, c;) A held_by(#, c,) Acy # ¢y

I; =V ¥, cq,cy. =(grant_msg(cq,€) A held_by(Z, ¢,))
[; = =3¢, ¢4, c,. grant_msg(cq,£) A held_by(¢, ¢,)

X@QM x@\@@

< S
\(\Q}b// \‘i’é \\Q}b// NG

s s s

Universally quantified invariant = excluded (partial) states
=> Find invariant by excluding (partial) states

Diagram generalizes states

e state o is a finite first-or .
Q
\’b
Diag(c) = \ . %
Ix:Lvy:C z:C.VF*zAfree \b? fred S, o
A held_by(x, y) A held_by(x, & { NG,

A —grnt_msg(y, x) A =grnt_msg(z, x) ...

o' & Diag(o) iff o is a substructure of o’ Q 4
NN

o is obtained from ¢’ by removing elements > ?,6

[and projecting relations on remaining elements < %

exclude(c) = —Diag(o) \

[CAV’15, JACM’17] Property-Directed Inference of Universal Invariants or P r
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.

Generalizes even more
if o is a partial structure

Diag(o) =
Ax:Ly:Cz:C.YFZA
A held _by(x, yv) A held_by(x, &

exclude(o) = —Diag(o)

[CAV’15, JACM’17] Property-Directed Inference of Universal Invariants or P
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.

V™ Invariant - excluded substructures

Inv=VX. (I, 1(X) v .. VI (X)) A AVXAL 1 (X) v v (X))
\)

Y .
clause / conjecture

. J

v == 3% (<l 4(%) A o A =l o (B)ALA =TT (=l 4(2) A o A=l (E))
\)

Y
cube

[PLDI16] Find the partial states to exclude interactively

(2) Fine-Grained Interaction for V" Inv
]nU=IO/\°--/\Ik /%

Check inductiveness
(f \s_ . .. Is Inv an inductive invariant | ¢ S
7y Displays “minimal” CTl to exclude o S that proves o7
Generalizes to a partial state l 1
“- 7] Pr{%‘?f % Counterexample to
* removes “irrelevant” facts & S Induction (CT)

* graphical interface (checkboxes)

/. Translates to universally quantified conjecture
) * uses diagram

Provides auxiliary automated checks:

1. BMC(K): uses SAT solver to check if conjecture is true up to K
* User determines the right K to use

2. ITP(K): uses SAT solver to discover more facts to remove

% Examines the proposed conjecture — it could be wrong

https://www.quora.com/Human-Computer-Interaction
https://www.quora.com/Human-Computer-Interaction

Verified protocols [PLDI16]

Protocol Model | Property | Invariant
(#LOC) | (# therals) (# therals)

Leader in Ring 3
Learning Switch 50 11 18 3
DB Chain Replication 143 11 35 7
Chord (partial) 155 35 46 4
IO w3
Distributed Lock (1 41 3 26 1

week [IronFleet])

User is involved in discovering each conjecture!

Can we automate this process?

UPDR: Automatic Invariant Inference

e Based on Bradley’s IC3/PDR [vmcAI11,FMCAD11]

— SAT-based verification of finite-state systems
— Backward traversal to show absence of CEX of bounded length
— Unreachable states generalized and blocked using lemmas

e UPDR abstracts concrete states using their diagram \Pla8

=> |nfers V* inductive invariants

[CAV’15, JACM’17] Property-Directed Inference of Universal Invariants or Proving Their
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.

[VMCAI’17] Property Directed Reachability for Proving Absence of Concurrent
Modification Errors, A. Frumkin, Y. Feldman, O. Lhotak, O. Padon, M. Sagiv and S. Shoham.

But...

e Automatic invariant inference is limited

— Infinite search space
— Undecidable to infer V* invariants [POPL16]

e Goal: let the user guide the tool

— User has intuition about the essence of the proof
— Computer is good at handling corner cases

How can the user convey their intuition to the inference
procedure?

e [POPL'16] Decidability of Inferring Inductive Invariants, O. Padon, N.
Immerman, S. Shoham, A. Karbyshev, and M. Sagiv.

Inferring Phase Invariants from
Phase Sketches

Yotam Feldman James Wilcox Sharon Shoham Mooly Sagiv

A\ —

®0@ UNIVERSITY of @O@

TEL AVIV NU'DT"IIN TELAVIV NU'O1XIIN

UNIVERSITY 2'IN‘IN WA S H I N G TO N UNIVERSITY 2'IN‘IN

&

Phase Invariants

e |dea: add structure to the inductive invariant

e User provides the structure as “hints” to
automatic inference

Reminder: Ind. Inv. for Lock Server

I, =V ¥, cq,Cy. held_by(?, c;) A held _by(#, cy) = ¢; = ¢y

I; =V ¥, cq,cy. =(grant_msg(cq,€) A held_by(Z, ¢;))

I, =V ¥, cq,c,. a(unlock_msg(c{,f) A held_by(Z, ¢,))

I3=V ¥, cq,c,. a(unlock_msg(cq,f) A grant_msg(c,,f))

I,=V ¥, cq,c,. grant_msg(c{,f) A grant_msg(c,,f) = ¢; = ¢;

Is =V ¥, cq,Cy. unlock_msg(cq,£) A unlock_msg(c,,f) = ¢4 = ¢o
I =V £, c. =(grant_msg(c,f) A free(f))

I =V £, c. =(held_by(€,c) A free(?))

Ig =V £, c. =(unlock_msg(c,?) A free(£))

Phase Structure of Lock Server’s Proof
Vo N

qo) grant (x,2) snd_lock(x, £)
Lock ¢ is free actions(x,£')
C no one holds £ 4 ql\D
snd_lock(x, €) _ _ J Permission granted for ¢
actions(*,£')
v llock (%, £) no one holds ¢
snd] unlock (*,£) - J
rcv Junlock (*,€)
. snd_lock(*,#)
rev_unlock (x, £))ﬁ rev_lock (-) actions (s,)
4 qz)
snd_lock(x, ¥) Lock £ taken D
actions(x,¢’) by at most one ¢
d q3)

Lock ¢ released by client <_\/ J
no one holds ¢

snd_unlock (x, ¥)
N /

Inductive Phase Invariant for Lock Server

VO
C

" free(?) o)
Vc. =held_by(?, c¢)
Vc.=grant_msg(c,)

snd_lock(*,#)
actions(x,?’)

rcv_unlock (x,) *

snd_lock(*,#)

actions(*,£')

C/—lfree(f) qs3)

\ Vc.—lunloc“k_msg(c,{’) Y,

rcv_|lock (*,€)

rcv_unlock (*,

Vc.=held_by(?, c)
Vc.—=grant_msg(c, £)

snd] unlock (*,£)

grant (, %)

t)

S

_unique c. unlock_msg(c,),

(" —free(?)

snd_lock(*,£)

actions(*,£')

Vc. —held_by(¥, c)

qPD

unique c. grant_msg(c,)
_Vc.aunlock_msg(c, ?)

J

rev_lock (x,¢)

snd_lock(*,#)
actions(*,£')

(" Sfree(#)

unique c. held_by(?, c¢)
Vc.—grant_msg(c, £)

V. —unlock_msg(c, ¥)

1

J

“‘n‘dm{))

Inductive Phase Invariant for Lock Server

Vf.\‘(free(?) qo\ grant (x,£) snd_lock(x*,)
Vc. =held_by(¥, c) \4 actions(*,£’)

C Vc.=grant_msg(c,) (—lfree(f) ql\D

snd_lock(x, £) _ Vc.=unlock_msg(c, f) Y, ve, =held.by(2, c)

actions(x,?’)

unique c. grant_msg(c,)
_Vc.unlock_msg(c,f))

Initiation: Init = ¢,

— . . /
Instead of Inductive: g, A TR ni+0) = ¢¥'q,
- . /
monolithic 1 Pgqo N TR equests,e) V' TRictions(s7) = @ qq
consecution L Covers: (pqg ANTR = TRgrant(*,{’) v TRrequest(*,f) v TRactions(*,f’)

Safe: Pg, = V €1, C2. held_by(?, ¢1) A held_by(#, c;) = ¢1=c,

Guiding Inference by Phase Structure

1. User provides the phase structure as the proof’s
essence

2. infer
for a full formal proof

% Guiding Inference by Phase Structure

Vo N
C

snd_lock(*, €) _

qo)

snd_lock(*,£)
actions(*,£')

actions(x,?’)

rcv_unlock (*, %)

snd_lock(*,#)
actions(*,£')

/

q?:)

J

grant (, %)
/
\
rcv_lock (x,)
/

snd_lock(*,#)
actions(*,£')

.

qz\D

J

<__/

snd_unlock (x, ¥)

% Guiding Inference by Phase Structure

VL. qo) grant (x,¥£) snd_lock(*,¥)
actions(*,£')
(PR
¥ Infer phase characterizations ¢, , ¢,,, ©4,, 4, S-t.
Initiation Init = @q,
Instead of | INductive @o ATR(;) = @'y
monolithic -
consecution| COVer Pq NTR = \/ T'Rq,p)
L (q.p)EE
Safe @, = Safety Additional safety

constraints
Phase-UPDR: Inference of V* characterization

* System of linear second-order Constrained Horn Clauses (CHCs)

Phase-UPDR: Possible outcomes

e Universal phase characterizations found
— System is safe

Phase-UPDR: Possible outcomes

e Universal phase characterizations found

— System is safe
Safety violation:

* Original, or

e Abstract counterexample: _
Edge covering

— Safety not determined*

— But no universal phase characterizations exist!

sV VY@

aq di1 k1
QO—'CI1——' — (k-1 e, Ak > QR

* can use Bounded Model Checking to find real counterexamples

Proving absence of universal phase
characterizations

Suppose that universally quantified characterizations goq exist. Then:

Gl |= cSk 1 |= goqk 1 Gk+1 |:' dk+1
Oo= @q, ©O1F @q, Oy1F Pgqr_y Ok F @q, Owi1 F Ogp iy
do Tl> ql—éz—’ —a_kT’ k-1 ak Ak = "qkc+1

Contradicts

®q, Satisfies initiation: gy E Init = 0y F @,
safety!

®q;_, is inductive: 0i—1F @q,_, NTR,._ (0;_1,0]) = 0] F @,
@q; is universal: o; E Diag(o;) = 0; F @,

If there exist ¢,, € V*, then any abstract trace does not reach Bad
=» An abstract trace to Bad implies no universal phase characterizations

(3) Interaction based on phase sketches

Phase sketh PropertyD %

1. Matches #

2. Directs proof search Infer universal phase i: D,
characterizations @

Protocol S

} !

Inductive phase Abstract trace: no universal
invariant characterizations

* Phase structure, possibly with partial phase characterizations

Benefits of Phases for UPDR

w.q

rcv_unlock

(*,£)

}%: £

rcv_locld (*,)

1

|

f

J‘mck (,)

Benefits of Phases for UPDR

* Disjunctive structure

CNF

\v22 grant (x,¥)
CNF T[\A]:)

rcv_unlock(*, #) rev_lock (+, £)

[CNF];)
snd_unlock (x,)

Benefits of Phases for UPDR

* Disjunctive structure
* Impossible transitions

2% \C[J%z,)
rcv_unlock| (%, ¥))‘(rev_locK (x)];)

C[}{unlock (*,)

Benefits of Phases for UPDR

* Disjunctive structure
* Impossible transitions
* Generalization w.r.t. subsystem

w.q

rcv_unlock

(*,£)

rcv_locld (*,)

1

|

J‘ﬁunlock (*,)

Benefits of Phases for UPDR

* Disjunctive structure

* Impossible transitions

* Generalization w.r.t. subsystem
* Arity reduction?

w.q

rcv_unlock

(*,£)

JM: £

1

rcv_locld (*,)

f

]‘mck (,)

Evaluation

Phase Phase Inductive

Sketch * | Structure | Invariant

[min] [min] [min]
Lock server (single lock) 00:05 00:04 00:21
Lock server (multiple locks) 00:10 00:11 00:22
Ring leader election 00:12 00:03 02:04
Simple consensus 03:04 02:07 01:27
Sharded KV (basic, one key) 00:02 00:03 00:08
Sharded KV (basic, multiple keys) 00:05 00:08 00:06
Sharded KV (w/ retransmissions) 03:01 38:17 > 3 hours

* With partial phase characterizations

Structure and Scaling

1800 T
PDRY
1500 1
= 1200 1
S
= 900t
-
2 6001 y
Phase-PDR" (short)
300 1 Phase-PDR" (long)
2 3 4 5 6 7 8 9 10
protocol rounds
P11 *7
n-phase commit: — start p;;1 when Vc.p;_msg(c)

LA
LA

p1_msg ;

— done when Vc. p,,_msg(c) P21 Ez_msg :
p1-msg(c) [@@_

— Safety: done — Vec.

Pn

LA

Proof Assistants Supervised
Verification
procfieede: TV ~1/10

Ultimately limited by human
0 ’.‘_I"h prooffcade:

UI I lI I la r i '-—-l Verdi: ~10
IrenFleet: ~4

Model Checking
Static Analysis

Interactive verification using decidable logic

* EPR - decidable fragment of FOL
* Deduction is decidable
* Finite counterexamples to induction

* Interaction based on CTls
* Fine-grained interaction based on diagrams

* Coarse-grained interaction based on phase sketches &
relaxed traces

Ultimately limited by undecidability

Find ways to guide verification tools!

* Dividing the problem between human and machine
* Other logics

* Inference schemes

* Forms of interaction

* Theoretical understanding of limitations and tradeoffs

. i o

s

Seeki stdocs n tudents

erc Supervised Verification of Infinite-State Systems

