Interactive Verification of Distributed
Protocols Using Decidable Logic

Sharon Shoham, Tel Aviv University

Static Analysis Symposium, 2018

el’C Supervised Verification of Infinite-State Systems



Why verify distributed protocols?
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Distributed systems are everywhere [ . |’“ /@_
* Safety-critical systems R
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e Cloud infrastructure

* Distributed systems are notoriously hard to get right
* Even small protocols can be tricky
* Bugs occur on rare scenarios

e Testing is costly and not sufficient



Verifying distributed protocols is hard

* Infinite state-space
e unbounded number of threads

* unbounded number of messages

* unbounded number of objects

* Asymptotic complexity of verification
* Rice theorem
* The ability of simple programs
to represent complex behaviors

| can’t decide!




State of the art in formal verification

e Automatic techniques

* Abstract Interpretation
* Model checking
Limited for infinite state systems due to undecidability

* Deductive techniques

* SMT-based deduction + manual program annotations (e.g. Dafny)
* Requires programmer effort to provide inductive invariants
* SMT solver may diverge (matching loops, arithmetic)
* Unpredictability, butterfly effect
* Interactive theorem provers (e.g. Coq, Isabelle/HOL, LEAN)
* Programmer gives inductive invariant and proves it
* Huge programmer effort (~10-50 lines of proof per line of code)



Expressiveness

State of the art in formal verification

Proof Assistants

Ultimately limited by human

proof/code:
Verdi: ~10
IronFleet: ~4

Ultimately limited by undecidability

Model Checking
Static Analysis

Automation



Expressiveness

State of the art in formal verification

Proof Assistants

Ultimately limited by human Interactive
oroof/code: Verification
Verdi: ~10
IronFleet: ~4

Ultimately limited by undecidability

Model Checking
Static Analysis

Automation
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Interactive Verification

Goals Questions
High degree of automation - What is the role of the human?
Expressiveness - What is the role of the machine?
Predictability - How do they interact?

Comprehensibility for users
Efficiency/scalability

el’C Supervised Verification of Infinite-State Systems



This talk

Interactive verification by

(1) Deductive verification with decidable logic

— Interaction based on candidate inductive invariants &
counterexamples to induction

(2) Interactive inference of universal invariants

— Fine-grained interaction based on counterexamples to
induction & diagrams

(3) User-guided inference of phase invariants

— Coarse-grained interaction based on phase sketches &
relaxed traces



Realization in IVy https://github.com/Microsoft/ivy

(2)4° [PLDI’16] IVy: Safety Verification by Interactive Generalization.
L 0. Padon, K. McMillan, A. Panda, M. Sagiv, S. Shoham

e [OOPSLA’17] Paxos Made EPR: Decidable Reasoning about
Distributed Protocols. O. Padon, G. Losa, M. Sagiv, S. Shoham

e [POPL'18] Reducing Liveness to Safety in First-Order Logic.
(1)1 O. Padon, J. Hoenicke, G. Losa, A. Podelski, M. Sagiv, S. Shoham

e [PLDI"18] Modularity for decidability of deductive verification with
applications to distributed systems. M. Taube, G. Losa,
K. McMillan, O. Padon, M. Sagiv, S. Shoham, J. Wilcox, D. Woos

3) e [sub] Inferring Phase Invariants from Phase Sketches.
Y. Feldman, J. Wilcox, S. Shoham, M. Sagiv



Safety Verification

System State Space

“at most

one client
holds lock”

Init

System S is safe if all the reachable states satisfy the property P = wBad



Inductive Invariants

System State Space

“at most
one client
holds lock”

Init

System S is safe if all the reachable states satisfy the property P = wBad
System S is safe iff there exists an inductive invariant /71v:

Init = Inv (Initiation)
Inv ATR = [nv' (Consecution)
Inv = =Bad (Safety)



Inductive Invariants

System State Space

“at most

one client
holds lock”

Init

System S is safe if all the reachable states satisfy the property P = wBad
System S is safe iff there exists an inductive invariant /71v:

Init = Inv (Initiation) o
Inv ATR= Inv' (Consecution) . Ver'f'F?t'On
Inv = =Bad (Safety) Conditions (VC)




Inductive Invariants

System State Space

“at most

one client
holds lock”

Init

System S is safe if all the reachable states satisfy the property P = wBad
System S is safe iff there exists an inductive invariant /71v:

Init = Inv (Initiation) Init A =lnv=1
Inv ATR= Inv" (Consecution) [nv ATRA=Inv' =1  }FvC
Inv = =Bad (Safety) Inv ABad = L




Challenges in Safety Verification

Formal specification: reasoning about infinite-state systems

* Modeling the system, the property and the inductive invariant

Deduction: checking validity of the VCs
» Undecidability of implication checking (unsatisfiability)

* Unbounded state (threads, messages), arithmetic, quantifiers,...

Inference: inferring inductive invariants (Inv)
* Hard to specify

 Hard to infer automatically

* Undecidable even when deduction is decidable

lvy: Restrict VC’s to decidable logic



Effectively Propositional Logic — EPR

Decidable fragment of first order logic
+ Quantification (3*v*) - Theories (e.g., arithmetic)

© Allows quantifiers to reason about unbounded sets
- Vx,y. holds_lock(x) A holds_lock(y) > x =y

© Satisfiability is decidable => Deduction is decidable

© Small model property => Finite cex to induction

© Turing complete modeling language

@ Limited language for safety and inductive invariants

» Suffices for many infinite-state systems



Successful verification with EPR

e Shape Analysis
[Itzhaky et al. CAV’13, POPL'14, CAV’14, Karbyshev et al. CAV’15]

e Software-Defined Networks
[Ball et al. PLDI’14]

e Distributed Protocols
[Padon et al. PLDI’16, OOPSLA’17, POPL’18, Taube et al. PLDI'18]

e Concurrent Modification Errors in Java
[Frumkin et al. VMCAI'17]

More in Ken & Oded’s tutorial



Challenges for verification with EPR

/Formal specification: reasoning about infinite-state systems

* Modeling the system, the property and the inductive invariant in EPR

/ Deduction: checking validity of the VCs
» Undecidability of implication checking (unsatisfiability)

* Unbounded state (threads, messages), arithmetic, quantifiers,...

Inference: inferring inductive invariants (Inv)
* Hard to specify
 Hard to infer automatically

* Undecidable even when deduction is decidable



Challenges for verification with EPR

/Formal specification: reasoning about infinite-state systems

* Modeling the system, the property and the inductive invariant in EPR

/ Deduction: checking validity of the VCs
» Undecidability of implication checking (unsatisfiability)

* Unbounded state (threads, messages), arithmetic, quantifiers,...

Inference: inferring inductive invariants (Inv) interactively
* Hard to specify
 Hard to infer automatically

* Undecidable even when deduction is decidable



Example: Lock Server

snd_lock() A @
g ) A
AT
‘ 0
lock | |
7 _
X ; \H X

[PLDI15] Verdi: a framework for implementing and formally verifying distributed
systems. J. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. Ernst, T. Anderson



Example: Lock Server

grant() @ @
R ®
N t
0 Sy pl(E

lock /) g |

X ; X H X
o ° D_ o

[PLDI15] Verdi: a framework for implementing and formally verifying distributed
systems. J. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. Ernst, T. Anderson



Example: Lock Server

rcv_lock() @
D @®
N
0 R (e

grant | | |
: |
gL

[PLDI15] Verdi: a framework for implementing and formally verifying distributed
systems. J. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. Ernst, T. Anderson
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Example: Lock Server

snd_unlock() @
D ®
W9
) 1
g ‘ |
unlock | |
S 5 [N F

[PLDI15] Verdi: a framework for implementing and formally verifying distributed
systems. J. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. Ernst, T. Anderson



Example: Lock Server

rcv_unlock() @
N
0] B M
(g

D 0
e unlock | ‘

Safety: each lock held
by at most one client

X ; XX H
o ° D_

yaL

[PLDI15] Verdi: a framework for implementing and formally verifying distributed
systems. J. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. Ernst, T. Anderson



server

Modeling in Ivy (EPR) clients

network

e State: finite first-order structure over vocabulary V

* free (LOCK)

* held_by (LOCK, CLIENT)
[« Jock_msg (CLIENT, LOCK)

e grant_msg (CLIENT, LOCK)
_ * unlock_msg (CLIENT, LOCK)

Global state of messages in flight



server

Modeling in Ivy (EPR) clients

network

e State: finite first-order structure over vocabulary V

* Transition relation: EPR formula TR(V, V)

actiongrant (c:C, ¢: L){... }

action snd_lock(c: C, £: L){
lock_msg(c, ) := true |

} action snd_unlock (c: C, £: L){ ...}

@ action rcv_unlock(c: C, £: L){ ... }

dc, €. Vx,y. lock_msg’(x,y) <= (lock_msg(x,y) V (x=c Ay =%))
A grant_msg’(x,y) <= grant_msg(x,y)
A free’(y) <« free(y) ....
Vg, f. ...

actionrev_lock (c: C, £: L){ ... }




server

Modeling in Ivy (EPR) clients

network

e State: finite first-order structure over vocabulary V
e Transition relation: EPR formula TR(V, V')

e |nitial states and safety property: EPR formulas over V
— Init(V) —initial states, e.g., V¢, €. =lock_msg(c, £)
— Bad(V) — bad states, e.g.,
3 ,c,,c,. held_by (€,c,) A held_by (£,c,) A c1 # ¢



e State: finite first-order structure over vocabulary V

Verification in lvy (EPR)

e Transition relation: EPR formula TR(V, V')

e |nitial states and safety property: EPR formulas over V

— Init(V) —initial states, e.g., V¢, €. =lock_msg(c, £)

— Bad(V) — bad states, e.g.,

3 ,c,,c,. held_by (€,c,) A held_by (£,c,) A c1 # ¢

Inductive invariant s.t. VC € EPR

nit(V) A =alnv(V)
Inv(V)ATR(WV, V") A alnv(V')
Inv(V) A Bad(V)

Solver

server
clients
network




server

Verification in lvy (EPR) clients

network

e State: finite first-order structure over vocabulary V
e Transition relation: EPR formula TR(V, V')

e |nitial states and safety property: EPR formulas over V
— Init(V) —initial states, e.g., V¢, €. =lock_msg(c, £)
— Bad(V) — bad states, e.g.,

Specify and verify the protocol for any number of clients and locks

& &
& affe @@@ @@@




Interactive Invariant
Inference



(1) Interaction based on CTls

PropertyD %

Inductive
Invariant Inv

Protocol S

Check inductiveness U
. o : A
Is Inv an inductive invariant | [ )
of S that proves ¢? >
l |
Proof CEX to Induction (CTI)




Lock Server Example

Cnvariant) Proper(;cy:
—Bad —Ba

—Bad = V ¥,c,,c,. held_by (£,c,)
A held_by (¢,c,) = ¢1=¢;

Check inductiveness
Is Inv an inductive invariant
of S that proves ¢?




Lock Server Example

Cnvariant) Proper(;cy:
—Bad —Ba

—Bad = V ¥,c,,c,. held_by (£,c,)
A held_by (¢,c,) = ¢1=¢;

Check inductiveness
Is Inv an inductive invariant
of S that proves ¢?

No!




server

Inductive Invariant for Lock Server  clients

15 =V‘€, C1,C>.

network

. held_by(?, ¢;) A held_by(#, c;) = ¢; = ¢y

. =(grant_msg(c{,?) A held_by(¥€, ¢5))

. —=(unlock_msg(cq,£) A held _by(¥€, c,))

. —=(unlock_msg(cq,£) A grant_msg(c,,?))

. grant_msg(cq,£) A grant_msg(c,,?) = ¢; = ¢y

unlock_msg(cq{,€) A unlock_msg(c,,f) = ¢c1 = ¢,

I =V £, c. =(grant_msg(c,f) A free(f))
I =V £, c. =(held_by(€,c) A free(?))
Ig =V £, c. =(unlock_msg(c,?) A free(£))

[PLDI15] Verdi: a framework for implementing and formally verifying distributed
systems. J. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. Ernst, T. Anderson



server

Inductive Invariant for Lock Server  clients

[h=V4¥,cq,Co
I,=V4cqcy
I,=VY7%, cqcCy
I3=V7%,cq,cCy
[,=V7%, cqcCy

15 =V‘€, C1,C>.

network

. held_by(?, ¢;) A held_by(#, c;) = ¢; = ¢y

. =(grant_msg(c{,?) A held_by(¥€, ¢5))

. —=(unlock_msg(cq,£) A held _by(¥€, c,))

. =(unlock_msg(cq,£) A grant_msg(c,,¥))

. grant_msg(cq,£) A grant_msg(c,,?) = ¢; = ¢y

unlock_msg(cq{,€) A unlock_msg(c,,f) = ¢c1 = ¢,

Io =V £, c. =(grant_msg(c,?) A free(?))
I =V £, c. =(held_by(€,c) A free(?)) | can decide EPR!

Ig =V £, c. =(unlock_msg(c,?) A free(£))

nit(V) A =alnv(V)
Inv(V)ATR(WV, V") A alnv(V')
Inv(V) A Bad(V)

EPR Proof

Solver




Model Invarlant Time

Leader in Ring

Learning Switch 50 5 1.5
DB Chain Replication 143 9 1.7
Chord 155 12 2.4
Lock Server (500 Coq lines - . 5 Proof / code ratio:
[Verdi]) IronFleet: ~4
Distributed Lock (1 week a1 v 14 Verdi: ~10
[IronFleet])
Single Decree Paxos Ivy:~0.2
(+liveness) £ 1L 1oL
Multi-Paxos (+liveness 98 12 14.6 . .

: ( ) * first mechanized
Vertical Paxos* 123 18 2.2

proof

Fast Paxos 117 17 6.2
Flexible Paxos 88 11 2.2
Stoppable Paxos (+liveness) * 132 16 18.4
Ticket Protocol (+liveness) 86 37 6
Alternating Bit Protocol
(+liveness) s = e
TLB Shootdown (+liveness) * 385 91 2l

(FOL)



Model Invarlant Time

Leader in Ring

Learning Switch 50 5 1.5
DB Chain Replication 143 9 1.7
Chord 155 12 2.4
Lock Server (500 Coq lines - . 5 Proof / code ratio:
[Verdi]) IronFleet: ~4
Distributed Lock (1 week a1 v 14 Verdi: ~10
[IronFleet]) '

_ lvy: ~0.2
Single Decree Paxos or o in

Can we further assist the user in finding Inv?

Stoppable Paxos (+liveness) * 132 16 18.4
Ticket Protocol (+liveness) 86 37 6
Alternating Bit Protocol

(+liveness) s = e
TLB Shootdown (+liveness) * 385 91 2l

(FOL)



IVy: Safety Verification by Interactive
Generalization [PLDI'16]

Oded Kenneth Aurojit Mooly Sharon
Padon McMillan Panda Sagiv Shoham
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IVy: https://github.com/Microsoft/ivy



V* Inductive Invariant for Lock Server

—Bad =1, =V ¥, c{,Ccy. held_by(¥, ¢;) A held _by(#, c;) = ¢; = ¢y
Iy = =34, ¢y, c,. held _by(€, c;) A held_by(#, c,) Acy # ¢y




V* Inductive Invariant for Lock Server

—Bad =1, =V ¥, c{,Ccy. held_by(¥, ¢;) A held _by(#, c;) = ¢; = ¢y
Iy = =34, ¢y, c,. held _by(€, c;) A held_by(#, c,) Acy # ¢y

I; =V ¥, cq,cy. =(grant_msg(cq,€) A held_by(Z, ¢,))
[; = =3¢, ¢4, c,. grant_msg(cq,£) A held_by(¢, ¢,)

X@QM x@\@@

< S
\(\Q}b// \‘i’é \\Q}b// NG

s s s

Universally quantified invariant = excluded (partial) states
=> Find invariant by excluding (partial) states




Diagram generalizes states

e state o is a finite first-or .
Q
\’b
Diag(c) = \ . %
Ix:Lvy:C z:C.VF*zAfree \b? fred S, o
A held_by(x, y) A held_by(x, & { NG,

A —grnt_msg(y, x) A =grnt_msg(z, x) ...

o' & Diag(o) iff o is a substructure of o’ Q 4
NN

o is obtained from ¢’ by removing elements > ?,6

[and projecting relations on remaining elements < %

exclude(c) = —Diag(o) \

[CAV’15, JACM’17] Property-Directed Inference of Universal Invariants or P r
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.



Generalizes even more
if o is a partial structure

Diag(o) =
Ax:Ly:Cz:C.YFZA
A held _by(x, yv) A held_by(x, &

exclude(o) = —Diag(o)

[CAV’15, JACM’17] Property-Directed Inference of Universal Invariants or P
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.



V™ Invariant - excluded substructures

Inv=VX. (I, 1(X) v .. VI (X)) A AVXAL 1 (X) v v (X))
\ )

Y .
clause / conjecture

. J

v == 3% (<l 4(%) A o A =l o (B)ALA =TT (=l 4(2) A o A=l (E))
\ )

Y
cube

[PLDI16] Find the partial states to exclude interactively




(2) Fine-Grained Interaction for V" Inv
]nU=IO/\°--/\Ik /%

Check inductiveness
(f \s_ . .. Is Inv an inductive invariant | ¢ S
7y Displays “minimal” CTl to exclude o S that proves o7
Generalizes to a partial state l 1
“- 7] Pr{%‘?f % Counterexample to
* removes “irrelevant” facts & S Induction (CT)

* graphical interface (checkboxes)

/. Translates to universally quantified conjecture
) * uses diagram

Provides auxiliary automated checks:

1. BMC(K): uses SAT solver to check if conjecture is true up to K
* User determines the right K to use

2. ITP(K): uses SAT solver to discover more facts to remove

% Examines the proposed conjecture — it could be wrong



https://www.quora.com/Human-Computer-Interaction
https://www.quora.com/Human-Computer-Interaction

Verified protocols [PLDI16]

Protocol Model | Property | Invariant
(#LOC) | (# therals) (# therals)

Leader in Ring 3
Learning Switch 50 11 18 3
DB Chain Replication 143 11 35 7
Chord (partial) 155 35 46 4
IO w3
Distributed Lock (1 41 3 26 1

week [IronFleet])



User is involved in discovering each conjecture!

Can we automate this process?



UPDR: Automatic Invariant Inference

e Based on Bradley’s IC3/PDR [vmcAI11,FMCAD11]

— SAT-based verification of finite-state systems
— Backward traversal to show absence of CEX of bounded length
— Unreachable states generalized and blocked using lemmas

e UPDR abstracts concrete states using their diagram \Pla8

=> |nfers V* inductive invariants

[CAV’15, JACM’17] Property-Directed Inference of Universal Invariants or Proving Their
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.

[VMCAI’17] Property Directed Reachability for Proving Absence of Concurrent
Modification Errors, A. Frumkin, Y. Feldman, O. Lhotak, O. Padon, M. Sagiv and S. Shoham.



But...

e Automatic invariant inference is limited

— Infinite search space
— Undecidable to infer V* invariants [POPL16]

e Goal: let the user guide the tool

— User has intuition about the essence of the proof
— Computer is good at handling corner cases

How can the user convey their intuition to the inference
procedure?

e [POPL'16] Decidability of Inferring Inductive Invariants, O. Padon, N.
Immerman, S. Shoham, A. Karbyshev, and M. Sagiv.



Inferring Phase Invariants from
Phase Sketches

Yotam Feldman James Wilcox Sharon Shoham Mooly Sagiv
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Phase Invariants

e |dea: add structure to the inductive invariant

e User provides the structure as “hints” to
automatic inference



Reminder: Ind. Inv. for Lock Server

I, =V ¥, cq,Cy. held_by(?, c;) A held _by(#, cy) = ¢; = ¢y

I; =V ¥, cq,cy. =(grant_msg(cq,€) A held_by(Z, ¢;))

I, =V ¥, cq,c,. a(unlock_msg(c{,f) A held_by(Z, ¢,))

I3=V ¥, cq,c,. a(unlock_msg(cq,f) A grant_msg(c,,f))

I,=V ¥, cq,c,. grant_msg(c{,f) A grant_msg(c,,f) = ¢; = ¢;

Is =V ¥, cq,Cy. unlock_msg(cq,£) A unlock_msg(c,,f) = ¢4 = ¢o
I =V £, c. =(grant_msg(c,f) A free(f))

I =V £, c. =(held_by(€,c) A free(?))

Ig =V £, c. =(unlock_msg(c,?) A free(£))



Phase Structure of Lock Server’s Proof
Vo N

qo) grant (x,2) snd_lock(x, £)
Lock ¢ is free actions(x,£')
C no one holds £ 4 ql\D
snd_lock(x, €) \_ _ J Permission granted for ¢
actions(*,£')
v llock (%, £) no one holds ¢
snd] unlock (*,£) - J
rcv Junlock (*,€)
. snd_lock(*,#)
rev_unlock (x, £) )ﬁ rev_lock (- ) actions (s, )
4 qz)
snd_lock(x, ¥) Lock £ taken D
actions(x,¢’) by at most one ¢
d q3)

Lock ¢ released by client <_\/ J
no one holds ¢

snd_unlock (x, ¥)
N /




Inductive Phase Invariant for Lock Server

VO
C

" free(?) o)
Vc. =held_by(?, c¢)
Vc.=grant_msg(c, )

snd_lock(*,#)
actions(x,?’)

rcv_unlock (x, ) *

snd_lock(*,#)

actions(*,£')

C/—lfree(f) qs3)

\ Vc.—lunloc“k_msg(c,{’) Y,

rcv_|lock (*,€)

rcv_unlock (*,

Vc.=held_by(?, c)
Vc.—=grant_msg(c, £)

snd] unlock (*,£)

grant (, %)

t)

S

\_unique c. unlock_msg(c, ),

(" —free(?)

snd_lock(*,£)

actions(*,£')

Vc. —held_by(¥, c)

qPD

unique c. grant_msg(c, )
\_Vc.aunlock_msg(c, ?)

J

rev_lock (x,¢)

snd_lock(*,#)
actions(*,£')

(" Sfree(#)

unique c. held_by(?, c¢)
Vc.—grant_msg(c, £)

V. —unlock_msg(c, ¥)

1

J

“‘n‘dm{))



Inductive Phase Invariant for Lock Server

Vf.\‘( free(?) qo\ grant (x,£) snd_lock(x*, )
Vc. =held_by(¥, c) \4 actions(*,£’)

C Vc.=grant_msg(c, ) (—lfree(f) ql\D

snd_lock(x, £) \_ Vc.=unlock_msg(c, f) Y, ve, =held.by(2, c)

actions(x,?’)

unique c. grant_msg(c, )
\_Vc.unlock_msg(c,f) )

Initiation: Init = ¢,

— . . /
Instead of Inductive: g, A TR ni+0) = ¢¥'q,
- . /
monolithic 1 Pgqo N TR equests,e) V' TRictions(s7) = @ qq
consecution L Covers: (pqg ANTR = TRgrant(*,{’) v TRrequest(*,f) v TRactions(*,f’)

Safe: Pg, = V €1, C2. held_by(?, ¢1) A held_by(#, c;) = ¢1=c,



Guiding Inference by Phase Structure

1. User provides the phase structure as the proof’s
essence

2. infer
for a full formal proof



% Guiding Inference by Phase Structure

Vo N
C

snd_lock(*, €) \_

qo)

snd_lock(*,£)
actions(*,£')

actions(x,?’)

rcv_unlock (*, %)

snd_lock(*,#)
actions(*,£')

/

q?:)

J

grant (, %)
/
\
rcv_lock (x, )
/

snd_lock(*,#)
actions(*,£')

.

qz\D

J

<__/

snd_unlock (x, ¥)



% Guiding Inference by Phase Structure

VL. qo) grant (x,¥£) snd_lock(*,¥)
actions(*,£')
( PR
¥ Infer phase characterizations ¢, , ¢,,, ©4,, 4, S-t.
Initiation Init = @q,
Instead of | INductive  @o ATR(; ) = @'y
monolithic -
consecution| COVer Pq NTR = \/ T'Rq,p)
L (q.p)EE
Safe @, = Safety Additional safety

constraints
Phase-UPDR: Inference of V* characterization

* System of linear second-order Constrained Horn Clauses (CHCs)



Phase-UPDR: Possible outcomes

e Universal phase characterizations found
— System is safe



Phase-UPDR: Possible outcomes

e Universal phase characterizations found

— System is safe
Safety violation:

* Original, or

e Abstract counterexample: _
Edge covering

— Safety not determined*

— But no universal phase characterizations exist!

sV VY@

aq di1 k1
QO—'CI1——' — (k-1 e, Ak > QR

* can use Bounded Model Checking to find real counterexamples



Proving absence of universal phase
characterizations

Suppose that universally quantified characterizations goq exist. Then:

Gl |= cSk 1 |= goqk 1 Gk+1 |:' dk+1
Oo= @q, ©O1F @q, Oy1F Pgqr_y Ok F @q, Owi1 F Ogp iy
do Tl> ql—éz—’ —a_kT’ k-1 ak Ak = "qkc+1

Contradicts

®q, Satisfies initiation: gy E Init = 0y F @,
safety!

®q;_, is inductive: 0i—1F @q,_, NTR,._ (0;_1,0]) = 0] F @,
@q; is universal: o; E Diag(o;) = 0; F @,

If there exist ¢,, € V*, then any abstract trace does not reach Bad
=» An abstract trace to Bad implies no universal phase characterizations



(3) Interaction based on phase sketches

Phase sketh PropertyD %

1. Matches #

2. Directs proof search Infer universal phase i: D,
characterizations @

Protocol S

} !

Inductive phase Abstract trace: no universal
invariant characterizations

* Phase structure, possibly with partial phase characterizations



Benefits of Phases for UPDR
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Benefits of Phases for UPDR

* Disjunctive structure

CNF

\v22 grant (x,¥)
CNF T[\A ]:)

rcv_unlock(*, #) rev_lock (+, £)

[ CNF ];)
snd_unlock (x, )




Benefits of Phases for UPDR

* Disjunctive structure
* Impossible transitions

2% \C[ J%z, )
rcv_unlock| (%, ¥) )‘( rev_locK (x ) ];)

C[ }{unlock (*, )




Benefits of Phases for UPDR

* Disjunctive structure
* Impossible transitions
* Generalization w.r.t. subsystem

w.q

rcv_unlock

(*,£)

rcv_locld (*, )

1

|

J‘ﬁunlock (*, )




Benefits of Phases for UPDR

* Disjunctive structure

* Impossible transitions

* Generalization w.r.t. subsystem
* Arity reduction?

w.q

rcv_unlock

(*,£)

JM: £

1

rcv_locld (*, )

f
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Evaluation

Phase Phase Inductive

Sketch * | Structure | Invariant

[min] [min] [min]
Lock server (single lock) 00:05 00:04 00:21
Lock server (multiple locks) 00:10 00:11 00:22
Ring leader election 00:12 00:03 02:04
Simple consensus 03:04 02:07 01:27
Sharded KV (basic, one key) 00:02 00:03 00:08
Sharded KV (basic, multiple keys) 00:05 00:08 00:06
Sharded KV (w/ retransmissions) 03:01 38:17 > 3 hours

* With partial phase characterizations



Structure and Scaling

1800 T
PDRY
1500 1
= 1200 1
S
= 900t
-
2 6001 y
Phase-PDR" (short)
300 1 Phase-PDR" (long)
2 3 4 5 6 7 8 9 10
protocol rounds
P11 *7
n-phase commit:  — start p;;1 when Vc.p;_msg(c)

LA
LA

p1_msg ;

— done when Vc. p,,_msg(c) P21 Ez_msg :
p1-msg(c) [ @@_

— Safety: done — Vec.

Pn

LA



Proof Assistants Supervised
Verification
procfieede: TV ~1/10

Ultimately limited by human
0 ’.‘_I"h prooffcade:

UI I lI I la r i '-—-l Verdi: ~10
IrenFleet: ~4

Model Checking
Static Analysis

Interactive verification using decidable logic

* EPR - decidable fragment of FOL
* Deduction is decidable
* Finite counterexamples to induction

* Interaction based on CTls
* Fine-grained interaction based on diagrams

* Coarse-grained interaction based on phase sketches &
relaxed traces

Ultimately limited by undecidability



Find ways to guide verification tools!

* Dividing the problem between human and machine
* Other logics

* Inference schemes

* Forms of interaction

* Theoretical understanding of limitations and tradeoffs

. i o

s

Seeki stdocs n tudents

erc Supervised Verification of Infinite-State Systems



