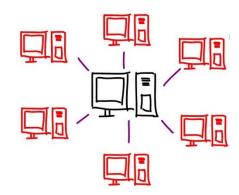
Interactive Verification of Distributed Protocols Using Decidable Logic

Sharon Shoham, Tel Aviv University

Static Analysis Symposium, 2018

Why verify distributed protocols?

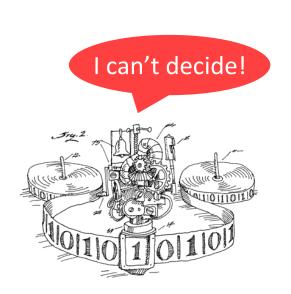
- Distributed systems are everywhere
 - Safety-critical systems
 - Cloud infrastructure



- Distributed systems are notoriously hard to get right
 - Even small protocols can be tricky
 - Bugs occur on rare scenarios
 - Testing is costly and not sufficient

Verifying distributed protocols is hard

- Infinite state-space
 - unbounded number of threads
 - unbounded number of messages
 - unbounded number of objects
- Asymptotic complexity of verification
 - Rice theorem
 - The ability of simple programs to represent complex behaviors



State of the art in formal verification

Automatic techniques

- Abstract Interpretation
- Model checking

Limited for infinite state systems due to undecidability

Deductive techniques

- SMT-based deduction + manual program annotations (e.g. Dafny)
 - Requires programmer effort to provide inductive invariants
 - SMT solver may diverge (matching loops, arithmetic)
 - Unpredictability, butterfly effect
- Interactive theorem provers (e.g. Coq, Isabelle/HOL, LEAN)
 - Programmer gives inductive invariant and proves it
 - Huge programmer effort (~10-50 lines of proof per line of code)

State of the art in formal verification

Proof Assistants

Ultimately limited by human

proof/code:

Verdi: ~10

IronFleet: ~4

Ultimately limited by undecidability

Model Checking Static Analysis

Automation

State of the art in formal verification

Proof Assistants

Ultimately limited by human

proof/code:

Verdi: ~10

IronFleet: ~4

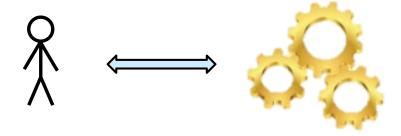
Interactive Verification

Ultimately limited by undecidability

Model Checking Static Analysis

Automation

Interactive Verification



Goals

- High degree of automation
- Expressiveness
- Predictability
- Comprehensibility for users
- Efficiency/scalability

Questions

- What is the role of the human?
- What is the role of the machine?
- How do they interact?

This talk

Interactive verification by

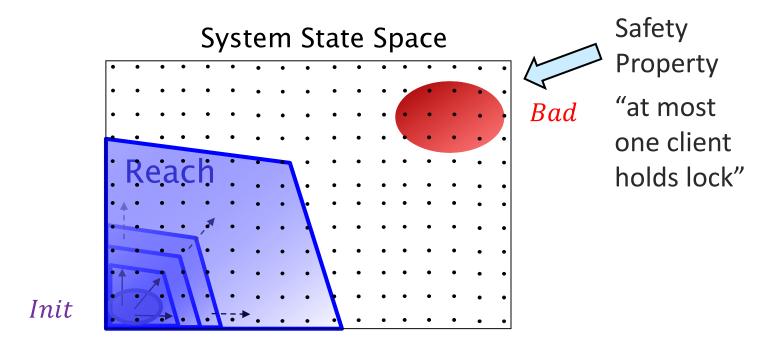
- (1) Deductive verification with decidable logic
 - Interaction based on candidate inductive invariants & counterexamples to induction
- (2) Interactive inference of universal invariants
 - Fine-grained interaction based on counterexamples to induction & diagrams
- (3) User-guided inference of phase invariants
 - Coarse-grained interaction based on phase sketches & relaxed traces

Realization in Ivy https://github.com/Microsoft/ivy

- (2) [PLDI'16] IVy: Safety Verification by Interactive Generalization.
 O. Padon, K. McMillan, A. Panda, M. Sagiv, S. Shoham
 - [OOPSLA'17] Paxos Made EPR: Decidable Reasoning about
- Distributed Protocols. O. Padon, G. Losa, W. Losa, M. Sagiv, S. Shoham

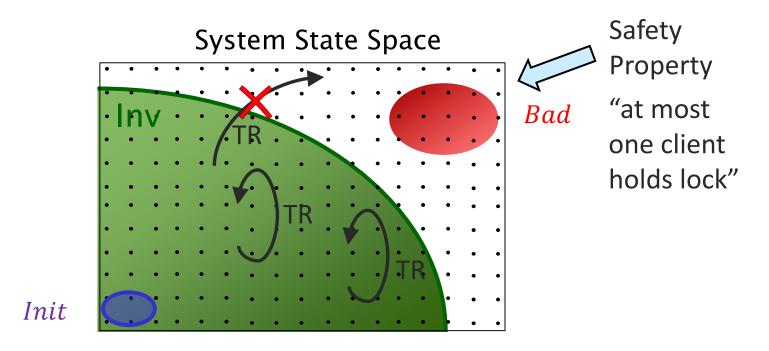
 PLDI'18] Modularity for decidability of deductive verification with applications to distributed systems. M. Taube, G. Losa, W. McMillan. O. Padon, M. Sagiv, S. Shoham, J. Wilcox, D. Woos
 - (3) [sub] Inferring Phase Invariants from Phase Sketches. Y. Feldman, J. Wilcox, S. Shoham, M. Sagiv

Safety Verification



System S is **safe** if all the **reachable** states satisfy the property $P = \neg Bad$

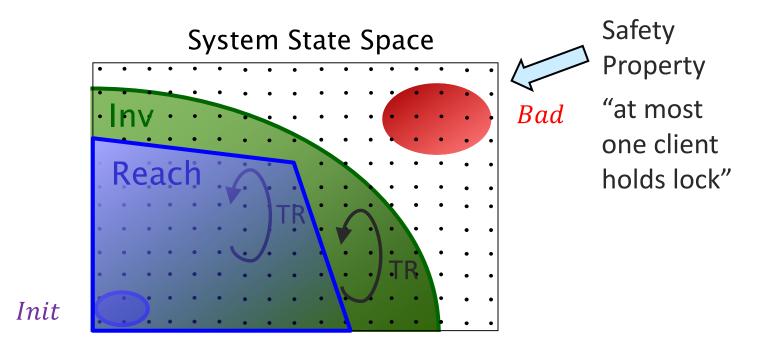
Inductive Invariants



System S is **safe** if all the **reachable** states satisfy the property $P = \neg Bad$ System S is safe iff there exists an **inductive invariant** Inv:

$$Init \Rightarrow Inv$$
 (Initiation)
 $Inv \wedge TR \Rightarrow Inv'$ (Consecution)
 $Inv \Rightarrow \neg Bad$ (Safety)

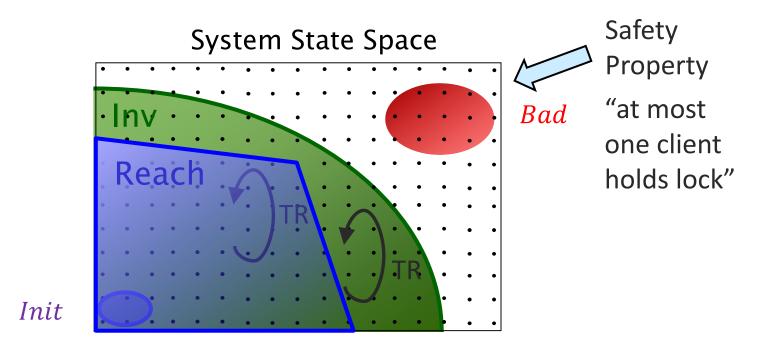
Inductive Invariants



System S is **safe** if all the **reachable** states satisfy the property $P = \neg Bad$ System S is safe iff there exists an **inductive invariant** Inv:

$$Init \Rightarrow Inv$$
(Initiation) $Inv \land TR \Rightarrow Inv'$ (Consecution) $Inv \Rightarrow \neg Bad$ (Safety)
Verification Conditions (VC)

Inductive Invariants



System S is **safe** if all the **reachable** states satisfy the property $P = \neg Bad$ System S is safe iff there exists an **inductive invariant** Inv:

$$Init \Rightarrow Inv$$
(Initiation) $Init \land \neg Inv \equiv \bot$ $Inv \land TR \Rightarrow Inv'$ (Consecution) $Inv \land TR \land \neg Inv' \equiv \bot$ $\lor \lor \lor$ $Inv \Rightarrow \neg Bad$ (Safety) $Inv \land Bad \equiv \bot$

Challenges in Safety Verification

Formal specification: reasoning about infinite-state systems

Modeling the system, the property and the inductive invariant

Deduction: checking validity of the VCs

- Undecidability of implication checking (unsatisfiability)
 - Unbounded state (threads, messages), arithmetic, quantifiers,...

Inference: inferring inductive invariants (Inv)

- Hard to specify
- Hard to infer automatically
 - Undecidable even when deduction is decidable

Ivy: Restrict VC's to decidable logic

Effectively Propositional Logic – EPR

Decidable fragment of first order logic

- + Quantification (∃*∀*) Theories (e.g., arithmetic)
 - Allows quantifiers to reason about unbounded sets
 - $\forall x,y$. holds_lock(x) \land holds_lock(y) \rightarrow x = y
 - © Satisfiability is decidable => Deduction is decidable
 - Small model property => Finite cex to induction
 - © Turing complete modeling language
 - Limited language for safety and inductive invariants
 - Suffices for many infinite-state systems

Successful verification with EPR

- Shape Analysis
 [Itzhaky et al. CAV'13, POPL'14, CAV'14, Karbyshev et al. CAV'15]
- Software-Defined Networks [Ball et al. PLDI'14]
- Distributed Protocols [Padon et al. PLDI'16, OOPSLA'17, POPL'18, Taube et al. PLDI'18]
- Concurrent Modification Errors in Java [Frumkin et al. VMCAl'17]

More in Ken & Oded's tutorial

Challenges for verification with EPR

Formal specification: reasoning about infinite-state systems

• Modeling the system, the property and the inductive invariant in EPR

Deduction: checking validity of the VCs

- Undecidability of implication checking (unsatisfiability)
 - Unbounded state (threads, messages), arithmetic, quantifiers,...

Inference: inferring inductive invariants (Inv)

- Hard to specify
- Hard to infer automatically
 - Undecidable even when deduction is decidable

Challenges for verification with EPR

Formal specification: reasoning about infinite-state systems

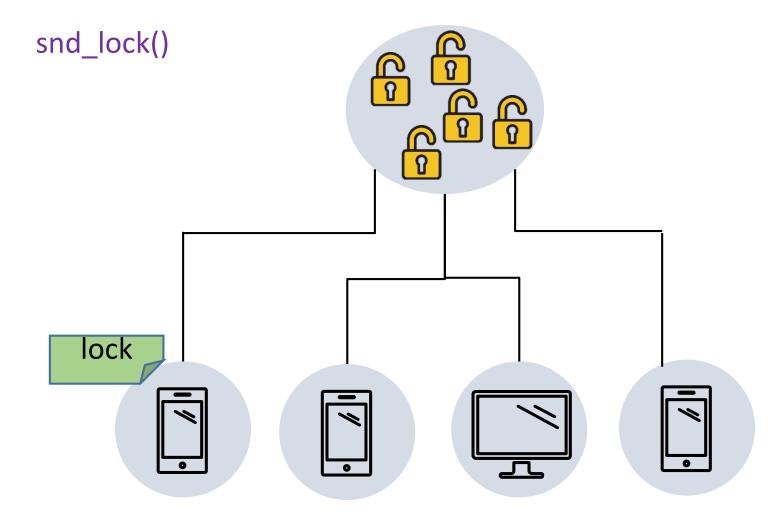
• Modeling the system, the property and the inductive invariant in EPR

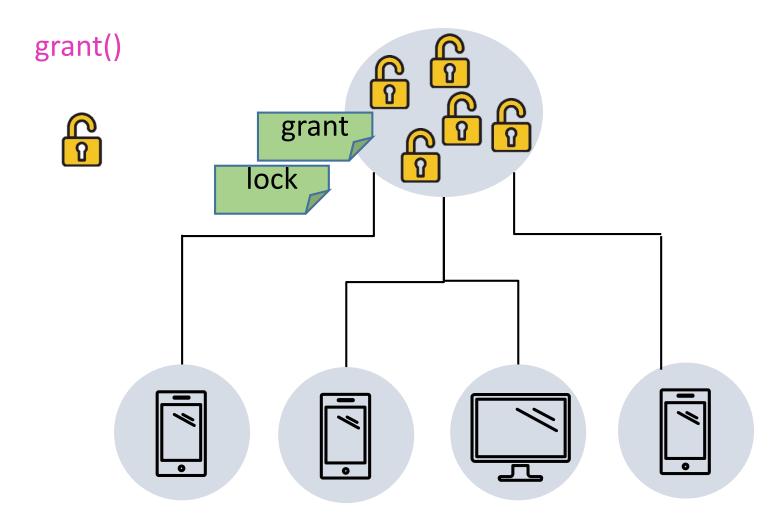
Deduction: checking validity of the VCs

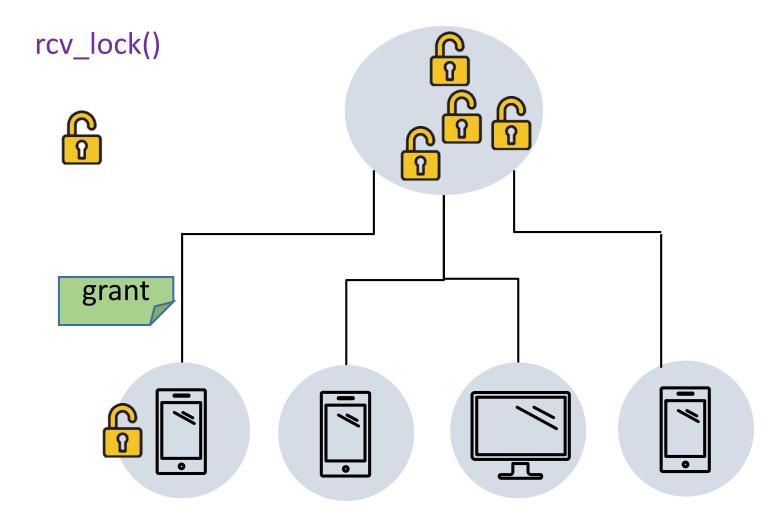
- Undecidability of implication checking (unsatisfiability)
 - Unbounded state (threads, messages), arithmetic, quantifiers,...

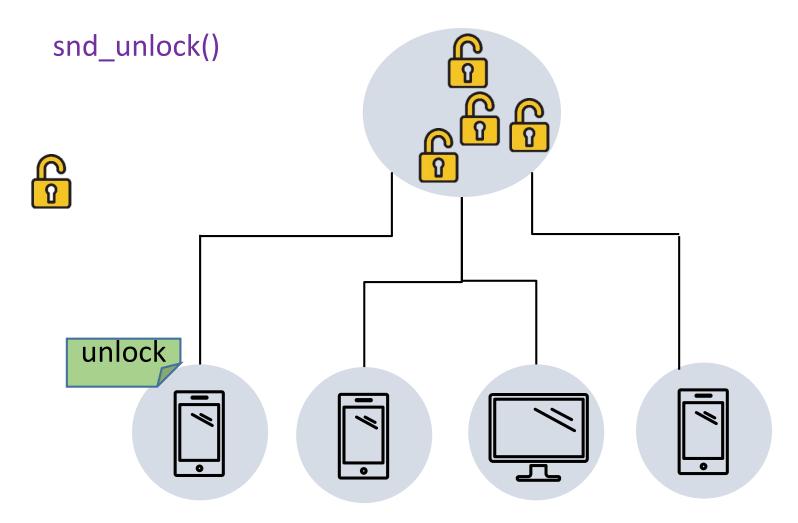
Inference: inferring inductive invariants (Inv) interactively

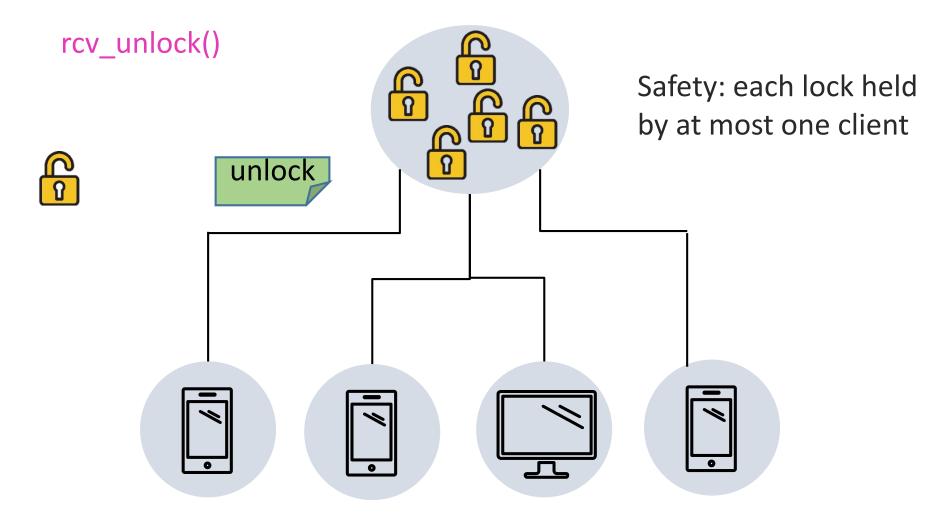
- Hard to specify
- Hard to infer automatically
 - Undecidable even when deduction is decidable











server clients network

Modeling in Ivy (EPR)

- State: finite first-order structure over vocabulary V
 - free (LOCK)
 - held_by (LOCK, CLIENT)
 - lock_msg (CLIENT, LOCK)
 - grant_msg (CLIENT, LOCK)
 - unlock_msg (CLIENT, LOCK)

Global state of messages in flight

Modeling in Ivy (EPR)

- State: finite first-order structure over vocabulary V
- Transition relation: EPR formula TR(V, V')

```
action \operatorname{snd\_lock}(c: \mathsf{C}, \ell: \mathsf{L})\{ \operatorname{lock\_msg}(c, \ell) := \operatorname{true} \}
```

```
action grant (c: C, \ell: L) { ... }
```

```
action rcv_lock (c: C, \ell: L){ ... }
```

```
action snd_unlock (c: C, \ell: L){ ... }
```

action $rcv_unlock(c: C, \ell: L)\{ ... \}$

```
\exists c, \ell. \ \forall x,y. \ \mathsf{lock\_msg'}(x,y) \longleftrightarrow (\mathsf{lock\_msg}(x,y) \lor (x=c \land y=\ell))
 \land \ \mathsf{grant\_msg'}(x,y) \longleftrightarrow \mathsf{grant\_msg}(x,y)
 \land \ \mathsf{free'}(y) \longleftrightarrow \mathsf{free}(y) ....
\lor \exists c, \ell. ...
```

Modeling in Ivy (EPR)

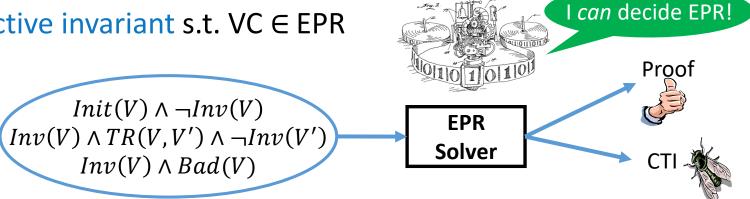
- State: finite first-order structure over vocabulary V
- Transition relation: EPR formula TR(V, V')
- Initial states and safety property: EPR formulas over V
 - Init(V) initial states, e.g., $\forall c, \ell$. $\neg lock_msg(c, \ell)$
 - Bad(V) bad states, e.g.,
 - $\exists \ell, c_1, c_2$. held_by $(\ell, c_1) \land \text{held_by } (\ell, c_2) \land c_1 \neq c_2$

Verification in Ivy (EPR)

- State: finite first-order structure over vocabulary V
- Transition relation: EPR formula TR(V, V')
- Initial states and safety property: EPR formulas over V
 - Init(V) initial states, e.g., $\forall c, \ell$. $\neg lock_msg(c, \ell)$
 - Bad(V) bad states, e.g.,

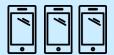
$$\exists \ell, c_1, c_2$$
. held_by $(\ell, c_1) \land \text{held_by } (\ell, c_2) \land c_1 \neq c_2$

Inductive invariant s.t. VC ∈ EPR



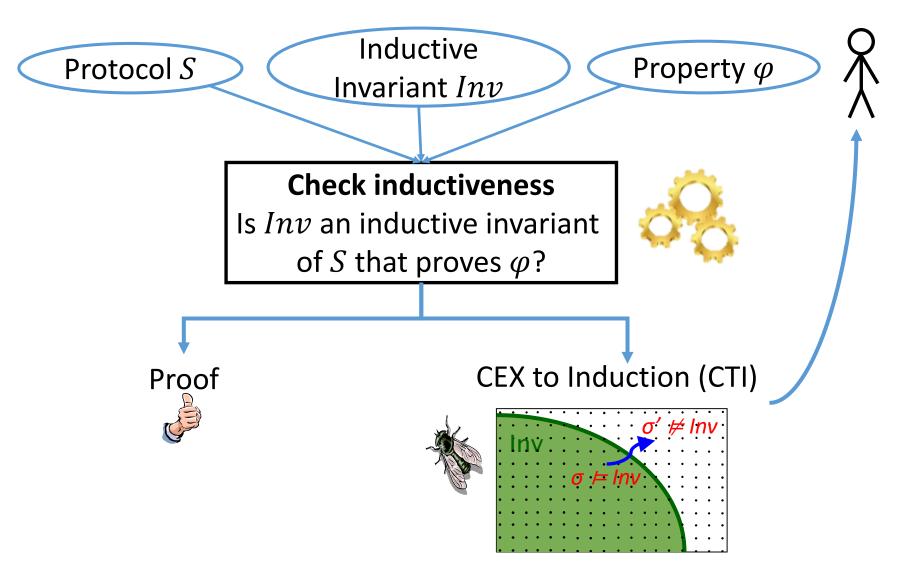
- State: finite first-order structure over vocabulary V
- Transition relation: EPR formula TR(V, V')
- Initial states and safety property: EPR formulas over V
 - Init(V) initial states, e.g., $\forall c, \ell$. ¬lock_msg(c, ℓ)
 - Bad(V) bad states, e.g.,

Specify and verify the protocol for any number of clients and locks

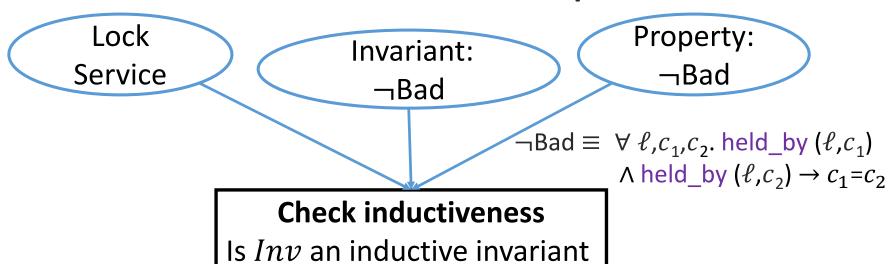


Interactive Invariant Inference

(1) Interaction based on CTIs

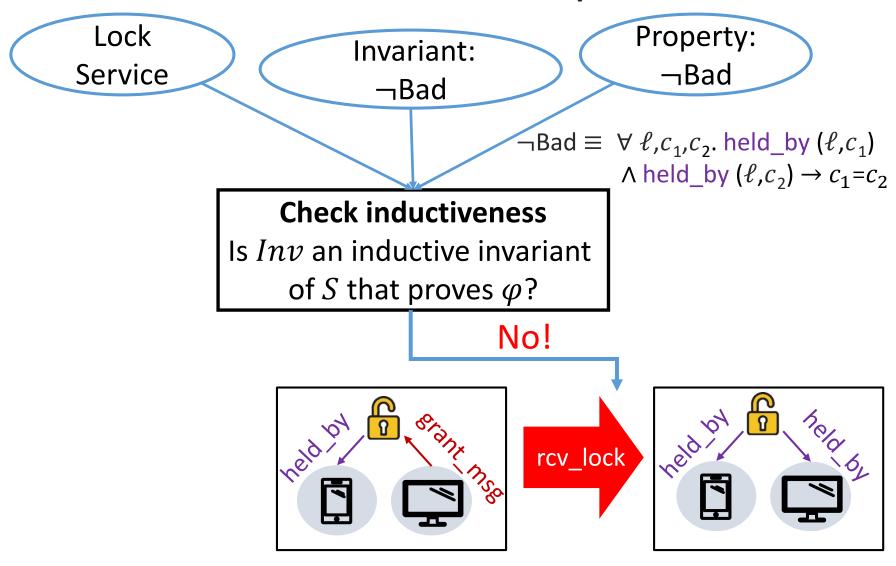


Lock Server Example



of S that proves φ ?

Lock Server Example



Inductive Invariant for Lock Server

server clients network

```
\neg \mathsf{Bad}_{\geqslant} I_0 = \forall \ \ell, \ c_1, c_2. \ \mathsf{held\_by}(\ell, c_1) \land \mathsf{held\_by}(\ell, c_2) \rightarrow c_1 = c_2
              I_1 = \forall \ell, c_1, c_2. \neg (grant_msg(c_1, \ell) \land held_by(\ell, c_2))
              I_2 = \forall \ell, c_1, c_2. \neg (unlock_msg(c_1, \ell) \land held_by(\ell, c_2))
               I_3 = \forall \ell, c_1, c_2. \neg (unlock_msg(c_1, \ell) \land grant_msg(c_2, \ell))
               I_4 = \forall \ell, c_1, c_2. \operatorname{grant}_{\mathsf{msg}}(c_1, \ell) \land \operatorname{grant}_{\mathsf{msg}}(c_2, \ell) \rightarrow c_1 = c_2
              I_5 = \forall \ell, c_1, c_2 unlock_msg(c_1, \ell) \land \text{unlock_msg}(c_2, \ell) \rightarrow c_1 = c_2
              I_6 = \forall \ell, c. \neg (grant msg(c,\ell) \land free(\ell))
               I_7 = \forall \ell, c. \neg (\text{held by}(\ell, c) \land \text{free}(\ell))
               I_{\aleph} = \forall \ell, c. \neg (\text{unlock msg}(c, \ell) \land \text{free}(\ell))
```

Inductive Invariant for Lock Server

server clients network

```
\neg \mathsf{Bad}_{\geqslant} I_0 = \forall \ \ell, \ c_1, c_2. \ \mathsf{held\_by}(\ell, c_1) \land \mathsf{held\_by}(\ell, c_2) \rightarrow c_1 = c_2
             I_1 = \forall \ell, c_1, c_2. \neg (grant_msg(c_1, \ell) \land held_by(\ell, c_2))
             I_2 = \forall \ell, c_1, c_2. \neg (unlock_msg(c_1, \ell) \land held_by(\ell, c_2))
             I_3 = \forall \ell, c_1, c_2. \neg (unlock\_msg(c_1, \ell) \land grant\_msg(c_2, \ell))
             I_4 = \forall \ell, c_1, c_2 grant_msg(c_1, \ell) \land \text{grant_msg}(c_2, \ell) \rightarrow c_1 = c_2
             I_5 = \forall \ell, c_1, c_2 unlock_msg(c_1, \ell) \land \text{unlock_msg}(c_2, \ell) \rightarrow c_1 = c_2
             I_6 = \forall \ell, c. \neg (grant msg(c,\ell) \land free(\ell))
             I_7 = \forall \ell, c. \neg (\text{held by}(\ell, c) \land \text{free}(\ell))
                                                                                                        I can decide EPR!
             I_8 = \forall \ell, c. \neg (unlock_msg(c,\ell) \land free(\ell))
                                   Init(V) \land \neg Inv(V)
                                                                                                                    Proof
                                                                                         EPR
                          Inv(V) \wedge TR(V,V') \wedge \neg Inv(V')
                                                                                       Solver
                                    Inv(V) \wedge Bad(V)
```

Protocol	Model [LOC]	Invariant [conjectures]	Time [sec]
Leader in Ring	59	4	1.5
Learning Switch	50	5	1.5
DB Chain Replication	143	9	1.7
Chord	155	12	2.4
Lock Server (500 Coq lines [Verdi])	122	9	2
Distributed Lock (1 week [IronFleet])	41	7	1.4
Single Decree Paxos (+liveness)	85	11	10.7
Multi-Paxos (+liveness)	98	12	14.6
Vertical Paxos*	123	18	2.2
Fast Paxos	117	17	6.2
Flexible Paxos	88	11	2.2
Stoppable Paxos (+liveness) *	132	16	18.4
Ticket Protocol (+liveness)	86	37	6
Alternating Bit Protocol (+liveness)	161	35	10
TLB Shootdown (+liveness) *	385	91	380 (FOL)

Proof / code ratio:

IronFleet: ~4

Verdi: ~10

Ivy: ~0.2

* first mechanized proof

Protocol	Model [LOC]	Invariant [conjectures]	Time [sec]
Leader in Ring	59	4	1.5
Learning Switch	50	5	1.5
DB Chain Replication	143	9	1.7
Chord	155	12	2.4
Lock Server (500 Coq lines [Verdi])	122	9	2
Distributed Lock (1 week [IronFleet])	41	7	1.4
Single Decree Paxos	OΕ	11	10.7

Proof / code ratio:

IronFleet: ~4

Verdi: ~10

Ivy: ~0.2

Can we further assist the user in finding Inv?

Stoppable Paxos (+liveness) *	132	16	18.4
Ticket Protocol (+liveness)	86	37	6
Alternating Bit Protocol (+liveness)	161	35	10
TLB Shootdown (+liveness) *	385	91	380 (FOL)

IVy: Safety Verification by Interactive Generalization [PLDI'16]

Oded Padon

TEL AVIV NUCCEI AVIV

Kenneth McMillan

Microsoft
Research

Aurojit Panda

Mooly Sagiv

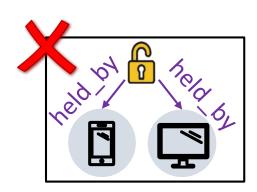
Sharon Shoham

IVy: https://github.com/Microsoft/ivy

∀* Inductive Invariant for Lock Server

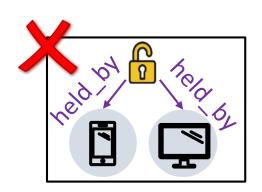
$$\neg \text{Bad} = I_0 = \forall \ \ell, \ c_1, c_2. \ \text{held_by}(\ell, c_1) \land \text{held_by}(\ell, c_2) \rightarrow c_1 = c_2$$

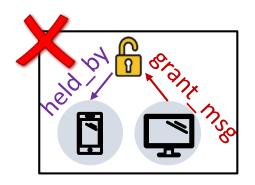
$$I_0 \equiv \neg \exists \ell, c_1, c_2. \ \text{held_by}(\ell, c_1) \land \text{held_by}(\ell, c_2) \land c_1 \neq c_2$$



∀* Inductive Invariant for Lock Server

```
\neg \mathsf{Bad} = I_0 = \forall \ \ell, \ c_1, c_2. \ \mathsf{held\_by}(\ell, c_1) \land \mathsf{held\_by}(\ell, c_2) \to c_1 = c_2 I_0 \equiv \neg \exists \ell, \ c_1, c_2. \ \mathsf{held\_by}(\ell, c_1) \land \mathsf{held\_by}(\ell, c_2) \land c_1 \neq c_2 I_1 = \forall \ \ell, \ c_1, c_2. \ \neg (\mathsf{grant\_msg}(c_1, \ell) \land \mathsf{held\_by}(\ell, c_2)) I_1 \equiv \neg \exists \ell, \ c_1, c_2. \ \mathsf{grant\_msg}(c_1, \ell) \land \mathsf{held\_by}(\ell, c_2) \vdots
```





Universally quantified invariant = excluded (partial) states => Find invariant by excluding (partial) states

From states to conjectures

Diagram generalizes states

state σ is a finite first-ord

$$Diag(\sigma) =$$

$$\exists x : L, y : C, z : C . y \neq z \land \neg free(x)$$

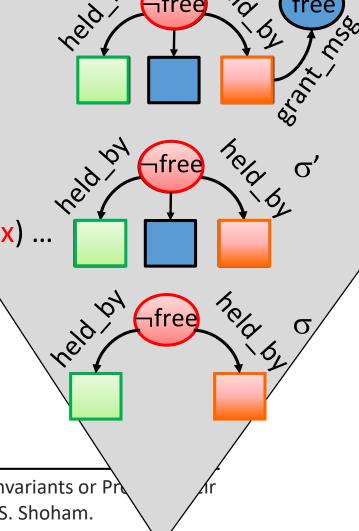
$$\land held_by(x, y) \land held_by(x, z)$$

$$\land \neg grnt_msg(y, x) \land \neg grnt_msg(z, x) ..$$

 $\sigma' \models Diag(\sigma)$ iff σ is a substructure of σ'

 σ is obtained from σ' by removing elements and projecting relations on remaining elements

$$exclude(\sigma) = \neg Diag(\sigma)$$



[CAV'15, JACM'17] Property-Directed Inference of Universal Invariants or Ph Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.

From states to conjectures

Generalizes even more if σ is a partial structure

Diag(
$$\sigma$$
) =
 $\exists x : L, y : C, z : C . y \neq z \land$
 $\land \text{held_by}(x, y) \land \text{held_by}(x, z)$

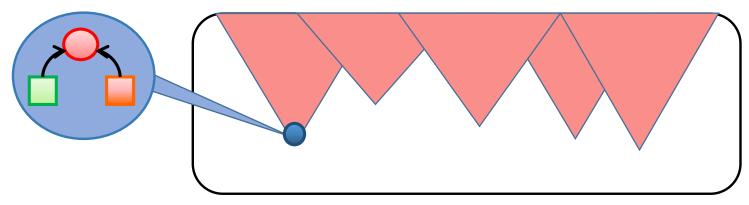
 $exclude(\sigma) = \neg Diag(\sigma)$

free

[CAV'15, JACM'17] Property-Directed Inference of Universal Invariants or Ph Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.

∀* Invariant - excluded substructures

Inv
$$\equiv \forall \bar{x}. (l_{1,1}(\bar{x}) \lor ... \lor l_{1,m}(\bar{x})) \land ... \land \forall \bar{x}. (l_{n,1}(\bar{x}) \lor ... \lor l_{n,m}(\bar{x}))$$
clause / conjecture



Inv
$$\equiv \neg \exists \overline{x}. (\neg l_{1,1}(\overline{x}) \land ... \land \neg l_{1,m}(\overline{x})) \land ... \land \neg \exists \overline{x}. (\neg l_{n,1}(\overline{x}) \land ... \land \neg l_{n,m}(\overline{x}))$$
cube

[PLDI16] Find the partial states to exclude *interactively*

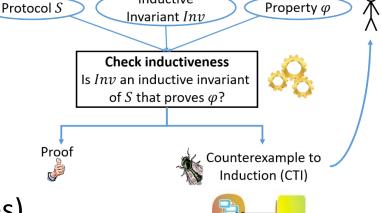
(2) Fine-Grained Interaction for ∀* Inv

$$Inv = I_0 \wedge \cdots \wedge I_k$$

Displays "minimal" CTI to exclude

Generalizes to a partial state

- removes "irrelevant" facts
- graphical interface (checkboxes)



Inductive

Translates to universally quantified conjecture

uses diagram

Provides auxiliary automated checks:

- 1. BMC(K): uses SAT solver to check if conjecture is true up to K
 - User determines the right K to use
- 2. ITP(K): uses SAT solver to discover more facts to remove

Examines the proposed conjecture – it could be wrong Adds I_{k+1}

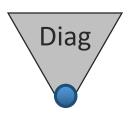
Verified protocols [PLDI16]

Protocol	Model (# LOC)	Property (# Literals)	Invariant (# Literals)	Iterations
Leader in Ring	59	3	12	3
Learning Switch	50	11	18	3
DB Chain Replication	143	11	35	7
Chord (partial)	155	35	46	4
Lock Server (500 Coq lines [Verdi])	122	3	21	8
Distributed Lock (1 week [IronFleet])	41	3	26	12

User is involved in discovering each conjecture! Can we automate this process?

UPDR: Automatic Invariant Inference

- Based on Bradley's IC3/PDR [VMCAI11,FMCAD11]
 - SAT-based verification of finite-state systems
 - Backward traversal to show absence of CEX of bounded length
 - Unreachable states generalized and blocked using lemmas
- UPDR abstracts concrete states using their diagram
- => Infers ∀* inductive invariants



- [CAV'15, JACM'17] Property-Directed Inference of Universal Invariants or Proving Their Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.
- [VMCAI'17] Property Directed Reachability for Proving Absence of Concurrent
 Modification Errors, A. Frumkin, Y. Feldman, O. Lhoták, O. Padon, M. Sagiv and S. Shoham.

But...

- Automatic invariant inference is limited
 - Infinite search space
 - Undecidable to infer ∀* invariants [POPL'16]

- Goal: let the user guide the tool
 - User has intuition about the essence of the proof
 - Computer is good at handling corner cases

How can the user convey their intuition to the inference procedure?

• [POPL'16] Decidability of Inferring Inductive Invariants, O. Padon, N. Immerman, S. Shoham, A. Karbyshev, and M. Sagiv.

Inferring Phase Invariants from Phase Sketches

Yotam Feldman

TEL AVIV NUICE UNIVERSITY AKE'S UNIVERSITY

James Wilcox

W
UNIVERSITY of
WASHINGTON

Sharon Shoham

Mooly Sagiv

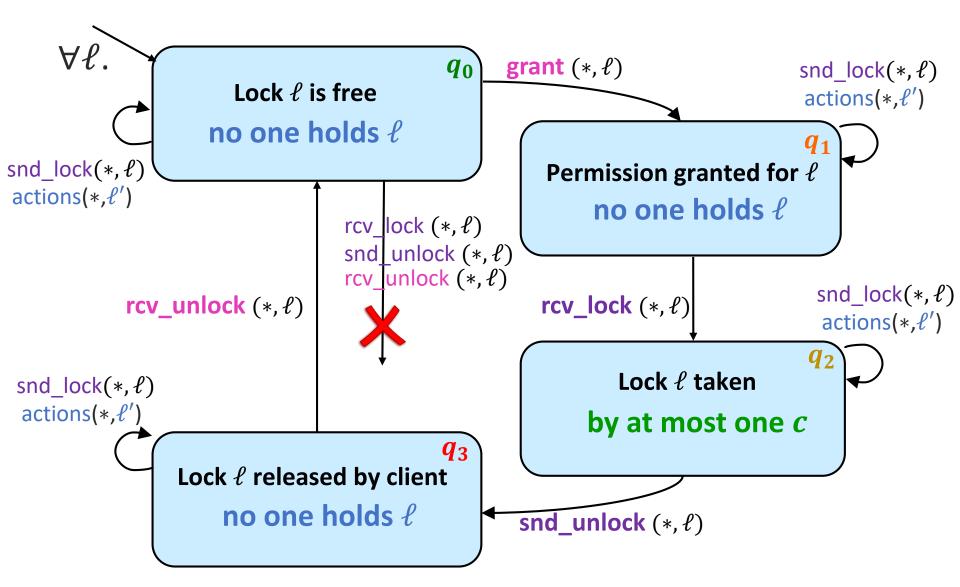
Phase Invariants

- Idea: add structure to the inductive invariant
- User provides the structure as "hints" to automatic inference

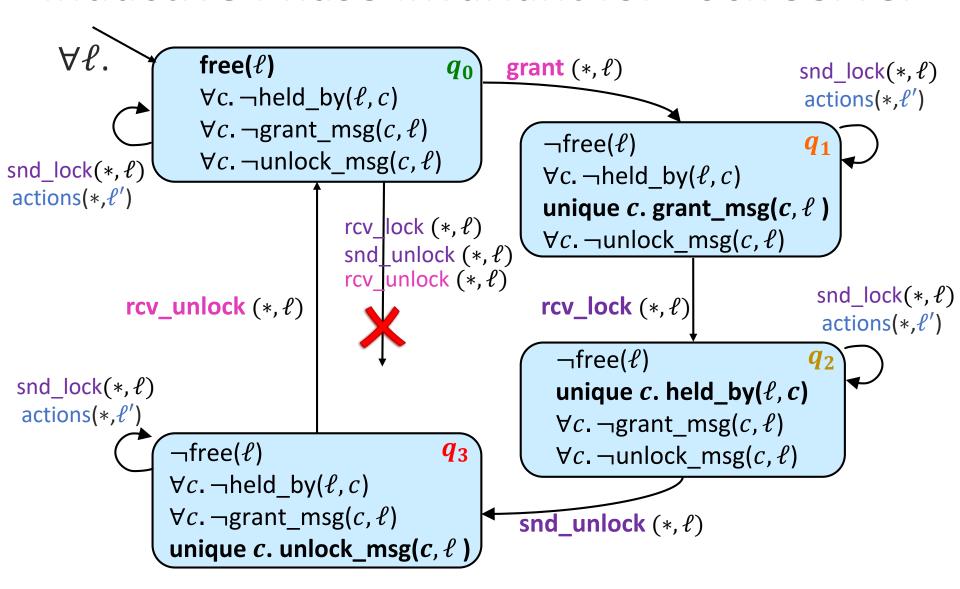
Reminder: Ind. Inv. for Lock Server

```
I_0 = \forall \ell, c_1, c_2. held_by(\ell, c_1) \land \text{held_by}(\ell, c_2) \rightarrow c_1 = c_2
I_1 = \forall \ell, c_1, c_2. \neg (grant_msg(c_1, \ell) \land held_by(\ell, c_2))
I_2 = \forall \ell, c_1, c_2. \neg(unlock msg(c_1, \ell) \land \text{held by}(\ell, c_2))
I_3 = \forall \ell, c_1, c_2. \neg(unlock msg(c_1, \ell) \land \text{grant msg}(c_2, \ell))
I_4 = \forall \ell, c_1, c_2 grant_msg(c_1, \ell) \land grant_msg(c_2, \ell) \rightarrow c_1 = c_2
I_5 = \forall \ell, c_1, c_2. unlock_msg(c_1, \ell) \land unlock_msg(c_2, \ell) \rightarrow c_1 = c_2
I_6 = \forall \ell, c. \neg (grant\_msg(c,\ell) \land free(\ell))
I_7 = \forall \ell, c. \neg (\text{held by}(\ell, c) \land \text{free}(\ell))
I_{\Omega} = \forall \ell, c. \neg (unlock_msg(c,\ell) \land free(\ell))
```

Phase Structure of Lock Server's Proof



Inductive Phase Invariant for Lock Server



Inductive Phase Invariant for Lock Server

```
free(\ell)
                                                                q_0
                                                                        grant (*, \ell)
                                                                                                                   snd lock(*,\ell)
                            \forall c. \neg held_by(\ell, c)
                                                                                                                    actions(*,\ell')
                           \forall c. \neg \mathsf{grant} \; \mathsf{msg}(c, \ell)
                                                                              ¬free(ℓ)
                           \forall c. \neg \mathsf{unlock\_msg}(c, \ell)
snd_lock(*, \ell)
                                                                             \forall c. \neg held_by(\ell, c)
actions(*,\ell')
                                                                              unique c. grant_msg(c, \ell)
                                                rcv_lock (*, ℓ)
                                                                             \forall c. \neg unlock msg(c, \ell)
                                                 snd unlock (*, \ell)
```

```
\begin{array}{l} \text{Initiation: } Init \Rightarrow \varphi_{q_0} \\ \text{Instead of monolithic consecution} \end{array} \begin{cases} \text{Inductive: } \varphi_{q_0} \wedge TR_{\operatorname{grant}(*,\ell)} \Rightarrow \varphi'_{q_1} \\ \varphi_{q_0} \wedge (TR_{\operatorname{request}(*,\ell)} \vee TR_{\operatorname{actions}(*,\ell')}) \Rightarrow \varphi'_{q_0} \\ \text{Covers: } \varphi_{q_0} \wedge TR \Rightarrow TR_{\operatorname{grant}(*,\ell)} \vee TR_{\operatorname{request}(*,\ell)} \vee TR_{\operatorname{actions}(*,\ell')} \\ \text{Safe: } \varphi_{q_0} \Rightarrow \forall \ c_1, c_2. \ \operatorname{held\_by}(\ell, c_1) \wedge \operatorname{held\_by}(\ell, c_2) \rightarrow c_1 = c_2 \end{cases}
```

Guiding Inference by Phase Structure

- 1. **User** provides the **phase structure** as the proof's **essence**
- 2. Automatically infer phase characterizations for a full formal proof



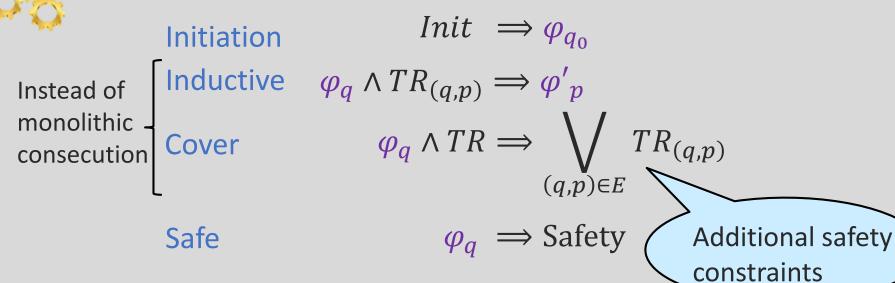
Guiding Inference by Phase Structure



Guiding Inference by Phase Structure

$$q_0$$
 grant $(*,\ell)$ snd_lock $(*,\ell)$ actions $(*,\ell')$

Infer phase characterizations φ_{q_0} , φ_{q_1} , φ_{q_2} , φ_{q_3} s.t.



Phase-UPDR: Inference of \forall^* characterization

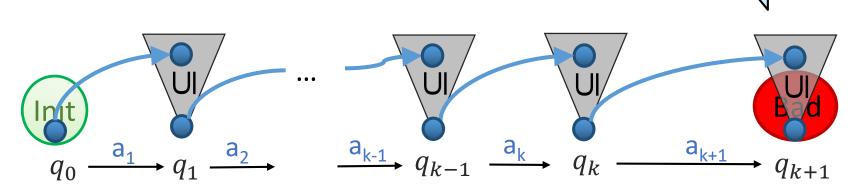
^{*} System of *linear* second-order Constrained Horn Clauses (CHCs)

Phase-UPDR: Possible outcomes

- Universal phase characterizations found
 - System is safe

Phase-UPDR: Possible outcomes

- Universal phase characterizations found
 - System is safe
- Abstract counterexample:
 - Safety not determined*
 - But no universal phase characterizations exist!



Safety violation:

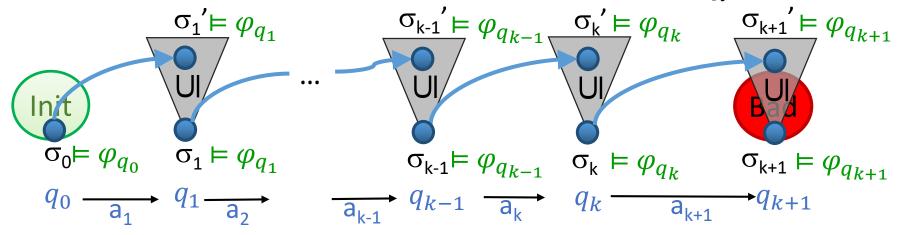
Original, or

Edge covering

^{*} can use Bounded Model Checking to find real counterexamples

Proving absence of universal phase characterizations

Suppose that universally quantified characterizations ϕ_{q_i} exist. Then:



 φ_{q_0} satisfies initiation: $\sigma_0 \models \text{Init} \Rightarrow \sigma_0 \models \varphi_{s_0}$

 $\varphi_{q_{i-1}}$ is inductive: $\sigma_{i-1} \vDash \varphi_{q_{i-1}} \land \operatorname{TR}_{a_{i-1}}(\sigma_{i-1}, \sigma'_i) \Rightarrow \sigma'_i \vDash \varphi_{q_i}$

Contradicts

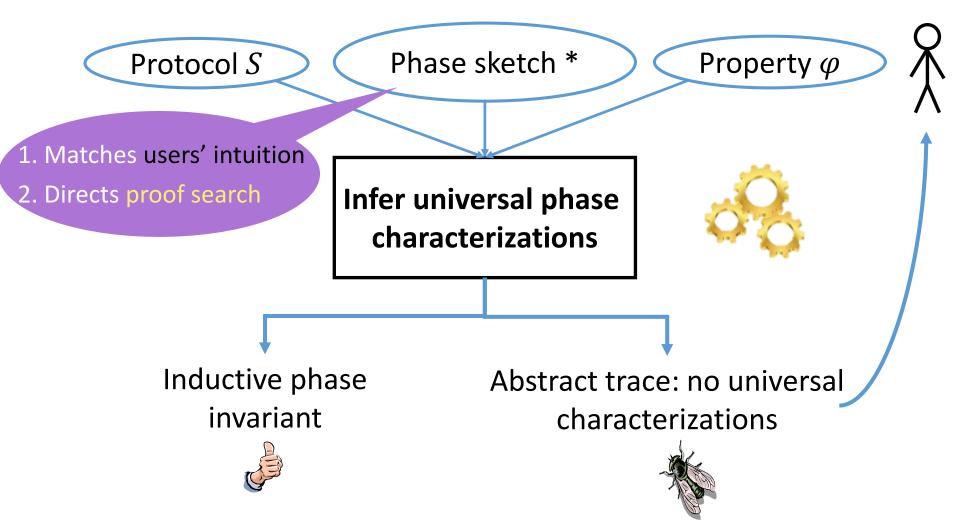
safety!

 φ_{q_i} is universal: $\sigma'_i \models \mathsf{Diag}(\sigma_i) \Rightarrow \sigma_i \models \varphi_{q_i}$

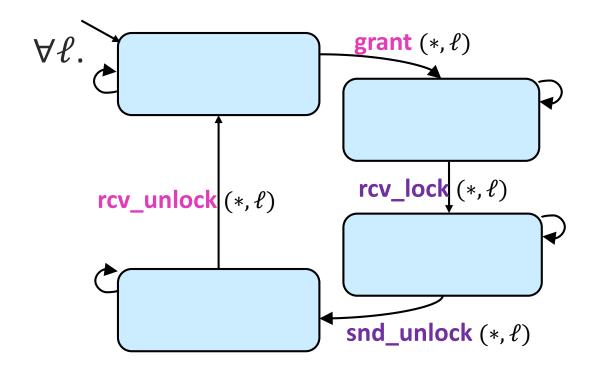
If there exist $\varphi_{q_i} \in \forall^*$, then any **abstract trace** does not reach Bad

→ An abstract trace to Bad implies no universal phase characterizations

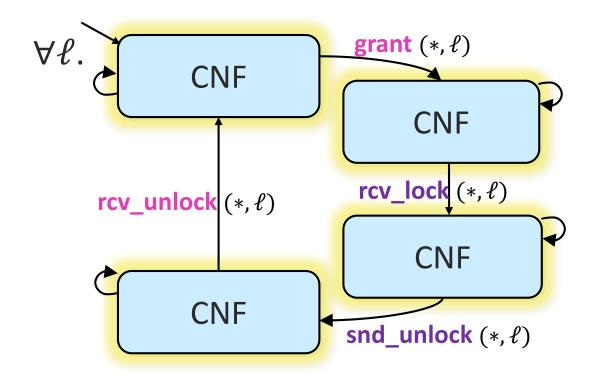
(3) Interaction based on phase sketches



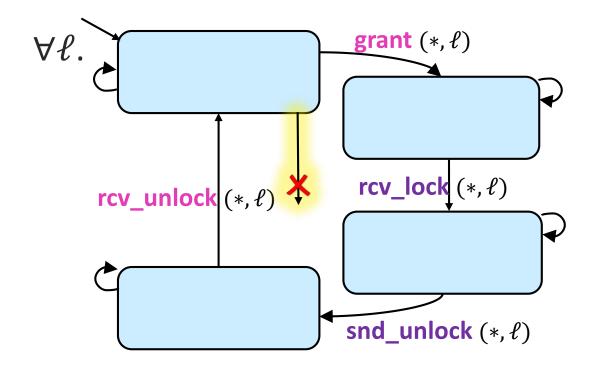
^{*} Phase structure, possibly with partial phase characterizations



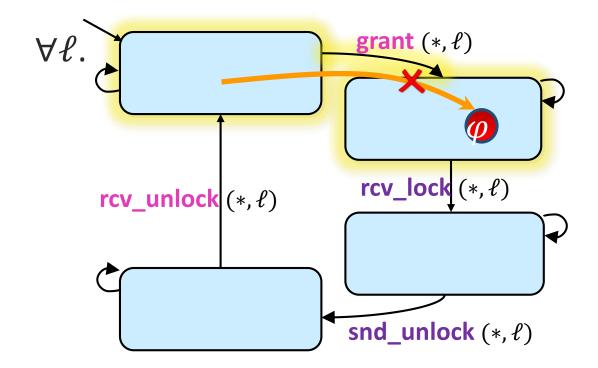
Disjunctive structure



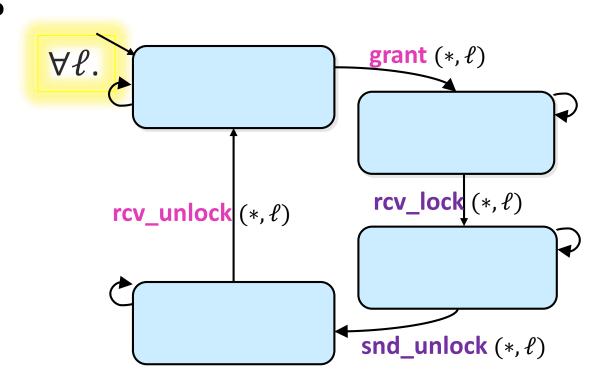
- Disjunctive structure
- Impossible transitions



- Disjunctive structure
- Impossible transitions
- Generalization w.r.t. subsystem



- Disjunctive structure
- Impossible transitions
- Generalization w.r.t. subsystem
- Arity reduction?

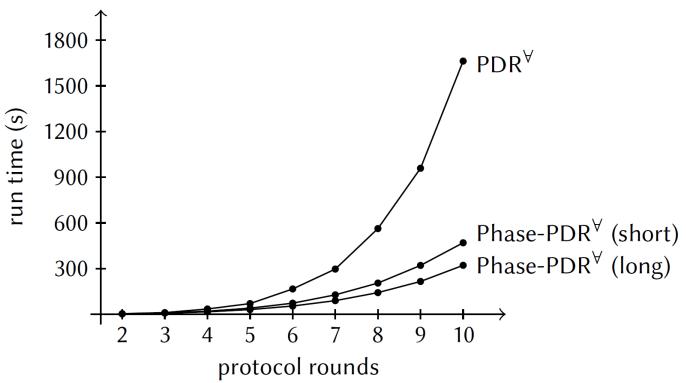


Evaluation

Protocol	Phase Sketch * [min]	Phase Structure [min]	Inductive Invariant [min]
Lock server (single lock)	00:05	00:04	00:21
Lock server (multiple locks)	00:10	00:11	00:22
Ring leader election	00:12	00:03	02:04
Simple consensus	03:04	02:07	01:27
Sharded KV (basic, one key)	00:02	00:03	00:08
Sharded KV (basic, multiple keys)	00:05	00:08	00:06
Sharded KV (w/ retransmissions)	03:01	38:17	> 3 hours

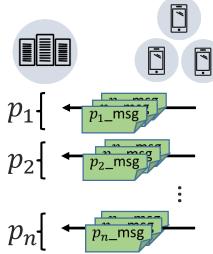
^{*} With partial phase characterizations

Structure and Scaling



n-phase commit: $- \text{start } p_{i+1} \text{ when } \forall c. p_{i-} \text{msg}(c)$

- done when $\forall c. p_n \text{-msg}(c)$
- **Safety**: done → $\forall c. p_1$ _msg(c)



Summary

Interactive verification using decidable logic

- EPR decidable fragment of FOL
 - Deduction is decidable
 - Finite counterexamples to induction
- Interaction based on CTIs
- Fine-grained interaction based on diagrams
- Coarse-grained interaction based on phase sketches & relaxed traces

Find ways to guide verification tools!

- Dividing the problem between human and machine
- Other logics
- Inference schemes
- Forms of interaction
- Theoretical understanding of limitations and tradeoffs

Seeking postdocs and students

