SAT-Based

-
0 |

''''''
......

Its Relatio

nvariant In

n to Conce

Sharon Shoham

000

TELAVIV NU'0QNJIN
UNIVERSITY 2"TAN'IN

ference and
ot Learning

A

Mooly Sagiv James R. Wilcox

W
@O@ UNIVERSITY of

TEL AVIV NU'DT"IIN

UNIVERSITY 2INTR WASHINGTON

Yotam Feldman

000

TEL AVIV ND'0NXMIN
UNIVERSITY 2NN

#Y CERTORA

SAT-Based Invariant Inference

redicate abstraction

CAV’97, POPL02]

symbolic abstraction
[VMCAI'04,'16]

interpolation
[CAV’03, TACAS'06]

IC3/PDR
[VMCAI'11, FMCAD’11]

abduction
[OOPSLA’13]

SyGusS
[FMCAD’13,...]

ICE Iearning
[CAV’14, POPL15]

Why do they succeed?
Why do they fail?

(How can we make them
better?)

Goal

Understand SAT-based invariant inference
from the perspective of exact learning with queries

[POPL'20] Complexity and information in invariant inference. Feldman,
Immerman, Sagiv, Shoham

[POPL'21] Learning the boundary of inductive invariants. Feldman, Sagiv,
Shoham, Wilcox

[POPL'22] Property-directed reachability as abstract interpretation in the
monotone theory. Feldman, Sagiv, Shoham, Wilcox

[SAS’22] Invariant Inference With Provable Complexity From the
Monotone Theory. Feldman, Shoham

Safety of Transition Systems

(Un)reachability problem: no bad state is reachable from the initial states

Init: 0:
(x]_, ...,xn) =0..0 Vi) ey Yp = *
X1y ey Xy = (X1, ., Xp) +
Bad:

2 - y r) mod 2"
(X, X)) = 1.1 D1 V))

Inductive Invariants

(Un)reachability problem: no bad state is reachable from the initial states

Init: 0:
(x]_, ...,xn) =0..0 Vi) ey Yp = *
X1y ey Xy = (X1, ., Xp) +
Bad:

2+ (Y1, »Vn) (mod2™)

I
—
—

(X1, ey Xp)

Initiation: Init € [
Safety: INBad =0
Consecution: {I} 9 {I}

Inductive Invariants

(Un)reachability problem: no bad state is reachable from the initial states

Init: J:
(xl, ...,xn) =0..0 Vi) ey Yp = *

o X1 oo Xy = (1, e Xn) +

= 2 - y ey mod 2"
(X, s Xp) = 1.1 o) |)

I[: x, # 1

Inductive: S é%
I o

I: (xq,....,xn) # 1...1
Not inductive:

I =1

Invariant Inference

Goal: Find inductive invariants automatically

I[: x, # 1

Inductive: S @é
I o

I: (xq,....,xn) # 1...1
Not inductive:

I =1

SAT-based Invariant Inference

Goal: Find inductive invariants automatically

Means: Employ a SAT solver

I[: x, # 1

Inductive: S @(}%
I o

I: (xq,....,xn) # 1...1
Not inductive:

I =1

SAT-based Invariant Inference

Goal: Find inductive invariants automatically

Means: Employ a SAT solver

Init, Bad: formulas over V
o: formula over V, V'

SAT query Examples:

Initiation: Init A =1 unsat?
Safety: I A Bad unsat?
Cons.: I NSO NI unsat?

S K[=V e V]

Exact Concept Learning with
Equivalence & Membership Queries

Goal: learn an unknown concept @

learning algorithm . oracle
5498 isity,?

V' / X+counterexample
isity,?

v/ X+counterexamplé
does g3 E?

AVIX _
7

Membership Equivalence

[ML'87] Queries and Concept Learning. Angluin

SAT-Based Invariant Inference as
Inference with Queries

Goal: infer an unknown inductive invariant I

learning algorithm — Q oracle —»
inference algorithm SAT-solver
» A
Q
A
Q

Which SAT queries?

Algorithms cannot access the transition relation directly,
only through SAT queries

This Talk

Invariant Inference Exact Concept Learning

VS.

‘ - Query-based learning models for invariant inference
- Complexity lower and upper bounds for each model
- Invariant inference is harder than concept learning

- Complexity results for invariant inference algorithms
from concept learning algorithms

Inductiveness-Query Model

inference algorithm inductiveness-query oracle

a4 inductive?
>

v’/ X+counterexample

Aoy, ir.1.<.:Iuctive? {ai}
>

v/ [/ X+counterexample

A

i}

a; A & A —a; unsat?

A

Cex to Induction (CTI):
Transition (o,0") of § s.t.
o E a;, o' E [04]

ICE framework - Learn from examples:

Positive : o k=1 (e.g. initial)
Negative: o ¥ I (e.g., bad)
Implication: o E I impliesa’ =1 (CTI)

*ai=a;[V - V']
[CAV’14] ICE: A Robust Framework for Learning Invariants. Garg, Loding, Madhusudan, Neider

Inductiveness-Query Model

inference algorithm inductiveness-query oracle

a4 inductive?

»

v’/ X+counterexample

Ay ir.1.<.:Iuctive? {ai}
>

v/ [/ X+counterexample

A

i}

a; A 8 A —a; unsat?

A

Cex to Induction (CTI):
Transition (o,0") of § s.t.
o E a;, o' E [04]

ICE framework - Learn from examples:

Positive : o k=1 (e.g. initial)
Negative: o ¥ I (e.g., bad)
Implication: o E I impliesa’ =1 (CTI)

s it sufficient to capture existing SAT-based algorithms?

*ai=a;[V - V']
[CAV’14] ICE: A Robust Framework for Learning Invariants. Garg, Loding, Madhusudan, Neider

Interpolation-Based Inference

I = Init

k + 1 times

BMCK*1 (1,8, Bad) unsat

[CAV’03] Interpolation and SAT-Based Model Checking, McMillan

Interpolation-Based Inference

I = Init

BMCK (6(1), 6,Bad) unsat

[CAV’03] Interpolation and SAT-Based Model Checking, McMillan

Interpolation-Based Inference

I = Init

Interpolant | A |

BMCK (Interpolant, 6, Bad) unsat
6(I) <€ Interpolant

[CAV’03] Interpolation and SAT-Based Model Checking, McMillan

Interpolation-Based Inference

I = Init V Interpolant

BMCK (Interpolant, 6, Bad) unsat
6(I) <€ Interpolant

[CAV’03] Interpolation and SAT-Based Model Checking, McMillan

Interpolation-Based Inference

I = Init V Interpolant

Inductive ?

[CAV’03] Interpolation and SAT-Based Model Checking, McMillan

Interpolation-Based Inference

I = Init VvV Interpolant V Interpolant, V ...

k + 1 times

\
\

| Until I is inductive
))) 5
I > x-» S “

BMCK*1 (1,8, Bad) unsat

otherwise increase k
and start over

[CAV’03] Interpolation and SAT-Based Model Checking, McMillan

Computing an Interpolant

k times

[CAV’03] Interpolation and SAT-Based Model Checking, McMillan

Model-Based Interpolation

Init: 8
(X1, ., X)) =0..0 Viy ooy Yy = *

Bad X1y ey Xy = (X1, e, Xp) +

= 2)) ey mOd ZTl
(xl, ...,xn) =1..1 (yl yn) ()

Interpolant; = (x; =0Ax, =1AAxy_1=1Ax, =0)

o, =01..10 k times

I = Init 5(I)

[HVC’12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah
[LPAR’13] Instantiations, Zippers and EPR Interpolation. Bjgrner, Gurfinkel, Korovin, Lahav

Model-Based Interpolation

Init: J:
(X1, ., X)) =0..0 Yo Yn = %
X1y ey Xy = (Xq, e, Xp) +
fad 2+ (1,) ¥n) (mod 27)

1.1

(X1, o) Xp)

Interpolant; = (x;£0Ax, =1AAxy_1=1Ax, =0)

o, =01..10 k times

I = Init 0

[HVC’12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah
[LPAR’13] Instantiations, Zippers and EPR Interpolation. Bjgrner, Gurfinkel, Korovin, Lahav

Model-Based Interpolation
Init: o

(xli "';xn) =0..0 Vi) 2 Yn = *
Bad: X1y ey Xy = (X1, e, Xp) +
. 2 (yll . ;yn) (mOd Zn)
(X1, er Xp) =
Interpolant; = (//OA x%\ ‘AxXp_1=1Ax, =0)
o =01..10 k times

I = Init 0

[HVC’12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah
[LPAR’13] Instantiations, Zippers and EPR Interpolation. Bjgrner, Gurfinkel, Korovin, Lahav

Model-Based Interpolation
Init: o

(%1, ey Xp) =0..0 Yoy Yn = %
. X1y ey Xy = (Xq, e, Xp) +
=98 2+ (Y1) rYn) (mod 2"
(X1, ey Xp) =
Interpolant, = (//OA x%\ ‘Axp_1 =1 /%
o; =01..10 ti

I = Init 0

[HVC’12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah
[LPAR’13] Instantiations, Zippers and EPR Interpolation. Bjgrner, Gurfinkel, Korovin, Lahav

Model-Based Interpolation
Init: o

(xli "';xn) =0..0 Vi) 2 Yn = *
Bad: X1y ey Xy = (X1, e, Xp) +
. 2 (yll . ;yn) (mOd Zn)
(X1, er Xp) =
Interpolant; = (//OA x%\ ‘AxXp_1=1Ax, =0)
o =01..10 k times

I = Init 0

[HVC’12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah
[LPAR’13] Instantiations, Zippers and EPR Interpolation. Bjgrner, Gurfinkel, Korovin, Lahav

Model-Based Interpolation
Init: o

(xl,...,xn) =0..0 Vi) o) VYp = *
Bad: X1y ey Xy = (X1, e, Xp) +
. 2 (yll' ;yn) (mOd Zn)
(X1, er Xp) =
01 = 01...10 ktlmes

I = Init 0

[HVC’12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah
[LPAR’13] Instantiations, Zippers and EPR Interpolation. Bjgrner, Gurfinkel, Korovin, Lahav

Model-Based Interpolation

Init: S
(X1, ., X)) =0..0 Viy ooy Yy = *

Bad X1y ey Xy = (X1, e, Xp) +

- 2 y ey mod 2™
(x]_, ...,Xn) =1..1 (yl yn) ()

I — Inlt V (xn: O) é) k times

I = Init 5(1)

[HVC’12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah
[LPAR’13] Instantiations, Zippers and EPR Interpolation. Bjgrner, Gurfinkel, Korovin, Lahav

Model-Based Interpolation

Inferring invariant in DNF:

k(f% A ---Af,il)} V ..V k({”1’” A ---/\f’,{‘m)}

|
gen(oq) gen(om)

ITP-k:

[:= false

while (,,0') counterexample
to Inductive(d,]):

I := 1 Vv generalize(o')
generalize(d'):

drop literals from ¢’
while BMCX(¢”’, §, Bad) unsat

Inductiveness-Query Model

inference algorithm inductiveness-query oracle

a4 inductive?
>

v’/ X+counterexample

Ay ir.1.<.:Iuctive? {ai}
>

v/ [/ X+counterexample

i}

[:= false I inductive?
while|[(,o") counter‘examplej VX
to [Inductive(d,)}
I := 1 Vv generalize(o')
generalize(d'):
drop literals from ¢’ . ?
while[BMCK (o', §, Bad) unsat

Hoare-Query Model

inference algorithm Hoare-query oracle

{“1}5k{,81}?

v/ X +counterexample

@ sy {a;}

v’/ X +counterexample

[

1Bi}

BMCK (a;, 6,—f;) unsat?

Trace (ay, ..., 0%) of § s.t.
Op = a;i, O'k|= _IBi

Capable of modeling several interesting algorithms

Hoare-Query Model

ITP-k: (D}6{I1}?
v/ X Hoare-query

[:= false < oracle

-

while |L,a’) counterexample / { }ﬂ{ﬁ |
| a; i

to |Inductive(ds,D—"
I := 1 Vgeneralize(c')

{c"}6%{—~Bad}?
generalize(d'): 77X
drop literals from o’ _—1 -
while[BMCK (o', §, Bad) unsat

>

Also captures IC3/PDR

Outline

Invariant Inference Exact Concept Learning

VS.

- Query-based learning models for invariant inference
- - Complexity lower and upper bounds for each model
- Invariant inference is harder than concept learning

- Complexity results for invariant inference algorithms
from concept learning algorithms

Hoare-Query Complexity

Thm: Every Hoare-query algorithm requires 2% queries in
the worst case for inferring I € DNF s.t. |I| < poly(n)

n is the vocabulary size, k = poly(n)

Throughout the talk

* even with unlimited computational power
e unconditional lower bound

[POPL'20] Complexity and Information in Invariant Inference. Feldman, Immerman, Shoham, Sagiv

Hoare-Query Complexity

Thm: Every Hoare-query algorithm requires 2% queries in
the worst case for inferring I € DNF s.t. |I| < poly(n)

Proof sketch:
given construct 64, 6, for
inference algorithm Hoare-query oracle)
with <2P°VMqueries fa B @%
7% . VIX (e} G Bi}

(@} Brn)?

/X :
: {a;} s {Bi} ©

1. 6; has an inductive invariants with at most n cubes
2. &, does not (in fact, unsafe)

3. all queries return the same answer for 64, 6,

Hoare-Query Complexity

Thm: Every Hoare-query algorithm requires 2% queries in
the worst case for inferring I € DNF s.t. |I| < poly(n)

Proof sketch:
given construct 64, 6, for
imf; take §s checking validity of Boolean quantified formulas 2
wi =

AX1, ey Xpe VY1 o Ve P (X1, ooy Xy Vs woes Vi)
a sub-exponential number of valuations do not determine validity!

M (@B}
i /X '
, o [o ®

1. 6; has an inductive invariants with at most n cubes
2. &, does not (in fact, unsafe)

3. all queries return the same answer for 64, 6,

Hoare-Query Complexity

Thm: Every Hoare-query algorithm requires 2% queries in
the worst case for inferring I € DNF s.t. |I| < poly(n)

Proof sketch: [is monotone:
given | propositions appear only construct 84, 8, for
inference algorithm sl Hoare-query oracle o)
with <2p01y<n)que| pOS_IFI_V_e Y é
. VX (e} a {Bi}

(@} Brn)?

" /X :
- {a;} g B} =

1. 6; has an inductive invariants with at most n cubes
2. &, does not (in fact, unsafe)
3. all queries return the same answer for 64, 6,

Hoare-Query Complexity

Thm: Every Hoare-query algorithm requires 2% queries in
the worst case for inferring I € DNF s.t. |I| < poly(n)

Proof sketch: [is monotone:
given | propositions appear only construct 84, 8, for
inference algorithm sl Hoare-query oracle o)
with <2p01y<n)que| pOS_IFI_V_e Y &
b = 4 - vVIiX {ai} a 1Bi}
il — SO 0 [
vViIX ‘

Cor: Every Hoare-query algorithm requires 2 queries in
the worst case for inferring short monotone DNF invariants

Hoare > Inductiveness

Thm: There exists a class of transition systems 2P, so that for
solving inference:

1. d Hoare-query algorithm (with k=1) with poly(n) queries
2. Vinductiveness-query algorithm requires 2*("™ queries

[POPL'20] Complexity and Information in Invariant Inference. Feldman, Immerman, Shoham, Sagiv

Hoare > Inductiveness

Thm: There exists a class of transition systems 2P, so that for
solving inference:

1. d Hoare-query algorithm (with k=1) with poly(n) queries
2. Vinductiveness-query algorithm requires 2*("™) queries

Proof:

P = maximal transition systems for monotone DNF with n cubes

propositions appear only positively

@ =x1V(x3 Ax3)

Maximal system for @:

Hoare > Inductiveness

Upper bound:
 Hoare-query algorithm (with k=1) with poly(n) queries

Proof: ITP-1 takes O(n?) queries

I := false @ is monotone
while (,0') counterexample
'tO IndUCtiVE(5,I): 1 iteration 1 iteration
I := 1 Vgeneralize(c')

minimal
generalize(d'): |
drop literals from ¢’ o'= ¢
while BMC*(¢’, §, Bad) unsat

Hoare > Inductiveness

Lower bound:

V inductiveness-query algorithm requires 2*("™) queries
Proof:

inference algorithm inductiveness-query oracle

a4 inductive?

>

X+counterexample

U ir.m.c.zluctive? {ai}
>

1}

W\

Hoare > Inductiveness

Lower bound:

V inductiveness-query algorithm requires 2*("™) queries

Proof:

previous Corollary

20 <

general systems
monotone DNF invariants

e

maximal systems
monotone DNF invariants

<

Hoare > Inductiveness

Thm: There exists a class of transition systems 2P, so that for
solving inference:

1. d Hoare-query algorithm (with k=1) with poly(n) queries
2. 'V inductivenes<‘—query algorithm requires 2™ queries

Similar proof works with a simple case of IC3/PDR
— |ICE cannot model PDR,

and the extension of [VMCAI'17] is necessary

[POPL'20] Complexity and Information in Invariant Inference. Feldman, Immerman, Shoham, Sagiv
[VMCAI'17] IC3 - Flipping the E in ICE. Vizel, Gurfinkel, Shoham, Malik.

Outline

Invariant Inference Exact Concept Learning

VS.

- Query-based learning models for invariant inference
- Complexity lower and upper bounds for each model
-- Invariant inference is harder than concept learning

- Complexity results for invariant inference algorithms
from concept learning algorithms

Inferring Monotone DNF

Invariant Inference Exact Concept Learning

VS. :

NMavimal (canaral

Inductive (1) 2Q(n) sub-exponential

2 n

Hoare poly Equiv+ mem poly

[ML'87] Queries and Concept Learning, Angluin
[COLT’12] Tight Bounds on Proper Equivalence Query Learning of DNF, Hellerstein et al.

Inductiveness vs. Equivalence Queries

Invariant Inference Exact Concept Learning

learning algorithm

oracle

isita,?

»
>

v | X+counterexample

isita,?

>

v' [/ X+counterexample

Counterexamples to induction: Positive/negative examples:
oF-aporag E@ ot E@,0” EgQ

NMavimal (canaral

Inductive (1) 2Q(n) sub-exponential

2 n

Hoare poly Equiv+ mem poly

[ML'87] Queries and Concept Learning, Angluin
[COLT’12] Tight Bounds on Proper Equivalence Query Learning of DNF, Hellerstein et al.

Inductiveness vs. Equivalence Queries

Thm: Learning from counterexamples to induction is harder |
than learning from positive/negative examples.

NMavimal (canaral

Inductive (1) 2Q(n) sub-exponential

2 n

Hoare poly Equiv+ mem poly

[ML'87] Queries and Concept Learning, Angluin
[COLT’12] Tight Bounds on Proper Equivalence Query Learning of DNF, Hellerstein et al.

Inductiveness vs. Equivalence Queries

Thm: Learning from counterexamples to induction is harder |
than learning from positive/negative examples.

o

ICE

NMavimal (canaral

Inductive (1) 2Q(n) sub-exponential

2 n

Hoare poly Equiv+ mem poly

[ML'87] Queries and Concept Learning, Angluin
[COLT’12] Tight Bounds on Proper Equivalence Query Learning of DNF, Hellerstein et al.
[CAV’14] ICE: A Robust Framework for Learning Invariants. Garg, Loding, Madhusudan, Neider

Invariant Inference with
Equivalence & Membership Queries

- i L oracle
learning algorithm is it ?

Vv / X+C0unterexamp|e
isit l/)z?

v/ X+counterexample

does o3 E?
. v/ X
Invariant Inference Exact Concept Learning
Inductive (1) 2Q(n) Equiv sub-exponential

Hoare poly Equiv + mem

[ML'87] Queries and Concept Learning, Angluin
[COLT’12] Tight Bounds on Proper Equivalence Query Learning of DNF, Hellerstein et al.

Invariant Inference with
Equivalence & Membership Queries

Thm. In general, in the Hoare-query model, no efficient way to
implement a teacher for equivalence and membership queries

'
Invariant Inference Exact Concept Learning
Inductive (1) 2Q(n) Equiv sub-exponential

Hoare poly Equiv + mem

[ML'87] Queries and Concept Learning, Angluin
[COLT’12] Tight Bounds on Proper Equivalence Query Learning of DNF, Hellerstein et al.
[POPL'20] Complexity and Information in Invariant Inference. Feldman, Immerman, Shoham, Sagiv

Invariant Inference with
Equivalence & Membership Queries

Thm. In general, in the Hoare-query model, no efficient way to
implement a teacher for equivalence and membership queries

Sufficient conditions for

exact learning invariant inference

—

algorithms algorithms

[ML'87] Queries and Concept Learning, Angluin
[COLT’12] Tight Bounds on Proper Equivalence Query Learning of DNF, Hellerstein et al.
[POPL'20] Complexity and Information in Invariant Inference. Feldman, Immerman, Shoham, Sagiv

Outline

Invariant Inference Exact Concept Learning

VS.

- Query-based learning models for invariant inference
- Complexity lower and upper bounds for each model
- Invariant inference is harder than concept learning

‘ - Complexity results for invariant inference algorithms
from concept learning algorithms

From Learning to Inference

learning algorithm is it 2 oracle

V' / X+counterexample
is it l/)zp

v/ X+counterexamplé

P
<

does g3 E?

AV X :
/ Need to

Membership Equivalence impt'ﬁf“e”t
IS

From Learning to Inference

Exact learning
DNF formulas

Y := false

while ¢’ counterexample
to Equivalence(y):

Y := 1y V generalize(o')

generalize(o'):
drop literals from o'
while Membership(o’')=V

[CACM’84] A Theory of the Learnable. Valiant

[ML'87] Queries and Concept Learning. Angluin

[ML'95] On the Learnability of Disjunctive Normal Form
Formulas. Aizenstein and Pitt

From Learning to Inference

Exact learning :
DNF formulas

Equivalence(y) : ——

Membership(o')=vV ——

[CACM’84] A Theory of the Learnable. Valiant

[ML'87] Queries and Concept Learning. Angluin

[ML'95] On the Learnability of Disjunctive Normal Form
Formulas. Aizenstein and Pitt

Inductive(I)

BMCk (o', 6, Bad) unsat

From Learning to Inference

Inferring

Exact learning :
~.| DNF invariants

DNF formulas

Equivalence () > Inductive(I)
Membership(o’')=Vv > BMCk (o', 6, Bad) unsat
[CACM’84] A Theory of the Learnable. Valiant [CAV’03] Interpolation and SAT-Based Model Checking,
[ML'87] Queries and Concept Learning. Angluin McMillan
[ML'95] On the Learnability of Disjunctive Normal Form [HVC’12] Computing Interpolants without Proofs.

Formulas. Aizenstein and Pitt Chockler, lvrii, Matsliah

From Learning to Inference

Efficiently Efficiently
F Exact learning : "| Inferring
DNF formulas -] DNF invariants

]

When is the
Equivi transformation correct? Inductive(I)

° ! !/
Membership(o')=Vv > BMCk (o', 6, Bad) unsat
[CACM’84] A Theory of the Learnable. Valiant [CAV’03] Interpolation and SAT-Based Model Checking,
[ML'87] Queries and Concept Learning. Angluin McMillan
[ML'95] On the Learnability of Disjunctive Normal Form [HVC’12] Computing Interpolants without Proofs.

Formulas. Aizenstein and Pitt Chockler, lvrii, Matsliah

From Learning to Inference

Efficiently Efficiently
Exact learning : Inferring
DNF formulas "..| DNF invariants

Thm: can implement queries when
the invariant is k-fenced
and the algorithm’s queries are one-sided

° ! !/
Membership(o')=Vv > BMCk (o', 6, Bad) unsat
[CACM’84] A Theory of the Learnable. Valiant [CAV’03] Interpolation and SAT-Based Model Checking,
[ML'87] Queries and Concept Learning. Angluin McMillan
[ML'95] On the Learnability of Disjunctive Normal Form [HVC’12] Computing Interpolants without Proofs.

Formulas. Aizenstein and Pitt Chockler, lvrii, Matsliah

k-Fenced Invariants

(1,1,1)

(0,0,0)
I* _II*

k-Fenced Invariants

L

(0,0,0)
I* _II*

(1,1,1)

k-Fenced Invariants

(1,1,1)
.4 all states o & I” that
N
(1,0,0) differ from some g’ € I*
[* —I* in one bit

0~ (I")

Outer boundary

k-Fenced Invariants

.A
L
° all states o & I™* that

(0,0,0) differ from some o' € I*
[* I in one bit

[" is k-fenced if
all the statesin g~ (I*)
can reach a bad state in at most k steps

(1,1,1)

Example: k-Fenced Invariant

Init: S
(x1,...,xn) =0...0 Y1, - yn = %
d: X1 = (xn) +
(XBL' x,) = 1..1 2 - (.y VYn) (mod2™")
1) =2 Xp =
*O
I: x, # 1

all the states in a_(l*) = {x,= 1}
can reach a bad state in at most k steps = 1

Example: k-Fenced Invariant

Init: o:
(x1; ...,Xn) =0...0 Y1, - y = %

Bad X1 = (%1, -, Xp) +

- 2 > mod 2"
(X1, s Xp) = 1.1 oS I)

In general not all [": Xn #* 1 In this example
states in =" need

Xk
to reach bad nl

all the statesin 0~ (I") = {x,= 1}

can reach a bad state in at most k steps = 1

k-Fenced Invariants
I* _II*

In general not all
states in =" need
to reach bad
all the statesin g~ (I*)
can reach a bad state in at most k steps

From Learning to Inference

Efficiently Efficiently

Exact learning :
—~| DNFformulas

| Inferring
A" .| DNF invariants

Thm: can implement queries when
the invariant is k-fenced
and the algorithm’s queries are one-side

d S

One-Sided Equivalence(y): Yy = ¢
One-Sided Membership(o): g € @ UId (@)

One-Sided Equivalence Queries
to Invariants

inference Y = @ teacher
algorithm

isity?

V' [/ X+counterexample

is Y an inductive invariant?

v yes hooray!

Always return ¢’ as X+counterexample transition:
positive example (0,0')st.o EY, 0" E Y

One-Sided Mem

oership Queries

to k-Fenced Invariants
inference o€ @Ui () teacher
algorithm
- B

Doesn’t always imply that
O3 = [

can’t o3 reach bad states
in k steps?

BMCK (03, 8, Bad) unsat?

v then yes

X then no

From Learning to Inference

Thm: Let C be a class of formulas.

dA inferring I € C with
1A identifying ¢ € C with polynomially-many
polynomially-many — SAT queries
one-sided queries whenever " is k-fenced

[POPL'21] Learning the Boundary of Inductive Invariants. Feldman, Sagiv, Shoham, Wilcox

Efficient Inference

Thm 1: C = monotone DNF

dA inferring I € C with
1A identifying ¢ € C with polynomially-many
polynomially-many — SAT queries
one-sided queries whenever " is k-fenced

[CACM’84] A Theory of the Learnable. Valiant
[ML'87] Queries and Concept Learning. Angluin
[ML'95] On the Learnability of Disjunctive Normal Form Formulas. Aizenstein and Pitt

Efficient Inference

Thm 1: C = monotone DNF

dA inferring I € C with

1A identifying ¢ € C with polynomially-many

polynomially-many : SAT queries
one-sided queries whenever " is k-fenced
=09
o' counterexample (Lo') counterexample
Equivalence () 2 Inductive([l)
g €pUd ()
Membership(o’')=Vv > BMCK(o’, 8, Bad) unsat

Efficient Inference

Thm 1: C = monotone DNF

dA inferring I € C with
1A identifying ¢ € C with polynomially-many
polynomially-many — SAT queries
one-sided queries whenever " is k-fenced

Thm 1: The interpolation-based algorithm converges in a
polynomial number of SAT queries if I" is

e k-fenced, and
* has a short monotone DNF representation

[CACM’84] A Theory of the Learnable. Valiant
[ML'87] Queries and Concept Learning. Angluin
[ML'95] On the Learnability of Disjunctive Normal Form Formulas. Aizenstein and Pitt

Efficient Inference

Thm 2: C = almost-monotone DNF

dA inferring I € C with
1A identifying ¢ € C with polynomially-many
polynomially-many — SAT queries
one-sided queries whenever " is k-fenced

Thm 2: A different algorithm converges in a polynomial
number of SAT queries if If [" is

e k-fenced, and
* has a short almost-monotone DNF representation

at most O (1) terms include negated variables

[Inf. Comput. ‘95] Exact Learning Boolean Function via the Monotone Theory. Bshouty

Inference from Unrestricted Queries

Let C be a class of formulas. two-sided

1A inferring * € C with
1A identifying ¢ € C with polynomia y-many
polynomially-many — SAT que -ies
one-sided queries whenever " is k-fenced

Thm 3: A different algorithm converges in a polynomial
number of SAT queries if [is

* two-sided k-fenced, and
* has a short DNF and a short CNF representation
e.g., I" is expressible as a short decision tree

[Inf. Comput. ‘95] Exact Learning Boolean Function via the Monotone Theory. Bshouty

Inference from Unrestricted Queries

Let C be a class of formulas. two-sided

.4 infnrriqg * € C with

Thm: also when [*is one-sided k-fenced ia y-many
but not by transformation from learning /¢ '*°

&

is k-fenced

Thm 3: A different algorithm converges in a polynomial
number of SAT queries if [is

* two-sided k-fenced, and
* has a short DNF and a short CNF representation
e.g., I" is expressible as a short decision tree

[Inf. Comput. ‘95] Exact Learning Boolean Function via the Monotone Theory. Bshouty
[SAS ‘22] Invariant Inference With Provable Complexity From the Monotone Theory. Feldman, Shoham

Conclusion (1)

Invariant Inference Exact Concept Learning

VS.

Query-based learning models for invariant inference

Complexity lower and upper bounds for each model
Invariant inference is harder than concept learning

Complexity results for invariant inference algorithms
from concept learning algorithms

Conclusion (2)

Invariant Inference

What about IC3/PDR?

VS.

Exact Concept Learning

Impact of k in the Hoare query model?

Is the fence condition necessary?

Other conditions?
Beyond Boolean programs

