SAT-Based Invariant Inference and Its Relation to Concept Learning

Sharon Shoham

Supervised Verification of Infinite-State Systems

Yotam Feldman

Neil Immerman

Mooly Sagiv

James R. Wilcox W UNIVERSITY of WASHINGTON

SAT-Based Invariant Inference

- predicate abstraction [CAV'97, POPL'02]
- symbolic abstraction [VMCAI'04,'16]
- interpolation [CAV'03, TACAS'06]
- IC3/PDR [VMCAI'11, FMCAD'11]
- abduction [OOPSLA'13]
- SyGuS [FMCAD'13,...]

...

• ICE learning [CAV'14, POPL'15] Why do they succeed?

Why do they fail?

(How can we make them better?)

Goal

Understand SAT-based invariant inference from the perspective of exact learning with queries

[POPL'20] Complexity and information in invariant inference. Feldman, Immerman, Sagiv, Shoham
[POPL'21] Learning the boundary of inductive invariants. Feldman, Sagiv, Shoham, Wilcox
[POPL'22] Property-directed reachability as abstract interpretation in the monotone theory. Feldman, Sagiv, Shoham, Wilcox
[SAS'22] Invariant Inference With Provable Complexity From the Monotone Theory. Feldman, Shoham

Safety of Transition Systems

(Un)reachability problem: no bad state is reachable from the initial states

Inductive Invariants

(Un)reachability problem: no bad state is reachable from the initial states

Initiation:Init $\subseteq I$ Safety: $I \cap Bad = \emptyset$ Consecution: $\{I\} \delta \{I\}$

Inductive Invariants

(Un)reachability problem: no bad state is reachable from the initial states

Invariant Inference

SAT-based Invariant Inference

Goal: Find inductive invariants automatically

مريد مورجا والمعروب بالتلائدا

Means: Employ a SAT solver

SAT-based Invariant Inference

Goal: Find inductive invariants automatically

Means: Employ a SAT solver

Init, **Bad**: formulas over V δ : formula over V, V'

SAT query Examples:

Initiation: Init $\land \neg I$ unsat? Safety: $I \land Bad$ unsat? Cons.: $I \land \delta \land \neg I'$ unsat? * $I' = I[V \mapsto V']$

Exact Concept Learning with Equivalence & Membership Queries

Goal: learn an unknown concept φ

[ML'87] Queries and Concept Learning. Angluin

SAT-Based Invariant Inference as Inference with Queries

Goal: infer an unknown inductive invariant I

Algorithms cannot access the transition relation directly, only through SAT queries

This Talk

VS.

Invariant Inference

Exact Concept Learning

- Query-based learning models for invariant inference
- Complexity lower and upper bounds for each model
- Invariant inference is harder than concept learning
- Complexity results for invariant inference algorithms from concept learning algorithms

Inductiveness-Query Model

* $\alpha'_i = \alpha_i [V \mapsto V']$

[CAV'14] ICE: A Robust Framework for Learning Invariants. Garg, Löding, Madhusudan, Neider

Inductiveness-Query Model

Is it sufficient to capture existing SAT-based algorithms?

* $\alpha'_i = \alpha_i [V \mapsto V']$

[CAV'14] ICE: A Robust Framework for Learning Invariants. Garg, Löding, Madhusudan, Neider

I = Init

I = Init

$I = Init \lor Interpolant$

$I = Init \lor Interpolant$

Inductive ?

$I = Init \lor Interpolant \lor Interpolant_2 \lor \dots$

Model-Based Interpolation

Interpolant₁ = $(x_1 = 0 \land x_2 = 1 \land \dots \land x_{n-1} = 1 \land x_n = 0)$ $\sigma_1 = 01 \dots 10$ k times $I \longrightarrow \delta$ $I \longrightarrow \delta$ I = Init $\delta(I)$

Model-Based Interpolation

Model-Based Interpolation <u>δ</u>: Init: $y_1, \overline{\ldots}, y_n \coloneqq *$ $(x_1,\ldots,x_n) \coloneqq 0 \ldots 0$ $x_1, \ldots, x_n \coloneqq (x_1, \ldots, x_n) +$ Bad: $2 \cdot (y_1, ..., y_n) \pmod{2^n}$ $(x_1, \dots, x_n) = 1 \dots 1$ $Interpolant_{1} = (x_{1} = 0 \land x_{2} = 1 \land \dots \land x_{n-1} = 1 \land x_{n} = 0)$ k timesk times $\sigma_1 = 01 \dots 10$ δ δ δ σ_1 Bad I = Init $\delta(I)$

Model-Based Interpolation <u>δ</u>: <u>Init:</u> $y_1, \overline{\ldots}, y_n \coloneqq *$ $(x_1, \ldots, x_n) \coloneqq 0 \ldots 0$ $x_1, \ldots, x_n \coloneqq (x_1, \ldots, x_n) +$ <u>Bad</u>: $2 \cdot (y_1, ..., y_n) \pmod{2^n}$ $(x_1, \dots, x_n) = 1 \dots 1$ $Interpolant_1 = (x_1 - 0 \land x_2 = 1 \land \dots \land x_{n-1} = 1 \land x_n = 0)$ k times $\sigma_1 = 01 \dots 10$ δ δ δ 0 σ_1 Bad

[HVC'12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah [LPAR'13] Instantiations, Zippers and EPR Interpolation. Bjørner, Gurfinkel, Korovin, Lahav

 $\delta(I)$

I = Init

Model-Based Interpolation <u>δ</u>: Init: $y_1, \overline{\ldots}, y_n \coloneqq *$ $(x_1,\ldots,x_n) \coloneqq 0 \ldots 0$ $x_1, \ldots, x_n \coloneqq (x_1, \ldots, x_n) +$ Bad: $2 \cdot (y_1, ..., y_n) \pmod{2^n}$ $(x_1, \dots, x_n) = 1 \dots 1$ $Interpolant_{1} = (x_{1} = 0 \land x_{2} = 1 \land \dots \land x_{n-1} = 1 \land x_{n} = 0)$ k timesk times $\sigma_1 = 01 \dots 10$ δ δ δ σ_1 Bad I = Init $\delta(I)$

Model-Based Interpolation <u>δ</u>: Init: $y_1, \overline{\ldots}, y_n \coloneqq *$ $(x_1, \ldots, x_n) \coloneqq 0 \ldots 0$ $x_1, \ldots, x_n \coloneqq (x_1, \ldots, x_n) +$ Bad: $2 \cdot (y_1, ..., y_n) \pmod{2^n}$ $(x_1, \dots, x_n) = 1 \dots 1$ $Interpolant_1 = (x_1 - 0 \land x_2 = 1 \land \dots \land x_{n-1} = 1 \land x_n = 0)$ k times $\sigma_1 = 01 \dots 10$ δ δ δ σ_1 Bad

[HVC'12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah [LPAR'13] Instantiations, Zippers and EPR Interpolation. Bjørner, Gurfinkel, Korovin, Lahav

 $\delta(I)$

I = Init

Model-Based Interpolation <u>δ</u>: Init: $y_1, \dots, y_n \coloneqq *$ $(x_1,\ldots,x_n) \coloneqq 0 \ldots 0$ $x_1, \ldots, x_n \coloneqq (x_1, \ldots, x_n) +$ <u>Bad</u>: $2 \cdot (y_1, \dots, y_n) \pmod{2^n}$ $(x_1, \dots, x_n) = 1 \dots 1$ $I = Init \lor (x_n = 0)$ k times δ δ δ σ_1 Bad $\delta(I)$ I = Init

Model-Based Interpolation

Inferring invariant in DNF:

Inductiveness-Query Model

Hoare-Query Model

inference algorithm

Hoare-query oracle

Capable of modeling several interesting algorithms

Hoare-Query Model

Outline

Invariant Inference

Exact Concept Learning

- Query-based learning models for invariant inference
- Complexity lower and upper bounds for each model
- Invariant inference is harder than concept learning
- Complexity results for invariant inference algorithms from concept learning algorithms

Hoare-Query Complexity

<u>Thm</u>: Every Hoare-query algorithm requires $2^{\Omega(n)}$ queries in the worst case for inferring $I \in \text{DNF}$ s.t. $|I| \le \text{poly}(n)$

n is the vocabulary size, k = poly(n)

Throughout the talk

- even with unlimited computational power
- unconditional lower bound

[POPL'20] Complexity and Information in Invariant Inference. Feldman, Immerman, Shoham, Sagiv

Hoare-Query Complexity

<u>Thm</u>: Every Hoare-query algorithm requires $2^{\Omega(n)}$ queries in the worst case for inferring $I \in \text{DNF}$ s.t. $|I| \le \text{poly}(n)$

1. δ_1 has an inductive invariants with at most n cubes

- 2. δ_2 does not (in fact, unsafe)
- 3. all queries return the same answer for δ_1 , δ_2
Hoare-Query Complexity

<u>Thm</u>: Every Hoare-query algorithm requires $2^{\Omega(n)}$ queries in the worst case for inferring $I \in \text{DNF}$ s.t. $|I| \le \text{poly}(n)$

3. all queries return the same answer for δ_1 , δ_2

Hoare-Query Complexity

<u>Thm</u>: Every Hoare-query algorithm requires $2^{\Omega(n)}$ queries in the worst case for inferring $I \in \text{DNF}$ s.t. $|I| \le \text{poly}(n)$

- 1. δ_1 has an inductive invariants with at most n cubes
- 2. δ_2 does not (in fact, unsafe)
- 3. all queries return the same answer for δ_1 , δ_2

Hoare-Query Complexity

<u>Thm</u>: Every Hoare-query algorithm requires $2^{\Omega(n)}$ queries in the worst case for inferring $I \in \text{DNF}$ s.t. $|I| \le \text{poly}(n)$

<u>Cor</u>: Every Hoare-query algorithm requires $2^{\Omega(n)}$ queries in the worst case for inferring short monotone DNF invariants

<u>Thm</u>: There exists a class of transition systems $\mathcal P$, so that for solving inference:

- 1. **Hoare-query algorithm (with** k=1) with poly(n) queries
- 2. \forall inductiveness-query algorithm requires $2^{\Omega(n)}$ queries

<u>Thm</u>: There exists a class of transition systems $\mathcal P$, so that for solving inference:

- 1. **Hoare-query algorithm (with** k=1) with poly(n) queries
- 2. \forall inductiveness-query algorithm requires $2^{\Omega(n)}$ queries

Proof:

 $\mathcal P$ = maximal transition systems for monotone DNF with n cubes

propositions appear only positively

$$\varphi = x_1 \vee (x_2 \wedge x_3)$$

Maximal system for φ :

<u>Upper bound</u>:

Hoare-query algorithm (with k=1) with poly(n) queries

<u>Proof:</u> **ITP-1** takes $O(n^2)$ queries

Lower bound:

 \forall inductiveness-query algorithm requires $2^{\Omega(n)}$ queries <u>Proof:</u>

Lower bound:

 \forall inductiveness-query algorithm requires $2^{\Omega(n)}$ queries <u>Proof:</u>

<u>Thm</u>: There exists a class of transition systems $\mathcal P$, so that for solving inference:

- 1. **Hoare-query algorithm (with** k=1) with poly(n) queries
- 2. \forall inductiveness-query algorithm requires $2^{\Omega(n)}$ queries

Similar proof works with a simple case of IC3/PDR

 \Rightarrow ICE cannot model PDR,

and the extension of [VMCAI'17] is necessary

[POPL'20] Complexity and Information in Invariant Inference. Feldman, Immerman, Shoham, Sagiv [VMCAI'17] IC3 - Flipping the E in ICE. Vizel, Gurfinkel, Shoham, Malik.

Outline

Invariant Inference

Exact Concept Learning

- Query-based learning models for invariant inference
- Complexity lower and upper bounds for each model
- Invariant inference is harder than concept learning
- Complexity results for invariant inference algorithms from concept learning algorithms

Inferring Monotone DNF

VS.

Invariant Inference

Exact Concept Learning

	Maximal	General		
Inductive	$2^{\Omega(n)}$	$2^{\Omega(n)}$	Equiv	sub-exponential
Hoare	poly	$2^{\Omega(n)}$	Equiv + mem	poly

[ML'87] Queries and Concept Learning, Angluin

Inductiveness vs. Equivalence Queries

Invariant Inference

Exact Concept Learning

<u>Counterexamples to induction:</u>			Positive/negative examples:				
$\sigma \vDash \neg \varphi \text{ or } \sigma' \vDash \varphi$				$\sigma^+\vDash\varphi$, $\sigma^-\vDash\neg\varphi$			
		Maximal	General				
	Inductive	$2^{\Omega(n)}$	$2^{\Omega(n)}$		Equiv	sub-exponential	
	Hoare	poly	$2^{\Omega(n)}$		Equiv + mem	poly	

[ML'87] Queries and Concept Learning, Angluin

Inductiveness vs. Equivalence Queries

<u>Thm</u>: Learning from counterexamples to induction is **harder** than learning from positive/negative examples.

<u>Counterexamples to induction:</u>
$\sigma \vDash \neg \varphi \text{ or } \sigma' \vDash \varphi$

Positive/negative examples:

 $\sigma^+\vDash\varphi$, $\sigma^-\vDash\neg\varphi$

	Maximal	General			
Inductive	$2^{\Omega(n)}$	$2^{\Omega(n)}$	Equiv	sub-exponential	
Hoare	poly	$2^{\Omega(n)}$	Equiv + mem	poly	

[ML'87] Queries and Concept Learning, Angluin

Inductiveness vs. Equivalence Queries

<u>Thm</u>: Learning from counterexamples to induction is **harder** than learning from positive/negative examples.

 $\frac{\text{Counterexamples to induction:}}{\sigma \vDash \neg \varphi \text{ or } \sigma' \vDash \varphi}$

Positive/negative examples:

 $\sigma^+\vDash\varphi$, $\sigma^-\vDash\neg\varphi$

	Maximal	General		
Inductive	$2^{\Omega(n)}$	$2^{\Omega(n)}$	Equiv	sub-exponential
Hoare	poly	$2^{\Omega(n)}$	Equiv + mem	poly

[ML'87] Queries and Concept Learning, Angluin

[COLT'12] Tight Bounds on Proper Equivalence Query Learning of DNF, Hellerstein et al.

[CAV'14] ICE: A Robust Framework for Learning Invariants. Garg, Löding, Madhusudan, Neider

Invariant Inference with Equivalence & Membership Queries

[ML'87] Queries and Concept Learning, Angluin

Invariant Inference with Equivalence & Membership Queries

<u>Thm</u>. In general, in the Hoare-query model, **no efficient way** to implement a teacher for equivalence and membership queries

[ML'87] Queries and Concept Learning, Angluin

[COLT'12] Tight Bounds on Proper Equivalence Query Learning of DNF, Hellerstein et al.

[POPL'20] Complexity and Information in Invariant Inference. Feldman, Immerman, Shoham, Sagiv

Invariant Inference with Equivalence & Membership Queries

<u>Thm</u>. In general, in the Hoare-query model, **no efficient way** to implement a teacher for equivalence and membership queries

		Sufficient conditions for						
exact learning \implies inva- algorithms					nvariant inference algorithms			
luctive $2^{\Omega(n)}$ $2^{\Omega(n)}$			Equiv	sub-exponential		al		
poly	$2^{\Omega(n)}$		Equiv + mem		poly			
ć	algorithr Maximal $2^{\Omega(n)}$	algorithms Maximal General $2^{\Omega(n)}$ $2^{\Omega(n)}$	algorithms Maximal General $2^{\Omega(n)}$ $2^{\Omega(n)}$	algorithmsalgorithmsMaximalGeneral $2^{\Omega(n)}$ $2^{\Omega(n)}$ Equiv	algorithmsalgorithmMaximalGeneral $2^{\Omega(n)}$ $2^{\Omega(n)}$ Equivst	algorithmsalgorithmsMaximalGeneral $2^{\Omega(n)}$ $2^{\Omega(n)}$ Equivsub-exponential		

[ML'87] Queries and Concept Learning, Angluin

[COLT'12] Tight Bounds on Proper Equivalence Query Learning of DNF, Hellerstein et al.

[POPL'20] Complexity and Information in Invariant Inference. Feldman, Immerman, Shoham, Sagiv

Outline

VS.

Invariant Inference

Exact Concept Learning

- Query-based learning models for invariant inference
- Complexity lower and upper bounds for each model
- Invariant inference is harder than concept learning
- Complexity results for invariant inference algorithms from concept learning algorithms

Exact **learning** DNF formulas

 ψ := false

while σ' counterexample to Equivalence(ψ):

 $\psi := \psi \lor \text{generalize}(\sigma')$

generalize(σ'): drop literals from σ' while Membership(σ') = \checkmark

[CACM'84] A Theory of the Learnable. Valiant [ML'87] Queries and Concept Learning. Angluin [ML'95] On the Learnability of Disjunctive Normal Form Formulas. Aizenstein and Pitt

[CACM'84] A Theory of the Learnable. Valiant [ML'87] Queries and Concept Learning. Angluin [ML'95] On the Learnability of Disjunctive Normal Form Formulas. Aizenstein and Pitt

[CACM'84] A Theory of the Learnable. Valiant [ML'87] Queries and Concept Learning. Angluin [ML'95] On the Learnability of Disjunctive Normal Form Formulas. Aizenstein and Pitt [CAV'03] Interpolation and SAT-Based Model Checking, McMillan

[HVC'12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah

[CACM'84] A Theory of the Learnable. Valiant [ML'87] Queries and Concept Learning. Angluin [ML'95] On the Learnability of Disjunctive Normal Form Formulas. Aizenstein and Pitt [CAV'03] Interpolation and SAT-Based Model Checking, McMillan

[HVC'12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah

Efficiently Exact learning DNF formulas

generalize(σ'):

Efficiently

Inferring DNF invariants

Thm: can implement queries when the invariant is *k*-fenced and the algorithm's queries are one-sided

generalize(σ'): drop literals from σ' while Membership(σ') = \checkmark

[CACM'84] A Theory of the Learnable. Valiant [ML'87] Queries and Concept Learning. Angluin [ML'95] On the Learnability of Disjunctive Normal Form Formulas. Aizenstein and Pitt [CAV'03] Interpolation and SAT-Based Model Checking, McMillan

while BMC^k(σ', δ , Bad) unsat

[HVC'12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah

drop literals from σ'

 I^* is k-fenced if all the states in $\partial^-(I^*)$ can reach a bad state in at most k steps

Example: k-Fenced Invariant

$$I^*$$
: $x_n \neq 1$

all the states in $\partial^-(I^*) = \{x_n = 1\}$ can reach a bad state in at most k steps = 1

Example: k-Fenced Invariant

In general **not** all states in $\neg I^*$ need to reach bad $I^*: x_n \neq 1$ In this example $\neg I^*$

all the states in $\partial^-(I^*) = \{x_n = 1\}$ can reach a bad state in at most k steps = 1

all the states in $\partial^{-}(I^{*})$ can reach a bad state in at most k steps

Efficiently Exact learning DNF formulas

Efficiently

Inferring DNF invariants

Thm: can implement queries when the invariant is *k*-fenced and the algorithm's queries are one-sided

One-Sided Equivalence(ψ): $\psi \Rightarrow \varphi$ One-Sided Membership(σ): $\sigma \in \varphi \cup \partial^{-}(\varphi)$

One-Sided Equivalence Queries to Invariants

inference algorithm

 $\psi \Rightarrow \varphi$

is it ψ ?

/ X +counterexample

teacher

φ

Always return σ' as positive example

is ψ an inductive invariant? \checkmark yes hooray! \bigstar +counterexample transition: (σ, σ') s.t. $\sigma \models \psi, \sigma' \models \neg \psi$

One-Sided Membership Queries to *k*-Fenced Invariants

inference algorithm

 $\boldsymbol{\sigma} \in \boldsymbol{\varphi} \cup \boldsymbol{\partial}^{-}(\boldsymbol{\varphi})$

is $\sigma_3 \models$?

✓ / X

φ

teacher

can't σ_3 reach bad states in *k* steps? BMC^k(σ_3 , δ , Bad) unsat? \checkmark then yes \bigstar then no

Doesn't always imply that $\sigma_3 \vDash I^*$

<u>Thm</u>: Let \mathcal{C} be a class of formulas.

 $\exists \mathcal{A} \text{ identifying } \varphi \in \mathcal{C} \text{ with } polynomially-many one-sided queries}$

 $\exists \mathcal{A} \text{ inferring } I^* \in \mathcal{C} \text{ with}$ polynomially-many SAT queries whenever I^* is *k*-fenced

<u>Thm 1</u>: C = monotone DNF

 $\exists \mathcal{A} \text{ identifying } \varphi \in \mathcal{C} \text{ with } polynomially-many } one-sided queries$

 $\exists \mathcal{A} \text{ inferring } I^* \in \mathcal{C} \text{ with}$ polynomially-many SAT queries whenever I^* is *k*-fenced

[CACM'84] A Theory of the Learnable. Valiant [ML'87] Queries and Concept Learning. Angluin [ML'95] On the Learnability of Disjunctive Normal Form Formulas. Aizenstein and Pitt

<u>Thm 1</u>: C = monotone DNF

$\exists \mathcal{A} \text{ identifying } \varphi \in \mathcal{C} \text{ with }$		polyno
polynomially-many	\rightarrow	SAT
one-sided queries		wheneve

 $\exists \mathcal{A} \text{ inferring } I^* \in \mathcal{C} \text{ with}$ polynomially-many SAT queries whenever I^* is *k*-fenced

<u>Thm 1</u>: C = monotone DNF

 $\exists \mathcal{A} \text{ identifying } \varphi \in \mathcal{C} \text{ with } polynomially-many } one-sided queries }$

 $\exists \mathcal{A} \text{ inferring } I^* \in \mathcal{C} \text{ with}$ polynomially-many SAT queries whenever I^* is *k*-fenced

<u>Thm 1</u>: The **interpolation-based algorithm** converges in a polynomial number of SAT queries if I^* is

- *k*-fenced, and
- has a short monotone DNF representation

[CACM'84] A Theory of the Learnable. Valiant [ML'87] Queries and Concept Learning. Angluin [ML'95] On the Learnability of Disjunctive Normal Form Formulas. Aizenstein and Pitt

<u>Thm 2</u>: C = almost-monotone DNF

 $\exists \mathcal{A} \text{ identifying } \varphi \in \mathcal{C} \text{ with } polynomially-many } one-sided queries$

 $\exists \mathcal{A} \text{ inferring } I^* \in \mathcal{C} \text{ with}$ polynomially-many SAT queries whenever I^* is *k*-fenced

<u>Thm 2</u>: A different algorithm converges in a polynomial number of SAT queries if If I^* is

- *k*-fenced, and
- has a short almost-monotone DNF representation

at most O(1) terms include negated variables

[Inf. Comput. '95] Exact Learning Boolean Function via the Monotone Theory. Bshouty

<u>Thm 3</u>: A different algorithm converges in a polynomial number of SAT queries if I^* is

- two-sided k-fenced, and
- has a short DNF and a short CNF representation

e.g., I^* is expressible as a short decision tree

[Inf. Comput. '95] Exact Learning Boolean Function via the Monotone Theory. Bshouty

<u>Thm 3</u>: A different algorithm converges in a polynomial number of SAT queries if I^* is

- two-sided k-fenced, and
- has a short DNF and a short CNF representation

e.g., I^* is expressible as a short decision tree

[Inf. Comput. '95] Exact Learning Boolean Function via the Monotone Theory. Bshouty [SAS '22] Invariant Inference With Provable Complexity From the Monotone Theory. Feldman, Shoham

Conclusion (1)

VS.

Invariant Inference

Exact Concept Learning

- Query-based learning models for invariant inference
- Complexity lower and upper bounds for each model
- Invariant inference is harder than concept learning
- Complexity results for invariant inference algorithms from concept learning algorithms

Conclusion (2)

Invariant Inference

Exact Concept Learning

- What about IC3/PDR?
- Impact of k in the Hoare query model?
- Is the fence condition necessary?
- Other conditions?
- Beyond Boolean programs