
Verification of Distributed Protocols
Using Decidable Logic

Sharon Shoham

Tel Aviv University

Programming Languages Mentoring Workshop 2019

The research leading to these results has received funding from the European Research Council under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No [759102-SVIS])

Why verify distributed protocols?

•Distributed systems are everywhere

• Safety-critical systems

• Cloud infrastructure

• Blockchains

•Distributed protocols are notoriously hard to get right

• Even small protocols can be tricky

• Bugs occur on rare scenarios

• Testing is costly and not sufficient

Verifying distributed protocols is hard

• Infinite state-space

• unbounded #processes

• unbounded #messages

• unbounded #objects

Verify distributed protocols for any number of nodes and resources

…

I can’t decide!

• Asymptotic complexity of verification

• Rice theorem

Safety of Infinite State Systems

System S is safe if all the reachable states satisfy the property P = ¬𝐵𝑎𝑑

Reach

System State Space Safety
Property

𝐵𝑎𝑑

𝐼𝑛𝑖𝑡

“no two
leaders are
elected”

Inductive Invariants

System State Space Safety
Property

𝐵𝑎𝑑Inv

𝐼𝑛𝑖𝑡

System S is safe iff there exists an inductive invariant 𝐼𝑛𝑣:

𝐼𝑛𝑖𝑡 ⊆ 𝐼𝑛𝑣 (Initiation)
if 𝜎 ∈ 𝐼𝑛𝑣 and 𝜎 → 𝜎′ then 𝜎′ ∈ 𝐼𝑛𝑣 (Consecution)
𝐼𝑛𝑣 ∩ 𝐵𝑎𝑑 = ∅ (Safety)

TR

TR

TR

System S is safe if all the reachable states satisfy the property P = ¬𝐵𝑎𝑑

“no two
leaders are
elected”

Inductive Invariants

System State Space Safety
Property

𝐵𝑎𝑑Inv

𝐼𝑛𝑖𝑡

Reach
TR

TR

System S is safe iff there exists an inductive invariant 𝐼𝑛𝑣:

𝐼𝑛𝑖𝑡 ⊆ 𝐼𝑛𝑣 (Initiation)
if 𝜎 ∈ 𝐼𝑛𝑣 and 𝜎 → 𝜎′ then 𝜎′ ∈ 𝐼𝑛𝑣 (Consecution)
𝐼𝑛𝑣 ∩ 𝐵𝑎𝑑 = ∅ (Safety)

System S is safe if all the reachable states satisfy the property P = ¬𝐵𝑎𝑑

“no two
leaders are
elected”

Example

• N pairs of players pass a ball:

– 1↑ will pass to 1↓

– 1↓ will pass to 1↑

– 2↑ will pass to 2↓

– 2↓ will pass to 2↑ …

1↑ 2↑

1↓ 2↓

…

Example

• N pairs of players pass a ball:

– 1↑ will pass to 1↓

– 1↓ will pass to 1↑

– 2↑ will pass to 2↓

– 2↓ will pass to 2↑ …

1↑ 2↑

1↓ 2↓

…

Example

• N pairs of players pass a ball:

– 1↑ will pass to 1↓

– 1↓ will pass to 1↑

– 2↑ will pass to 2↓

– 2↓ will pass to 2↑ …

• The ball starts at player 1↑

• Can the ball get to 2↓?

1↑ 2↑

1↓ 2↓

…

Example

• N pairs of players pass a ball:

– 1↑ will pass to 1↓

– 1↓ will pass to 1↑

– 2↑ will pass to 2↓

– 2↓ will pass to 2↑ …

• The ball starts at player 1↑

• Can the ball get to 2↓?

• Is “the ball is not at 2↓” an inductive invariant?

1↑ 2↑

1↓ 2↓

…

Example

• N pairs of players pass a ball:

– 1↑ will pass to 1↓

– 1↓ will pass to 1↑

– 2↑ will pass to 2↓

– 2↓ will pass to 2↑ …

• The ball starts at player 1↑

• Can the ball get to 2↓?

• Is “the ball is not at 2↓” an inductive invariant? No!

– Counterexample to induction

1↑ 2↑

1↓ 2↓

…

Example

• N pairs of players pass a ball:

– 1↑ will pass to 1↓

– 1↓ will pass to 1↑

– 2↑ will pass to 2↓

– 2↓ will pass to 2↑ …

• The ball starts at player 1↑

• Can the ball get to 2↓?

• Is “the ball is not at 2↓” an inductive invariant? No!

– Counterexample to induction

• Inductive invariant: “the ball is not at 2↑ nor 2↓”

1↑ 2↑

1↓ 2↓

…

Logic-based verification

Provers/solvers for different logics made huge progress

• Propositional logic (SAT) – industrial impact for hardware
verification

• Satisfiability modulo theories (SMT) – major trend in
software verification

• Automated first-order theorem provers

• Interactive theorem provers

• Z3, CVC4, iProver, Vampire, Coq, Isabelle/HOL ….

Inv(V) is an inductive invariant if the verification conditions (VCs) are valid:
Initiation Init(V)⟹Inv(V)

Cons. Inv(V)TR(V,V’) ⟹ Inv(V’)

Safety Inv(V) ⟹¬Bad(V)

Logic-based verification

𝐵𝑎𝑑Inv

𝐼𝑛𝑖𝑡

TR

TR

Represent 𝐼𝑛𝑖𝑡, 𝑇𝑟, 𝐵𝑎𝑑, 𝐼𝑛𝑣 by logical formulas: Formula  Set of states

Reach

unsat(Init(V)Inv(V))

unsat(Inv(V)TR(V,V’)Inv(V’))

unsat(Inv(V)Bad(V))

Challenges for logic-based verification

Formal specification

Modeling the system and its invariants

Deduction

Checking validity of the VCs

Inference

Finding an inductive invariant

Inv(V) is an inductive invariant if the following verification conditions
are valid:

Initiation Init(V)⟹Inv(V) unsat(Init(V)Inv(V))

Cons. Inv(V)TR(V,V’) ⟹ Inv(V’) unsat(Inv(V)TR(V,V’)Inv(V’))

Safety Inv(V) ⟹¬Bad(V) unsat(Inv(V)Bad(V))

Are the logical VC’s valid ?

Church’s Theorem

I can’t decide!

Counterexample Unknown /
Diverge

Proof

Deduction

Interactive theorem provers
(Coq, Isabelle/HOL, LEAN)

• Programmer proves the
inductive invariant

• Huge programmer effort
(~10-50 lines of proof per
line of code)

Deduction

Automatic solvers/provers
(e.g. Z3, CVC4, Vampire)

• VCs discharged automatically

• Tools may diverge (for SMT:
matching loops, arithmetic)

• Unpredictability (butterfly effect)

e.g. Verdi e.g. Ironfleet

Logic-based verification approaches
Ex

p
re

ss
iv

en
e

ss

Automation

Interactive
theorem
provers Automated

deductive
verification

Model
Checking,
Abstract

Interpretation

• Huge programmer effort
(~10-50 lines of proof
per line of code)

• SMT solver may diverge
(matching loops, arithmetic)

• Unpredictability, butterfly
effect

• Limited due to
undecidability

Logic-based verification approaches
Ex

p
re

ss
iv

en
e

ss

Automation

Interactive
theorem
provers Automated

deductive
verification

Model
Checking,
Abstract

Interpretation

• Huge programmer effort
(~10-50 lines of proof
per line of code)

• SMT solver may diverge
(matching loops, arithmetic)

• Unpredictability, butterfly
effect

• Limited due to
undecidability

Desired
- Expressiveness
- High degree of automation
- Predictability
- Comprehensibility for users
- Efficiency/scalability

This talk: Restrict VC’s to decidable logic

Inv(V) is an inductive invariant if the following verification conditions
are valid:

Initiation Init(V)⟹Inv(V) unsat(Init(V)Inv(V))

Cons. Inv(V)TR(V,V’) ⟹ Inv(V’) unsat(Inv(V)TR(V,V’)Inv(V’))

Safety Inv(V) ⟹¬Bad(V) unsat(Inv(V)Bad(V))

Are the logical VC’s valid ?I can decide!

Counterexample Proof

∈ Decidable logic
With good tool support

Challenges for verification
with decidable logic

Formal specification

Modeling in a decidable logic

Deduction

Checking validity of the VC’s

Invariant inference

Finding an inductive invariant

This talk

Formal specification

• Surprisingly expressive

Invariant inference

• Automatic (based on PDR)

- Semi-algorithm: may diverge

• Interactive

- Based on graphically displayed counterexamples to induction

Logic: EPR – decidable fragment of first order logic

Effectively Propositional Logic – EPR

Decidable fragment of first order logic

Allows quantifiers to reason about unbounded sets
- ∀x,y. leader(x) ∧ leader(y) → x = y

 Satisfiability is decidable => Deduction is decidable

 Small model property => Finite cex to induction

 Turing complete modeling language

 Limited language for safety and inductive invariants
 Suffices for many infinite-state systems

+ Quantification (**) - Theories (e.g., arithmetic)

Successful verification with EPR

• Shape Analysis
[Itzhaky et al. CAV’13, POPL’14, CAV’14, CAV’15]

• Software-Defined Networks
[Ball et al. PLDI’14]

• Distributed protocols
[Padon et al. PLDI’16, OOPSLA’17, POPL’18, PLDI’18]

• Concurrent Modification Errors in Java programs
[Frumkin et al. VMCAI’17]

Example: Leader Election in a Ring

• Nodes are organized in a unidirectional ring

• Each node has a unique numeric id

• Protocol:

– Each node sends its id to the next

– A node that receives a message passes it to the next if the id in

the message is higher than the node’s own id

– A node that receives its own id becomes the leader

• Theorem:

– The protocol selects at most one leader

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized
extrema-finding in circular configurations of processes

3 5

2

4

1

6
next

next next

next

next

next

• State: finite first-order structure over vocabulary V

• ≤ (ID, ID) – total order on node id’s

• id: Node  ID – relate a node to its id

• btw (Node, Node, Node) – the ring topology

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

structureprotocol state

Axiomatized in EPR

≤

n1
L

id1

n2
L

id2

n3
L

≤ id3

n4
L

n5
L

id5 id6
≤ ≤

<n5, n1, n3> ∈ 𝐼(btw)

id4

n6
L

≤

n1

Modeling with EPR

3 5

2

4

1

6
next

next next

next

next

next 2
5

pnd
id

id id idpnd

n5

Modeling with EPR

• State: finite first-order structure over vocabulary V (+ axioms)

• Initial states and safety property: EPR formulas over V

– Init(V) – initial states, e.g., ∀ id, n. ¬pending(id, n)

– Bad(V) – bad states, e.g., ∃ n1,n2.leader(n1) ∧ leader n2 ∧ n1≠n2

• Transition relation: expressed as EPR formula TR(V, V’), e.g.:

∃n,s. “s = next(n)”∧ ∀x,y. pending’(x,y)↔ (pending(x,y) ∨ (x=id[n]∧y=s))

∨ ∃n. pending (id[n],n) ∧ ∀x. leader’(x) ⟷ (leader(x) ∨ x=n)

…

Modeling with EPR

• State: finite first-order structure over vocabulary V (+ axioms)

• Initial states and safety property: EPR formulas over V

– Init(V) – initial states, e.g., ∀ id, n. ¬pending(id, n)

– Bad(V) – bad states, e.g., ∃ n1,n2.leader(n1) ∧ leader n2 ∧ n1≠n2

• Transition relation: expressed as EPR formula TR(V, V’), e.g.:

∃n,s. “s = next(n)”∧ ∀x,y. pending’(x,y)↔ (pending(x,y) ∨ (x=id[n]∧y=s))

∨ ∃n. pending (id[n],n) ∧ ∀x. leader’(x) ⟷ (leader(x) ∨ x=n)

…

Propose(n): send(id(n), next(n))

Recv(n,msg): if msg = id(n) then leader(n) := true

if msg > id(n) then send(msg,next(n))

Modeling with EPR

• State: finite first-order structure over vocabulary V (+ axioms)

• Initial states and safety property: EPR formulas over V

– Init(V) – initial states, e.g., ∀ id, n. ¬pending(id, n)

– Bad(V) – bad states, e.g., ∃ n1,n2.leader(n1) ∧ leader n2 ∧ n1≠n2

• Transition relation: expressed as EPR formula TR(V, V’), e.g.:

∃n,s. “s = next(n)”∧ ∀x,y. pending’(x,y)↔ (pending(x,y) ∨ (x=id[n]∧y=s))

∨ ∃n. pending (id[n],n) ∧ ∀x. leader’(x) ⟷ (leader(x) ∨ x=n)

…

Modeling with EPR

• State: finite first-order structure over vocabulary V (+ axioms)

• Initial states and safety property: EPR formulas over V

– Init(V) – initial states, e.g., ∀ id, n. ¬pending(id, n)

– Bad(V) – bad states, e.g., ∃ n1,n2.leader(n1) ∧ leader n2 ∧ n1≠n2

• Transition relation: expressed as EPR formula TR(V, V’), e.g.:

- ∃n,s. “s = next(n)”∧ ∀x,y. pending’(x,y)↔ (pending(x,y) ∨ (x=id[n]∧y=s))

- ∃n. pending (id[n],n) ∧ ∀x. leader’(x) ⟷ (leader(x) ∨ x=n)

…

Specify and verify the protocol for any number of nodes in the ring

Using EPR for Verification

• System model Init(V), Bad(V), TR(V, V’) ∈ EPR

• Inductive invariant Inv(V) ∈ *

• Verification conditions

Initiation Init(V)⟹Inv(V) unsat(Init(V)Inv(V))

Cons. Inv(V)TR(V,V’) ⟹ Inv(V’) unsat(Inv(V)TR(V,V’)Inv(V’))

Safety Inv(V) ⟹¬Bad(V) unsat(Inv(V)Bad(V))

Verification conditions ∈ EPR

 Decidable to check

Inductive Invariant for Leader Election

Safety property:

I0 = ¬Bad = ∀x,y: Node. leader(x) ∧ leader(y) → x = y

• ≤ (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node  ID – relate a node to its id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

3 5

2

4

1

6

2
No! 3 5

2

4

1

6

Inductive?

Inductive Invariant for Leader Election

Safety property:

I0 = ¬Bad = ∀x,y: Node. leader(x) ∧ leader(y) → x = y

Inductive invariant: Inv = I0  I1  I2  I3

I1 = n1,n2: Node. leader(n1)→ id[n2] ≤ id[n1]

I2 = n1,n2: Node. pnd(id[n1], n1) → id[n2] ≤ id[n1]

I3 = n1,n2,n3: Node. btw(n1,n2,n3)  pnd(id[n2], n1)
→ id[n3] ≤ id[n2]

The leader has
the highest id

Only highest id
can be self-pnd

Cannot bypass
higher nodes

• ≤ (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node  ID – relate a node to its id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

The reason for
using “btw”

instead of “next”

Inductive Invariant for Leader Election

Safety property:

I0 = ¬Bad = ∀x,y: Node. leader(x) ∧ leader(y) → x = y

Inductive invariant: Inv = I0  I1  I2  I3

I1 = n1,n2: Node. leader(n1)→ id[n2] ≤ id[n1]

I2 = n1,n2: Node. pnd(id[n1], n1) → id[n2] ≤ id[n1]

I3 = n1,n2,n3: Node. btw(n1,n2,n3)  pnd(id[n2], n1)
→ id[n3] ≤ id[n2]

The leader has
the highest id

Only highest id
can be self-pnd

Cannot bypass
higher nodes

EPR
Solver

𝐼𝑛𝑖𝑡 𝑉 ∧ ¬𝐼𝑛𝑣 𝑉
𝐼𝑛𝑣 𝑉 ∧ 𝑇𝑅 𝑉, 𝑉′ ∧ ¬𝐼𝑛𝑣 𝑉′

𝐼𝑛𝑣 𝑉 ∧ 𝐵𝑎𝑑(𝑉)

I can decide EPR!

Proof

• ≤ (ID, ID) – total order on node id’s

• btw (a: Node, b: Node, c: Node) – the ring topology

• id: Node  ID – relate a node to its unique id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

|

Intention EPR Modeling

Node
ID’s

Integers

i:ID. i ≤ i Reflexive
i, j, k: ID. i≤j ∧ j≤k → i≤ k Transitive
i, j: ID. i≤j ∧ j≤ I → i=j Anti-Symmetric
i, j: ID. i≤j ∨ j ≤ i Total
x, y: Node. id(x) = id(y) → x=y Injective

Ring
Topology

Next
edges +
Transitive
closure

x, y, z: Node. btw(x, y, z) → btw(y, z, x) Circular shifts
x, y, z, w: Node. btw(w, x, y) ∧btw(w, y, z) → btw(w, x, z) Transitive
x, y, w: Node. btw(w, x, y) → btw(w, y, x) Anti-Symmetric
x, y, z, w: Node. distinct(x, y, z) → btw(w, x, y) ∨ btw(w, y, x)

“next(a)=b”  x: Node. x≠a ∧ x≠b→ btw(a,b,x)

Axioms: Leader Election Protocol

So far

Formal specification with EPR

• Surprisingly expressive

• Integers: numeric id’s expressed with ≤

• Transitive closure: ring topology expressed with btw

• Network semantics: pending messages

• Sets and cardinalities (for consensus protocols) [OOPSLA’17]

• Liveness properties [POPL’18, FMCAD’18]

• Implementations [PLDI’18]

Not in
this talk

Next

Invariant inference: finding inductive invariants

(1) Automatically

– Adapt techniques from finite-state model checking (PDR)

(2) Interactively

– Based on graphically displayed counterexamples to induction

How can we find a universally quantified inductive
invariant?

Inductive Invariant for Leader Election

L L

≤
id idpnd

I0
¬Bad

∀n1,n2 : Node. leader(n1)∧leader(n2) → n1=n2

I1 n1,n2: Node. leader(n1)→ id[n2] ≤ id[n1]

I2 n1,n2: Node. pnd(id[n1],n1) → id[n2] ≤ id[n1]

I3 n1,n2,n3: Node. btw(n1,n2,n3)  pnd(id[n2],n1)
→ id[n3] ≤ id[n2]

The leader has
the highest id

Only highest id
can be self-pnd

Cannot bypass
higher nodes

≤

L

id id

pnd
id
≤

id

btw

¬∃n1,n2: Node. leader(n1)∧leader(n2) ∧ n1≠n2

¬∃n1,n2: Node. leader(n1) ∧ id[n2] > id[n1]

¬∃n1,n2: Node. pnd(id[n1],n1) ∧ id[n2] > id[n1]

¬∃n1,n2,n3: Node. btw(n1,n2,n3)  pnd(id[n2],n1)
∧ id[n3] > id[n2]

At most one
leader elected

n2n1 n2n1

n1 n2 n3

Construct Inv by excluding “bad” states

1. How to find these states?

2. How to generalize into conjectures?

[CAV’15, JACM’17] Property-Directed Inference of Universal Invariants or Proving Their
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.

Use diagrams as generalization of (partial) states

• state  is a finite first-order structure

≤

≤

L
…

L

≤

¬L 

’Diag() = x ≠ y  L(x) ¬L(y)
 ≤(x, y)  ¬≤(y, x)
 ≤(x, x)  ≤(y, y)

 is obtained from ’ by removing elements
and projecting relations on remaining elements

∃ x y.

' ⊨ Diag() iff  is a substructure of ‘

exclude() = ¬Diag()

L ¬L

¬L

L

L¬L

Generalization using Diagram

[CAV’15, JACM’17] Property-Directed Inference of Universal Invariants or Proving Their
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.

¬L

≤

¬L

…

≤



’

≤

L

¬L ¬L ¬L

L

Generalize even more if
 is a partial structure

Generalization using Diagram

Diag() = x ≠ y
 ≤(x, y)  ¬≤(y, x)
 ≤(x, x)  ≤(y, y)

∃ x y.

exclude() = ¬Diag()

∀∗ Invariant - excluded substructures

Inv   ҧ𝑥. (l1,1(ҧ𝑥)  …  l1,m(ҧ𝑥))  …  ഥ𝑥. (ln,1(ҧ𝑥)  …  ln,m(ҧ𝑥))

Inv  ¬ ഥ𝑥. (l1,1(ҧ𝑥)  …  l1,m(ҧ𝑥))∧…∧ ¬ഥ𝑥. (ln,1(ҧ𝑥)  …  ln,m(ҧ𝑥))

clause / conjecture

cube

r

t*

L L
≤

id idpnd

pnd
id
≤

id

btw

≤

L

id id

substructure

The leader
has the

highest ID Only the leader
can be self-

pending

Cannot bypass
higher nodesAt most

one
leader

Leader election example

How to find the (partial) states to generalize from?

(1) Automatic inference: UPDR

• Based on Bradley’s IC3/PDR [VMCAI11,FMCAD11]

– SAT-based verification of finite-state systems

• Abstracts concrete states using their logical diagram

• Backward traversal performed over diagrams

• Blocking of CTI excludes a generalization of its
diagram  generates universally quantified lemmas

• [CAV’15, JACM’17] Property-Directed Inference of Universal Invariants or Proving Their
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.

• [VMCAI’17] Property Directed Reachability for Proving Absence of Concurrent
Modification Errors, A. Frumkin, Y. Feldman, O. Lhoták, O. Padon, M. Sagiv and S. Shoham.

UPDR: Possible outcomes

• Universal inductive invariant found

– System is safe

Used to infer inductive invariants / procedure summaries of:

• Heap-manipulating programs, e.g.
– Singly/Doubly/Nested linked list

– Iterators in Java - Concurrent modification error (CME)

• Distributed protocols
– Spanning tree

– Learning switch

– …

No need for
user-defined
predicates/
templates!

UPDR: Possible outcomes

• Universal inductive invariant found

– System is safe

• Proof that no universal inductive invariant exists

– Safety not determined*

* can use Bounded Model Checking to find real counterexamples

BadInit
…⊆ ⊆ ⊆ ⊆

UPDR: Possible outcomes

• Universal inductive invariant found

– System is safe

• Proof that no universal inductive invariant exists

– Safety not determined*

• Divergence

– In general, inferring universal ind. inv. is undecidable

– For linked lists it is decidable, UPDR will also terminate
• Proof uses well-quasi-order and Kruskal’s tree theorem

• [POPL’16] Decidability of Inferring Inductive Invariants, O. Padon, N.
Immerman, S. Shoham, A. Karbyshev, and M. Sagiv.

Model
Verifier

Proof

user

Automatic Inference (e.g., UPDR)

…

…

Ultimately limited by undecidability

Model
Verifier

Proof

user

(2) Interactive Inference

…

…

Question

Answer

Supervised Verification of Infinite-State Systems

• Let the user guide the tool
• User has intuition about the essence of the proof
• Computer is good at handling corner cases

Interactive Inference
Ex

p
re

ss
iv

en
es

s

Automation

Deductive verification

Model Checking
Static Analysis

Ultimately limited by human

Ultimately limited by undecidability

proof/code:
Verdi: ~10
IronFleet: ~4

Supervised Verification of Infinite-State Systems

What is the human’s role?
What is the machine’s role?
How do they interact?

Displays “minimal” CTI to exclude

Generalizes to a partial state

• removes “irrelevant” facts (graphical interface - checkboxes)

Translates to universally quantified conjecture (via diagram)

Provides auxiliary automated checks:

1. BMC(K): uses SAT solver to check if conjecture is true up to K

• User determines the right K to use

2. ITP(K): uses SAT solver to discover more facts to remove

Examines the proposed conjecture – it could be wrong

Adds 𝐼𝑘+1

Ivy: Interactive Generalization

𝐼𝑛𝑣 = 𝐼0 ∧ ⋯∧ 𝐼𝑘

[PLDI’16] IVy: Safety Verification by Interactive Generalization. O. Padon,
K. McMillan, A. Panda, M. Sagiv, S. Shoham https://github.com/Microsoft/ivy

Interactive Verification in IVy

Proof intuition and creativity

Graphical interaction

Decidable Problems

Predictable Automation

Projection of
relevant facts

BMC bounds

Examining
conjectures

Check inductiveness

BMC

Interpolation

… …

https://www.quora.com/Human-Computer-Interaction

Verification with decidable logic

• EPR - decidable fragment of FOL
• Deduction is decidable
• Finite counterexamples

• Can be made surprisingly powerful
• Transitive closure: linked lists, ring topology [PLDI’16]
• Paxos, Multi-Paxos, [OOPSLA’17]

• Liveness and Temporal Properties [POPL’18]
• Developing verified implementations [PLDI’18]

• Domain knowledge
and axioms

• Derived relations
• Modularity
• Prophecy

Summary 1

Invariant Inference

•Automatic inference: UPDR [CAV’15,JACM]

• Interactive inference: Ivy [PLDI’16]

• Use logical diagram to infer Inv ∈ ∀*

• Can also prove absence of Inv ∈ ∀*

Summary 2

•Decidable logic is useful
- facilitates automation

•We need ways to guide verification tools

•How to divide the problem between human and machine?

•Different inference schemes

•Different Forms of interaction

•Other logics

• Theoretical understanding of limitations and tradeoffs

Take away

Supervised Verification of Infinite-State Systems

