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Model Checking [Ec81,0582]

Finite-State Temporal
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Does S satisfy @?
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Counterexample Proof

*Clarke, Emerson, and Sifakis won the 2007 Turing award for their
contribution to Model Checking
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Class. forName ("com.microsoft. jdbe
String url = "jdbc:microsoft:sglst
o o Comnection conn = DriverManager. g
I n fl n Ite —Sta te SySte m S PreparedStatement pstmt = null;
try {
String query = "INSERT INTO ¢
pstmt = conn.prepareStatement
pstmt.setInt(1,3);

P rog ra m S : | fiE:iT;.?xecuteUpdate (); /] exe
* Dimensions of infinity: e ol

* unbounded number of dynamically allocated objects
* unbounded number of threads
* unbounded domain of variables (naturals, reals...)

Distributed systems:
* Dimensions of infinity:
* unbounded number of hosts/switches
* unbounded number of pending messages

Set of states is infinite



Automatic verification of infinite-
state systems

Infinite-State Probert
System S PErty @

Verification Rice’s Theorem
Is there a behavior

of S that violates ¢?

! !

Counterexample ~ Unknown /
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Safety Verification

System State Space
@ Property

leaders are
elected”

Init

System S is safe if all the reachable states satisfy the property P = wBad



Inductive Invariants

System State Space
% Property

leaders are
elected”

Init

System S is safe if all the reachable states satisfy the property P = wBad
System S is safe iff there exists an inductive invariant /71v:

Init € Inv (Initiation)

if o € Invand o - ¢’ then ¢’ € Inv (Consecution)

Inv N Bad = @ (Safety)
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Example

e N pairs of players pass a ball:
— 17T will pass to 11
— 1! will pass to 1T ®
— 2T will pass to 24
— 2!l will pass to 2T ...
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Example

e N pairs of players pass a ball:
— 17T will pass to 11
— 1! will pass to 1T
— 2T will pass to 24
— 2!l will pass to 2T ...

e The ball starts at player 1T
e Can the ball getto 21?



Example

N pairs of players pass a ball:
— 1T will pass to 14

— 1l will pass to 1T

— 2T will pass to 24

— 2l will passto 2T ...

The ball starts at player 1T
Can the ball get to 217?
Is “the ball is not at 21l” an inductive invariant?
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Example

N pairs of players pass a ball:
— 1T will pass to 14

— 1l will pass to 1T

— 2T will pass to 24

— 2l will passto 2T ...

The ball starts at player 1T
Can the ball get to 217?
Is “the ball is not at 21l” an inductive invariant? No!

— Counterexample to induction

Inductive invariant: “the ball is not at 2T or 21”



Logic-based verification

* Represent Init, Tr, Bad, by logical formulas
 Formula < Set of states

* Propositional logic (SAT) — industrial impact for hardware
verification

* First-order theorem provers

» Satisfiability modulo theories (SMT) — major trend in
software verification

* /3, CVC4, iProver, Vampire ....



How can we check an inductive invariant?

Inv(V) is an inductive invariant if the following verification conditions
are valid:

Initiation Init(V)=Inv(V) unsat( Init(V)A=lnv(V) )
Cons. Inv(V)ATR(V,V’) = Inv(V’) unsat( Inv(V)ATR(V,V')A=Inv(V’))
Safety Inv(V) = —Bad(V) unsat( Inv(V)ABad(V) )

Are the logical VC’s valid ?

| Church’s Theorem

} }

Counterexample Unknown /

’ Diverge
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What can we do about it?

Interactive theorem provers
(Coq, Isabelle/HOL, LEAN)

* Programmer gives inductive
invariant and proves it

e Huge programmer effort
(~10-50 lines of proof per
line of code)

SMT-based deductive verification
(e.g. Dafny)
* Programmer provides ind. invariant

* VC’s generated and discharged
automatically

e SMT solver may diverge (matching
loops, arithmetic)




Alternative: Restrict VC’s to
decidable logic

Inv(V) is an inductive invariant if the following verification conditions
are valid:

Initiation Init(V)=Inv(V) unsat( Init(V)A=lnv(V) )
Cons. Inv(V)ATR(V,V’) = Inv(V’) unsat( Inv(V)ATR(V,V')A=lnv(V’))
Safety Inv(V) = —Bad(V) unsat( Inv(V)ABad(V) )

Are the logical VC’s valid ?| € Decidable logic

1 o | can decide!
Counterexample g

%




Challenges for verification
with decidable logic

Formal specification
Modeling in a decidable logic

Deduction /
Checking validity of the VC’s

Invariant inference
Finding an inductive invariant



This talk

Formal specification
* Use EPR — decidable fragment of first order logic

* Surprisingly expressive

Invariant inference
e Automatic (based on PDR)
- Semi-algorithm: may diverge
* Interactive

- Based on graphically displayed counterexamples to induction



Effectively Propositional Logic — EPR

Decidable fragment of first order logic
+ Quantification (3*v*) - Theories (e.g., arithmetic)

© Allows quantifiers to reason about unbounded sets
- Vx,y. leader(x) A leader(y) > x=vy

© Satisfiability is decidable => Deduction is decidable

© Small model property => Finite cex to induction

© Turing complete modeling language

@ Limited language for safety and inductive invariants

» Suffices for many infinite-state systems



Successful verification with EPR

Shape Analysis
[ltzhaky et al. CAV’13, POPL’14, CAV’14, CAV’15]

Software-Defined Networks
[Ball et al. PLDI'14]

Distributed protocols
[Padon et al. PLDI'16, OOPSLA’17, POPL’18, PLDI’18]

Concurrent Modification Errors in Java programs
[Frumkin et al. VMCAI'17]



Example: Leader Election in a Ring

nex
e Nodes are organized in a unidirectional ring o, next

e Each node has a unique numeric id
nex ext

e Protocol:
— Each node sends its id to the next

— A node that receives a message passes it to the next if the id in
the message is higher than the node’s own id

next

— A node that receives its own id becomes the leader

e Theorem:
— The protocol selects at most one leader

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized
extrema-finding in circular configurations of processes



Modeling with EPR

e State: finite first-order structure over vocabulary V

* < (ID, ID) — total order on node id’s
* btw (Node, Node, Node) — the ring topology - Axiomatized in EPR
* id: Node = ID —relate a node to its id

* pending(ID, Node) — pending messages

* leader(Node) — leader(n) means n is the leader

protocol state structure

<ng, Ny, N> € [(btw)




Modeling with EPR

e State: finite first-order structure over vocabulary V (+ axioms)

e |nitial states and safety property: EPR formulas over V
— Init(V) —initial states, e.g., V id, n.apending(id, n)

— Bad(V) — bad states, e.g., 3 n,,n,.leader(n,) Aleader(n,) A n,#n,

* Transition relation: expressed as EPR formula TR(V, V'), e.g.:
dn,s. “s = next(n)”A Vx,y. pending’(x,y)< (pending(x,y) V (x=id[n]Ay=s))

V 3dn. pending (id[n],n) A Vx. leader’(x) <= (leader(x) V x=n)



Modeling with EPR

e State: finite first-order structure over vocabulary V (+ axioms)

- Propose(n): send(id(n), next(n))
-~ Recv(n,msg): if msg = id(n) then leader(n) := true

if msg > id(n) then send(msg,next(n))

* Transition relation: expressed as EPR formula TR(V, V'), e.g.:
dn,s. “s = next(n)”A Vx,y. pending’(x,y)< (pending(x,y) V (x=id[n]Ay=s))

V 3dn. pending (id[n],n) A Vx. leader’(x) <= (leader(x) V x=n)
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Modeling with EPR

e State: finite first-order structure over vocabulary V (+ axioms)

e |nitial states and safety property: EPR formulas over V
— Init(V) —initial states, e.g., V id, n. =pending(id, n)

— Bad(V) — bad states, e.g., 3 n,,n,.leader(n,) Aleader(n,) A n,#n,

Specify and verify the protocol for any number of nodes in the ring

v:;s.(){:}...




Using EPR for Verification

e System model Init(V), Bad(V), TR(V, V') € EPR
* |nductive invariant Inv(V) € V*

e Verification conditions

Initiation Init(V)=Inv(V) unsat( Init(V)A=lInv(V) )
Cons. Inv(V)ATR(V,V’) = Inv(V’) unsat( Inv(V)ATR(V,V')A=Inv(V’) )
Safety  Inv(V) = —=Bad(V) unsat( Inv(V)ABad(V) )

Verification conditions € EPR
=» Decidable to check



Inductive Invariant for Leader Election

Safety property:
I, = =Bad = Vx,y: Node. leader(x) A leader(y) — x =y

< (ID, ID) — total order on node id’s

btw (Node, Node, Node) — the ring topology
id: Node = ID —relate a node toits id
pending(ID, Node) — pending messages
leader(Node) — leader(n) means n is the leader



nductive Invariant for Leader Election

Safety property:

—Bad = Vx,y: Node. leader(x) A leader(y) — x =y
Inductive invariant: Inv = I0 A I1 A I2 A I3

= V¥n,,n,: Node. leader(n,) —» id[n,] < id[n The leader has
17 ( 1) [ 2] [ 1] the highest id

= Vn;,n,: Node. pnd(id[n,], n;) — id[n,] < id[n,] Only highestid
can be self-pnd

= Vny,n,,n;: Node. btw(n,,n,,n;) A pnd(id[n,], n,)

_ : Cannot bypass
— id[ny] = id[n,]

higher nodes

< (ID, ID) — total order on node id’s
btw (Node, Node, Node) — the ring topology
id: Node = ID —relate a node toits id
pending(ID, Node) — pending messages
leader(Node) — leader(n) means n is the leader

The reason for
using “btw”
instead of “next”




Inductive Invariant for Leader Election

Safety property:

—Bad = Vx,y: Node. leader(x) A leader(y) — x =y
= 10 A I1 A I2 A I3

Inductive invariant: Inv

Vny,n,: Node. leader(n,) — id[n,] < id[n,]

Vni,n,: Node. pnd(id[n,],

Vn,,n,,ny: Node. btw(ng,n,,n 3) A pnd

Init(V) A =lnv(V)
Inv(V) ATR(V, V") A =alnv(V')
Inv(V) A Bad(V)

n,) — id[n,] < id[n,] Only highestid

The leader has
the highest id

can be self-pnd

Cannot bypass
higher nodes




So far

Formal specification

* Use EPR — decidable fragment of first order logic

* Surprisingly expressive
* Integers: numeric id’s expressed with <
* Transitive closure: ring topology expressed with btw
* Network semantics: pending messages

 Sets and cardinalities (for consensus protocols) Not in
this talk



Next

Invariant inference: finding inductive invariants

e Automatically
— Adapt technigues from finite-state model checking (PDR)
e [nteractively
— Based on graphically displayed counterexamples to induction



How can we find a universally quantified inductive
invariant?



Inductive Invariant for Leader Election

I, vn;,n, : Node. leader(n;)Aleader(n,) — n;=n, FNEGEEIEE
7Bad L 3n,,n,: Node. leader(n,)Aleader(n,) A n,#n, NeakEadoaly
I, Vni,n,: Node. leader(n;) —» id[n,] = id[n,] The leader has
—3n,,n,: Node. leader(n,) A id[n,] > id[n,] the highest id
I, Vny,n,: Node. pnd(id[n;],n;) — id[n,] < id[n;]ReRMAELESAE
~3n,,n,: Node. pnd(id[n;],n;) A id[n,] > id[n,]REWiEElgle
I, Vny,n,,ny: Node. btw(ng,n,,ny) A pnd(id[n,],n;) BeElleiae)ers

— id[n3] = id[n,] higher nodes
—=3n,;,n,,n;: Node. btw(n;,n,,n;) A pnd(id[n,],n;)
Aid[ny] > id[n,]

D
—> ="

1 2




Construct Inv by excluding “bad” states

1. How to find these states?

e

® | 2. How to generalize into conjectures?
4

—_—



Generalizati

Use diagrams as generaliz \.‘\/‘
e state o is a finite first-o

Diag(c) = 3 xvy. x #y A L(x) A=L(y)
A <(x, V) A =<Z(y, X)
A <(x, x) A Z(y, V)

o' & Diag(o) iff o is a substructure of o'

o is obtained from o’ by removing elements
and projecting relations on remaining elements

exclude(o) = —Diag(o)

[CAV’15, JACM’17] Property-Directed Inference of Universal Invariants or ProMg Their
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.



Generalization using Diagram

Generalize even more if
c is a partial structure

Diag(c) =3 xy. x#vy

A <(x, v) A =<y, X)
A <(x, X) A <[y, V)

exclude(o) = —Diag(o)

[CAV’15, JACM’17] Property-Directed Inference of Universal Invariants or ProM\g Their
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.



V™ Invariant - excluded substructures

Inv=Vx. (I 1(X) v .. VI (X)) A AVXAL 1 (X) v v (X))
\ )

Y .
clause / conjecture

. J

v == 3% (=l 1(2) A oo A=y (BDALA =T (=, 4 (8) A o A (7))
\ )

Y
cube




Leader election example

Only the leader
can be self-
pending




(1) UPDR: Automatic inference

Based on Bradley’s IC3/PDR [vMmcCAI11,FMCAD11]

— SAT-based verification of finite-state systems

Abstracts concrete states using their logical diagram
Backward traversal performed over diagrams

Blocking of CTl excludes a generalization of its
diagram =2 generates universally quantified lemmas

[CAV’15, JACM’17] Property-Directed Inference of Universal Invariants or Proving Their
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.

[VMCALI’17] Property Directed Reachability for Proving Absence of Concurrent
Modification Errors, A. Frumkin, Y. Feldman, O. Lhotak, O. Padon, M. Sagiv and S. Shoham.



UPDR: Possible outcomes

e Universal inductive invariant found
— System is safe

Used to infer inductive invariants / procedure summaries of:

e Heap-manipulating programs, e.g.
— Singly/Doubly/Nested linked list
— lterators in Java - Concurrent modification error (CME)

e Distributed protocols No need for
— Spanning tree user-defined
— Learning switch predicates/

- .. templates!




UPDR: Possible outcomes

e Universal inductive invariant found
— System is safe

e Abstract counterexample:
— Safety not determined*
— But no universal inductive invariant exists!

o) e

*

can use Bounded Model Checking to find real counterexamples



Proving the absence of universal invariant

Suppose that a universally quantified inductive invariant I exists.
Then:

V

Gi+1’|= I

\ @/

GOIZI Gll:l |1':I | Gi+1|:I
e e : Contradiction
[ satisfies initiation: 0o E Init = gy E1 to safety]
[ satisfies consecution: g;_; E1 A TR(0j_1,0;) = ag] E1 y:
[ is universal: o; E Diag(o;) = o0; E1

If there is a universal inductive invariant I € V¥, then any abstract trace

does not reach Bad
=» An abstract trace to Bad implies no universal inductive invariant exists



Termination?



Termination?

Is it decidable to infer universal inductive invariants? [POPL 16]
e No, in the general case

— if the vocabulary contains at least one binary relation which is
unrestricted

e Yes, for linked lists

— if the vocabulary contains only one "transitive closure" binary
relation, but as many constants and unary predicates as desired

— UPDR will also terminate
— proof uses well-quasi-order and Kruskal’s tree theorem

e More decidable classes

e [POPL'16] Decidability of Inferring Inductive Invariants, O. Padon, N. Immerman, S.
Shoham, A. Karbyshev, and M. Sagiv.



Automatic Verification (e.g., UPDR)

=

/Model/

user
C——
/ Proof/
——

N
-
i
ifi = =
Verifier P =g
= -__;I| .I = ?1:.' . l:'_; : ::
/ri—_'_nl: -‘.i—_'_l.‘.ll\ rfl - _T/"--_—--"
= cl—._ ] \<I_; = -'____';I.‘:\ ;._: =
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Ultimately limited by undecidability



Interactive Verification

— -
C— :

/Model/ ——— r z h

r:,@\

Question

user ' Answer g

C——=

/ Proof/

——

* Divide the problem between the human and the machine
* Find a suitable way to conduct the interaction

el’C Supervised Verification of Infinite-State Systems



Expressiveness

Interactive Verification

Proof Assistants

Ultimately limited by human @

proof/code:
Verdi: ~10
IronFleet: ~4

Ultimately limited by undecidability

Model Checking
Static Analysis

Automation

s
N
teetse®
e og 0l
eee
s @
(3.5
e
X )

.
o ®®
o °
O

I"C Supervised Verification of Infinite-State Systems



(2) Ivy: Interactive inference

Candidate Inductive
Invariant
Inv=I,AI,A..AT,

Inductive
Invariant
Found

Inductive?

Find “minimal”  EPR Modify candidate
counterexample to invariant
induction (CTI)

Generalize from CTI EPR

‘. User . Automation
- Diagram

[PLDI’16] IVy: Safety Verification by Interactive Generalization. O. Padon,
K. McMillan, A. Panda, M. Sagiv, S. Shoham https://github.com/Microsoft/ivy



https://www.quora.com/Human-Computer-Interaction
https://www.quora.com/Human-Computer-Interaction

Summary 1

Domain knowledge
Verification with decidable logic and axioms
Derived relations
Modularity
* EPR - decidable fragment of FOL Prophecy

* Deduction is decidable
* Finite counterexamples

* Can be made surprisingly powerful
* Transitive closure: linked lists, ring topology [PLDI’16]
e Paxos, Multi-Paxos, [OOPSLA’17]
* Liveness and Temporal Properties [POPL' 18]
* Developing verified implementations [PLDI’18]



1\. TLJ L [-\_T\J»@ - Fl.ﬂ.'n}.ﬁ?
Proof Assistants Supervised

S u m m a ry 2 Ultimately limited by human Verification

prooffcade: proofieode: [V ~1/10

. PhEE
Invariant Inference : e

Static Analysis

* Automatic inference: UPDR
* Interactive inference: Ivy

» Use logical diagram to infer Inv € V*
e Can also prove absence of Inv € V*



Decidable logic is useful!

* Other logics
* Theoretical understanding of limitations and tradeoffs

e Interactive verification
* Dividing the problem between human and machine
e Inference schemes

* Forms of interaction

Seeking postdocs and students
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