Verification of Infinite-State Systems Using Decidable Logic

Sharon Shoham

Tel Aviv University

Supervised Verification of Infinite-State Systems

Model Checking [EC81,QS82]

*Clarke, Emerson, and Sifakis won the 2007 Turing award for their contribution to Model Checking

Model Checking [EC81,QS82]

*Clarke, Emerson, and Sifakis won the 2007 Turing award for their contribution to Model Checking

Technion Israel Institute of Technology

2001-2009

Infinite-State Systems

Programs:

- Dimensions of infinity:
 - unbounded number of dynamically allocated objects
 - unbounded number of threads
 - unbounded domain of variables (naturals, reals...)

Distributed systems:

- Dimensions of infinity:
 - unbounded number of hosts/switches
 - unbounded number of pending messages


```
pstmt.close()
comp_close();
```


Set of states is infinite

Safety Verification

System S is safe if all the reachable states satisfy the property $P = \neg Bad$

Inductive Invariants

System S is safe if all the reachable states satisfy the property $P = \neg Bad$ System S is safe iff there exists an **inductive invariant** *Inv*:

Init \subseteq *Inv* (Initiation) if $\sigma \in$ *Inv* and $\sigma \rightarrow \sigma'$ then $\sigma' \in$ *Inv* (Consecution) *Inv* \cap *Bad* = \emptyset (Safety)

Inductive Invariants

System S is **safe** if all the **reachable** states satisfy the property $P = \neg Bad$ System S is safe iff there exists an **inductive invariant** Inv:

Init \subseteq *Inv* (Initiation) if $\sigma \in Inv$ and $\sigma \rightarrow \sigma'$ then $\sigma' \in Inv$ (Consecution) $Inv \cap Bad = \emptyset$ (Safety)

- N pairs of players pass a ball:
 - 11 will pass to 1 \downarrow
 - − 1↓ will pass to 1 \uparrow
 - 21 will pass to 21
 - 2↓ will pass to $2\uparrow$...

- N pairs of players pass a ball:
 - 11 will pass to 1 \downarrow
 - − 1↓ will pass to 1 \uparrow
 - 21 will pass to 21
 - $2\downarrow$ will pass to $2\uparrow$...

. . .

- N pairs of players pass a ball:
 - 11 will pass to 1 \downarrow
 - − 1↓ will pass to 1 \uparrow
 - 21 will pass to 21
 - 2↓ will pass to $2\uparrow$...
- The ball starts at player 11
- Can the ball get to $2\downarrow$?

11	21
1↓	2↓

- N pairs of players pass a ball:
 - 11 will pass to 1 \downarrow
 - − 1 \downarrow will pass to 1 \uparrow
 - 21 will pass to 21
 - 2↓ will pass to $2\uparrow$...
- The ball starts at player 1↑
- Can the ball get to $2\downarrow$?
- Is "the ball is not at $2\downarrow$ " an inductive invariant?

- N pairs of players pass a ball:
 - − 11 will pass to 1↓
 - − 1 \downarrow will pass to 1 \uparrow
 - 21 will pass to 21
 - 2↓ will pass to $2\uparrow$...
- The ball starts at player 11
- Can the ball get to $2\downarrow$?
- Is "the ball is not at $2\downarrow$ " an inductive invariant? No!
 - Counterexample to induction

- N pairs of players pass a ball:
 - − 11 will pass to 1↓
 - − 1 \downarrow will pass to 1 \uparrow
 - 21 will pass to 21
 - 2↓ will pass to $2\uparrow$...
- The ball starts at player 1↑
- Can the ball get to $2\downarrow$?
- Is "the ball is not at 2↓" an inductive invariant? No!
 - Counterexample to induction
- Inductive invariant: "the ball is not at 2↑ or 2↓"

Logic-based verification

- Represent *Init*, *Tr*, *Bad*, *Inv* by logical formulas
 - Formula ⇔ Set of states
- Automated solvers for logical satisfiability made huge progress
 - Propositional logic (SAT) industrial impact for hardware verification
 - First-order theorem provers
 - Satisfiability modulo theories (SMT) major trend in software verification
 - Z3, CVC4, iProver, Vampire

How can we **check** an inductive invariant?

Inv(V) is an inductive invariant if the following verification conditions are valid:

Initiation $Init(V) \Rightarrow Inv(V)$ **unsat**($Init(V) \land \neg Inv(V)$)

Cons. $Inv(V) \land TR(V,V') \Longrightarrow Inv(V')$ unsat($Inv(V) \land TR(V,V') \land \neg Inv(V')$)

Safety $Inv(V) \Rightarrow \neg Bad(V)$

unsat(Inv(V) ABad(V))

What can we do about it?

Interactive theorem provers (Coq, Isabelle/HOL, LEAN)

- Programmer gives inductive invariant and proves it
- Huge programmer effort (~10-50 lines of proof per line of code)

SMT-based deductive verification (e.g. Dafny)

- Programmer provides ind. invariant
- VC's generated and discharged automatically
- SMT solver may diverge (matching loops, arithmetic)

Alternative: Restrict VC's to decidable logic

Inv(V) is an inductive invariant if the following verification conditions are valid:

 $Init(V) \Longrightarrow Inv(V)$ unsat($Init(V) \land \neg Inv(V)$) Initiation $Inv(V) \land TR(V,V') \Longrightarrow Inv(V')$ unsat($Inv(V) \land TR(V,V') \land \neg Inv(V')$) Cons. Safety $Inv(V) \implies \neg Bad(V)$ unsat($Inv(V) \land Bad(V)$) Are the logical VC's valid ? E Decidable logic I can decide! Proof Counterexample

Challenges for verification with decidable logic

Formal specification

Modeling in a decidable logic

Deduction Checking validity of the VC's

Invariant inference

Finding an inductive invariant

This talk

Formal specification

- Use EPR decidable fragment of first order logic
- Surprisingly expressive

Invariant inference

- Automatic (based on PDR)
 - Semi-algorithm: may diverge
- Interactive
 - Based on graphically displayed counterexamples to induction

Effectively Propositional Logic – EPR

Decidable fragment of first order logic

+ Quantification $(\exists^*\forall^*)$ - Theories (e.g., arithmetic)

☺ Allows quantifiers to reason about unbounded sets

- $\forall x, y$. leader(x) \land leader(y) \rightarrow x = y

- ☺ Satisfiability is decidable => Deduction is decidable
- ③ Small model property => Finite cex to induction
- © Turing complete modeling language
- ☺ Limited language for safety and inductive invariants

Suffices for many infinite-state systems

Successful verification with EPR

• Shape Analysis [Itzhaky et al. CAV'13, POPL'14, CAV'14, CAV'15]

- Software-Defined Networks [Ball et al. PLDI'14]
- Distributed protocols [Padon et al. PLDI'16, OOPSLA'17, POPL'18, PLDI'18]
- Concurrent Modification Errors in Java programs [Frumkin et al. VMCAl'17]

Example: Leader Election in a Ring

- Nodes are organized in a unidirectional ring
- Each node has a unique numeric id
- Protocol:
 - Each node sends its id to the next

- A node that receives a message passes it to the next if the id in the message is higher than the node's own id
- A node that receives its own id becomes the leader
- Theorem:
 - The protocol selects at most one leader

[CACM'79] E. Chang and R. Roberts. *An improved algorithm for decentralized extrema-finding in circular configurations of processes*

• State: finite first-order structure over vocabulary V

- \leq (ID, ID) total order on node id's
- **btw** (Node, Node, Node) the ring topology
- id: Node \rightarrow ID relate a node to its id
- **pending**(ID, Node) pending messages
- leader(Node) leader(n) means n is the leader

Axiomatized in EPR

structure

 $\langle n_5, n_1, n_3 \rangle \in I(btw)$

- State: finite first-order structure over vocabulary V (+ axioms)
- Initial states and safety property: EPR formulas over V
 - Init(V) initial states, e.g., \forall id, n. \neg pending(id, n)
 - Bad(V) bad states, e.g., $\exists n_1, n_2$. leader $(n_1) \land leader(n_2) \land n_1 \neq n_2$

 Transition relation: expressed as EPR formula TR(V, V'), e.g.: ∃n,s. "s = next(n)" ∧ ∀x,y. pending'(x,y)↔ (pending(x,y) ∨ (x=id[n]∧y=s))
 ∨ ∃n. pending (id[n],n) ∧ ∀x. leader'(x) ↔ (leader(x) ∨ x=n)

• State: finite first-order structure over vocabulary V (+ axioms)

Recv(n,msg): if msg = id(n) then leader(n) := true

if msg > id(n) then send(msg,next(n))

Transition relation: expressed as EPR formula TR(V, V'), e.g.:

 $\exists n,s. "s = next(n)" \land \forall x,y. pending'(x,y) \leftrightarrow (pending(x,y) \lor (x=id[n] \land y=s))$

 $\lor \exists n. pending (id[n],n) \land \forall x. leader'(x) \leftrightarrow (leader(x) \lor x=n)$

- State: finite first-order structure over vocabulary V (+ axioms)
- Initial states and safety property: EPR formulas over V
 - Init(V) initial states, e.g., \forall id, n. \neg **pending**(id, n)
 - Bad(V) bad states, e.g., $\exists n_1, n_2$. leader $(n_1) \land leader(n_2) \land n_1 \neq n_2$

 Transition relation: expressed as EPR formula TR(V, V'), e.g.: ∃n,s. "s = next(n)" ∧ ∀x,y. pending'(x,y)↔ (pending(x,y) ∨ (x=id[n]∧y=s))
 ∨ ∃n. pending (id[n],n) ∧ ∀x. leader'(x) ↔ (leader(x) ∨ x=n) ...

- State: finite first-order structure over vocabulary V (+ axioms)
- Initial states and safety property: EPR formulas over V
 - Init(V) initial states, e.g., \forall id, n. \neg pending(id, n)
 - Bad(V) bad states, e.g., $\exists n_1, n_2$. leader $(n_1) \land leader(n_2) \land n_1 \neq n_2$

Specify and verify the protocol for **any** number of nodes in the ring

Using EPR for Verification

- System model Init(V), Bad(V), TR(V, V') ∈ EPR
- Inductive invariant $Inv(V) \in \forall^*$
- Verification conditions Initiation Init(V) \Rightarrow Inv(V) unsat(Init(V) \neg Inv(V)) Cons. Inv(V) \land TR(V,V') \Rightarrow Inv(V') unsat(Inv(V) \land TR(V,V') \land \neg Inv(V')) Safety Inv(V) $\Rightarrow \neg$ Bad(V) unsat(Inv(V) \land Bad(V))

Verification conditions ∈ EPR→ Decidable to check

Safety property:

- ≤ (ID, ID) total order on node id's
- btw (Node, Node, Node) the ring topology
- id: Node → ID relate a node to its id
- pending(ID, Node) pending messages
- leader(Node) leader(n) means n is the leader

Safety property:

Safety property:

So far

Formal specification

- Use EPR decidable fragment of first order logic
- Surprisingly expressive
 - Integers: numeric id's expressed with \leq
 - Transitive closure: ring topology expressed with btw
 - Network semantics: pending messages
 - Sets and cardinalities (for consensus protocols)

Not in this talk

Next

Invariant inference: finding inductive invariants

- Automatically
 - Adapt techniques from finite-state model checking (PDR)
- Interactively
 - Based on graphically displayed counterexamples to induction

How can we find a universally quantified inductive invariant?

I ₀ Pad	$\forall n_1, n_2 : Node. leader(n_1) \land leader(n_2) \rightarrow n_1 = n_2$	At most one
⊐Ddu	$\neg \exists n_1, n_2$: Node. leader(n_1) \land leader(n_2) \land $n_1 \neq n_2$	leader elected
I ₁	$\forall n_1, n_2$: Node. leader(n_1) $\rightarrow id[n_2] \leq id[n_1]$	The leader has
	$\neg \exists n_1, n_2$: Node. leader(n_1) $\land id[n_2] > id[n_1]$	the highest id
I ₂	$\forall n_1, n_2$: Node. pnd(id[n_1], n_1) \rightarrow id[n_2] \leq id[n_1]	Only highest id
-	$\neg \exists n_1, n_2$: Node. pnd(id[n_1], n_1) \land id[n_2] > id[n_1]	can be self-pnd
I ₃	$\forall n_1, n_2, n_3$: Node. $btw(n_1, n_2, n_3) \land pnd(id[n_2], n_1)$	Cannot bypass
	$\rightarrow id[n_3] \leq id[n_2]$	higher nodes
	$\neg \exists n_1, n_2, n_3$: Node. $btw(n_1, n_2, n_3) \land pnd(id[n_2], n_1)$	
	$\wedge id[n_3] > id[n_2]$	\frown

Construct Inv by excluding "bad" states

- 1. How to find these states?
- 2. How to generalize into conjectures?

Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.

∀* Invariant - excluded substructures

Leader election example

(1) UPDR: Automatic inference

• Based on Bradley's IC3/PDR [VMCAI11,FMCAD11]

SAT-based verification of finite-state systems

- Abstracts concrete states using their logical diagram
- Backward traversal performed over diagrams
- Blocking of CTI excludes a *generalization* of its diagram → generates universally quantified lemmas

- [CAV'15, JACM'17] Property-Directed Inference of Universal Invariants or Proving Their Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.
- [VMCAI'17] Property Directed Reachability for Proving Absence of Concurrent Modification Errors, A. Frumkin, Y. Feldman, O. Lhoták, O. Padon, M. Sagiv and S. Shoham.

UPDR: Possible outcomes

- Universal inductive invariant found
 - System is safe

Used to infer inductive invariants / procedure summaries of:

- Heap-manipulating programs, e.g.
 - Singly/Doubly/Nested linked list
 - Iterators in Java Concurrent modification error (CME)
- Distributed protocols
 - Spanning tree
 - Learning switch

No need for user-defined predicates/ templates!

UPDR: Possible outcomes

- Universal inductive invariant found
 - System is safe
- Abstract counterexample:
 - Safety not determined*
 - But no universal inductive invariant exists!

* can use Bounded Model Checking to find real counterexamples

Proving the absence of universal invariant

Suppose that a universally quantified inductive invariant I exists. Then:

 $\sigma_{i+1} \vDash \neg \mathsf{Bad}$

If there is a universal inductive invariant $I \in \forall^*$, then any **abstract trace** does not reach Bad

➔ An abstract trace to Bad implies no universal inductive invariant exists

Termination?

Termination?

Is it decidable to **infer universal** inductive invariants? [POPL'16]

- No, in the general case
 - if the vocabulary contains at least one binary relation which is unrestricted
- Yes, for linked lists
 - if the vocabulary contains only one "transitive closure" binary relation, but as many constants and unary predicates as desired
 - UPDR will also terminate
 - proof uses well-quasi-order and Kruskal's tree theorem
- More decidable classes
- [POPL'16] Decidability of Inferring Inductive Invariants, O. Padon, N. Immerman, S. Shoham, A. Karbyshev, and M. Sagiv.

Automatic Verification (e.g., UPDR)

Ultimately limited by undecidability

Interactive Verification

- Divide the problem between the human and the machine
- Find a suitable way to conduct the interaction

Supervised Verification of Infinite-State Systems

Interactive Verification

Automation

Supervised Verification of Infinite-State Systems

Expressiveness

(2) Ivy: Interactive inference

[PLDI'16] IVy: Safety Verification by Interactive Generalization. O. Padon, K. McMillan, A. Panda, M. Sagiv, S. Shoham <u>https://github.com/Microsoft/ivy</u>

Summary 1

Verification with decidable logic

- EPR decidable fragment of FOL
 - Deduction is decidable
 - Finite counterexamples
- Can be made surprisingly powerful
 - Transitive closure: linked lists, ring topology [PLDI'16]
 - Paxos, Multi-Paxos, [OOPSLA'17]
 - Liveness and Temporal Properties [POPL'18]
 - Developing verified implementations [PLDI'18]

- Domain knowledge and axioms
- Derived relations
- Modularity
- Prophecy

Summary 2

Invariant Inference

Ultimately limited by undecidability

Model Checking Static Analysis

- Automatic inference: UPDR
- Interactive inference: lvy
- Use logical diagram to infer $\mathsf{Inv} \in \forall^*$
- Can also prove absence of $Inv \in \forall^*$

Decidable logic is useful!

- Other logics
- Theoretical understanding of limitations and tradeoffs
- Interactive verification
 - Dividing the problem between human and machine
 - Inference schemes
 - Forms of interaction

Seeking postdocs and students

Supervised Verification of Infinite-State Systems

