
Verification of Infinite-State Systems
Using Decidable Logic

Sharon Shoham

Tel Aviv University

Supervised Verification of Infinite-State Systems

Model Checking [EC81,QS82]

Model checker
Does 𝑆 satisfy 𝜑?

Counterexample Proof

Temporal
Property 𝜑

Finite-State
System 𝑆

*Clarke, Emerson, and Sifakis won the 2007 Turing award for their
contribution to Model Checking

Model Checking [EC81,QS82]

Model checker
Does 𝑆 satisfy 𝜑?

Counterexample Proof

Temporal
Property 𝜑

Finite-State
System 𝑆

*Clarke, Emerson, and Sifakis won the 2007 Turing award for their
contribution to Model Checking

2001-2009

Stay at home mom

Postdoc
Technion

Senior Lecturer
Academic college
of Tel Aviv Yaffo

& Visiting Researcher
Tel Aviv University
(2015-2016)

2009-2010

2011

2011-2016

2015-2016

2016--

Infinite-State Systems

Programs:
• Dimensions of infinity:

• unbounded number of dynamically allocated objects
• unbounded number of threads
• unbounded domain of variables (naturals, reals…)

Distributed systems:
• Dimensions of infinity:

• unbounded number of hosts/switches
• unbounded number of pending messages

Set of states is infinite

Automatic verification of infinite-
state systems

Verification
Is there a behavior

of 𝑆 that violates 𝜑?

Counterexample Proof

Property 𝜑
Infinite-State

System 𝑆

Unknown /
Diverge

Rice’s Theorem

I can’t decide!

Safety Verification

System S is safe if all the reachable states satisfy the property P = ¬𝐵𝑎𝑑

Reach

System State Space Safety
Property

𝐵𝑎𝑑

𝐼𝑛𝑖𝑡

“no two
leaders are
elected”

Inductive Invariants

System State Space Safety
Property

𝐵𝑎𝑑Inv

𝐼𝑛𝑖𝑡

System S is safe iff there exists an inductive invariant 𝐼𝑛𝑣:

𝐼𝑛𝑖𝑡 ⊆ 𝐼𝑛𝑣 (Initiation)
if 𝜎 ∈ 𝐼𝑛𝑣 and 𝜎 → 𝜎′ then 𝜎′ ∈ 𝐼𝑛𝑣 (Consecution)
𝐼𝑛𝑣 ∩ 𝐵𝑎𝑑 = ∅ (Safety)

TR

TR

TR

System S is safe if all the reachable states satisfy the property P = ¬𝐵𝑎𝑑

“no two
leaders are
elected”

Inductive Invariants

System State Space Safety
Property

𝐵𝑎𝑑Inv

𝐼𝑛𝑖𝑡

Reach
TR

TR

System S is safe iff there exists an inductive invariant 𝐼𝑛𝑣:

𝐼𝑛𝑖𝑡 ⊆ 𝐼𝑛𝑣 (Initiation)
if 𝜎 ∈ 𝐼𝑛𝑣 and 𝜎 → 𝜎′ then 𝜎′ ∈ 𝐼𝑛𝑣 (Consecution)
𝐼𝑛𝑣 ∩ 𝐵𝑎𝑑 = ∅ (Safety)

System S is safe if all the reachable states satisfy the property P = ¬𝐵𝑎𝑑

“no two
leaders are
elected”

Example

• N pairs of players pass a ball:

– 1↑ will pass to 1↓

– 1↓ will pass to 1↑

– 2↑ will pass to 2↓

– 2↓ will pass to 2↑ …

1↑ 2↑

1↓ 2↓

…

Example

• N pairs of players pass a ball:

– 1↑ will pass to 1↓

– 1↓ will pass to 1↑

– 2↑ will pass to 2↓

– 2↓ will pass to 2↑ …

1↑ 2↑

1↓ 2↓

…

Example

• N pairs of players pass a ball:

– 1↑ will pass to 1↓

– 1↓ will pass to 1↑

– 2↑ will pass to 2↓

– 2↓ will pass to 2↑ …

• The ball starts at player 1↑

• Can the ball get to 2↓?

1↑ 2↑

1↓ 2↓

…

Example

• N pairs of players pass a ball:

– 1↑ will pass to 1↓

– 1↓ will pass to 1↑

– 2↑ will pass to 2↓

– 2↓ will pass to 2↑ …

• The ball starts at player 1↑

• Can the ball get to 2↓?

• Is “the ball is not at 2↓” an inductive invariant?

1↑ 2↑

1↓ 2↓

…

Example

• N pairs of players pass a ball:

– 1↑ will pass to 1↓

– 1↓ will pass to 1↑

– 2↑ will pass to 2↓

– 2↓ will pass to 2↑ …

• The ball starts at player 1↑

• Can the ball get to 2↓?

• Is “the ball is not at 2↓” an inductive invariant? No!

– Counterexample to induction

1↑ 2↑

1↓ 2↓

…

Example

• N pairs of players pass a ball:

– 1↑ will pass to 1↓

– 1↓ will pass to 1↑

– 2↑ will pass to 2↓

– 2↓ will pass to 2↑ …

• The ball starts at player 1↑

• Can the ball get to 2↓?

• Is “the ball is not at 2↓” an inductive invariant? No!

– Counterexample to induction

• Inductive invariant: “the ball is not at 2↑ or 2↓”

1↑ 2↑

1↓ 2↓

…

Logic-based verification

• Represent 𝐼𝑛𝑖𝑡, 𝑇𝑟, 𝐵𝑎𝑑, 𝐼𝑛𝑣 by logical formulas

• Formula Set of states

• Automated solvers for logical satisfiability made huge progress

• Propositional logic (SAT) – industrial impact for hardware
verification

• First-order theorem provers

• Satisfiability modulo theories (SMT) – major trend in
software verification

• Z3, CVC4, iProver, Vampire ….

Inv(V) is an inductive invariant if the following verification conditions
are valid:

Initiation Init(V)⟹Inv(V) unsat(Init(V)Inv(V))

Cons. Inv(V)TR(V,V’) ⟹ Inv(V’) unsat(Inv(V)TR(V,V’)Inv(V’))

Safety Inv(V) ⟹¬Bad(V) unsat(Inv(V)Bad(V))

Are the logical VC’s valid ?

Church’s Theorem

I can’t decide!

Counterexample Unknown /
Diverge

Proof

How can we check an inductive invariant?

Interactive theorem provers
(Coq, Isabelle/HOL, LEAN)

• Programmer gives inductive
invariant and proves it

• Huge programmer effort
(~10-50 lines of proof per
line of code)

What can we do about it?

SMT-based deductive verification
(e.g. Dafny)

• Programmer provides ind. invariant

• VC’s generated and discharged
automatically

• SMT solver may diverge (matching
loops, arithmetic)

Alternative: Restrict VC’s to
decidable logic

Inv(V) is an inductive invariant if the following verification conditions
are valid:

Initiation Init(V)⟹Inv(V) unsat(Init(V)Inv(V))

Cons. Inv(V)TR(V,V’) ⟹ Inv(V’) unsat(Inv(V)TR(V,V’)Inv(V’))

Safety Inv(V) ⟹¬Bad(V) unsat(Inv(V)Bad(V))

Are the logical VC’s valid ?

I can decide!

Counterexample Proof

∈ Decidable logic

Challenges for verification
with decidable logic

Formal specification

Modeling in a decidable logic

Deduction

Checking validity of the VC’s

Invariant inference

Finding an inductive invariant

This talk

Formal specification

• Use EPR – decidable fragment of first order logic

• Surprisingly expressive

Invariant inference

• Automatic (based on PDR)

- Semi-algorithm: may diverge

• Interactive

- Based on graphically displayed counterexamples to induction

Effectively Propositional Logic – EPR

Decidable fragment of first order logic

Allows quantifiers to reason about unbounded sets
- ∀x,y. leader(x) ∧ leader(y) → x = y

 Satisfiability is decidable => Deduction is decidable

 Small model property => Finite cex to induction

 Turing complete modeling language

 Limited language for safety and inductive invariants
 Suffices for many infinite-state systems

+ Quantification (**) - Theories (e.g., arithmetic)

Successful verification with EPR

• Shape Analysis
[Itzhaky et al. CAV’13, POPL’14, CAV’14, CAV’15]

• Software-Defined Networks
[Ball et al. PLDI’14]

• Distributed protocols
[Padon et al. PLDI’16, OOPSLA’17, POPL’18, PLDI’18]

• Concurrent Modification Errors in Java programs
[Frumkin et al. VMCAI’17]

Example: Leader Election in a Ring

• Nodes are organized in a unidirectional ring

• Each node has a unique numeric id

• Protocol:

– Each node sends its id to the next

– A node that receives a message passes it to the next if the id in

the message is higher than the node’s own id

– A node that receives its own id becomes the leader

• Theorem:

– The protocol selects at most one leader

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized
extrema-finding in circular configurations of processes

3 5

2

4

1

6
next

next next

next

next

next

• State: finite first-order structure over vocabulary V

• ≤ (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node ID – relate a node to its id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

structureprotocol state

Axiomatized in EPR

≤

n1
L

id1

n2
L

id2

n3
L

≤ id3

n4
L

n5
L

id5 id6
≤ ≤

<n5, n1, n3> ∈ 𝐼(btw)

id4

n6
L

≤

n1

Modeling with EPR

3 5

2

4

1

6
next

next next

next

next

next 2
5

pnd
id

id id idpnd

n5

Modeling with EPR

• State: finite first-order structure over vocabulary V (+ axioms)

• Initial states and safety property: EPR formulas over V

– Init(V) – initial states, e.g., ∀ id, n. ¬pending(id, n)

– Bad(V) – bad states, e.g., ∃ n1,n2.leader(n1) ∧ leader n2 ∧ n1≠n2

• Transition relation: expressed as EPR formula TR(V, V’), e.g.:

∃n,s. “s = next(n)”∧ ∀x,y. pending’(x,y)↔ (pending(x,y) ∨ (x=id[n]∧y=s))

∨ ∃n. pending (id[n],n) ∧ ∀x. leader’(x) ⟷ (leader(x) ∨ x=n)

…

Modeling with EPR

• State: finite first-order structure over vocabulary V (+ axioms)

• Initial states and safety property: EPR formulas over V

– Init(V) – initial states, e.g., ∀ id, n. ¬pending(id, n)

– Bad(V) – bad states, e.g., ∃ n1,n2.leader(n1) ∧ leader n2 ∧ n1≠n2

• Transition relation: expressed as EPR formula TR(V, V’), e.g.:

∃n,s. “s = next(n)”∧ ∀x,y. pending’(x,y)↔ (pending(x,y) ∨ (x=id[n]∧y=s))

∨ ∃n. pending (id[n],n) ∧ ∀x. leader’(x) ⟷ (leader(x) ∨ x=n)

…

Propose(n): send(id(n), next(n))

Recv(n,msg): if msg = id(n) then leader(n) := true

if msg > id(n) then send(msg,next(n))

Modeling with EPR

• State: finite first-order structure over vocabulary V (+ axioms)

• Initial states and safety property: EPR formulas over V

– Init(V) – initial states, e.g., ∀ id, n. ¬pending(id, n)

– Bad(V) – bad states, e.g., ∃ n1,n2.leader(n1) ∧ leader n2 ∧ n1≠n2

• Transition relation: expressed as EPR formula TR(V, V’), e.g.:

∃n,s. “s = next(n)”∧ ∀x,y. pending’(x,y)↔ (pending(x,y) ∨ (x=id[n]∧y=s))

∨ ∃n. pending (id[n],n) ∧ ∀x. leader’(x) ⟷ (leader(x) ∨ x=n) …

Modeling with EPR

• State: finite first-order structure over vocabulary V (+ axioms)

• Initial states and safety property: EPR formulas over V

– Init(V) – initial states, e.g., ∀ id, n. ¬pending(id, n)

– Bad(V) – bad states, e.g., ∃ n1,n2.leader(n1) ∧ leader n2 ∧ n1≠n2

• Transition relation: expressed as EPR formula TR(V, V’), e.g.:

- ∃n,s. “s = next(n)”∧ ∀x,y. pending’(x,y)↔ (pending(x,y) ∨ (x=id[n]∧y=s))

- ∃n. pending (id[n],n) ∧ ∀x. leader’(x) ⟷ (leader(x) ∨ x=n)

…

Specify and verify the protocol for any number of nodes in the ring

Using EPR for Verification

• System model Init(V), Bad(V), TR(V, V’) ∈ EPR

• Inductive invariant Inv(V) ∈ *

• Verification conditions

Initiation Init(V)⟹Inv(V) unsat(Init(V)Inv(V))

Cons. Inv(V)TR(V,V’) ⟹ Inv(V’) unsat(Inv(V)TR(V,V’)Inv(V’))

Safety Inv(V) ⟹¬Bad(V) unsat(Inv(V)Bad(V))

Verification conditions ∈ EPR

 Decidable to check

Inductive Invariant for Leader Election

Safety property:

I0 = ¬Bad = ∀x,y: Node. leader(x) ∧ leader(y) → x = y

• ≤ (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node ID – relate a node to its id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

3 5

2

4

1

6

2
No! 3 5

2

4

1

6

Inductive?

Inductive Invariant for Leader Election

Safety property:

I0 = ¬Bad = ∀x,y: Node. leader(x) ∧ leader(y) → x = y

Inductive invariant: Inv = I0 I1 I2 I3

I1 = n1,n2: Node. leader(n1)→ id[n2] ≤ id[n1]

I2 = n1,n2: Node. pnd(id[n1], n1) → id[n2] ≤ id[n1]

I3 = n1,n2,n3: Node. btw(n1,n2,n3) pnd(id[n2], n1)
→ id[n3] ≤ id[n2]

The leader has
the highest id

Only highest id
can be self-pnd

Cannot bypass
higher nodes

• ≤ (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node ID – relate a node to its id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

The reason for
using “btw”

instead of “next”

Inductive Invariant for Leader Election

Safety property:

I0 = ¬Bad = ∀x,y: Node. leader(x) ∧ leader(y) → x = y

Inductive invariant: Inv = I0 I1 I2 I3

I1 = n1,n2: Node. leader(n1)→ id[n2] ≤ id[n1]

I2 = n1,n2: Node. pnd(id[n1], n1) → id[n2] ≤ id[n1]

I3 = n1,n2,n3: Node. btw(n1,n2,n3) pnd(id[n2], n1)
→ id[n3] ≤ id[n2]

The leader has
the highest id

Only highest id
can be self-pnd

Cannot bypass
higher nodes

EPR
Solver

𝐼𝑛𝑖𝑡 𝑉 ∧ ¬𝐼𝑛𝑣 𝑉
𝐼𝑛𝑣 𝑉 ∧ 𝑇𝑅 𝑉, 𝑉′ ∧ ¬𝐼𝑛𝑣 𝑉′

𝐼𝑛𝑣 𝑉 ∧ 𝐵𝑎𝑑(𝑉)

I can decide EPR!

Proof

So far

Formal specification

• Use EPR – decidable fragment of first order logic

• Surprisingly expressive

• Integers: numeric id’s expressed with ≤

• Transitive closure: ring topology expressed with btw

• Network semantics: pending messages

• Sets and cardinalities (for consensus protocols) Not in
this talk

Next

Invariant inference: finding inductive invariants

• Automatically

– Adapt techniques from finite-state model checking (PDR)

• Interactively

– Based on graphically displayed counterexamples to induction

How can we find a universally quantified inductive
invariant?

Inductive Invariant for Leader Election

L L

≤
id idpnd

I0
¬Bad

∀n1,n2 : Node. leader(n1)∧leader(n2) → n1=n2

I1 n1,n2: Node. leader(n1)→ id[n2] ≤ id[n1]

I2 n1,n2: Node. pnd(id[n1],n1) → id[n2] ≤ id[n1]

I3 n1,n2,n3: Node. btw(n1,n2,n3) pnd(id[n2],n1)
→ id[n3] ≤ id[n2]

The leader has
the highest id

Only highest id
can be self-pnd

Cannot bypass
higher nodes

≤

L

id id

pnd
id
≤

id

btw

¬∃n1,n2: Node. leader(n1)∧leader(n2) ∧ n1≠n2

¬∃n1,n2: Node. leader(n1) ∧ id[n2] > id[n1]

¬∃n1,n2: Node. pnd(id[n1],n1) ∧ id[n2] > id[n1]

¬∃n1,n2,n3: Node. btw(n1,n2,n3) pnd(id[n2],n1)
∧ id[n3] > id[n2]

At most one
leader elected

n2n1 n2n1

n1 n2 n3

Construct Inv by excluding “bad” states

1. How to find these states?

2. How to generalize into conjectures?

[CAV’15, JACM’17] Property-Directed Inference of Universal Invariants or Proving Their
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.

Use diagrams as generalization of (partial) states

• state is a finite first-order structure

≤

≤

L
…

L

≤

¬L

’Diag() = x ≠ y L(x) ¬L(y)
 ≤(x, y) ¬≤(y, x)
 ≤(x, x) ≤(y, y)

 is obtained from ’ by removing elements
and projecting relations on remaining elements

∃ x y.

' ⊨ Diag() iff is a substructure of ‘

exclude() = ¬Diag()

L ¬L

¬L

L

L¬L

Generalization using Diagram

[CAV’15, JACM’17] Property-Directed Inference of Universal Invariants or Proving Their
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.

¬L

≤

¬L

…

≤

’

≤

L

¬L ¬L ¬L

L

Generalize even more if
 is a partial structure

Generalization using Diagram

Diag() = x ≠ y
 ≤(x, y) ¬≤(y, x)
 ≤(x, x) ≤(y, y)

∃ x y.

exclude() = ¬Diag()

∀∗ Invariant - excluded substructures

Inv 𝑥. (l1,1(𝑥) … l1,m(𝑥)) … 𝑥. (ln,1(𝑥) … ln,m(𝑥))

Inv ¬ 𝑥. (l1,1(𝑥) … l1,m(𝑥))∧…∧ ¬ 𝑥. (ln,1(𝑥) … ln,m(𝑥))

clause / conjecture

cube

r

t*

L L
≤

id idpnd

pnd
id
≤

id

btw

≤

L

id id

substructure

The leader
has the

highest ID Only the leader
can be self-

pending

Cannot bypass
higher nodesAt most

one
leader

Leader election example

How to find the (partial) states to generalize from?

(1) UPDR: Automatic inference

• Based on Bradley’s IC3/PDR [VMCAI11,FMCAD11]

– SAT-based verification of finite-state systems

• Abstracts concrete states using their logical diagram

• Backward traversal performed over diagrams

• Blocking of CTI excludes a generalization of its
diagram generates universally quantified lemmas

• [CAV’15, JACM’17] Property-Directed Inference of Universal Invariants or Proving Their
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.

• [VMCAI’17] Property Directed Reachability for Proving Absence of Concurrent
Modification Errors, A. Frumkin, Y. Feldman, O. Lhoták, O. Padon, M. Sagiv and S. Shoham.

UPDR: Possible outcomes

• Universal inductive invariant found

– System is safe

Used to infer inductive invariants / procedure summaries of:

• Heap-manipulating programs, e.g.
– Singly/Doubly/Nested linked list

– Iterators in Java - Concurrent modification error (CME)

• Distributed protocols
– Spanning tree

– Learning switch

– …

No need for
user-defined
predicates/
templates!

UPDR: Possible outcomes

• Universal inductive invariant found

– System is safe

• Abstract counterexample:

– Safety not determined*

– But no universal inductive invariant exists!

* can use Bounded Model Checking to find real counterexamples

BadInit
…⊆ ⊆ ⊆ ⊆

Proving the absence of universal invariant

Bad

i i+1i-1

Init
…

10

⊆ ⊆ ⊆

1’ i-1’ i’
i+1’

⊨ I

Suppose that a universally quantified inductive invariant I exists.
Then:

⊨ I

⊨ I ⊨ I

⊨ I⊨ I

⊨ I

⊨ I

⊨ I

⊆

I satisfies initiation: 𝜎0 ⊨ Init ⇒ 𝜎0 ⊨ I
I satisfies consecution: 𝜎𝑖−1 ⊨ I ∧ TR 𝜎𝑖−1, 𝜎𝑖

′ ⇒ 𝜎𝑖
′ ⊨ I

I is universal: 𝜎𝑖
′ ⊨ Diag(𝜎𝑖) ⇒ 𝜎𝑖 ⊨ I

If there is a universal inductive invariant I ∈ ∀∗, then any abstract trace
does not reach Bad
 An abstract trace to Bad implies no universal inductive invariant exists

𝜎𝑖 ⊨ F ∧ TR ∧ Diag(𝜎𝑖)’
Contradiction
to safety!
𝜎𝑖+1 ⊨ I ⇒
𝜎𝑖+1 ⊨ ¬Bad

Termination?

Termination?

• No, in the general case

– if the vocabulary contains at least one binary relation which is
unrestricted

• Yes, for linked lists

– if the vocabulary contains only one "transitive closure" binary
relation, but as many constants and unary predicates as desired

– UPDR will also terminate
– proof uses well-quasi-order and Kruskal’s tree theorem

• More decidable classes

Is it decidable to infer universal inductive invariants? [POPL’16]

• [POPL’16] Decidability of Inferring Inductive Invariants, O. Padon, N. Immerman, S.
Shoham, A. Karbyshev, and M. Sagiv.

Model
Verifier

Proof

user

Automatic Verification (e.g., UPDR)

…

…

Ultimately limited by undecidability

Model
Verifier

Proof

user

Interactive Verification

…

…

Question

Answer

Supervised Verification of Infinite-State Systems

• Divide the problem between the human and the machine
• Find a suitable way to conduct the interaction

Interactive Verification
Ex

p
re

ss
iv

en
es

s

Automation

Proof Assistants

Model Checking
Static Analysis

Ultimately limited by human

Ultimately limited by undecidability

proof/code:
Verdi: ~10
IronFleet: ~4

Supervised Verification of Infinite-State Systems

Inductive?Yes

No
Find “minimal”

counterexample to
induction (CTI)

Modify candidate
invariant

(2) Ivy: Interactive inference

EPR

Model
Candidate Inductive

Invariant
Inv = I0 ∧ I1 ∧ …∧ Ik

Inductive
Invariant

Found

Generalize from CTI

User Automation

EPR

EPR

Diagram

[PLDI’16] IVy: Safety Verification by Interactive Generalization. O. Padon,
K. McMillan, A. Panda, M. Sagiv, S. Shoham https://github.com/Microsoft/ivy

https://www.quora.com/Human-Computer-Interaction
https://www.quora.com/Human-Computer-Interaction

Verification with decidable logic

• EPR - decidable fragment of FOL
• Deduction is decidable
• Finite counterexamples

• Can be made surprisingly powerful
• Transitive closure: linked lists, ring topology [PLDI’16]
• Paxos, Multi-Paxos, [OOPSLA’17]
• Liveness and Temporal Properties [POPL’18]
• Developing verified implementations [PLDI’18]

• Domain knowledge
and axioms

• Derived relations
• Modularity
• Prophecy

Summary 1

Invariant Inference

•Automatic inference: UPDR

• Interactive inference: Ivy

• Use logical diagram to infer Inv ∈ ∀*

• Can also prove absence of Inv ∈ ∀*

Summary 2

•Other logics

• Theoretical understanding of limitations and tradeoffs

• Interactive verification

• Dividing the problem between human and machine

• Inference schemes

• Forms of interaction

Decidable logic is useful!

Supervised Verification of Infinite-State Systems

Seeking postdocs and students

