Interactive Verification
of Distributed Protocols

Sharon Shoham

00X

Tel Aviv University

el’C Supervised Verification of Infinite-State Systems

Why Verify Distributed Protocols?

* Distributed systems are everywhere

* e.g., safety-critical systems

* Distributed systems are notoriously hard to get right

* Testing is costly and not sufficient
* Bugs occur on rare scenarios
* Testing covers tiny fraction of behaviors
 Leaves most bugs for production

* Amazon employs TLA+ for testing protocols,
but scaling is an issue

Verifying Distributed Protocols is Hard

* Infinite state-space
* unbounded number of objects
* unbounded number of threads
* unbounded number of messages

* Asymptotic complexity of program verification
* The halting problem
* Rice theorem
* The ability of simple programs
to represent complex behaviors

| can’t decide!
o Fre ‘\ .' _ “r)
\ (A

State of the art in formal verification

e Automatic techniques
* Model checking
* Exploit finite state / finite abstraction
* Abstract Interpretation
* Sound abstraction
* Limited for infinite state systems due to undecidability

* Deductive techniques
e Use SMT for deduction with manual program annotations (e.g. Dafny)
* Requires programmer effort to provide inductive invariants
* SMT solver may diverge (matching loops, arithmetic)
* Interactive theorem provers (e.g. Coq, Isabelle/HOL, LEAN)
* Programmer gives inductive invariant and proves it
* Huge programmer effort (~10-50 lines of proof per line of code)

State of the art in formal verification

v e'»"z\\ Dafn
RIENN] R

Proof Assistants

Ultimately limited by human

proof/code:
Verdi: ~10
IronFleet: ~4

Expressiveness

Automation

“the proofs consisted of about 5000 lines and assumed several nontrivial invariants of the Raft
protocol. This paper discusses the verification of Raft as a whole, including all the invariants from the
original Raft paper [32]. These new proofs consist of about 45000 additional lines” [Verdi, CPP’16]

State of the art in formal verification

A

\ Proof Assistants

Q

GCJ Ultimately limited by human

% proof/code:

O Verdi: ~10

S IronFleet: ~4

u>j Ultimately limited by undecidability
Model Checking
Static Analysis

>
Automation

“but our input language cannot compete in generality with mechanized proof methods that rely heavily
on human expertise, e.q., IVY [55], Verdi [68], IronFleet [38], TLAPS [16]” [Konnov et al, POPL'17]

Expressiveness

State of the art in formal verification

Proof Assistants Supervised
Ultimately limited by human Verification
oroof/code: proof/code: IVy ~1/10
Verdi: ~10
IronFleet: ~4
Ultimately limited by undecidability
Model Checking
Static Analysis
- >
Automation

.oy
ot
LY M4
.
LS -l..,

LX) o

)

d
)
sne

erc Supervised Verification of Infinite-State Systems

.
. (J
Y
)
.
e
el
Jrrdepe0,
LR YA
. e

IVy: Verified Protocols

Protocol Model Property Invariant
(# LOC) (# L|terals) (# therals)

Leader in Ring

Learning Switch 50 11 18
DB Chain Replication 143 11 35
Chord 155 35 46
Lock Server (500 Coq lines [Verdi]) 122 3 21
Distributed Lock (1 week [IronFleet]) 41 3 26
Single Decree Paxos 85 3 32
Multi Paxos 102 3 38
Vertical Paxos 123 3 65
Fast Paxos 117 3 59
Flexible Paxos 88 3 32
Stoppable Paxos 130 6 60

Virtually Synchronous Paxos Work in progress

Automatic Verification

C— 7=

/Model/

——— U

user

C——=

/ Proof/
—

N

Unpredictable, often diverges
Restricted expressivity

Supervised Verification

C— 7=

/Model/

Question

N
)

user ' Answer
C——=
/ Proof/
—— .

Predictable: solves decidable problems
High expressivity

How to divide the problem between the human and the machine?
How to conduct the interaction?

IVy

IVy: https://github.com/Microsoft/ivy

e [PLDI’'16] IVy: Safety Verification by Interactive Generalization.
O. Padon, K. McMillan, A. Panda, M. Sagiv, S. Shoham

Safety Verification

System State Space

Initial

System S is safe if all the reachable states satisfy the property P = —-Bad

Safety Verification

System State Space

Initial

System S is safe if all the reachable states satisfy the property P = —-Bad
System S is safe iff there exists an inductive invariant Inv:

Inv = P=—Bad (Safety)
Init = Inv (Initiation)
if o Elnvand TR(o, ¢’) then o’ EInv (Consecution)

Safety Verification

System State Space

Initial

System S is safe if all the reachable states satisfy the property P = —-Bad
System S is safe iff there exists an inductive invariant Inv:

Inv = P=—Bad (Safety)
Init = Inv (Initiation)
if o Elnvand TR(o, ¢’) then o’ EInv (Consecution)

Simple Example: Loop Invariants

even[x]

x:=1;

y =2,
while * do {
assert —even[x];
X=X +Y,;
y:=y+2

TR

}

Simple Example: Loop Invariants

—even[x]

X:=1;

y =2,
while * do {
assert —even[x];
X:=X+Y;
y:=y+2

TR

}

Counterexample
to induction (CTI)

Simple Example: Loop Invariants

Inv = —even[x] A evenly] even(x]

X:=1;

y =2,
while * do {
assert —even[x];
X:=X+Y;
y:=y+2

TR

}

Challenges in Safety Verification

Infer inductive invariants for safety verification

1. Formal specification: reasoning about infinite-state systems
* Modeling the system and the property (TR, Init, Bad)

2. Deduction: checking inductiveness
* Undecidability of implication checking

* Unbounded state (threads, messages), arithmetic, quantifiers,...

3. Inference: inferring inductive invariants (Inv)
* Hard to specify

e Hard to infer

e Undecidable even when deduction is decidable

IVy’s Approach: Supervised Verification

Infer inductive invariants for safety verification

el L : e
\°" 1. Formal specification: reasoning about infinite-state systems
* Modeling the system and the property (TR, Init, Bad)

O
S\")C\(\\ 2. Deduction: checking inductiveness
* Undecidability of implication checking

ol X o *Unbounded state (threads, messages), arithmetic, quantifiers,...

C
W3, Inference: inferring inductive invariants (Inv)
* Hard to specify
 Hardto infer

e Undecidable even when deduction is decidable

How Does it Work?

e Specify systems and properties in decidable fragment of
first-order logic (EPR)

— Allows quantifiers to reason about unbounded sets
— Decidable to check inductiveness
— Finite counterexamples to induction, display graphically

e Interact with the user to find inductive invariants

— by providing graphical Ul for gradually strengthening the inductive
invariant based on counterexamples to induction

e Logic is mostly hidden

— Friendly to non-expert users

Example: Leader Election in a Ring

nex
e Nodes are organized in a unidirectional ring o, next

e Each node has a unique numeric id
nex ext

e Protocol:
— Each node sends its id to the next

— A node that receives a message passes it to the next if the id in
the message is higher than the node’s own id

next

— A node that receives its own id becomes the leader

e Theorem:
— The protocol selects at most one leader

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized
extrema-finding in circular configurations of processes

Modeling in IVy

e State: first-order structure over vocabulary V

* < (ID, ID) — total order on node id’s Axiomatized in
* btw (Node, Node, Node) — the ring topology - first-order logic
* id: Node = ID —relate a node to its id]

* pending(ID, Node) — pending messages
* leader(Node) — leader(n) means n is the leader

protocol state structure

<ng, Ny, N> € [(btw)

Modeling in IVy

* <(ID, ID) — total order on node id’s
* btw (Node, Node, Node) — the ring topology
* id: Node = ID —relate a node to its unique id

* pending(ID, Node) — pending msgs

action receive(n:Node, m:ID
* leader(Node) — node is a leader ())

requires pending(m, n)
pending(m, n) := *
: . if id(n) = m then
aczlo?_sendén.Ngde) { // found Leader
S = neg (n) leader(n) := true

pending(id(n),s) := true else if id(n) < m then
} // pass message
“s := next(n)”
pending(m, s) := true

protocol = (send | receive)*

assert I0 = V x,y: Node. leader(x)aleader(y) - x =y

i

i

id

id

id

nex

=L

N
Id id Id - -
% = |=»
GOD E L
ex nex

1 2 3
;.» ;’ ex

pn

Specify and verify the protocol for any number of nodes in the ring

’:’{;}Q{:},...

Example: Leader Election in a Ring

nex

e Nodes are organized in a unidirectional ring | o, .
e Each node has a unique numeric id
nex ext

e Protocol:
Proposition: This algorithm detects one and only one next

— Ehighest number.
Argument: By the circular nature of the configuration | ext) if the id in

and the consistent direction of messages, any message
U must meet all other processes before it comes back to its

initiator. Only one message, that with the highest num- Br

ber, will not encounter a higher number on its way
e The ‘aroun-d. Thus, the: only process getting its own message

back is the one with the highest number.

— The protocol selects at most one leader

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized
extrema-finding in circular configurations of processes

Inductive Invariant for Leader Election

< (ID, ID) — total order on node id’s

btw (Node, Node, Node) — the ring topology
id: Node = ID —relate a node to its id
pending(ID, Node) — pending messages
leader(Node) — leader(n) means n is the leader

Safety property:
—Bad = Vx,y: Node. leader(x) A leader(y) — X

Inductive invariant: ITnv = 10 A I1 A I2 A I3
= Vn,,n,: Node. leader(n,) — id[n;] =< id[n,]

= Vng,,n,: Node. pnd(id[n,], n,) — id[n;] < id[n,]

=Vn,,n,,n;: Node. btw(n;,n,,n;) A pnd(id[n,], n;)
— id[n;] = id[n,]

=Yy

The leader has
the highest ID

Only highest id
can be self-pnd

Cannot bypass
higher nodes

Inductive Invariant for Leader Election

* < (ID, ID) — total order on node id’s

* btw (Node, Node, Node) — the ring topology

* id: Node - ID —relate a node to its id

* pending(ID, Node) — pending messages

* leader(Node) — leader(n) means n is the leader

Safety property:

I, = =Bad = Vx,y: Node. leader(x) A leader(y) — x =y

Inductive invariant: Inv = I0 A I1 A I2 A I3

IK as
| How can we come up with an\de
I inductive invariant? 5
N s

Invariant Inference in IVy

Candidate Inductive Invariant
Inv=I, AT, A.ATI,

Model

Inductive Yes :
Invariant Found Inductive?
i Decidable]

No
Find “minimal”
counterexample to
induction (CTI)

%

Modify candidate invariant

https://www.quora.com/Human-Computer-Interaction
https://www.quora.com/Human-Computer-Interaction

Strengthening & Weakening from CTI

0,0 are a CTl of Inv if:
* 0€EInv

e 0 &lnv

s 02>0

Strengthening l

L \ Weakening

Strengthening & Weakening from CTI

0,0 are a CTl of Inv if:
* 0€EInv
e 0 &lnv
s 02>0

Strengthening Weakening

Adc’j ° conjec(:cure.) Key Challenge: Generalization
Inv’ := Inv A “avoid(o)

Generalization using Diagram

Use diagrams to generalize from states
e state ¢ is a finite first-order structure

Diag(c) = 3 xvy. x #y A L(x) A=L(y)
A <(x, V) A =<Z(y, X)
A Z(x, x) A =Z(y,)

o' & Diag(o) iff o is a substructure of o'

o is obtained from o’ by removing elements
and projecting relations on remaining elements

IN

[CAV’15, JACM’17] Property-Directed Inference of Universal Invariants or Proving Their
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.

Generalizati

Use diagrams to generaliz \.‘\/‘/
e state o is a finite first-o

Diag(c) = 3 xvy. x #y A L(x) A=L(y)
A <(x, V) A =<Z(y, X)
A <(x, x) A Z(y, V)

o' & Diag(o) iff o is a substructure of o'

o is obtained from o’ by removing elements
and projecting relations on remaining elements

[CAV’15, JACM’17] Property-Directed Inference of Universal Invariants or ProMg Their
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.

Generalization using Diagram

Can generalize more
. remove facts/conjuncts

Diag(c) =3 xy. x#y A
A (%, y) A ==(y, x)
A (X, x) A Z(y,)

gen(Diag(o)) = I xy.x#y
N\ S(XI y) N\ _IS(YI X)
A <(x, X) A <[y, V)

avoid(c) = —gen(Diag(o))

[CAV’15, JACM’17] Property-Directed Inference of Universal Invariants or ProM\g Their
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.

From Diagrams to Invariants

AT (3,3 (2) A e A ()

Y
Diagram

From Diagrams to Invariants

conjecture
A

a3y (=l () A A —|I1,m(f))\

From Diagrams to Invariants

conjecture
A
—— — —) _ _ _
Inv == 3X. (=l (%) Ao A=l JOALA 23X (S () A A=l ()

Q: How to select which facts to remove in the generalization?

IVy: interact with the user to identify irrelevant facts

Leader Election: Iteration 3

1. Each node sends its id to the next
2. A node that receives a msg passes
it to the next node in the ring

< (ID, ID) — total order on node id’s
btw (Node, Node, Node) — the ring topology
id: Node = ID —relate a node to its id if the id in the msg = the node’s id

pending(ID, Node) — pending messages 3. A node that receives its own id
leader(Node) — leader(n) means n is the leader| pecomes the leader

Safety property:

—Bad = Vx,y: Node. leader(x) A leader(y) — x =y

Inductive invariant: Inv = I0 A I1 A I2 A I3
Vny,n,: Node. leader(n,) —» id[n;] < id[n,]

The leader has
the highest ID

vny,n,: Node. pnd(id[n,], n,) — id[n,;] < id[n,] Only highestid
can be self-pnd

vni,n,,ny: Node. btw(ng,n,,n;) A pnd(id[n,], n;)| Cannot bypass
— 1id[ny] = id[n,] higher nodes

Leader Election: Iteration 3

1. Each node sends its id to the next
2. A node that receives a msg passes
it to the next node in the ring

* < (ID, ID) — total order on node id’s
* btw (Node, Node, Node) — the ring topology
* id: Node = ID —relate a node to its id if the id in the msg = the node’s id

* pending(ID, Node) — pending messages 3. A node that receives its own id
* leader(Node) — leader(n) means nis the leader| pacomes the leader

Safety property:
I, = =Bad = Vx,y: Node. leader(x) A leader(y) — x =y
Inductive invariant: Inv = I0 A I1 A I2 A I3

I, = Vn;,n,: Node. leader(n,) —» id[n;] < id[n,]

The leader has
the highest ID

I, = Vny,n,: Node. pnd(id[n,], n,) — id[n,] < id[n,] Only highestid
can be self-pnd

/ g
I, = Vn;,,n,,n;: Node. btw(n;,n,,n;) A pnd(id[n,], n;) Cannot bypass
— id[n;] < id[n,] higher nodes

\ -

IVy: Check Inductiveness

Leader Protocol

Inv=Io/\I1/\IZ

VC Generator

2
Init A — Inv

Inv(V) A Bad(V
L

Inv(V) A TR(V.V') A =Inv(V’)

v
ioll—bljn id}=>[id
[id id
n
1 ex 2 ex 3
—L —L —L

EPR Solver

-

ia =—»id,
d

rev(l, id(2)> id 22Vl

1 2

nex

I,:leaderis unique
I,:The leader has

the highest ID

I, : Only highest id

can be self-pnd

IVy: Generalize from CTI

< <

ile—n—b id, ;=P id,
| id id ’ ® P
eXx nex
1 2 3 Cannot bypass nodes

id[n,] is pending for n;, had to go through n,

1. Each node sends its id to the next

2. A node that receives a msg passes it to the next node in the ring
if the id in the msg = the node’s id

3. A node that receives its own id becomes the leader

IVy: Generalize from CTI

idlfn» id}=>{id,
| id id ’ ® P
eXx nex
1 2 3 Cannot bypass nodes
£X btw

User’s Generalization id
pnd

¥ L

IVy: Generalize from CTI

< <

ile—n—b id, ;=P id,
| id id ’ ® P
eXx nex
1 2 3 Cannot bypass nodes
£X btw

d
pnd
0

IVy: Generalize from CTI

idlfn» id}=>{id,
| id id ’ ® P
eXx nex
1 2 3 Cannot bypass nodes

btw

User’s Generalization
I pnd

IVy: Generalize from CTI

IOAI1 AI2
idlfn» id}=>{id,
| id o ® P
eXx nex

1 2 3 Cannot bypass nodes
£X O btw

Project to {<, id,pnd} id

pnd
id =] id}=>id, ot

Fo &

IVy: Generalize from CTI

ileSn—b id}=>{id,
| id id ’ ® P
eXx nex
1 2 3 Cannot bypass nodes
ex

: =
broject to {=, id,pnd} —3ny,n,,n;: Node. #(ny,n,,n3) A
id1_§_> id23_> id, i(id[nl]:id[nz];id[ne,]) A

pid)7 . id[n,] <id[n,] <id[n;] A
AL S é"; ond(idin,], n.)

IVy: Generalize from CTI

< <

ile—n—b id, ;=P id,
| id id ’ ® P
eXx nex
1 2 3 Cannot bypass nodes

. < =
Project to {<, id,pnd} —~3n,,n,,n,: Node. #(n,,n,,N,) A
. 1 9

#(id[n,],id[n,],id[n]) A
id[n;] <id[n,] <id[n;] A
pnd(id[n,], n,)

BMC VC Generator (K=3, —|C3H
\ 4

< Init(Vy) A TR(V, V)ATR(V, V)ATR(V,Va)A —1Ca(Vs)
\ 4

EPR Solver
Counterexample Trace <

N
\
Ny

S
N

IVy: Generalize from CTI

< <

ile—n—b id, ;=P id,
| id id ’ ® P
ne
N 2N\ /3 Cannot bypass nodes
ex
Project to {<, id,pnd,bt
rojectto L=, id,pnd btw} —=3ny, n,, ny: Node. #(ny,n,,N3) A
id =5 id = 5 id, ¢(id[n1],id[n2],id[.n3])/\
g N ¥ \ id[n,] <id[n,] <id[n;] A

pnd(id[n,], n;) A btw(n,, n,, ns)

IVy: Generalize from CTI

ileSn—b id}=>{id,
| id id ’ ® P
N 7 2N/3 Cannot bypass nodes
ex
: =
Project to (<, id,pnd btw} —3ny, n,, n3: Node. #(ny,n,,n3) A
id1_§_> idZS—P id, ?t(id[nl],i.d[nz],id[%]) A
s ¥ ¥ id[n;] <id[n,] <id[n3;] A
pnd(id[n,], n;) A btw(n,, n,, ns)
tw BMC VC Generator (K=3, —|C3u
@ 4
< Init(Vy) A TR(V,V)ATR(V, V)ATR(V,, Va)A —1C(Vs)
L
EPR Solver

e ProOf

IVy: Generalize from CTI

< <

idl—br;] id, ;=P id,
| id id ’ ® P
N 7 2N/3 Cannot bypass nodes
ex
: =
broject to =, id,pnd,btw} —=3ny, n,, ny: Node. #(ny,n,,N3) A
id1_§_> id23_> id, ?t(id[n1];i.d[n2]rid[.n3]) A
4 \ ¥ |d[n11 <id[n,] <id[ns] A
pnd(id[n,], n;) A btw(n,, n,, ns)
tw

e 3) o> Proof

IVy: Generalize from CTI

< <

ile—n—b id, ;=P id,
| id o ® P
e
N 7 2N/3 Cannot bypass nodes
ex
' <, id,pnd,bt
broject to =, id,pnd,btw} —=3ny, n,, ny: Node. #(ny,n,,N3) A
id1_§_> id23_> id, ?t(id[n1];i.d[n2]rid[r\3]) A
4 \ ¥ |d[n1-] <id[n,] <id[n;] A
pnd(id[n,], n;) A btw(n,, n,, n,)
tw
m @fﬁ Proof
< ,
on id,|=—] id,

d —3n,,n,,n;: Node. id[n,] <id[n,] A

btw(n,,n,,n3) A pnd(id[n,], n;)
tw

IVy: Generalize from CTI

idlfn» id}=>{id,
| id id ’ ® P
eXx nex
1 2 3 Cannot bypass nodes
ex

Project to {<, id,pnd,btw
J { .) —=3ny, n,, ny: Node. #(ny,n,,N3) A

#(id[n,],id[n,],id[n3]) A

id = id,}=>{id, , , ,
oy ¥ id[n;] <id[n,] < id[n;] A
pnd(id[n,], n;) A btw(n,, n,, n,)
tw

Looks good, add to the invariant as I,

id,}=>{id, e ©

pn .
—3n,,n,,n;: Node. id[n,] <id[n,] A
btw(n,,n,,n3) A pnd(id[n,], n;)
tw

IVy: Check Inductiveness

Leader protocol

Inv = IOAIIAIZAI3

VC Generator
v

Init A = Inv

Inv(V) A TR(V,V’) A =Inv(V')

Inv(V) A Bad(V)
k2

EPR Solver 1

I, AI; AL, AL, is an inductive invariant for the leader protocol,
which proves the protocol is safe

Recap: Supervised Verification in IVy
Projection of
relevant facts

Examining

Check inductiveness

Interpolation

Decidable Problems Proof intuition and creativity

conjectures

Predictable Automation Graphical interaction

https://www.quora.com/Human-Computer-Interaction
https://www.quora.com/Human-Computer-Interaction

Challenge: How to use restricted first-
order logic to verify interesting systems?

(1) Limitations of first-order logic
* Expressing transitive closure
* Ring protocols
* Expressing arithmetic and axioms
* Node id’s

Domain knowledge

Axioms: Leader Election Protocol

MoiE Integers
ID’s
Next
Ring edges +
Topology Transitive
closure

< (ID, ID) — total order on node id’s

btw (a: Node, b: Node, c: Node) — the ring topology
id: Node = ID —relate a node to its unique id
pending(ID, Node) — pending messages
leader(Node) — leader(n) means n is the leader

______|Intention |EPR Modeling

Vi:ID. i <i Reflexive

Vi, j, k: ID. i<j A j<k — i< k Transitive

Vi, j: ID.i<j A j< | = i=j Anti-Symmetric

Vi,j:ID.i<jvj<i Total

Vx, y: Node. id(x) = id(y) = x=y Injective

VX, y, z: Node. btw(x, y, z) = btw(y, z, x) Circular shifts

VX, vy, z, w: Node. btw(w, x, y) Abtw(w, y, z) = btw(w, x, z) Transitive
Vx, y, w: Node. btw(w, x, y) = —btw(w, y, x) Anti-Symmetric

VX, y, z, w: Node. distinct(x, y, z) = btw(w, x, y) V btw(w, y, x)

“next(a)=b” = Vx:Node. x#a A x#b— btw(a,b,x)

Challenge: How to use restricted first-
order logic to verify interesting systems?

(1) Limitations of first-order logic
* Expressing transitive closure
* Ring protocols
* Expressing arithmetic and axioms
* Node id’s
* Expressing Consensus
* Paxos, Multi-Paxos, Reconfiguration

Domain knowledge

(2) Restrictions for decidability Derived relations
* Restricted quantification and rewrites

[OOPSLA’17] Paxos Made EPR: Decidable Reasoning about Distributed Protocols.
O. Padon, G. Losa, M. Sagiv, S. Shoham

IVy: Verified Protocols

Protocol Model Property Invariant
(# LOC) (# L|terals) (# therals)

Leader in Ring

Learning Switch 50 11 18
DB Chain Replication 143 11 35
Chord 155 35 46
Lock Server (500 Coq lines [Verdi]) 122 3 21
Distributed Lock (1 week [IronFleet]) 41 3 26
Single Decree Paxos 85 3 32
Multi Paxos 102 3 38
Vertical Paxos 123 3 65
Fast Paxos 117 3 59
Flexible Paxos 88 3 32
Stoppable Paxos 130 6 60

Virtually Synchronous Paxos Work in progress

Summary

* Safety verification by
 Automatic deduction

P 4

Proof Assistants Supervised
Verification
prooficode: TV ~1710

Ultimately limited by human
proof/cade:

\\' e Werdi: ™10
| IronFleet: ~4
-a__ | Ultimately limited by undecidability

Model Checking
Static Analysis

* Interactive inference of invariants, graphical interaction

» Use decidable fragment of FOL

* Deduction is decidable
* Finite Counterexamples

* Interact with a user based on counterexamples to induction

* Surprisingly powerful

* Paxos, Multi-Paxos, Reconfiguration, ... [OOPSLA’17]
* Liveness and Temporal Properties [POPL'18]

.........

eI'C Supervised Verification of Infinite-State Systems

Future Work

* More distributed systems
e Other logics

e Other inference schemes
* Other forms of interaction

SRV Y

Proof Assistants Supervised
Verification
prooficode: TV ~1710

Ultimately limited by human
proof/cade:

"I 1‘1‘2..
\\'g!ﬂ@ Verdi: ~10
IronFleet: ~4
-a__ | Ultimately limited by undecidability

Model Checking
Static Analysis

* More automation in inferring inductive invariants
* Theoretical understanding of limitations and tradeoffs

Seeking postdocs and students

.
.o

I'C Supervised Verification of Infinite-State Systems

