
Interactive Verification
of Distributed Protocols

Sharon Shoham

Tel Aviv University

Supervised Verification of Infinite-State Systems

• Distributed systems are everywhere

• e.g., safety-critical systems

• Distributed systems are notoriously hard to get right

• Testing is costly and not sufficient
• Bugs occur on rare scenarios
• Testing covers tiny fraction of behaviors
• Leaves most bugs for production
• Amazon employs TLA+ for testing protocols,

but scaling is an issue

Why Verify Distributed Protocols?

Verifying Distributed Protocols is Hard

• Infinite state-space
• unbounded number of objects
• unbounded number of threads
• unbounded number of messages

• Asymptotic complexity of program verification
• The halting problem
• Rice theorem
• The ability of simple programs

to represent complex behaviors

I can’t decide!

• Automatic techniques

• Model checking
• Exploit finite state / finite abstraction

• Abstract Interpretation

• Sound abstraction
• Limited for infinite state systems due to undecidability

• Deductive techniques
• Use SMT for deduction with manual program annotations (e.g. Dafny)

• Requires programmer effort to provide inductive invariants

• SMT solver may diverge (matching loops, arithmetic)

• Interactive theorem provers (e.g. Coq, Isabelle/HOL, LEAN)

• Programmer gives inductive invariant and proves it

• Huge programmer effort (~10-50 lines of proof per line of code)

State of the art in formal verification

State of the art in formal verification
Ex

p
re

ss
iv

en
es

s

Automation

Proof Assistants

Ultimately limited by human

“the proofs consisted of about 5000 lines and assumed several nontrivial invariants of the Raft
protocol. This paper discusses the verification of Raft as a whole, including all the invariants from the
original Raft paper [32]. These new proofs consist of about 45000 additional lines” [Verdi, CPP’16]

proof/code:
Verdi: ~10
IronFleet: ~4

State of the art in formal verification
Ex

p
re

ss
iv

en
es

s

Automation

Model Checking
Static Analysis

Ultimately limited by undecidability

“but our input language cannot compete in generality with mechanized proof methods that rely heavily
on human expertise, e.g., IVY [55], Verdi [68], IronFleet [38], TLAPS [16]” [Konnov et al, POPL’17]

Proof Assistants

Ultimately limited by human

proof/code:
Verdi: ~10
IronFleet: ~4

State of the art in formal verification
Ex

p
re

ss
iv

en
es

s

Automation

Proof Assistants

Model Checking
Static Analysis

Ultimately limited by human

Ultimately limited by undecidability

Supervised
Verification

proof/code:
Verdi: ~10
IronFleet: ~4

Supervised Verification of Infinite-State Systems

proof/code: IVy ~1/10

Protocol
Model
(# LOC)

Property
(# Literals)

Invariant
(# Literals)

Leader in Ring 59 3 12

Learning Switch 50 11 18

DB Chain Replication 143 11 35

Chord 155 35 46

Lock Server (500 Coq lines [Verdi]) 122 3 21

Distributed Lock (1 week [IronFleet]) 41 3 26

Single Decree Paxos 85 3 32

Multi Paxos 102 3 38

Vertical Paxos 123 3 65

Fast Paxos 117 3 59

Flexible Paxos 88 3 32

Stoppable Paxos 130 6 60

Virtually Synchronous Paxos Work in progress

IVy: Verified Protocols

Model
Verifier

Proof

user

Automatic Verification

…

…

• Unpredictable, often diverges
• Restricted expressivity

Model
Verifier

Proof

user

Supervised Verification

…

…

Question

Answer

Supervised Verification of Infinite-State Systems

• How to divide the problem between the human and the machine?
• How to conduct the interaction?

• Predictable: solves decidable problems
• High expressivity

IVy
IVy: https://github.com/Microsoft/ivy

• [PLDI’16] IVy: Safety Verification by Interactive Generalization.
O. Padon, K. McMillan, A. Panda, M. Sagiv, S. Shoham

• [OOPSLA’17] Paxos Made EPR: Decidable Reasoning about
Distributed Protocols. O. Padon, G. Losa, M. Sagiv, S. Shoham

• [POPL’18] Reducing Liveness to Safety in First-Order Logic.
O. Padon, J. Hoenicke, G. Losa, A. Podelski, M. Sagiv, S. Shoham

Safety Verification

System S is safe if all the reachable states satisfy the property P = ¬Bad

Reach

System State Space Safety
Property

Bad

Initial

Safety Verification

System State Space Safety
Property

Bad Inv

Initial

System S is safe iff there exists an inductive invariant Inv:

System S is safe if all the reachable states satisfy the property P = ¬Bad

Inv  P=Bad (Safety)
Init  Inv (Initiation)
if  ⊨ Inv and TR(, ’) then ’ ⊨ Inv (Consecution)

TR

TR

TR

Safety Verification

System State Space Safety
Property

Bad Inv

Initial

Reach

System S is safe iff there exists an inductive invariant Inv:

System S is safe if all the reachable states satisfy the property P = ¬Bad

Inv  P=Bad (Safety)
Init  Inv (Initiation)
if  ⊨ Inv and TR(, ’) then ’ ⊨ Inv (Consecution)

TR

TR

x=7, y =6x=3, y =0

x=3, y =2

x=5, y =4

x := 1;

y := 2;

while * do {

assert ¬even[x];

x:= x + y;

y := y + 2

}

x=4, y =5

x=2, y =5

x=2, y =3

x=2, y =4

x=3, y =4

x=1, y =2

x=1, y =0

Simple Example: Loop Invariants

x=1, y =3

x=1, y =1

even[x]

x=1, y =0

TR

x=7, y =6x=3, y =0

x=3, y =2

x=5, y =4

x := 1;

y := 2;

while * do {

assert ¬even[x];

x:= x + y;

y := y + 2

}

x=4, y =5

x=2, y =5

x=2, y =3

¬even[x]

x=2, y =4

Counterexample
to induction (CTI)x=3, y =4

x=1, y =2

x=1, y =0

Simple Example: Loop Invariants

x=1, y =3

x=1, y =1

even[x]

x=1, y =0

TR

x=7, y =6x=3, y =0

x=3, y =2

x=5, y =4

x := 1;

y := 2;

while * do {

assert ¬even[x];

x:= x + y;

y := y + 2

}

x=4, y =5

x=2, y =5

x=2, y =3

x=2, y =4

x=3, y =4

x=1, y =2

x=1, y =0

Simple Example: Loop Invariants

x=1, y =3

x=1, y =1

even[x]

x=1, y =0

Inv = ¬even[x] ∧ even[y]

TR

Challenges in Safety Verification

Infer inductive invariants for safety verification

1. Formal specification: reasoning about infinite-state systems

• Modeling the system and the property (TR, Init, Bad)

2. Deduction: checking inductiveness

• Undecidability of implication checking

• Unbounded state (threads, messages), arithmetic, quantifiers,…

3. Inference: inferring inductive invariants (Inv)

• Hard to specify

• Hard to infer

• Undecidable even when deduction is decidable

IVy’s Approach: Supervised Verification

Infer inductive invariants for safety verification

1. Formal specification: reasoning about infinite-state systems

• Modeling the system and the property (TR, Init, Bad)

2. Deduction: checking inductiveness

• Undecidability of implication checking

• Unbounded state (threads, messages), arithmetic, quantifiers,…

3. Inference: inferring inductive invariants (Inv)

• Hard to specify

• Hard to infer

• Undecidable even when deduction is decidable

How Does it Work?

• Specify systems and properties in decidable fragment of
first-order logic (EPR)
– Allows quantifiers to reason about unbounded sets

– Decidable to check inductiveness

– Finite counterexamples to induction, display graphically

• Interact with the user to find inductive invariants
– by providing graphical UI for gradually strengthening the inductive

invariant based on counterexamples to induction

• Logic is mostly hidden

– Friendly to non-expert users

Example: Leader Election in a Ring

• Nodes are organized in a unidirectional ring

• Each node has a unique numeric id

• Protocol:

– Each node sends its id to the next

– A node that receives a message passes it to the next if the id in

the message is higher than the node’s own id

– A node that receives its own id becomes the leader

• Theorem:

– The protocol selects at most one leader

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized
extrema-finding in circular configurations of processes

3 5

2

4

1

6
next

next next

next

next

next

• State: first-order structure over vocabulary V

• ≤ (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node  ID – relate a node to its id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

structureprotocol state

Axiomatized in
first-order logic

≤

n1
L

id1

n2
L

id2

n3
L

≤ id3

n4
L

n5
L

id5 id6
≤ ≤

<n5, n1, n3> ∈ 𝐼(btw)

id4

n6
L

≤

n1

Modeling in IVy

3 5

2

4

1

6
next

next next

next

next

next 2
5

pnd
id

id id idpnd

n5

• ≤(ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node  ID – relate a node to its unique id

• pending(ID, Node) – pending msgs

• leader(Node) – node is a leader

|

protocol = (send | receive)*

assert I0 = ∀ x,y: Node. leader(x)leader(y) → x = y

action receive(n:Node, m:ID){
requires pending(m, n)
pending(m, n) := *
if id(n) = m then
// found leader
leader(n) := true

else if id(n) ≤ m then
// pass message
“s := next(n)”
pending(m, s) := true

}

action send(n:Node) {
“s := next(n)”
pending(id(n),s) := true

}

Modeling in IVy

≤

1
 L

next

2
L

next
id id

3
L

≤

id
next

≤

1
 L

next

2
L

next
id id

3
L

≤

id
next

≤

1
 L

next

2
L

next
id id

3
L

≤

id
next

pnd

≤

1
 L

next

2
L

next
id id

3
L

≤

id
next

pnd

≤

1
 L

next

2
L

next
id id

3
L

≤

id
next

pnd

≤

1
 L

next

2
L

next
id id

3
L

≤

id
next

≤

1
 L

next

2
L

next
id id

3
L

≤

id
next

≤

1
 L

next

2
L

next
id id

3
L

≤

id
next

pnd

≤

1
 L

next

2
L

next
id id

3
L

≤

id
next

pnd

≤

1
 L

next

2
L

next
id id

3
L

≤

id
next

pnd

≤

1
 L

next

2
L

next
id id

3
L

≤

id
next

≤

1
 L

next

2
L

next
id id

3
L

≤

id
next

pnd



1
 L

next

2
L

next
id id

3
L



id
next



1
 L

next

2
L

next
id id

3
L



id
next

pnd

…

Specify and verify the protocol for any number of nodes in the ring

Example: Leader Election in a Ring

• Nodes are organized in a unidirectional ring

• Each node has a unique numeric id

• Protocol:

– Each node sends its id to the next

– A node that receives a message passes it (to the next) if the id in

the message is higher than the node’s own id

– A node that receives its own id becomes the leader

• Theorem:

– The protocol selects at most one leader

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized
extrema-finding in circular configurations of processes

3 5

2

4

1

6
next

next next

next

next

next

Inductive Invariant for Leader Election
• ≤ (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node  ID – relate a node to its id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

Safety property:

I0 = ¬Bad = ∀x,y: Node. leader(x) ∧ leader(y) → x = y

Inductive invariant: Inv = I0  I1  I2  I3

I1 = n1,n2: Node. leader(n2)→ id[n1] ≤ id[n2]

I2 = n1,n2: Node. pnd(id[n2], n2) → id[n1] ≤ id[n2]

I3 =n1,n2,n3: Node. btw(n1,n2,n3)  pnd(id[n2], n1)
→ id[n3] ≤ id[n2]

The leader has
the highest ID

Only highest id
can be self-pnd

Cannot bypass
higher nodes

Inductive Invariant for Leader Election
• ≤ (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node  ID – relate a node to its id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

Safety property:

I0 = ¬Bad = ∀x,y: Node. leader(x) ∧ leader(y) → x = y

Inductive invariant: Inv = I0  I1  I2  I3

I1 = n1,n2: Node. leader(n2)→ id[n1] ≤ id[n2]

I2 = n1,n2: Node. pnd(id[n2], n2) → id[n1] ≤ id[n2]

I3 =n1,n2,n3: Node. btw(n1,n2,n3)  pnd(id[n2], n1)
→ id[n3] ≤ id[n2]

The leader has
the highest ID

Only highest id
can be self-pnd

Cannot bypass
higher nodes

How can we come up with an
inductive invariant?

Model
Candidate Inductive Invariant

Inv = I0 ∧ I1 ∧ …∧ Ik

Inductive?
Yes

No

Find “minimal”
counterexample to

induction (CTI)

Modify candidate invariant

Inductive
Invariant Found

Invariant Inference in IVy

Decidable

https://www.quora.com/Human-Computer-Interaction
https://www.quora.com/Human-Computer-Interaction

Inv

σ∈Inv

σ’∉Inv

Inv’ σ’

σ

Inv’

σ

σ'

Strengthening Weakening

Strengthening & Weakening from CTI
σ,σ’ are a CTI of Inv if:
• σ ∈ Inv
• σ’ ∉ Inv
• σ σ’

Inv

σ∈Inv

σ’∉Inv

Inv’Inv’ σ’

σ σ

σ'

Remove a conjectureAdd a conjecture
Inv’ := Inv ∧ “avoid(𝜎)”

Key Challenge: Generalization

Strengthening Weakening

σ,σ’ are a CTI of Inv if:
• σ ∈ Inv
• σ’ ∉ Inv
• σ σ’

Strengthening & Weakening from CTI

[CAV’15, JACM’17] Property-Directed Inference of Universal Invariants or Proving Their
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.

Use diagrams to generalize from states

• state  is a finite first-order structure

L

≤

¬L 

Diag() = x ≠ y  L(x) ¬L(y)
 ≤(x, y)  ¬≤(y, x)
 ≤(x, x)  ≤(y, y)

 is obtained from ’ by removing elements
and projecting relations on remaining elements

∃ x y.

' ⊨ Diag() iff  is a substructure of ‘

Generalization using Diagram

[CAV’15, JACM’17] Property-Directed Inference of Universal Invariants or Proving Their
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.

Use diagrams to generalize from states

• state  is a finite first-order structure

≤

≤

L
…

L

≤

¬L 

’Diag() = x ≠ y  L(x) ¬L(y)
 ≤(x, y)  ¬≤(y, x)
 ≤(x, x)  ≤(y, y)

 is obtained from ’ by removing elements
and projecting relations on remaining elements

∃ x y.

' ⊨ Diag() iff  is a substructure of ‘

L ¬L

¬L

L

L¬L

Generalization using Diagram

[CAV’15, JACM’17] Property-Directed Inference of Universal Invariants or Proving Their
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.

Can generalize more

 remove facts/conjuncts

¬L

≤

¬L
…

≤



’

avoid() = ¬gen(Diag())

≤

L

L

¬L

¬L ¬L ¬L

L

Generalization using Diagram

Diag() = x ≠ y  L(x) ¬L(y)
 ≤(x, y)  ¬≤(y, x)
 ≤(x, x)  ≤(y, y)

∃ x y.gen(Diag()) = x ≠ y
≤(x, y)  ¬≤(y, x)
≤(x, x) ≤(y, y)

∃ x y.

From Diagrams to Invariants

Inv  ¬  𝑥. (l1,1(𝑥)  …  l1,m(𝑥))

Diagram

L

≤

From Diagrams to Invariants

Inv  ¬  𝑥. (l1,1(𝑥)  …  l1,m(𝑥))

L

≤

conjecture

From Diagrams to Invariants

Inv  ¬  𝑥. (l1,1(𝑥)  …  l1,m(𝑥))∧…∧ ¬ 𝑥. (ln,1(𝑥)  …  ln,m(𝑥))

L

≤

conjecture

Q: How to select which facts to remove in the generalization?

IVy: interact with the user to identify irrelevant facts

Leader Election: Iteration 3
• ≤ (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node  ID – relate a node to its id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

Safety property:

I0 = ¬Bad = ∀x,y: Node. leader(x) ∧ leader(y) → x = y

Inductive invariant: Inv = I0  I1  I2  I3

I1 = n1,n2: Node. leader(n2)→ id[n1] ≤ id[n2]

I2 = n1,n2: Node. pnd(id[n2], n2) → id[n1] ≤ id[n2]

The leader has
the highest ID

Only highest id
can be self-pnd

Cannot bypass
higher nodes

1. Each node sends its id to the next
2. A node that receives a msg passes

it to the next node in the ring
if the id in the msg ≥ the node’s id

3. A node that receives its own id
becomes the leader

I3 = n1,n2,n3: Node. btw(n1,n2,n3)  pnd(id[n2], n1)
→ id[n3] ≤ id[n2]

Leader Election: Iteration 3
• ≤ (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node  ID – relate a node to its id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

Safety property:

I0 = ¬Bad = ∀x,y: Node. leader(x) ∧ leader(y) → x = y

Inductive invariant: Inv = I0  I1  I2  I3

I1 = n1,n2: Node. leader(n2)→ id[n1] ≤ id[n2]

I2 = n1,n2: Node. pnd(id[n2], n2) → id[n1] ≤ id[n2]

The leader has
the highest ID

1. Each node sends its id to the next
2. A node that receives a msg passes

it to the next node in the ring
if the id in the msg ≥ the node’s id

3. A node that receives its own id
becomes the leader

Cannot bypass
higher nodes

I3 = n1,n2,n3: Node. btw(n1,n2,n3)  pnd(id[n2], n1)
→ id[n3] ≤ id[n2]

Only highest id
can be self-pnd

VC Generator

Leader Protocol Inv = I0 ∧ I1 ∧ I2

EPR Solver

Init   Inv
Inv(V)  TR(V,V’)  Inv(V’)

Inv(V)  Bad(V)

IVy: Check Inductiveness

rcv(1, id(2))

I0I1 I2  I2

≤

1
L

next

id1

2
L

next
id id

id2pnd

3
L

≤ id3

id
next

≤

1
L

next

id1

2
L

next
id id

id2

pnd

3
L

≤ id3

id
next

CTI

I0 : leader is unique
I1 : The leader has

the highest ID
I2 : Only highest id

can be self-pnd

IVy: Generalize from CTI

1. Each node sends its id to the next
2. A node that receives a msg passes it to the next node in the ring

if the id in the msg ≥ the node’s id
3. A node that receives its own id becomes the leader

I0I1 I2

≤

1
L

next

id1

2
L

next
id id

id2pnd

3
L

≤ id3

id
next

Cannot bypass nodes
with higher ids

id[n2] is pending for n1, had to go through n3

IVy: Generalize from CTI
I0I1 I2

≤

1
L

next

id1

2
L

next
id id

id2pnd

3
L

≤ id3

id
next

Cannot bypass nodes
with higher ids

User’s Generalization

≤
btw
id
pnd
L

IVy: Generalize from CTI
I0I1 I2

Cannot bypass nodes
with higher ids

User’s Generalization

≤
btw
id
pnd
L

≤

1
L

next

id1

2
L

next
id id

id2pnd

3
L

≤ id3

id
next

IVy: Generalize from CTI
I0I1 I2

Cannot bypass nodes
with higher ids

User’s Generalization

≤
btw
id
pnd
L

≤

1
L

next

id1

2
L

next
id id

id2pnd

3
L

≤ id3

id
next

IVy: Generalize from CTI
I0I1 I2

Project to {≤, id,pnd}

≤

1

id1

2
id id

id2pnd

3

≤ id3

id

Cannot bypass nodes
with higher ids

≤

1
L

next

id1

2
L

next
id id

id2pnd

3
L

≤ id3

id
next

≤
btw
id
pnd
L

IVy: Generalize from CTI
I0I1 I2

Project to {≤, id,pnd}

≤

1

id1

2
id id

id2pnd

3

≤ id3

id

Cannot bypass nodes
with higher ids

¬n1,n2,n3 : Node. (n1,n2,n3) 
(id[n1],id[n2],id[n3]) 
id[n1] ≤ id[n2] ≤ id[n3] 
pnd(id[n2], n1)

≤

1
L

next

id1

2
L

next
id id

id2pnd

3
L

≤ id3

id
next

IVy: Generalize from CTI
I0I1 I2

Project to {≤, id,pnd}

≤

1

id1

2
id id

id2pnd

3

≤ id3

id

Cannot bypass nodes
with higher ids

¬n1,n2,n3 : Node. (n1,n2,n3) 
(id[n1],id[n2],id[n3]) 
id[n1] ≤ id[n2] ≤ id[n3] 
pnd(id[n2], n1)

BMC(3) BMC VC Generator (K=3, ¬C3)

EPR Solver

Init(V0)TR(V0,V1)TR(V1,V2)TR(V1,V3)¬C3(V3)

Counterexample Trace

≤

1
L

next

id1

2
L

next
id id

id2pnd

3
L

≤ id3

id
next

IVy: Generalize from CTI
I0I1 I2

Project to {≤, id,pnd,btw}

≤

1

id1

2
id id

id2pnd

3

≤ id3

id

btw

Cannot bypass nodes
with higher ids

¬n1, n2, n3: Node. (n1,n2,n3) 
(id[n1],id[n2],id[n3]) 
id[n1] ≤ id[n2] ≤ id[n3] 
pnd(id[n2], n1)  btw(n1, n2, n3)

≤

1
L

next

id1

2
L

next
id id

id2pnd

3
L

≤ id3

id
next

IVy: Generalize from CTI
I0I1 I2

≤

1
L

next

id1

2
L

next
id id

id2pnd

3
L

≤ id3

id
next

Project to {≤, id,pnd,btw}

≤

1

id1

2
id id

id2pnd

3

≤ id3

id

btw

Cannot bypass nodes
with higher ids

¬n1, n2, n3: Node. (n1,n2,n3) 
(id[n1],id[n2],id[n3]) 
id[n1] ≤ id[n2] ≤ id[n3] 
pnd(id[n2], n1)  btw(n1, n2, n3)

BMC(3)
BMC VC Generator (K=3, ¬C3)

EPR Solver

Init(V0)TR(V0,V1)TR(V1,V2)TR(V1,V3)¬C3(V3)

Proof

IVy: Generalize from CTI
I0I1 I2

Project to {≤, id,pnd,btw}

≤

1

id1

2
id id

id2pnd

3

≤ id3

id

btw

Cannot bypass nodes
with higher ids

Interp(3)

¬n1, n2, n3: Node. (n1,n2,n3) 
(id[n1],id[n2],id[n3]) 
id[n1] ≤ id[n2] ≤ id[n3] 
pnd(id[n2], n1)  btw(n1, n2, n3)

Proof

≤

1
L

next

id1

2
L

next
id id

id2pnd

3
L

≤ id3

id
next

IVy: Generalize from CTI
I0I1 I2

Project to {≤, id,pnd,btw}

≤

1

id1

2
id id

id2pnd

3

≤ id3

id

btw

Cannot bypass nodes
with higher ids

Interp(3)

pnd

1 2
id

id2

3

≤ id3

id

btw

¬n1,n2,n3 : Node. id[n2] ≤ id[n3] 
btw(n1,n2,n3)  pnd(id[n2], n1)

¬n1, n2, n3: Node. (n1,n2,n3) 
(id[n1],id[n2],id[n3]) 
id[n1] ≤ id[n2] ≤ id[n3] 
pnd(id[n2], n1)  btw(n1, n2, n3)

Proof

≤

1
L

next

id1

2
L

next
id id

id2pnd

3
L

≤ id3

id
next

IVy: Generalize from CTI
I0I1 I2

≤

1
L

next

id1

2
L

next
id id

id2pnd

3
L

≤ id3

id
next

Project to {≤, id,pnd,btw}

≤

1

id1

2
id id

id2pnd

3

≤ id3

id

btw

Cannot bypass nodes
with higher ids

Interp(3)

pnd

1 2
id

id2

3

≤ id3

id

btw

¬n1,n2,n3 : Node. id[n2] ≤ id[n3] 
btw(n1,n2,n3)  pnd(id[n2], n1)

¬n1, n2, n3: Node. (n1,n2,n3) 
(id[n1],id[n2],id[n3]) 
id[n1] ≤ id[n2] ≤ id[n3] 
pnd(id[n2], n1)  btw(n1, n2, n3)

Looks good, add to the invariant as I3

VC Generator

Leader protocol Inv = I0 ∧ I1 ∧ I2 ∧ I3

EPR Solver

Init   Inv
Inv(V)  TR(V,V’)  Inv(V’)

Inv(V)  Bad(V)

Proof

IVy: Check Inductiveness

I0 I1 I2 I3 is an inductive invariant for the leader protocol,
which proves the protocol is safe

L L
≤

id idpnd

pnd
id
≤

id

btw

≤

L

id id

Recap: Supervised Verification in IVy

Proof intuition and creativity

Graphical interaction

Decidable Problems

Predictable Automation

Projection of
relevant facts

BMC bounds

Examining
conjectures

Check inductiveness

BMC

Interpolation

… …

https://www.quora.com/Human-Computer-Interaction
https://www.quora.com/Human-Computer-Interaction

(1) Limitations of first-order logic
• Expressing transitive closure

• Ring protocols

• Expressing arithmetic
• Node id’s

Challenge: How to use restricted first-
order logic to verify interesting systems?

Domain knowledge
and axioms

• ≤ (ID, ID) – total order on node id’s

• btw (a: Node, b: Node, c: Node) – the ring topology

• id: Node  ID – relate a node to its unique id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

|

Intention EPR Modeling

Node
ID’s

Integers

i:ID. i ≤ i Reflexive
i, j, k: ID. i≤j ∧ j≤k → i≤ k Transitive
i, j: ID. i≤j ∧ j≤ I → i=j Anti-Symmetric
i, j: ID. i≤j ∨ j ≤ i Total
x, y: Node. id(x) = id(y) → x=y Injective

Ring
Topology

Next
edges +
Transitive
closure

x, y, z: Node. btw(x, y, z) → btw(y, z, x) Circular shifts
x, y, z, w: Node. btw(w, x, y) ∧btw(w, y, z) → btw(w, x, z) Transitive
x, y, w: Node. btw(w, x, y) → btw(w, y, x) Anti-Symmetric
x, y, z, w: Node. distinct(x, y, z) → btw(w, x, y) ∨ btw(w, y, x)

“next(a)=b”  x: Node. x≠a ∧ x≠b→ btw(a,b,x)

Axioms: Leader Election Protocol

(1) Limitations of first-order logic
• Expressing transitive closure

• Ring protocols

• Expressing arithmetic
• Node id’s

• Expressing Consensus
• Paxos, Multi-Paxos, Reconfiguration

(2) Restrictions for decidability
• Restricted quantification

Domain knowledge
and axioms

Derived relations
and rewrites

Challenge: How to use restricted first-
order logic to verify interesting systems?

[OOPSLA’17] Paxos Made EPR: Decidable Reasoning about Distributed Protocols.
O. Padon, G. Losa, M. Sagiv, S. Shoham

IVy: Verified Protocols
Protocol

Model
(# LOC)

Property
(# Literals)

Invariant
(# Literals)

Leader in Ring 59 3 12

Learning Switch 50 11 18

DB Chain Replication 143 11 35

Chord 155 35 46

Lock Server (500 Coq lines [Verdi]) 122 3 21

Distributed Lock (1 week [IronFleet]) 41 3 26

Single Decree Paxos 85 3 32

Multi Paxos 102 3 38

Vertical Paxos 123 3 65

Fast Paxos 117 3 59

Flexible Paxos 88 3 32

Stoppable Paxos 130 6 60

Virtually Synchronous Paxos Work in progress

Summary

• Safety verification by

• Automatic deduction

• Interactive inference of invariants, graphical interaction

• Use decidable fragment of FOL
• Deduction is decidable
• Finite Counterexamples

• Interact with a user based on counterexamples to induction

• Surprisingly powerful
• Paxos, Multi-Paxos, Reconfiguration, … [OOPSLA’17]

• Liveness and Temporal Properties [POPL’18]

Supervised Verification of Infinite-State Systems

Future Work

• More distributed systems
• Other logics
• Other inference schemes
• Other forms of interaction
• More automation in inferring inductive invariants
• Theoretical understanding of limitations and tradeoffs

Supervised Verification of Infinite-State Systems

Seeking postdocs and students

