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• Distributed systems are everywhere

• e.g., safety-critical systems

• Distributed systems are notoriously hard to get right

• Testing is costly and not sufficient
• Bugs occur on rare scenarios
• Testing covers tiny fraction of behaviors
• Leaves most bugs for production
• Amazon employs TLA+ for testing protocols, 

but scaling is an issue

Why Verify Distributed Protocols?



Verifying Distributed Protocols is Hard

• Infinite state-space  
• unbounded number of objects 
• unbounded number of threads 
• unbounded number of messages

• Asymptotic complexity of program verification
• The halting problem
• Rice theorem
• The ability of simple programs 

to represent complex behaviors

I can’t decide!



• Automatic techniques

• Model checking
• Exploit finite state / finite abstraction

• Abstract Interpretation

• Sound abstraction
• Limited for infinite state systems due to undecidability

• Deductive techniques
• Use SMT for deduction with manual program annotations (e.g. Dafny)

• Requires programmer effort to provide inductive invariants

• SMT solver may diverge (matching loops, arithmetic)

• Interactive theorem provers (e.g. Coq, Isabelle/HOL, LEAN)

• Programmer gives inductive invariant and proves it

• Huge programmer effort (~10-50 lines of proof per line of code)

State of the art in formal verification
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Proof Assistants

Ultimately limited by human

“the proofs consisted of about 5000 lines and assumed several nontrivial invariants of the Raft 
protocol. This paper discusses the verification of Raft as a whole, including all the invariants from the 
original Raft paper [32]. These new proofs consist of about 45000 additional lines” [Verdi, CPP’16] 

proof/code: 
Verdi: ~10
IronFleet: ~4
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Model Checking
Static Analysis

Ultimately limited by undecidability

“but our input language cannot compete in generality with mechanized proof methods that rely heavily 
on human expertise, e.g., IVY [55], Verdi [68], IronFleet [38], TLAPS [16]” [Konnov et al, POPL’17] 

Proof Assistants

Ultimately limited by human

proof/code: 
Verdi: ~10
IronFleet: ~4
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Static Analysis

Ultimately limited by human

Ultimately limited by undecidability

Supervised
Verification

proof/code: 
Verdi: ~10
IronFleet: ~4

Supervised Verification of Infinite-State Systems

proof/code: IVy ~1/10



Protocol
Model 
(# LOC)

Property 
(# Literals)

Invariant 
(# Literals)

Leader in Ring 59 3 12

Learning Switch 50 11 18

DB Chain Replication 143 11 35

Chord 155 35 46

Lock Server (500 Coq lines [Verdi]) 122 3 21

Distributed Lock (1 week [IronFleet]) 41 3 26

Single Decree Paxos 85 3 32

Multi Paxos 102 3 38

Vertical Paxos 123 3 65

Fast Paxos 117 3 59

Flexible Paxos 88 3 32

Stoppable Paxos 130 6 60

Virtually Synchronous Paxos Work in progress

IVy: Verified Protocols



Model
Verifier

Proof

user

Automatic Verification

…

…

• Unpredictable, often diverges
• Restricted expressivity



Model
Verifier

Proof

user

Supervised Verification

…

…

Question

Answer

Supervised Verification of Infinite-State Systems

• How to divide the problem between the human and the machine?
• How to conduct the interaction?

• Predictable: solves decidable problems
• High expressivity



IVy
IVy:    https://github.com/Microsoft/ivy

• [PLDI’16] IVy: Safety Verification by Interactive Generalization. 
O. Padon, K. McMillan, A. Panda, M. Sagiv, S. Shoham

• [OOPSLA’17] Paxos Made EPR: Decidable Reasoning about 
Distributed Protocols. O. Padon, G. Losa, M. Sagiv, S. Shoham

• [POPL’18] Reducing Liveness to Safety in First-Order Logic.
O. Padon, J. Hoenicke, G. Losa, A. Podelski, M. Sagiv, S. Shoham



Safety Verification

System S is safe if all the reachable states satisfy the property P = ¬Bad 

Reach

System State Space Safety 
Property

Bad 

Initial



Safety Verification

System State Space Safety 
Property

Bad Inv

Initial

System S is safe iff there exists an inductive invariant Inv:

System S is safe if all the reachable states satisfy the property P = ¬Bad 

Inv  P=Bad (Safety)
Init  Inv (Initiation)
if  ⊨ Inv and TR(, ’) then ’ ⊨ Inv (Consecution)

TR

TR

TR



Safety Verification

System State Space Safety 
Property

Bad Inv

Initial

Reach

System S is safe iff there exists an inductive invariant Inv:

System S is safe if all the reachable states satisfy the property P = ¬Bad 

Inv  P=Bad (Safety)
Init  Inv (Initiation)
if  ⊨ Inv and TR(, ’) then ’ ⊨ Inv (Consecution)

TR

TR



x=7, y =6x=3, y =0

x=3, y =2

x=5, y =4

x := 1;

y := 2;

while * do {

assert ¬even[x];

x:= x + y;

y := y + 2

}

x=4, y =5

x=2, y =5

x=2, y =3

x=2, y =4

x=3, y =4

x=1, y =2

x=1, y =0

Simple Example: Loop Invariants

x=1, y =3

x=1, y =1

even[x]

x=1, y =0

TR



x=7, y =6x=3, y =0

x=3, y =2

x=5, y =4

x := 1;

y := 2;

while * do {

assert ¬even[x];

x:= x + y;

y := y + 2

}

x=4, y =5

x=2, y =5

x=2, y =3

¬even[x]

x=2, y =4

Counterexample 
to induction (CTI)x=3, y =4
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x=1, y =0

Simple Example: Loop Invariants

x=1, y =3

x=1, y =1

even[x]

x=1, y =0

TR



x=7, y =6x=3, y =0

x=3, y =2

x=5, y =4

x := 1;

y := 2;

while * do {

assert ¬even[x];

x:= x + y;

y := y + 2

}

x=4, y =5

x=2, y =5

x=2, y =3

x=2, y =4

x=3, y =4

x=1, y =2

x=1, y =0

Simple Example: Loop Invariants

x=1, y =3

x=1, y =1

even[x]

x=1, y =0

Inv = ¬even[x] ∧ even[y]

TR



Challenges in Safety Verification

Infer inductive invariants for safety verification

1. Formal specification: reasoning about infinite-state systems

• Modeling the system and the property (TR, Init, Bad)

2. Deduction: checking inductiveness

• Undecidability of implication checking

• Unbounded state (threads, messages), arithmetic, quantifiers,…

3. Inference: inferring inductive invariants (Inv)

• Hard to specify

• Hard to infer

• Undecidable even when deduction is decidable



IVy’s Approach: Supervised Verification

Infer inductive invariants for safety verification

1. Formal specification: reasoning about infinite-state systems

• Modeling the system and the property (TR, Init, Bad)

2. Deduction: checking inductiveness

• Undecidability of implication checking

• Unbounded state (threads, messages), arithmetic, quantifiers,…

3. Inference: inferring inductive invariants (Inv)

• Hard to specify

• Hard to infer

• Undecidable even when deduction is decidable



How Does it Work?

• Specify systems and properties in decidable fragment of 
first-order logic (EPR)
– Allows quantifiers to reason about unbounded sets 

– Decidable to check inductiveness

– Finite counterexamples to induction, display graphically

• Interact with the user to find inductive invariants
– by providing graphical UI for gradually strengthening the inductive 

invariant based on counterexamples to induction

• Logic is mostly hidden

– Friendly to non-expert users



Example: Leader Election in a Ring

• Nodes are organized in a unidirectional ring

• Each node has a unique numeric id

• Protocol:

– Each node sends its id to the next

– A node that receives a message passes it to the next if the id in 

the message is higher than the node’s own id

– A node that receives its own id becomes the leader

• Theorem:

– The protocol selects at most one leader

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized 
extrema-finding in circular configurations of processes
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• State: first-order structure over vocabulary V  

• ≤ (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node  ID – relate a node to its id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

structureprotocol state

Axiomatized in 
first-order logic

≤

n1
L

id1

n2
L

id2

n3
L

≤ id3

n4
L

n5
L

id5 id6
≤ ≤

<n5, n1, n3> ∈ 𝐼(btw)

id4

n6
L

≤

n1

Modeling in IVy
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• ≤(ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node  ID – relate a node to its unique id

• pending(ID, Node) – pending msgs

• leader(Node) – node is a leader

|

protocol = (send | receive)*

assert I0 = ∀ x,y: Node. leader(x)leader(y) → x = y

action receive(n:Node, m:ID){
requires pending(m, n)
pending(m, n) := *
if id(n) = m then
// found leader
leader(n) := true

else if id(n) ≤ m then
// pass message
“s := next(n)”
pending(m, s) := true

}

action send(n:Node) {
“s := next(n)”
pending(id(n),s) := true

}

Modeling in IVy
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Specify and verify the protocol for any number of nodes in the ring



Example: Leader Election in a Ring

• Nodes are organized in a unidirectional ring

• Each node has a unique numeric id

• Protocol:

– Each node sends its id to the next

– A node that receives a message passes it (to the next) if the id in 

the message is higher than the node’s own id

– A node that receives its own id becomes the leader

• Theorem:

– The protocol selects at most one leader

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized 
extrema-finding in circular configurations of processes
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Inductive Invariant for Leader Election
• ≤ (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node  ID – relate a node to its id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

Safety property: 

I0 = ¬Bad = ∀x,y: Node. leader(x) ∧ leader(y) → x = y

Inductive invariant:  Inv = I0  I1  I2  I3

I1 = n1,n2: Node. leader(n2)→ id[n1] ≤ id[n2]

I2 = n1,n2: Node. pnd(id[n2], n2) → id[n1] ≤ id[n2]

I3 =n1,n2,n3: Node. btw(n1,n2,n3)  pnd(id[n2], n1)
→ id[n3] ≤ id[n2]

The leader has 
the highest ID

Only highest id 
can be self-pnd

Cannot bypass 
higher nodes



Inductive Invariant for Leader Election
• ≤ (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node  ID – relate a node to its id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

Safety property: 

I0 = ¬Bad = ∀x,y: Node. leader(x) ∧ leader(y) → x = y

Inductive invariant:  Inv = I0  I1  I2  I3

I1 = n1,n2: Node. leader(n2)→ id[n1] ≤ id[n2]

I2 = n1,n2: Node. pnd(id[n2], n2) → id[n1] ≤ id[n2]

I3 =n1,n2,n3: Node. btw(n1,n2,n3)  pnd(id[n2], n1)
→ id[n3] ≤ id[n2]

The leader has 
the highest ID

Only highest id 
can be self-pnd

Cannot bypass 
higher nodes

How can we come up with an 
inductive invariant?



Model
Candidate Inductive Invariant

Inv = I0 ∧ I1 ∧ …∧ Ik

Inductive?
Yes

No

Find “minimal”
counterexample to 

induction (CTI)

Modify candidate invariant

Inductive 
Invariant Found

Invariant Inference in IVy

Decidable

https://www.quora.com/Human-Computer-Interaction
https://www.quora.com/Human-Computer-Interaction


Inv

σ∈Inv

σ’∉Inv

Inv’ σ’

σ

Inv’

σ

σ'  

Strengthening Weakening

Strengthening & Weakening from CTI
σ,σ’ are a CTI of Inv if:
• σ ∈ Inv
• σ’ ∉ Inv
• σ σ’



Inv

σ∈Inv

σ’∉Inv

Inv’Inv’ σ’

σ σ

σ'  

Remove a conjectureAdd a conjecture 
Inv’ := Inv ∧ “avoid(𝜎)”

Key Challenge:  Generalization

Strengthening Weakening

σ,σ’ are a CTI of Inv if:
• σ ∈ Inv
• σ’ ∉ Inv
• σ σ’

Strengthening & Weakening from CTI



[CAV’15, JACM’17] Property-Directed Inference of Universal Invariants or Proving Their 
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.  

Use diagrams to generalize from states

• state  is a finite first-order structure

L

≤

¬L 

Diag() =           x ≠ y  L(x) ¬L(y)
 ≤(x, y)  ¬≤(y, x) 
 ≤(x, x)  ≤(y, y) 

 is obtained from ’ by removing elements 
and projecting relations on remaining elements

∃ x y.

' ⊨ Diag()  iff  is a substructure of ‘

Generalization using Diagram



[CAV’15, JACM’17] Property-Directed Inference of Universal Invariants or Proving Their 
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.  

Use diagrams to generalize from states

• state  is a finite first-order structure

≤
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L
…
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≤
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’Diag() =           x ≠ y  L(x) ¬L(y)
 ≤(x, y)  ¬≤(y, x) 
 ≤(x, x)  ≤(y, y) 

 is obtained from ’ by removing elements 
and projecting relations on remaining elements

∃ x y.

' ⊨ Diag()  iff  is a substructure of ‘

L ¬L

¬L

L

L¬L

Generalization using Diagram



[CAV’15, JACM’17] Property-Directed Inference of Universal Invariants or Proving Their 
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.  

Can generalize more 

 remove facts/conjuncts

¬L

≤

¬L
…

≤



’

avoid() = ¬gen(Diag())

≤

L

L

¬L

¬L ¬L ¬L

L

Generalization using Diagram

Diag() =           x ≠ y  L(x) ¬L(y)
 ≤(x, y)  ¬≤(y, x) 
 ≤(x, x)  ≤(y, y) 

∃ x y.gen(Diag()) =           x ≠ y 
≤(x, y)  ¬≤(y, x) 
≤(x, x) ≤(y, y) 

∃ x y.



From Diagrams to Invariants

Inv  ¬  𝑥. (l1,1(  𝑥)  …  l1,m(  𝑥))

Diagram

L

≤



From Diagrams to Invariants

Inv  ¬  𝑥. (l1,1(  𝑥)  …  l1,m(  𝑥))

L

≤

conjecture



From Diagrams to Invariants

Inv  ¬  𝑥. (l1,1(  𝑥)  …  l1,m(  𝑥))∧…∧ ¬ 𝑥. (ln,1(  𝑥)  …  ln,m(  𝑥))

L

≤

conjecture

Q: How to select which facts to remove in the generalization?

IVy: interact with the user to identify irrelevant facts



Leader Election: Iteration 3
• ≤ (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node  ID – relate a node to its id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

Safety property: 

I0 = ¬Bad = ∀x,y: Node. leader(x) ∧ leader(y) → x = y

Inductive invariant:  Inv = I0  I1  I2  I3

I1 = n1,n2: Node. leader(n2)→ id[n1] ≤ id[n2]

I2 = n1,n2: Node. pnd(id[n2], n2) → id[n1] ≤ id[n2]

The leader has 
the highest ID

Only highest id 
can be self-pnd

Cannot bypass 
higher nodes

1. Each node sends its id to the next
2. A node that receives a msg passes

it to the next node in the ring
if the id in the msg ≥ the node’s id

3. A node that receives its own id 
becomes the leader

I3 = n1,n2,n3: Node. btw(n1,n2,n3)  pnd(id[n2], n1)
→ id[n3] ≤ id[n2]



Leader Election: Iteration 3
• ≤ (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node  ID – relate a node to its id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

Safety property: 

I0 = ¬Bad = ∀x,y: Node. leader(x) ∧ leader(y) → x = y

Inductive invariant:  Inv = I0  I1  I2  I3

I1 = n1,n2: Node. leader(n2)→ id[n1] ≤ id[n2]

I2 = n1,n2: Node. pnd(id[n2], n2) → id[n1] ≤ id[n2]

The leader has 
the highest ID

1. Each node sends its id to the next
2. A node that receives a msg passes

it to the next node in the ring
if the id in the msg ≥ the node’s id

3. A node that receives its own id 
becomes the leader

Cannot bypass 
higher nodes

I3 = n1,n2,n3: Node. btw(n1,n2,n3)  pnd(id[n2], n1)
→ id[n3] ≤ id[n2]

Only highest id 
can be self-pnd



VC Generator

Leader Protocol Inv = I0 ∧ I1 ∧ I2

EPR Solver

Init   Inv
Inv(V)  TR(V,V’)  Inv(V’)

Inv(V)  Bad(V)

IVy: Check Inductiveness

rcv(1, id(2))

I0I1 I2  I2

≤

1
L

next

id1

2
L

next
id id

id2pnd

3
L

≤ id3

id
next

≤

1
L

next

id1

2
L

next
id id

id2

pnd

3
L

≤ id3

id
next

CTI

I0 : leader is unique
I1 : The leader has 

the highest ID
I2 : Only highest id 

can be self-pnd



IVy: Generalize from CTI

1. Each node sends its id to the next
2. A node that receives a msg passes it to the next node in the ring

if the id in the msg ≥ the node’s id
3. A node that receives its own id becomes the leader

I0I1 I2

≤

1
L

next

id1

2
L

next
id id

id2pnd

3
L

≤ id3

id
next

Cannot bypass nodes
with higher ids

id[n2] is pending for n1, had to go through n3



IVy: Generalize from CTI
I0I1 I2

≤
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next
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2
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next
id id

id2pnd

3
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≤ id3

id
next

Cannot bypass nodes
with higher ids

User’s Generalization

≤
btw
id
pnd
L



IVy: Generalize from CTI
I0I1 I2

Cannot bypass nodes
with higher ids

User’s Generalization

≤
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IVy: Generalize from CTI
I0I1 I2

Cannot bypass nodes
with higher ids

User’s Generalization
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IVy: Generalize from CTI
I0I1 I2

Project to {≤, id,pnd} 
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Cannot bypass nodes
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IVy: Generalize from CTI
I0I1 I2

Project to {≤, id,pnd} 

≤

1

id1

2
id id

id2pnd

3

≤ id3

id

Cannot bypass nodes
with higher ids

¬n1,n2,n3 : Node. (n1,n2,n3) 
(id[n1],id[n2],id[n3]) 
id[n1] ≤ id[n2] ≤ id[n3] 
pnd(id[n2], n1)
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IVy: Generalize from CTI
I0I1 I2

Project to {≤, id,pnd} 

≤

1

id1

2
id id

id2pnd

3

≤ id3

id

Cannot bypass nodes
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BMC(3) BMC VC Generator (K=3, ¬C3)

EPR Solver
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BMC(3)
BMC VC Generator (K=3, ¬C3)

EPR Solver

Init(V0)TR(V0,V1)TR(V1,V2)TR(V1,V3)¬C3(V3)

Proof



IVy: Generalize from CTI
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¬n1,n2,n3 : Node. id[n2] ≤ id[n3] 
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(id[n1],id[n2],id[n3]) 
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¬n1,n2,n3 : Node. id[n2] ≤ id[n3] 
btw(n1,n2,n3)  pnd(id[n2 ], n1) 

¬n1, n2, n3: Node. (n1,n2,n3) 
(id[n1],id[n2],id[n3]) 
id[n1] ≤ id[n2] ≤ id[n3] 
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Looks good, add to the invariant as I3



VC Generator

Leader protocol Inv = I0 ∧ I1 ∧ I2 ∧ I3

EPR Solver

Init   Inv
Inv(V)  TR(V,V’)  Inv(V’)

Inv(V)  Bad(V)

Proof

IVy: Check Inductiveness

I0 I1 I2 I3  is an inductive invariant for the leader protocol,
which proves the protocol is safe
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Recap: Supervised Verification in IVy

Proof intuition and creativity

Graphical interaction

Decidable Problems

Predictable Automation

Projection of 
relevant facts

BMC bounds

Examining 
conjectures

Check inductiveness

BMC

Interpolation

… …

https://www.quora.com/Human-Computer-Interaction
https://www.quora.com/Human-Computer-Interaction


(1) Limitations of first-order logic
• Expressing transitive closure

• Ring protocols

• Expressing arithmetic
• Node id’s

Challenge: How to use restricted first-
order logic to verify interesting systems?

Domain knowledge 
and axioms



• ≤ (ID, ID) – total order on node id’s 

• btw (a: Node, b: Node, c: Node) – the ring topology

• id: Node  ID – relate a node to its unique id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

|

Intention EPR Modeling

Node 
ID’s

Integers

i:ID.  i ≤ i Reflexive
i, j, k: ID. i≤j ∧ j≤k → i≤ k  Transitive
i, j: ID. i≤j ∧ j≤ I → i=j  Anti-Symmetric
i, j: ID. i≤j ∨ j ≤ i Total
x, y: Node. id(x) = id(y) → x=y Injective

Ring 
Topology

Next 
edges + 
Transitive 
closure

x, y, z: Node. btw(x, y, z) → btw(y, z, x)  Circular shifts
x, y, z, w: Node. btw(w, x, y) ∧btw(w, y, z) → btw(w, x, z) Transitive
x, y, w: Node. btw(w, x, y) → btw(w, y, x) Anti-Symmetric
x, y, z, w: Node. distinct(x, y, z) → btw(w, x, y) ∨ btw(w, y, x) 

“next(a)=b”  x: Node. x≠a ∧ x≠b→ btw(a,b,x)

Axioms: Leader Election Protocol



(1) Limitations of first-order logic
• Expressing transitive closure

• Ring protocols

• Expressing arithmetic
• Node id’s

• Expressing Consensus
• Paxos, Multi-Paxos, Reconfiguration

(2) Restrictions for decidability
• Restricted quantification

Domain knowledge 
and axioms

Derived relations 
and rewrites

Challenge: How to use restricted first-
order logic to verify interesting systems?

[OOPSLA’17] Paxos Made EPR: Decidable Reasoning about Distributed Protocols. 
O. Padon, G. Losa, M. Sagiv, S. Shoham



IVy: Verified Protocols
Protocol

Model 
(# LOC)

Property 
(# Literals)

Invariant 
(# Literals)

Leader in Ring 59 3 12

Learning Switch 50 11 18

DB Chain Replication 143 11 35

Chord 155 35 46

Lock Server (500 Coq lines [Verdi]) 122 3 21

Distributed Lock (1 week [IronFleet]) 41 3 26

Single Decree Paxos 85 3 32

Multi Paxos 102 3 38

Vertical Paxos 123 3 65

Fast Paxos 117 3 59

Flexible Paxos 88 3 32

Stoppable Paxos 130 6 60

Virtually Synchronous Paxos Work in progress



Summary

• Safety verification by

• Automatic deduction

• Interactive inference of invariants, graphical interaction

• Use decidable fragment of FOL
• Deduction is decidable
• Finite Counterexamples

• Interact with a user based on counterexamples to induction

• Surprisingly powerful
• Paxos, Multi-Paxos, Reconfiguration, … [OOPSLA’17]

• Liveness and Temporal Properties [POPL’18]

Supervised Verification of Infinite-State Systems



Future Work

• More distributed systems
• Other logics
• Other inference schemes
• Other forms of interaction
• More automation in inferring inductive invariants
• Theoretical understanding of limitations and tradeoffs

Supervised Verification of Infinite-State Systems

Seeking postdocs and students


