
Synthesis of Forgiving Data Extractors

Adi Omari
Technion

omari@cs.technion.ac.il

Sharon Shoham
Tel Aviv University

sharon.shoham@gmail.com

Eran Yahav
Technion

yahave@cs.technion.ac.il

ABSTRACT
We address the problem of synthesizing a robust data-extractor
from a family of websites that contain the same kind of informa-
tion. This problem is common when trying to aggregate informa-
tion from many web sites, for example, when extracting informa-
tion for a price-comparison site.

Given a set of example annotated web pages from multiple sites
in a family, our goal is to synthesize a robust data extractor that per-
forms well on all sites in the family (not only on the provided ex-
ample pages). The main challenge is the need to trade off precision
for generality and robustness. Our key contribution is the introduc-
tion of forgiving extractors that dynamically adjust their precision
to handle structural changes, without sacrificing precision on the
training set. Our approach uses decision tree learning to create a
generalized extractor and converts it into a forgiving extractor, in
the form of an XPath query. The forgiving extractor captures a se-
ries of pruned decision trees with monotonically decreasing preci-
sion, and monotonically increasing recall, and dynamically adjusts
precision to guarantee sufficient recall.

We have implemented our approach in a tool called TREEX and
applied it to synthesize extractors for real-world large scale web
sites. We evaluate the robustness and generality of the forgiving
extractors by evaluating their precision and recall on: (i) different
pages from sites in the training set (ii) pages from different versions
of sites in the training set (iii) pages from different (unseen) sites.
We compare the results of our synthesized extractor to those of
classifier-based extractors, and pattern-based extractors, and show
that TREEX significantly improves extraction accuracy.

1 Introduction
We address the problem of synthesizing a robust data extractor
based on a set of annotated web pages. Web sites often change
their formatting and structure, even when their semantic content
remains the same. A robust extractor [6, 15, 17] can withstand
modifications to the target site. A non-robust extractor would have
to be adjusted (typically manually) every time the formatting of a
site changes.

Our idea is to construct a robust extractor by training it on a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WSDM 2017, February 06-10, 2017, Cambridge, United Kingdom
c© 2017 ACM. ISBN 978-1-4503-4675-7/17/02. . . $15.00

DOI: http://dx.doi.org/10.1145/3018661.3018740

family of sites that have content that is semantically similar. We
conjecture that the ability of a single extractor to handle multiple
different sites means that the extractor is likely robust, as it is able
to overcome differences between sites, and thus possibly also dif-
ferences due to future changes of the same site.

The notion of a family of sites is somewhat vague, and we as-
sume that it is user-defined. The intent is that sites of the same
family contain the same kind of information, even if they differ on
the way it is presented. Sites of the same family could be, for ex-
ample, a family of book-selling sites, hotel reservation sites, etc.
We conjecture that despite the fact that sites in a family may dif-
fer, they have a similar set of underlying semantic concepts, that
a generalized extractor will be able to capture. For example, for
book-selling sites, the notions of author, title, and price are likely
to be presented in some way on all sites in the family.

Goal Given a set of training pages (HTML documents) within a
family, where each page is annotated by tagging data items of in-
terest, our goal is to synthesize a robust extractor that maximizes
accuracy over the training set.

When constructing the generalized extractor for a family, there
is a natural tradeoff between accuracy and generality. Construct-
ing a precise extractor may prevent it from being robust to future
changes. Constructing a loose extractor makes it more robust, but
would yield results of poor accuracy. Both of these options are
undesirable. Instead, our key contribution is the construction of
forgiving extractors that adjust their precision dynamically and do
not commit to a specific generalization tradeoff upfront.

Existing Techniques Manually writing a data extractor is extremely
challenging. This motivated techniques for automatic “wrapper in-
duction”, learning extraction queries from examples [14]. Auto-
mated techniques reduce the burden of writing extractors, but still
require manual effort (e.g., providing tagged samples for each site).

There has been a lot of work on pattern based techniques, using
alignment of XPaths (e.g., [25, 20, 19]). These techniques learn
paths to the annotated data items and generalize them to generate an
extraction query. When provided with items that have significantly
different paths (e.g., originate from different sites) these techniques
may result in an overly relaxed query expression, and significant
loss of precision. As a result, pattern based techniques are often
limited to a single web site, and are sensitive to formatting changes.

Model based techniques [10, 8, 26, 13], use features of DOM
elements to learn a model that classifies DOM items to data and
noise. These methods have several drawbacks. First, they lack a
standard execution mechanism for extraction (in contrast to XPath
queries that are available for pattern based techniques). Second, the
classifiers trained by these techniques are often hard to understand
and modify. Last, but not least, the generalization in these models is

http://dx.doi.org/10.1145/3018661.3018740

performed at training time and thus presents the standard dilemma
between precision and generality.

Our Approach Our approach is based on the assumption that, de-
spite differences in presentation, some sites in the family do share
some local syntactic structural similarity (e.g., a book title may ap-
pear under some heading class, or its parent may be of some par-
ticular class). Our claim (which we support empirically) is that
training on a few sites from the family will cover most of the local
structural patterns. Following this insight, our approach tackles the
problem in two steps:
(1) Precise generalization for the training set: given a set of an-
notated pages from different sites, we use decision tree learning to
synthesize a common XPath query that precisely extracts the data
items from all sites. Intuitively, the decision tree is used as a gener-
alization mechanism that picks the important features for precise
extraction. The overall set of features consists of XPath predi-
cates that capture local syntactic structural properties. The synthe-
sized query increases robustness, while maintaining precision on
the training set.
(2) Dynamic generalization: the XPath query constructed in the
previous step is precise for pages in the training set, but may be
overly restrictive for extraction from other pages. To generalize to
other pages, we introduce the novel notion of forgiving XPaths—a
query that dynamically relaxes its requirements, trading off preci-
sion to make sure that target items are extracted.

The query generated by our approach has the benefits of both
pattern based techniques and model based techniques. On the one
hand, it is a standard XPath query, which has a wide support from
web-browsers, programming languages and DOM parsers. This
also makes it human readable, easy to review and modify by a pro-
grammer. On the other hand, the query has the flexibility and gen-
eralization ability of the techniques based on learning models.

Main Contributions The contributions of this paper are:

• A novel framework for synthesis of robust data extractors for
a family of sites from examples (annotated web pages).
• A new technique for generalization of XPath queries using

decision trees and “forgiving XPaths”, which adjust preci-
sion dynamically.
• An implementation of our technique in a tool called TREEX

and an experimental evaluation of the robustness and gen-
erality of the forgiving extractors. We evaluate precision
and recall on: (i) different pages from sites in the training
set (ii) pages from different versions of sites in the training
set (iii) pages from different (unseen) sites. Our evaluation
shows that TREEX is able to synthesize robust extractors with
high precision and recall based on a small number of ex-
amples. Further, comparison to existing pattern based and
model based techniques shows that TREEX provides a signif-
icant improvement.

2 Overview
In this section, we provide an informal overview of our approach.
We elaborate on the formal details in later sections.

2.1 Motivating example

Consider the problem of synthesizing an extractor of book informa-
tion based on examples from three book-seller sites: abebooks.com
(ABE), alibris.com (ALIBRIS) and barnesandnoble.com (B&N). To sim-
plify presentation, we focus on an extractor for the author attribute.

Fig. 1 shows simplified fragments of HTML documents present-
ing book information from the three different sites. We annotated

Abe
<div id="bookInfo">
<h1 id="book-title">Rachael Ray 30-Minute Meals 2</h1>
<h2>

<a userselected href="/servlet/Se.._-author">
Ray, Rachael

</h2>...
</div>

B&N
<section id="prodSummary">
<h1 itemprop="name">History of Interior Design</h1>

by <a userselected href="/s/.._contributor..">

Jeannie Ireland
...
</section>

Alibris
<div class="product-title">
<h1 itemprop="name">La Baba del Caracol</h1>
<h2>by
<a userselected itemprop="author" itemscope href="..">

C. Maillard
</h2>
</div>

Figure 1: Fragments of webpages with the author attribute values
for a book on three different book seller sites.

these documents by tagging the HTML nodes that contain instances
of the author attribute with a special HTML-attribute, userselected.

Note that the three different sites have different structure, and
that the attribute of interest (author) appears differently in each
site. There are many ways to write an XPath query that extracts
the author from each site. For example:
• //div[@id="bookInfo"//a for ABE

• //section/span/a for B&N
• //a[@itemprop="author"] for ALIBRIS

Alternatively, other example queries could be:
• //a[@*[contains(.,"author")]] for ABE and ALIBRIS

• //*[contains(text(),"by")/a for B&N (also ALIBRIS).
Some of these queries are more robust than others, and some

would generalize better across site versions. For example, the query
//*[contains(text(),"by")/a for extracting the author name
in B&N is more general than the query //section/span/a, which
relies on a specific nesting structure of section, span, and anchor.
Because there are many possible queries that extract the same infor-
mation, it may be possible to use the different sites to pick queries
that would be more robust. However, it is not clear how to do this.

For example, using an alignment based XPath generation tech-
nique on our three training pages would result in an XPath like
//*/*/a, which is too general, and would lead to significant loss
of precision (as shown in Section 5). This is because alignment
based techniques (and pattern based techniques in general) assume
that documents in the training set have a shared template. They
therefore fail to handle significant structural differences between
documents in the training set, as occur when the training set con-
tains documents from multiple sites. Pattern-based generalization
techniques also produce queries that are sensitive to changes, and
are therefore not robust.

2.2 Our Approach

Our extractor synthesis process attempts to automatically pick the
queries that would be more robust and general. The synthesis starts
by a precise query generalization for the training set, which is ob-
tained by learning a decision tree for identification of the tagged

abebooks.com
alibris.com
barnesandnoble.com

nodes. This is followed by a dynamic generalization, which is ob-
tained by creating XPath queries which we call forgiving.
Precise Generalization for the Training Set Synthesis starts by us-
ing the annotated documents to learn a decision tree which cor-
rectly identifies all the tagged HTML nodes. To do so, our method
first extracts features that describe the tagged HTML nodes.
Extracting features: Feature extraction is done by traversing the
paths from tagged nodes to the root and collecting features from
nodes on the path and from their surrounding context. The ex-
tracted features are all valid XPath predicates (explained in Sec-
tion 3.1). These features are used as tests in the inner nodes of the
decision tree, and are the building blocks of our XPath queries.

Consider the author node in the ALIBRIS website (Fig. 1). Our
feature extraction step starts from the a node having the users-
elected attribute, and traverses the path to the HTML root node
though the nodes h2 and div, while collecting features both from
the nodes on the path and from their surrounding context. Among
the extracted features are the following:
• ancestor-or-self::h2, which matches nodes of type h2

or an ancestor of type h2 (later, e.g., in Fig. 2, we write aos
as a shorthand for ancestor-or-self),
• @itemprop="author", which matches nodes with the at-

tribute itemprop having the value author, and
• @*[contains(.,"author")], which matches nodes that

contain the value author.
The feature @*[contains(.,"author")] is a generalization

of the feature @itemprop="author". Our feature extraction step
generates such generalized features, in addition to the precise ones,
in order to later enable the use of generalized structural features in
the decision tree when possible (when the generalization does not
result in loss of precision).
Learning a Decision Tree: Once the feature extraction step is com-
plete, our method uses a recursive procedure to learn the decision
tree, based on the extracted features. Our algorithm is a variant of
the ID3 algorithm [23]. One of the differences is that our algorithm
prioritizes generalized features when selecting the feature to use as
a test in inner nodes. Technically, this is done by assigning costs to
features, with generalized features having lower costs. Additional
details and differences are described in Section 3.2.

Fig. 2 (T1) presents the decision tree generated by our algorithm
to identify author nodes in ABE, B&N and ALIBRIS. The root node
of T1 has @*[contains(.,"author")] as a test. This is because
this feature has the highest improvement-to-cost ratio: it results in
the highest information gain, when prioritizing low-cost (general-
ized) features. The true-branch of the root leads to a node with
test aos::h2, while the false-branch leads to @*[contains(.,

"contributer")] as a test.
A decision tree has a natural recursive translation into a valid

XPath query that extracts the nodes identified by the decision tree.
The XPath query x1 presented at the bottom of Fig. 2 is the extrac-
tion query generated from T1 for the author attribute.
Dynamic Generalization using Forgiving XPaths The decision tree
learned from the annotated HTML documents, and the correspond-
ing XPath query, identify the annotated nodes as precisely as pos-
sible (depending on the extracted features). However, in order to
improve the ability to extract semantically similar nodes in other
versions of the web pages, some generalization is desired. A nat-
ural generalization is by pruning the decision tree, turning some
inner nodes to accepting nodes. Such generalization trades off pre-
cision on the training set for a potentially higher recall on other
pages. However, the question remains where to prune the decision
tree, and how much precision to sacrifice.

As an example, consider a modified version of one of the sites
where books also contain an author attribute. Fig. 3 shows such an
example HTML fragment. Fig. 2 shows three trees T1, T2 and T3
and their respective XPath translations x1,x2 and x3. As explained
above, T1 is the tree learned by our algorithm when applied on ABE,
B&N and ALIBRIS. T2 is a pruned version of T1, with a slightly
lower precision, while T3 is a fully-pruned tree accepting every
node. Running x1 on the modified site returns no results. Using x2
will have better performance on the modified site, however, it will
have a lower precision on sites from the training set.
Forgiving XPaths: Our goal is to find the highest level of precision
that obtains sufficient recall. As the books example demonstrates,
this level might be different for different sites. An important aspect
of our approach is the introduction of forgiving XPaths, which al-
low us to postpone the decision of how much precision to sacrifice
to the evaluation time of the XPath, and hence adjust the general-
ization to the web page at hand.

Technically, a forgiving XPath query is an XPath query obtained
as a union of several queries (using the “|” XPath operator). Each
query exhibits a different precision level on the training set, and is
conditioned by the more precise queries not extracting any nodes.
This means that at run time, when invoked on a HTML document,
the forgiving XPath will evaluate to the query with the maximal
precision level that extracts a non-empty set of nodes. This property
allows the forgiving XPath to perform well on both seen and unseen
documents, avoiding the trade-off between precision on seen data
and recall on unseen data. It is important to note that our forgiving
XPath query is a standard XPath query that may be used in any
XPath interpreter without the need for modifications of any kind.

We construct the forgiving XPaths from a series of XPaths with
monotonically decreasing precision, such as x1, x2 and x3 above.
In the books example, we derive the following forgiving XPath:

fx = /*/x1|/*[not(x1)]/x2.

fx uses the root node (which never contains data), to enable return-
ing the result of invoking x2 only when x1 returns no results.

3 Decision Tree Learning
In this section we present the first step of our approach for synthe-
sizing forgiving XPaths, which constructs a decision tree based on
a given set of annotated web pages.
Notation Given a set of web documents D = {d1, . . . , dn}, where
each di is represented as a DOM tree with a set Ai of nodes, and
given a target set Ni ⊆ Ai of nodes of interest for each di ∈ D,
we denote by A =

⋃n
i=1Ai the global set of DOM nodes, and by

N =
⋃n

i=1Ni the global target set of nodes of interest. We also
denote the remainder of the nodes by N = A \N .

Our approach starts with a feature extraction phase, where we
generate a set F of features based on the DOM nodes in N . We
then construct a decision tree that uses the features in F to classify
A into N and N . The decision tree will serve as the basis for the
creation of a forgiving XPath, as described in Section 4.

3.1 Feature Extraction

For every individual document di in the training set D, there are
many correct XPaths for the extraction of Ni. Each such XPath
might use different structural features of the document. To improve
the ability to generate a concise common XPath for all of the docu-
ments in D, we first generate a large set of structural features.

In the feature extraction phase, our method extracts features of
N that are expressible by valid XPath queries. Each feature f is
defined by an XPath predicate, with the meaning that the value of

p: 0.003

aos::*[@*[contains(.,’author’)]]

p: 0.001

aos::*[@*[contains(.,’contributer’)]]

p: 1

[accept]

p: 0

[reject]

p: 0.75

aos::h2

p: 1

[accept]

p: 0

[reject]

x1://*[((aos::*[@*[contains(.,’author’)]] and aos::h2) or
(not (aos::*[@*[contains(.,’author’)]])

and aos::*[@*[contains(.,’contributer’)]]))]

T1
p: 0.003

aos::*[@*[contains(.,’author’)]]

p: 0.001

aos::*[@*[contains(.,’contributer’)]]

p: 1

[accept]

p: 0

[reject]

p: 0.75

[accept]

x2://*[((aos::*[@*[contains(.,’author’)]]) or
(not (aos::*[@*[contains(.,’author’)]])

and aos::*[@*[contains(.,’contributer’)]]))]

T2
p: 0.003

[accept]

x3://*

T3

Figure 2: Example decision trees over XPath predicates and their respective XPath translations.

<p id="product_subtitle">.. in Simple Words</p>
<p id="product_author">By
Randall Munroe</p>

Figure 3: Fragment of a modified book information page.

f in a DOM node is 1 iff the value of the XPath predicate on the
same node is true.

The extracted features of a node in N are divided to node fea-
tures, and context features. The extent of the surrounding context
that we consider is configurable. In our implementation, context
features consist of children features and ancestor features.

Node features consist of:
• Node Name the node name is used to create a node-test fea-

ture (for instance, self::a).
• Text Content the text content of the text children

of a node is used to define text-equality features and
text-containment features. For instance, the predicate
text()="Sale price:" is a text-equality feature, which
holds iff the current node has a text child node whose
value equals “Sale price:”. On the other hand, the pred-
icate contains(text(),"price") is a text-containment
feature, that requires the current node to have a text child
node containing the string “price”.
• Node Attributes the node attributes define attribute features.

Each attribute consists of a name and value pair (for instance,
id = "product_title"). Attribute features are of three
different types:

1. Attribute name features (e.g. @class requires having
an attribute with name “class”)

2. Attribute value features with or without conditions on
the attribute name (e.g. @*="title" requires having
an attribute with value “title”, while @id="title" re-
quires having an attribute named “id” and value “title”)

3. Text-containment features on attribute values, with or
without conditions on the attribute name. For instance,
@*[contains(.,"title")] requires that some attribute
has a value that contains the token “title”.

Context features are divided to:
• Children Features node features as defined above are ex-

tracted also for the children of the node (e.g., child::div
is a predicate that evaluates to true on nodes that have chil-
dren with node name ‘div’).

• Ancestor Features node features and children features as de-
fined above are extracted also for ancestors of the node (e.g.,
ancestor-or-self::*[child::span] evaluates to true
on nodes with ancestors that have children named ‘span’).

Technically, the feature extraction process is performed on each
document di ∈ D separately. For each document di, our method
starts from the nodes inNi. For each node it computes its node and
children features and ascends up the path to the DOM tree root,
while gathering ancestor features. To generate text-containment
features we tokenize the relevant text and use the resulting tokens
to define containment conditions contains(text(),token).

Features as XPath Queries Each of the extracted features f is an
XPath predicate. It induces an XPath query //*[f] that, when
invoked on the root of a DOM tree, extracts the set of all nodes in
the DOM tree that satisfy f . With abuse of notation we sometimes
refer to the feature f itself as the induced XPath query.

3.2 Decision Tree Learning

Given the extracted set of features F , we use a variant of ID3 to
learn a decision tree that classifies A into N and N .

Decision tree A decision tree T is a complete binary labeled di-
rected tree, in which each inner node (including the root) is labeled
by a feature f ∈ F , and has exactly two children: a 0-child, and a
1-child (each child corresponds to a value of f). We also refer to
the children as branches. The leaves in the tree are labeled by 0 or
1, where each value corresponds to a possible class. The elements
in A whose feature vectors match paths in T from the root to a leaf
labeled by 1 form the 1-class induced by T . The 0-class is dual.

Decision Tree Learning Given the partitioning of A into N and
N , and given a set of features F , ID3 constructs a decision tree T
whose 1-class is N and whose 0-class is N . (Note that a correct
classifier exists only if whenever two elements e1, e2 ∈ A share a
feature vector, they also share a class.)

The construction of the decision tree is recursive, starting from
the root. Each node t in the tree represents the subset of the sam-
ples, denoted S(t), whose feature vector matches the path from the
root to t. If all samples in S(t) have the same classification, then t
becomes a leaf with the corresponding label. Otherwise, ID3 may
choose to partition S(t) based on the value of some feature f ∈ F .
The node t is then labeled by the feature f , and the construction
continues recursively with its children, where its 1-child represents
the subset of S(t), denoted S(t)f , in which f has value 1, and its 0-
child represents the set S(t)f = S(t) \S(t)f where f has value 0.
In our setting these sets are computed by running the feature f ∈ F

on every d ∈ D and computing S(t)f = (
⋃

d∈DJfKd)∩S(t), and
S(t)f = S(t) \ S(t)f .

ID3 selects the feature f ∈ F to split on as the feature with the
highest information gain for S(t), where the information gain [18],
denoted IG(S(t), f), of S(t) based on f measures the reduction in
uncertainty after splitting S(t) into S(t)f and S(t)f . Our learning
algorithm modifies ID3 in two ways: (i) features have costs that
are taken into account in the computation of the information gain.
(ii) the choice of a feature f to split on is restricted in a way that
ensures a correlation between an element having value 1 for f in
the feature vector and the element being classified into the 1-class.
We elaborate on these modifications below.
Feature Costs We consider features with different costs. Intuitively,
the more specific the feature is, the higher its cost. We denote the
cost of f ∈ F by Cost(f). In order to prioritize generalized fea-
tures over more specific ones, we define the information-gain-to-
cost ratio and use it instead of the information gain:

DEFINITION 1. The information-gain-to-cost ratio of a feature
f for a set S ⊆ A, denoted IGR(S, f), is:

IGR(S, f) = IG(S, f)/Cost(f)

Feature-Class Correlation Guided by the intuition that, in many
cases, existence of features is important for being classified as part
of the 1-class, while their nonexistence is incidental, we create a
decision tree that correlates feature values with the classification:
specifically, value 1 for a feature is correlated with class 1.

The feature-class correlation is obtained by restricting the set of
features to split S(t) on only to the subset Ft ⊆ F for which S(t)f
(which will form the 1-branch if the split by f takes place) has more
instances from N than S(t)f (which will form the 0-branch).

Among all the features in Ft, the feature f with the highest
IGR(S(t), f) is selected as the feature to split t.

4 Forgiving XPath Synthesis
Building a decision tree is an intermediate step towards synthesiz-
ing a forgiving XPath query. In this section we define the notion of
forgiving XPaths and describe their synthesis.
Forgiving XPaths A forgiving XPath is constructed based on a se-
ries of XPaths x0, x1, . . . , xk s.t. for every 0 ≤ j < k and d ∈ D,
JxjKd ⊆ Jxj+1Kd, where JxKd is the set of nodes extracted by x
from d. Note that if x0 is precise for every seen document, then the
precision of the XPaths in the sequence is monotonically decreas-
ing, but the recall on unseen documents is potentially increasing.

DEFINITION 2. Given a series of XPaths x0, x1, . . . , xk as de-
fined above, a forgiving XPath is defined by

fx = / ∗ /x0 | / ∗ [not(x0)]/x1 | . . . | / ∗ [not(xk−1)]/xk

We say that x0 is the base of fx.

fx uses the union operator (“|”), which means that it extracts the
union of the nodes extracted by the individual queries. However,
the queries are constructed in such a way that for every document d,
seen or unseen, JfxKd = JxjKd for the least j such that JxjKd 6= ∅.
This is ensured since the XPath xj is applied on / ∗ [not(xj−1)],
which will extract an empty set of nodes if Jxj−1Kd 6= ∅, and will
extract the root node of d otherwise. Therefore, at run time, for
every document, fx evaluates to the most precise query in the series
that actually extracts some nodes. In particular, if x0 has perfect
precision and recall for the training set, so will fx.

In the following, we present the construction of a forgiving XPath
from a sequence of XPaths that are monotonically decreasing in

their precision. We obtain such a sequence by first obtaining a se-
quence of decision trees with monotonically decreasing precision.

4.1 Decision Trees with Varying Precision
We measure the precision and recall of a decision tree T by the
precision and recall of its 1-class w.r.t. the “real” class, N . We use
pruning to define a sequence of decision trees with monotonically
decreasing precision scores. Our motivation for doing so is to grad-
ually trade off precision (on the training set) for a better recall on
new documents. Pruning is based on the nodes precision:

DEFINITION 3. The precision of a node t ∈ T is defined as
precision(T, t) = |S(t)∩N|

|S(t)| .

In Fig. 2, the “p” labels of the inner nodes denote their preci-
sion. For instance, the node aso::h2 in T1 has a precision of 0.75,
which means that 75% of the elements in the training set that reach
it when classified by T1, are from N .
Tree Pruning: Limiting Precision In the construction of the de-
cision tree, a node with precision 1 becomes a 1-labeled leaf. We
prune a tree by limiting the maximal precision of its nodes; For-
mally, given a precision thresholdα, the method prune(T, α) prunes
every subtree of T whose root t has precision(T, t) ≥ α, and
turns t to a leaf labeled by 1. Thus, the induced 1-class is increased.

For example, T2 in Fig. 2 results from pruning T1 by limiting
the precision of its nodes to 0.75.

Clearly, the tree T ′ obtained after pruning has a lower precision
score than T (since the 1-class defined by T ′ is a superset of the
1-class defined by T). However, the recall score of T ′ can only
increase compared to T : The recall score of T on the training set
is already maximal, hence it is not improved by pruning. However,
when considering new documents, the recall score of the pruned
tree, T ′, can be strictly higher than that of T .
Layered Decision Tree Sequence Given the decision tree T learnt
in Section 3.2, we create a sequence of decision trees with a mono-
tonically decreasing precision and a monotonically increasing re-
call as follows:

DEFINITION 4. Let α0 > α1 > . . . > αk be the sequence of
precision scores of nodes in T , in decreasing order, i.e., {α0, . . . , αk} =
{precision(T, t) | t ∈ T}. The layered decision tree sequence
based on T is the sequence T0, T1, . . . , Tk of decision trees, such
that T0 = T , and for every 0 ≤ i < k, Ti+1 = prune(Ti, αi+1).

Note that it is possible that as a result of pruning, a node with pre-
cision score αi+1 no longer exists in Ti. In this case, the definition
implies that Ti+1 = Ti. However, we will simply omit Ti+1 from
the sequence. Therefore, each layer in the layered sequence re-
flects a “one step” reduction in the precision of the decision tree
(and hence, potentially, an increase in the recall).

For example, the decision trees T1, T2 and T3 depicted in Fig. 2
form a layered decision tree sequence based on T1.

4.2 Translation of Decision Trees to Forgiving XPaths
The features used in the decision trees are all XPath predicates.
This allows for a natural translation of a decision tree to an XPath
query that extracts the set of nodes classified as belonging to the 1-
class by the decision tree. In the following we describe this transla-
tion, which we use to generate a series of XPaths from the layered
decision tree sequence generated from T (see Definition 4). We use
the series to construct a forgiving XPath as defined in Definition 2
Decision Tree to XPath The translation of a decision tree T̃ to an
XPath is performed by a recursive procedure, GetXPath(t), which
is invoked on the root t of T̃ and returns an XPath predicate.

The procedure GetXPath(t) works as follows:

1. if t is a leaf node, return true() if it labeled 1, and false() if
it is labeled 0.

2. if t is an inner node, labeled by feature f , then call GetXPath
on its 0-child, t0, and on its 1-child, t1. Let p0 = GetXPath(t0),
and p1 = GetXPath(t1). Then return the XPath predicate:

(f and p1) or (not(f) and p0) (1)

Finally, from the XPath predicate p returned by the invocation of
GetXPath on the root of T̃ , an XPath query //*[p] is constructed.
When invoked on the root of a DOM tree, //*[p] extracts the set
of all nodes in the DOM tree that satisfy p. We denote the XPath
query //*[p] by XPath(T̃). The translation ensures that a DOM
node is in the 1-class induced by T̃ iff it is in JXPath(T̃)K.

Fig. 2 shows the XPath queries x1, x2, x3 generated from T1,
T2, T3, respectively.

5 Evaluation
In this section we evaluate the effectiveness of our approach. Our
experiments focus on three different aspects: (i) the accuracy of the
synthesized queries on different pages from sites that have some
pages in the training set (seen sites), (ii) their accuracy on differ-
ent versions (newer and older versions) of the same pages, and
(iii) their accuracy on pages from sites that have no pages in the
training set (unseen sites).

5.1 Implementation

We implemented our approach in a tool called TREEX, and used it
to synthesize extraction queries for multiple websites. For compar-
ison, we also implemented four other extractors:
• To represent model-based approaches we trained two classi-

fiers, C4.5 [24] (J48 implementation) and naive bayes (NB) [11]
(using Weka [9]). In each experiment we train the classifiers
on the same training set based on the same features used to
construct our extractor.
• To represent other XPath-based approaches, we have imple-

mented an alignment-based XPath (XA) generation technique
proposed in [20].
• In addition to forgiving XPath (FX) queries, we used our ap-

proach to generate non-forgiving XPath queries (NFX) by di-
rectly generating an XPath from the obtained decision trees.

5.2 Experimental Settings

Datasets We constructed three datasets (available at: goo.gl/a16tiG)
to evaluate our approach and the baselines. The first dataset, de-
noted DS1, contains pages from 30 real-life largescale websites
divided to four different categories: books, shopping, hotels and
movies. For each category, a set of (typically 2 or 3) common
attributes were selected as the target data to be extracted. DS1
contains 166 manually annotated pages. To construct the second
dataset, denoted DS2, we used archive.org to obtain five different
versions (current version and four older ones) of the same page
from four sites (with two or three different attributes to extract).
DS2 contains 55 manually tagged webpages. The third dataset, de-
noted DS3, contains 5025 product pages from five widely known
websites. The pages were annotated (with two attributes, product
name and price) using manually written XPaths.

In our experiments we used different subsets of the dataset as
training sets and evaluation sets.
Performance Metrics Given a page d from one of the datasets and a
target attribute for extraction attr, we denote byNattr(d) the set of
tagged nodes containing instances of attr in d. For a data extractor
x extracting instances of attr, we measure the precision, recall and

Figure 4: The F-measure values of different approaches for seen
sites, as a function of number of sites in training set.

Figure 5: The F-measure values of different approaches for unseen
sites, as a function of number of sites in training set.

F-measure of x on d by considering Nattr(d) as a target set. The
precision, recall and F-measure of x (for attr) are defined as the
averages over all pages d in the evaluation set containing instances
of attr. The reported precision (P), recall (R) and F-measure (F1)
for each approach are the averages over all the data extractors x
that it synthesizes (for all categories and all attributes).

s = 2 s = 3 s = 4 s = 5 s = 6

FX 0.6% 0.8% -0.8% -1.5% -2.6%
NFX -3.9% -3.0% -4.2% -5.0% -5.8%
C4.5 -1.8% -5.6% -6.5% -7.7% -10.6%

NB 6.8% -7.3% -17.9% -26.0% -34.4%
XA -51.3% -70.1% -77.8% -83.3% -89.2%

Table 1: Performance (F-measure) decrease on seen sites as a func-
tion of the size of the training set (s). Lower decreases (negative
values with smaller absolute value) indicate higher robustness to
structural differences in the training set.

5.3 Evaluating the Different Performance Aspects

Accuracy on Seen Sites We evaluated the effectiveness of our ap-
proach (and the baseline approaches) for data extraction by evalu-
ating the accuracy of the queries it generates on the different sites
in the dataset. This is the standard use case, where we generate a
query and evaluate it on each site separately.

In addition, we used our approach (and the baselines) for synthe-
sizing a single generalized query for multiple sites. In particular,
this allowed us to evaluate the robustness of our approach to struc-
tural differences in the training set. Such robustness is important
to allow training the tool on a larger training set with a variety of
websites without harming accuracy.
Accuracy on Different Page Versions To evaluate the robustness

https://goo.gl/a16tiG

s = 1 s = 2 s = 3 s = 4 s = 5 s = 6
P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Performance on Documents from Seen Sites
FX 0.86 0.93 0.87 0.86 0.94 0.87 0.87 0.93 0.88 0.86 0.91 0.86 0.85 0.90 0.86 0.85 0.89 0.85

NFX 0.86 0.90 0.87 0.83 0.87 0.84 0.84 0.87 0.85 0.84 0.85 0.83 0.83 0.85 0.83 0.84 0.84 0.82
C4.5 0.80 0.87 0.81 0.72 0.93 0.79 0.69 0.91 0.76 0.68 0.91 0.76 0.67 0.92 0.75 0.65 0.91 0.72

NB 0.55 0.92 0.60 0.55 0.93 0.64 0.45 0.93 0.56 0.39 0.92 0.49 0.34 0.92 0.45 0.29 0.92 0.40
XA 0.53 0.54 0.52 0.24 0.38 0.25 0.14 0.33 0.15 0.10 0.29 0.11 0.07 0.28 0.09 0.04 0.26 0.06

Performance on Documents from Unseen Sites
FX 0.31 0.66 0.35 0.48 0.75 0.53 0.56 0.79 0.60 0.60 0.79 0.62 0.60 0.77 0.61 0.63 0.78 0.62

NFX 0.30 0.31 0.29 0.36 0.38 0.36 0.39 0.38 0.36 0.41 0.40 0.38 0.42 0.40 0.38 0.43 0.41 0.39
C4.5 0.28 0.32 0.28 0.38 0.48 0.40 0.43 0.56 0.45 0.46 0.60 0.49 0.48 0.63 0.51 0.51 0.66 0.53

NB 0.01 0.01 0.01 0.26 0.35 0.27 0.31 0.49 0.34 0.34 0.56 0.37 0.34 0.62 0.38 0.32 0.65 0.35
XA 0.01 0.01 0.01 0.04 0.07 0.04 0.05 0.12 0.06 0.04 0.14 0.04 0.03 0.14 0.03 0.01 0.11 0.01

Table 2: The average precision (P), recall (R) and F-measure (F1) of different approaches on seen and unseen sites, for different numbers of
sites (s) in the dataset

Figure 6: The F-measure values when evaluated on different page
versions, as a function of number of versions in training set.

s = 1 3 s = 2 s = 3 s = 4 s = 5 s = 6
author 0.18 0.25 0.52 0.68 0.78 0.82

price 0.36 0.62 0.66 0.66 0.62 0.55
title 0.94 0.92 0.93 0.93 0.96 0.98

Table 3: The average F-measure (F1) for forgiving XPaths (FX)
on different book attributes in unseen sites.

s = 1 s = 2 s = 3 s = 4
P R F1 P R F1 P R F1 P R F1

FX 0.53 0.88 0.58 0.72 0.88 0.74 0.81 0.88 0.80 0.87 0.93 0.86
NFX 0.52 0.52 0.51 0.69 0.67 0.67 0.78 0.75 0.75 0.85 0.84 0.82
C4.5 0.46 0.48 0.46 0.53 0.75 0.59 0.52 0.80 0.58 0.55 0.84 0.60

NB 0.11 0.27 0.13 0.18 0.59 0.23 0.18 0.71 0.23 0.15 0.76 0.19
XA 0.04 0.04 0.04 0.17 0.23 0.17 0.14 0.20 0.14 0.13 0.21 0.12

Table 4: The average precision (P), recall (R) and F-measure (F1)
of different approaches trained on a set of size s of page versions

and tested on the rest.

of queries generated by our method (and other baselines) to struc-
tural changes in the pages, we synthesized the queries using some
versions of the page and evaluated them on different versions. Ro-
bustness to future changes on the page structure is important, as a
more robust query will break less frequently.
Accuracy on Unseen Sites One major advantage of our technique
compared to other XPath-based extraction techniques (in addition
to its ability to synthesize a single query for multiple sites) is its
generalization ability and the flexibility of its resulting queries.
Other XPath based techniques work on pages from a single site,
and generate XPath expressions that are strictly related to the struc-
ture of these pages.

To evaluate the generalization ability of our approach, we eval-

FX XA
Name Price Name Price

P R F1 P R F1 P R F1 P R F1
currys 1.00 1.00 1.00 0.92 1.00 0.96 1.00 1.00 1.00 1.00 0.65 0.79

pricespy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.26 0.42
bestbuy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99

pricerunner 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.67 0.80 1.00 0.67 0.80
ebuyer 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.26 0.42 1.00 1.00 1.00
overall 1.00 1.00 1.00 0.98 1.00 0.99 1.00 0.79 0.84 1.00 0.71 0.80

Table 5: Performance of forgiving-XPath (FX) and Alignment
based approach (XA) on the XPath generated data set (DS3)

uated the extractors on unseen sites. Note that our goal is only to
compare the generality of queries synthesized by our method to the
other baselines; we do not expect the accuracy on unseen sites to be
as good as for seen sites, as this is a much more challenging task.

5.4 Methodology

We evaluated our approach on seen and unseen sites by applying
it on sets of sites from the DS1 dataset of different sizes (i.e., with
different number of sites in the training set). We denote the number
of sites in the training set in each experiment by s.

For every category among books, shopping, hotels and movies,
for which the dataset contains documents from 7 to 8 sites (we de-
note by n the number of sites in the category), we considered all the
possible

(
n
s

)
subsets of size s of sites in the dataset, where s ∈ [1, 6]

(while s can be as large as 8, we limit it to 6 to be consistent with
the unseen case). For each subset of s sites, we created the subset
of the dataset restricted to the pages of the selected sites. We de-
note the corresponding subset of the dataset by D. For evaluating
the performance on seen sites, we split D to two disjoint subsets
Dt (for training) and De (for evaluation). Each of the two subsets
Dt and De contains document pages from each website. Hence
the training set and the evaluation set refer to exactly the same sites
(allowing us to evaluate the performance on seen sites), but they
have no documents in common. We used our approach to synthe-
size an extraction query withDt as a training set, and evaluated the
precision, recall and F-measure of the resulting query on De.

In addition, we used DS3 to compare the performance of our
approach to that of the alignment based approach [20]. For each
site and attribute (among product name and price) DS3 contains
1005 pages, five of which are used for training and the rest are
used for testing.

For evaluating the performance on unseen sites, we used our ap-
proach to synthesize an extraction query with D as a training set
and evaluated the precision, recall and F-measure of the resulting
query on D. The set D contains documents in the dataset from the

rest of the sites from the same category (these sites are considered
unseen – as their documents are not in D).

We did the same for all the other baseline approaches we have
implemented. For every value of s ∈ [1, 6] and for every category,
we calculated the average precision, recall and F-measure over the
different subsets D of the dataset obtained with s sites for both
seen and unseen cases. Finally, for each value of s ∈ [1, 6], we
calculated the average over all categories. The results obtained for
the two variants of our approach, as well as for the baselines, are
reported in Table 2, Fig. 4 and Fig. 5 (as a function of s).

To evaluate our approach (and the baselines) on different page
versions, we used a similar process as before, this time on pages
from the DS2 dataset. In these experiments, s refers to the number
of versions considered in the training set, D consists of a subset of
page versions and D consists of the remaining versions. Results
are reported in Table 4 and Fig. 6.

5.5 Results

Results for Seen Sites The results for performance on seen sites
are reported in Fig. 4 and Table 2. The results show that the XPath
queries generated by our approach (FX and NFX) have the best
accuracy (F-measure) among the different approaches for all dif-
ferent values of s, well ahead of the closest competing approach
C4.5. Both classifier based methods (C4.5 and NB) suffer from
loss in precision, especially for higher s values. The alignment-
based XPath generation (XA), which has the lowest precision and
recall among all the approaches, suffers from significant decrease
in precision for s > 1. According to Table 1, which reports the
performance loss on seen sites as a function of the number of sites
in the training set, our forgiving XPath method (FX) is the most
robust approach to diversity in the training set. The results for per-
formance of the alignment based XPath generation (XA) and our
forgiving-XPath (FX) on DS3 are reported in Table 5. The XPath
queries generated by our approach have better precision and recall
than those generated by the alignment based approach. However,
both approaches perform better on DS3 than on DS1 (our approach
has perfect recall and close to perfect precision). This is because
pages in DS3 were annotated using XPaths while pages in DS1
were manually annotated. It is therefore hard even for a human
programmer to write an XPath that accurately extracts the data from
them.
Results for Different Page Versions The results of invoking the
data extractors on different (older and newer) versions of pages are
reported in Fig. 6 and Table 4. The results show that when trained
with a large enough set of different archived versions of a page, our
forgiving-XPath (FX) has an F-measure of 0.86 on newer (differ-
ent) yet unseen version of the page (0.93 recall and 0.87 precision,
which is close to its performance on seen pages). This shows the
usefulness of our approach for generating a robust extractor when
used on a set containing a variety of previous versions of a target
page. That is, it is more tolerant to structural changes in future
versions of the page. Classifier-based methods show poor preci-
sion for higher s values, making them unsuitable for such an ap-
plication (of generating robust extractor). Alignment-based XPath
generation (XA) has the lowest scores (for all values of s).
Results for Unseen Sites Fig. 5 shows that our forgiving XPath
approach (FX) has the best accuracy (F-measure) for every number
of sites in the training set. Table 2 shows that our forgiving XPath
technique significantly outperforms the other approaches in terms
of both precision and recall.

While the non-forgiving XPath (NFX) performs well (very close
to the forgiving XPath), and outperforms C4.5 on seen sites, it is
outperformed by C4.5 in the case of unseen sites. This is because

we use a pruned C4.5 tree, while we keep our non-forgiving XPath
strict. This is also the reason that C4.5 is the closest competing
approach to NFX. This highlights the trade-off between accuracy
on seen and unseen sites when pruning is used (or not, as in NFX).

Table 3 shows an interesting aspect of the evaluation. The accu-
racy results that we report are averaged over all categories and all
attributes extracted from a site. However, it is common for some
attributes to be more robust and generalizable than others. For ex-
ample, in sites listing books, the accuracy of extracting the book
author and the book title is very high, and improves as more sites
are added to the training set. In contrast, the accuracy of extracting
the price, might deteriorate with more sites, as the sites may really
have very little in common in the way that a price is represented
(sites may even differ on the number of prices that they present,
e.g., special discounts, shipping, etc.).

5.6 Discussion

The evaluation results show that forgiving XPath queries, synthe-
sized by our approach, beat the accuracy of other approaches for all
the three different performance aspects.

While some approaches (like NB and C4.5) have a trade-off be-
tween precision and generality (performance on seen and unseen
sites), the use of forgiving XPaths enables our approach to have
good performance on unseen sites without noticeable loss of pre-
cision on seen sites. In addition, the robustness of our approach
to the structural differences of documents in the training set en-
ables using datasets with high structural variety (containing differ-
ent versions of the page), which improves the robustness of the
synthesized XPath to future structural changes.

6 Related Work
There has been a lot of work on data extraction from web pages. In
the following we survey closely-related work.
XPath Data Extractors The adaptation of XPath based data extrac-
tors has been studied widely. Several works on automatic gener-
ation of XPath based data extractors have been proposed [25, 20,
19, 30, 1]. Nielandt et al. [20] propose a method for generating
XPath wrappers, which revolves around aligning the steps within
the XPaths. Given a set of XPath samples describing the data nodes
of interest in a DOM tree, the method uses an alignment algorithm
based on a modification of the Levenshtein edit distance to align
the sample XPaths and merge them to a single generalized XPath.
The XPaths generated by this method are not robust to structural
changes. Our evaluation show that our technique outperforms this
method both on seen and unseen sites. Their latest work [19] builds
on [20] and enriches the resulting generalised XPaths with predi-
cates, based on context and structure of the data sources, to improve
the precision of the resulting XPath on the training data with min-
imal recall decrease. While this method generates richer XPaths
compared to [20], and yields more precise queries in some cases,
the resulting XPaths are still too specific and suffer from the same
robustness issue. This results from using an alignment based al-
gorithm which finds the most specific generalized XPath, keeping
unnecessary features as long as they do not affect its recall. Zheng
et al. [30] propose a record-level wrapper system. The gener-
ated wrappers include the complete tag-path from the root to record
boundary nodes, making them sensitive to tag modifications. The
major weakness of these techniques is related to the lack of flexi-
bility of their generated XPath queries. These techniques work on
pages from a single site, and generate XPath expressions that are
strictly related to the structure of the pages from the site on top
of which they are defined. Omari et al.[22] propose a method for
generating XPath extraction queries for a family of websites that

contain the same type of information. They learn the logical repre-
sentation of a website by utilizing the shared data instances among
these sites, which allows them to identify commonality even when
the structure is different.

Robustness There has been some work on the problem of XPath ro-
bustness to site changes [6, 15, 17], trying to pick the most robust
XPath query for extracting a particular piece of information. The
generalization applied by these techniques is based on alignment
of XPaths, and picks a single query with a fixed generalization/pre-
cision tradeoff. In contrast, our approach uses decision-trees and
forgiving XPaths to adjust precision dynamically.

Cohen et al. [5] propose an extension of XPath called XTPath.
XTPath stores additional information from the DOM tree and uses
recursive tree matching to fix XPath wrappers automatically when
shifts in the tree structure happen. Instead of constructing a robust
XPath, the method uses the XTPath whenever an XPath fails.

Pattern based techniques Several works [4, 2, 7, 16, 27] propose
methods that use repeated pattern mining to discover and extract
data records. Kayed et al. [12] propose a technique that works on a
set of pages to automatically detect their shared schema and extract
the data. Their method (called FivaTech) uses techniques such as
alignment and pattern mining to construct a “fixed/variant pattern
tree,” which can be used to construct an extraction regular expres-
sion. DEPTA [29] uses partial tree alignment to align generalized
nodes and extract their data. DeLa [28] automatically generate reg-
ular expression wrappers based on the page HTML-tag structures
to extract data objects from the result pages. IEPAD [4] discov-
ers repeated patterns in a document by coding it into a binary se-
quence and mining maximal repeated patterns. These patterns are
then used for data extraction. Omari et al. [21] propose a method
for separating webpages into layout code and data. Their method
uses a tree alignment based algorithm to calculate the cost of the
shared representation of two given sub-trees, then it uses the cal-
culated shared representation cost to decide whether it should fold
them or not in order to minimize the representation cost of the given
DOM tree. The result of the folding process is a separation of the
page to a layout-code component and a data component. Chang
el al. [3] propose a system for page-level schema induction, and
uses wrapper verification to extract data. Given a large amount of
webpages, they use a subset of these pages to learn the schema in
unsupervised manner, and then use scheme verification procedure
to extract data from the rest of the pages.

Model based techniques Several approaches relying on Machine
Learning algorithms were presented for data extraction [10, 8, 26,
13]. HAO et al. [10] present a method for data extraction from a
group of sites. Their method is based on a classifier that is trained
on a seed site using a set of predefined feature types. The classifier
is then used as a base for identification and extraction of attribute
instances in unseen sites. [8] foucses on detecting the boundaries
of interesting entities in the text and treats information extraction
as a classification problem. It uses an SVM classifier to identify the
start and end tags of the data. Song et al. [26] propose a dynamic
learning framework to extract structured data of various verticals
from web pages without human effort. The technique is based on
the observation that there is adequate information with similar lay-
out structures among different web sites that can be learned for
structured data extraction. In contrast to model based techniques,
our method synthesizes a (standard) XPath query, that is human
readable and easy to understand and modify, while maintaining the
generalization ability and flexibility of these techniques. In addi-
tion, the use of forgiving XPath queries enables our technique to

avoid the tradeoff that classifier based techniques have, between
precision on seen sites and precision on unseen sites.

7 Conclusion
We have presented, and implemented, a novel approach for synthe-
sizing a robust cross-site data extractor for a family of sites.

The cross-site extractor that we synthesize combines the benefits
of generalization based on decision tree learning, with the efficient
realization of a query as a forgiving XPath that can be directly and
efficiently executed by browsers (and extraction tools).

As our experiments show, the synthesized extractor manages to
remain precise for the training set, despite its generality. In addi-
tion, it can extract information from unseen pages and sites with
a relatively high accuracy due to its novel forgiveness property,
which allows it to dynamically adjust its precision for the web
page at hand. Interestingly, our extractors outperform not only
other pattern-based extractors, but also classifier-based extractors
which are typically more suited for handling unseen sites. This is
achieved while keeping the many benefits of XPath queries such as
readability and efficient execution.

Acknowledgements
The research leading to these results has received funding from the
European Union’s - Seventh Framework Programme (FP7) under
grant agreement no. 615688, ERC-COG-PRIME.

8 References

[1] ANTON, T. Xpath-wrapper induction by generalizing tree
traversal patterns. In Lernen, Wissensentdeckung und
Adaptivitt (LWA) 2005, GI Workshops, Saarbrcken (2005),
pp. 126–133.

[2] ARASU, A., AND GARCIA-MOLINA, H. Extracting
structured data from web pages. In SIGMOD (2003).

[3] CHANG, C.-H., CHEN, T.-S., CHEN, M.-C., AND DING,
J.-L. Efficient page-level data extraction via schema
induction and verification. In Pacific-Asia Conference on
Knowledge Discovery and Data Mining (2016), Springer,
pp. 478–490.

[4] CHANG, C.-H., AND LUI, S.-C. IEPAD: information
extraction based on pattern discovery. In WWW (2001).

[5] COHEN, J. P., DING, W., AND BAGHERJEIRAN, A.
Semi-supervised web wrapper repair via recursive tree
matching. arXiv preprint arXiv:1505.01303 (2015).

[6] DALVI, N., BOHANNON, P., AND SHA, F. Robust web
extraction: an approach based on a probabilistic tree-edit
model. In SIGMOD (2009).

[7] DALVI, N., KUMAR, R., AND SOLIMAN, M. Automatic
wrappers for large scale web extraction. Proceedings of the
VLDB Endowment 4, 4 (2011), 219–230.

[8] FINN, A., AND KUSHMERICK, N. Multi-level boundary
classification for information extraction. Springer, 2004.

[9] HALL, M., FRANK, E., HOLMES, G., PFAHRINGER, B.,
REUTEMANN, P., AND WITTEN, I. H. The weka data
mining software: an update. ACM SIGKDD explorations
newsletter 11, 1 (2009), 10–18.

[10] HAO, Q., CAI, R., PANG, Y., AND ZHANG, L. From one
tree to a forest: a unified solution for structured web data
extraction. In SIGIR (2011).

[11] JOHN, G. H., AND LANGLEY, P. Estimating continuous
distributions in bayesian classifiers. In Eleventh Conference
on Uncertainty in Artificial Intelligence (San Mateo, 1995),
Morgan Kaufmann, pp. 338–345.

[12] KAYED, M., AND CHANG, C.-H. Fivatech: Page-level web
data extraction from template pages. Knowledge and Data
Engineering, IEEE Transactions on 22, 2 (2010), 249–263.

[13] KUSHMERICK, N. Wrapper induction: Efficiency and
expressiveness. Artificial Intelligence 118, 1 (2000), 15–68.

[14] KUSHMERICK, N., WELD, D. S., AND DOORENBOS, R. B.
Wrapper induction for information extraction. In IJCAI’97.

[15] LEOTTA, M., STOCCO, A., RICCA, F., AND TONELLA, P.
Reducing web test cases aging by means of robust xpath
locators. In Software Reliability Engineering Workshops
(ISSREW), 2014 IEEE International Symposium on (2014),
IEEE, pp. 449–454.

[16] LIU, B., GROSSMAN, R., AND ZHAI, Y. Mining data
records in web pages. In Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery
and data mining (2003), ACM, pp. 601–606.

[17] LIU, D., WANG, X., LI, H., AND YAN, Z. Robust web
extraction based on minimum cost script edit model.
Procedia Engineering 29 (2012), 1119–1125.

[18] MITCHELL, T. M. Machine Learning, 1 ed. McGraw-Hill,
Inc., New York, NY, USA, 1997.

[19] NIELANDT, J., BRONSELAER, A., AND DE TRÉ, G.
Predicate enrichment of aligned xpaths for wrapper
induction. Expert Systems with Applications (2016).

[20] NIELANDT, J., DE MOL, R., BRONSELAER, A., AND
DE TRÉ, G. Wrapper induction by xpath alignment. In 6th
International Conference on Knowledge Discovery and
Information Retrieval (KDIR 2014) (2014), vol. 6, Science
and Technology Publications, pp. 492–500.

[21] OMARI, A., KIMELFELD, B., YAHAV, E., AND SHOHAM,
S. Lossless separation of web pages into layout code and
data. In Proceedings of the 22Nd ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining (2016), KDD ’16, ACM.

[22] OMARI, A., SHOHAM, S., AND YAHAV, E.
Cross-supervised synthesis of web-crawlers. In Proceedings
of the 38th International Conference on Software
Engineering (2016), ACM, pp. 368–379.

[23] QUINLAN, J. Induction of decision trees. Machine Learning
1, 1, 81–106.

[24] QUINLAN, J. R. C4. 5: programs for machine learning.
Elsevier, 2014.

[25] REIS, D. D. C., GOLGHER, P. B., SILVA, A. S., AND
LAENDER, A. Automatic web news extraction using tree
edit distance. In WWW (2004).

[26] SONG, D., WU, Y., LIAO, L., LI, L., AND SUN, F. A
dynamic learning framework to thoroughly extract structured
data from web pages without human efforts. In Proceedings
of the ACM SIGKDD Workshop on Mining Data Semantics
(2012), ACM, p. 9.

[27] THAMVISET, W., AND WONGTHANAVASU, S. Information
extraction for deep web using repetitive subject pattern.
World Wide Web (2013).

[28] WANG, J., AND LOCHOVSKY, F. H. Data extraction and
label assignment for web databases. In WWW (2003).

[29] ZHAI, Y., AND LIU, B. Web data extraction based on partial
tree alignment. In WWW (2005).

[30] ZHENG, S., SONG, R., WEN, J.-R., AND GILES, C. L.
Efficient record-level wrapper induction. In Proceedings of
the 18th ACM conference on Information and knowledge
management (2009), ACM, pp. 47–56.

	Introduction
	Overview
	Motivating example
	Our Approach

	Decision Tree Learning
	Feature Extraction
	Decision Tree Learning

	Forgiving XPath Synthesis
	Decision Trees with Varying Precision
	Translation of Decision Trees to Forgiving XPaths

	Evaluation
	Implementation
	Experimental Settings
	Evaluating the Different Performance Aspects
	Methodology
	Results
	Discussion

	Related Work
	Conclusion
	References

