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Distributed protocols such as Paxos play an important role in many computer systems. Therefore, a bug

in a distributed protocol may have tremendous effects. Accordingly, a lot of effort has been invested in

verifying such protocols. However, checking invariants of such protocols is undecidable and hard in practice,

as it requires reasoning about an unbounded number of nodes and messages. Moreover, protocol actions

and invariants involve both quantifier alternations and higher-order concepts such as set cardinalities and

arithmetic.

This paper makes a step towards automatic verification of such protocols. We aim at a technique that

can verify correct protocols and identify bugs in incorrect protocols. To this end, we develop a methodology

for deductive verification based on effectively propositional logic (EPR)—a decidable fragment of first-order

logic (also known as the Bernays-Schönfinkel-Ramsey class). In addition to decidability, EPR also enjoys

the finite model property, allowing to display violations as finite structures which are intuitive for users.

Our methodology involves modeling protocols using general (uninterpreted) first-order logic, and then

systematically transforming the model to obtain a model and an inductive invariant that are decidable to

check. The steps of the transformations are also mechanically checked, ensuring the soundness of the method.

We have used our methodology to verify the safety of Paxos, and several of its variants, including Multi-Paxos,

Vertical Paxos, Fast Paxos, Flexible Paxos and Stoppable Paxos. To the best of our knowledge, this work is the

first to verify these protocols using a decidable logic, and the first formal verification of Vertical Paxos, Fast

Paxos and Stoppable Paxos.
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1 INTRODUCTION
Paxos is a family of protocols for solving consensus in a network of unreliable processors with

unreliable communication. Consensus is the process of deciding on one result among a group of

participants. Paxos protocols play an important role in our daily life. For example, Google uses the

Paxos algorithm in their Chubby distributed lock service in order to keep replicas consistent in
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case of failure [Burrows 2006]. VMware uses a Paxos-based protocol within the NSX Controller.

Amazon Web Services uses Paxos-like algorithms extensively to power its platform [Newcombe

et al. 2015]. The key safety property of Paxos is consistency: processors cannot decide on different

values.

Due to its importance, verifying the safety of distributed protocols like Paxos is an ongoing

research challenge. The systems and programming languages communities have had several recent

success stories in verifying the safety of Paxos-like protocols in projects such as IronFleet [Haw-

blitzel et al. 2015], Verdi [Wilcox et al. 2015], and PSync [Dragoi et al. 2016]
1
.

1.1 Main Results
This work aims to increase the level of automation in verification of distributed protocols, hoping

that it will eventually lead to wider adoption of formal verification in this domain. We follow

IronFleet, Verdi, and PSync, in requiring that the user supplies inductive invariants for the protocols.

We aim to automate the process of checking the inductiveness of the user-supplied invariants.

The goal is that the system can reliably produce in finite time either a proof that the invariant is

inductive or display a comprehensible counterexample to induction (CTI), i.e., a concrete transition

of the protocol from state s to state s ′ such that s satisfies the given invariant and s ′ does not2.
Such a task seems very difficult since these protocols are usually expressed in rich programming

languages in which automatically checking inductive invariants is both undecidable and very hard

in practice. In fact, in the IronFleet project, it was observed that undecidability of the reasoning

performed by Z3 [de Moura and Bjørner 2008] is a major hurdle in their verification process.

1.1.1 Criteria for Automatic Deductive Verification. We aim for an automated deductive verifica-

tion technique that achieves three goals:

Natural Making the invariants readable even for users who are not expert in the tools.

Completeness Making sure that if the invariant is inductive then the solver is guaranteed to

prove it.

Finite Counterexamples Guaranteeing that if the invariant is not inductive then the solver

can display a concrete counterexample to induction with a finite number of nodes which can

be diagnosed by users.

These goals are highly ambitious. Expressing the verification conditions in a decidable logic with

a small model property (e.g., EPR [Piskac et al. 2010]) will guarantee Completeness and Finite

Counterexamples. However, it is not clear how to model complex protocols like Paxos in such

logics. Consensus protocols such as Paxos often require higher-order reasoning about sets of

nodes (majority sets or quorums), combined with complex quantification. In fact, some researchers

conjectured that decidable logics are too restrictive to be useful.

Furthermore, we are aiming to obtain natural invariants. We decided to verify the designs

of the protocols and not their implementations since the invariants are more natural and since

we wanted to avoid dealing with low level implementation issues. In the future we plan to use

refinement to synthesize efficient low level implementations. Systems such as Alloy [Jackson

2006] and TLA [Lamport 2002] have already been used for finding bugs in protocols and inductive

invariants (e.g., by Amazon [Newcombe et al. 2015]). Again they verify and identify faults in the

designs and not the actual implementation. However, in contrast to our approach, they cannot

automatically produce proofs for inductiveness (Completeness).

1
IronFleet and PSync also verify certain liveness properties.

2
Such a CTI indicates that there is a bug in the protocol itself, or that the provided invariant is inadequate (e.g., too weak or

too strong).
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1.1.2 A Reusable Verification Methodology. In this work, we develop a novel reusable verification
methodology based on Effectively Propositional logic (EPR) for achieving the above goals. Our

methodology allows the expression of complex protocols and systems, while guaranteeing that the

verification conditions are expressed in EPR. EPR provides both decidability and finite counterex-

amples, and is supported by existing solvers (e.g., Z3 [de Moura and Bjørner 2008], iProver [Korovin

2008], VAMPIRE [Riazanov and Voronkov 2002], CVC4 [Barrett et al. 2011]). We have used our

methodology to verify the safety of Paxos, and several of its variants, including Multi-Paxos, Vertical

Paxos, Fast Paxos, Flexible Paxos and Stoppable Paxos. To the best of our knowledge, this work is

the first to verify these protocols using a decidable logic, and, in the case of Vertical Paxos, Fast

Paxos, and Stoppable Paxos, it is also the first mechanized safety proof.

We have also compared our methodology to a traditional approach based on a state-of-the-art

interactive theorem prover—Isabelle/HOL [Nipkow et al. 2002]. Our comparison shows that the

inductive invariants used are very similar in both approaches (Natural), and that our methodology

allows more reliable and predictable automation: an interactive theorem prover can discharge

proof obligations to theorem provers using undecidable theories, but these often fail due to the

undecidability. In such cases, it requires an experienced expert user to prove the inductive invariant.

In contrast, with our methodology all the verification conditions are decidable and therefore

checking them is fully automated.

First-order uninterpreted abstraction. The first phase in our verification process is expressing the

system and invariant in (undecidable) many-sorted first-order logic over uninterpreted structures.

This is in contrast to SMT which allows the use of interpreted theories such as arithmetic and the

theory of arrays. The use of theories is natural specifically for handling low level aspects such as

machine arithmetic and low level storage. However, SMT leads to inherent undecidability with

quantifiers which are used to model unbounded systems. In contrast to SMT, we handle concepts,

such as arithmetic and set cardinalities, using abstraction expressible in first-order logic, e.g., a

totally ordered set instead of the natural numbers. This involves coming up with domain knowledge

encoded as first-order axioms (e.g. a first-order formula expressing transitivity of a total order).

We are encouraged by the simplicity of our abstractions and the fact that they are precise enough

to prove complex protocols. We also note that using first-order logic has led us to axioms and

invariants that elegantly capture the essence of the protocols. This is also enabled by the fact that

we are modeling high-level protocols and not their low level implementations.

At the end of this phase, the verification conditions are in general first-order logic. This is already

useful as it allows to use resolution-based theorem provers (e.g., SPASS [Weidenbach et al. 2009]

and VAMPIRE [Riazanov and Voronkov 2002]). Yet, at this stage the verification conditions are still

undecidable, and solvers are not guaranteed to terminate.

One way to obtain decidability is to restrict quantifier alternations. We examine the quantifier
alternation graph of the verification condition, which connects sorts that alternate in ∀∃ quan-

tification. When this graph contains cycles, solvers such as Z3 often diverge into infinite loops

while instantiating quantifiers. This issue is avoided when the graph is acyclic, in which case

the verification condition is essentially in EPR. Therefore, the second phase of our methodology

provides a systematic way to soundly eliminate the cycles.

Eliminating quantifier alternations using derived relations. The most creative part in our method-

ology is adding derived relations and rewriting the code to break the cycles in the quantifier

alternation graph. The main idea is to capture an existential formula by a derived relation, and then

to use the derived relation as a substitute for the formula, both in the code and in the invariant,

thus eliminating some quantifier alternations. The user is responsible for defining the derived

relations and performing the rewrites. The system automatically generates update code for the
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derived relations, and automatically checks the soundness of the rewrites. For the generation of

update code, we exploit the locality of updates, as relations (used for defining the derived relations)

are updated by inserting a single entry at a time. We identify a class of formulas for which this

automatic procedure is always possible and use this class for verifying the Paxos protocols.

We are encouraged by the fact that the transformations needed in this step are reusable across

all Paxos variants we consider. Furthermore, the transformations maintain the simplicity and

readability of both the code and the inductive invariants.

1.2 Summary of the rest of the paper
In Section 2 we present the technical background on using first-order logic to express transition

systems, and on the EPR fragment. We then develop our general methodology for EPR-based

verification in Section 3. Section 4 reviews the Paxos consensus algorithm, which is the basis for all

Paxos-like protocols. We present our model of the Paxos consensus algorithm as a transition system

in first-order logic in Section 5, and continue to verify it using EPR by applying our methodology

in Section 6. In Section 7, we describe our verification of Multi-Paxos using EPR. We briefly discuss

the verification of Vertical Paxos, Fast Paxos, Flexible Paxos, and Stoppable Paxos in Section 8.

More details about the verification of these variants appear in the extended version of this paper

[Padon et al. 2017]. In Section 9 we report on our implementation and experimental evaluation. We

discuss related work in Section 10, and Section 11 concludes the paper.

2 BACKGROUND: VERIFICATION USING EPR
In this section we present the necessary background on the formalization of transition systems

using first-order logic, as well as on the EPR fragment of first-order logic.

2.1 Transition Systems in First Order Logic
We model transition systems using many-sorted first-order logic. We use a vocabulary Σ which

consists of sorted constant symbols, function symbols and relation symbols to capture the state of

the system, and formulas to capture sets of states and transitions. Formally, given a vocabulary Σ, a
state is a first-order structure over Σ. We sometimes use axioms in the form of closed first-order

formulas over Σ, to restrict the set of states to those that satisfy all the axioms. A transition system
is a pair (INIT,TR), where INIT is the initial condition given by a closed formula over Σ, and TR is

the transition relation given by a closed formula over Σ ⊎ Σ′ where Σ is used to describe the source

state of the transition and Σ′ = {a′ | a ∈ Σ} is used to describe the target state. The set of initial

states and the set of transitions of the system consist of the states, respectively, pairs of states, that

satisfy INIT, respectively, TR. We define the set of reachable states of a transition system in the

usual way. A safety property is expressed by a closed formula P over Σ. The system is safe if all of
its reachable states satisfy P .
In the paper, we use the relational modeling language (RML) [Padon et al. 2016] to express

transition systems. An RML program consists of actions, each of which consists of a loop-free code

that is executed atomically, and corresponds to a single transition. RML commands include non-

deterministic choice, sequential composition, and updates to constant symbols, function symbols

and relation symbols (representing the system’s state), where updates are expressed by first-order

formulas. In addition, conditions in RML are expressed using assume commands. RML programs

naturally translate to formulas (INIT,TR), where TR is a disjunction of the transition relation

formulas associated with each action (see [Padon et al. 2016] for details of the translation). As such,

we will use models, programs and transition systems interchangeably throughout the paper. We

note that RML is Turing-complete, and remains so when INIT and TR are restricted to the EPR

fragment.
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A closed first-order formula INV over Σ is an inductive invariant for a transition system (INIT,TR)
if INIT |= INV and INV ∧ TR |= INV′, where INV′ results from substituting every symbol in INV by

its primed version. These requirements ensure that an inductive invariant represents a superset of

the reachable states. Given a safety property P , an inductive invariant INV proves that the transition

system is safe if INV |= P . Equivalently, INV proves safety of (INIT,TR) for P if the following

formulas are unsatisfiable: (i) INIT ∧ ¬INV, (ii) INV ∧ TR ∧ ¬INV′, and (iii) INV ∧ ¬P . We refer

to these formulas as the verification condition of INV. When INV ∧ TR ∧ ¬INV′ is satisfiable, and
(s,s ′) |= INV ∧ TR ∧ ¬INV′, we say that the transition (s,s ′) is a counterexample to induction (CTI).

2.2 Extended Effectively Propositional Logic (EPR)
The effectively-propositional (EPR) fragment of first-order logic, also known as the Bernays-

Schönfinkel-Ramsey class is restricted to relational first-order formulas (i.e., formulas over a

vocabulary that contains constant symbols and relation symbols but no function symbols) with a

quantifier prefix ∃∗∀∗ in prenex normal form. Satisfiability of EPR formulas is decidable [Lewis

1980]. Moreover, formulas in this fragment enjoy the finite model property, meaning that a satisfiable

formula is guaranteed to have a finite model. The size of this model is bounded by the total number

of existential quantifiers and constants in the formula. The reason for this is that given an ∃∗∀∗-

formula, we can obtain an equi-satisfiable quantifier-free formula by Skolemization, i.e., replacing

the existentially quantified variables by constants, and then instantiating the universal quantifiers

for all constants. While EPR does not allow any function symbols nor quantifier alternation except

∃∗∀∗, it can be easily extended to allow stratified function symbols and quantifier alternation (as

formalized below). The extension maintains both the finite model property and the decidability of

the satisfiability problem.

The quantifier alternation graph. Let φ be a formula in negation normal form over a many-sorted

signature Σ with a set of sorts S. We define the quantifier alternation graph of φ as a directed graph

where the set of vertices is the set of sorts, S, and the set of directed edges, called ∀∃ edges, is

defined as follows.

• Function edges: let f be a function in φ from sorts s1, . . . ,sk to sort s . Then there is a ∀∃

edge from si to s for every 1 ≤ i ≤ k .
• Quantifier edges: let ∃x : s be an existential quantifier that resides in the scope of the

universal quantifiers ∀x1 : s1, . . . ,∀xk : sk in φ. Then there is a ∀∃ edge from si to s for every
1 ≤ i ≤ k .

Intuitively, the quantifier edges correspond to the edges that would arise as function edges if

Skolemization is applied.

Extended EPR. A formula φ is stratified if its quantifier alternation graph is acyclic. The extended
EPR fragment consists of all stratified formulas. This fragment maintains the finite model property

and the decidability of EPR. The reason for this is that, after Skolemization, the vocabulary of a

stratified formula can only generate a finite set of ground terms. This allows complete instantiation

of the universal quantifiers in the Skolemized formula, as in EPR. In the sequel, whenever we say a

formula is in EPR, we refer to the extended EPR fragment.

3 METHODOLOGY FOR DECIDABLE VERIFICATION
In this section we explain the general methodology that we follow in our efforts to verify Paxos

using decidable reasoning. While this paper focuses on Paxos and its variant, the methodology is

more general and can be useful for verifying other systems as well.
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3.1 Modeling in Uninterpreted First-Order Logic
The first step in our verification methodology is to express the protocol as a transition system in

many-sorted uninterpreted first-order logic. This step involves some abstraction, since protocols

usually employ concepts that are not directly expressible in uninterpreted first-order logic.

3.1.1 Axiomatizing Interpreted Domains. One of the challenges we face is modeling an inter-

preted domain using uninterpreted first-order logic. Distributed algorithms often use values from

interpreted domains, the most common example being the natural numbers. These domains are

usually not precisely expressible in uninterpreted first order logic.

To express an interpreted domain, such as the natural numbers, in uninterpreted first-order

logic, we add a sort that represents elements of the interpreted domain, and uninterpreted symbols

to represent the interpreted symbols (e.g. a ≤ binary relation). We capture part of the intended
interpretation of the symbols by introducing axioms to the model. The axioms are a finite set of

first-order logic formulas that are valid in the interpreted domain. By adding them to the model, we

allow the proof of verification conditions to rely on these axioms. By using only axioms that are

valid in the interpreted domain, we guarantee that any invariant proved for the first-order model is

also valid for the actual system.

∀x . x ≤ x
∀x ,y,z. x ≤ y ∧ y ≤ z → x ≤ z
∀x ,y. x ≤ y ∧ y ≤ x → x = y
∀x ,y. x ≤ y ∨ y ≤ x

Fig. 1. Axiomatization of total order.

One important example for axioms expressible in first-order

logic is the axiomatization of total orders. In many cases, nat-

ural numbers are used as a way to enforce a total order on a

set of elements. In such cases, we can add a binary relation ≤,

along with the axioms listed in Fig. 1, which precisely capture

the properties of a total order.

3.1.2 Expressing Higher-Order Logic. Another hurdle to using first-order logic is the fact that

algorithms and their invariants often use sets and functions as first class values, e.g. by quantifying

over them, sending them in a message, etc. Consider an algorithm in which messages contain a set

of nodes as one of the message fields. Then, the set of messages sent so far (which may be part of

the state of the system) is a set of tuples, where one of the elements in the tuples is itself a set of

nodes. Similarly, messages may contain maps, which are naturally modeled by functions (e.g., a

message may contain a map from nodes to values). In such cases, the invariants needed to prove

the algorithms will usually include higher-order quantification.

While higher-order logic cannot be fully reduced to first-order logic, it is well-known that we

can partly express high-order concepts in first-order logic in the following way.

Sets. Suppose we want to express quantification over sets of nodes. We add a new sort called

nodeset, and a binary relation member : node,nodeset. We then use member(n,s ) instead of n ∈ s ,
and express quantification over sets of nodes as quantification over nodeset. Typically, we will

need to add first-order assumptions or axioms to correctly express the algorithm and to prove its

inductive invariant. For example, the algorithm may set s to the empty set as part of a transition.

We can translate this in the transition relation using ∀x : node.¬member(x ,s ′) (where s ′ is the
value of s after the transition).

Functions. Functions can be encoded as first-order elements in a similar way. Suppose messages

in the algorithm contain a map from nodes to values. In this case, we can add a new first-order

sort called map, and a function symbol apply : map,node→ value. Then, we can use apply(m,n)
instead ofm(n), and replace quantification over functions with quantification of the first-order

sort map. As before, we may need to add axioms that capture some of the intended second-order

meaning of the sort map.
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Verification Using EPR

Fig. 2. Flow chart of the methodology for verification using EPR. User provided inputs are depicted as

rectangles, automated procedures are depicted as hexagons, and automatically generated outputs are depicted

as ellipses. The original first-order logic modelM = (INIT,TR), and the original (first-order logic) inductive

invariant INV result in a quantifier alternation graph, which guides the process. The transformation to EPR is

carried in steps 1-4, detailed in Section 3.2. In step 1, the user provides definitions for derived relations. In step

2, update code is automatically generated, resulting inMu = (INITu ,TRu ). In step 3, the user provides rewrites
that use the derived relations, as well as an auxiliary inductive invariant to prove the soundness of the rewrites.

An automated procedure first checks the soundness of the rewrites (and provides a counterexample in case

they are unsound, or a counterexample to induction if the auxiliary inductive invariant is not inductive), and

then outputs the transformed model M̂ = (ÎNIT, T̂R). In step 4, the user provides an inductive invariant ÎNV
that proves safety of the transformed model, and an automated check either verifies the inductiveness or

provides a counterexample to induction.

While this encoding is sound (as long as we only use axioms that are valid in the higher-order

interpretation), it cannot be made complete due to the limitation of first-order logic. However, we

did not experience this incompleteness to be a practical hurdle for verification in first-order logic.

3.1.3 Semi-Bounded Verification. Given a transition system in first-order logic with a candidate

inductive invariant, it may still be undecidable to check the resulting verification condition. However,

bounded verification is decidable, and extremely useful for debugging the model before continuing

with the efforts of unbounded verification. Contrary to the usual practice of bounding the number of

elements in each sort for bounded verification, we use the quantifier alternation graph to determine

only a subset of the sorts to bound in order to make verification decidable. We call this procedure

semi-bounded verification, and it follows from the observation that whenever we make a sort

bounded, we can remove its node from the quantifier alternation graph. When the resulting graph

becomes acyclic, satisfiability is decidable without bounding the sizes of the remaining sorts.

3.2 Transformation to EPR Using Derived Relations
The second step in our methodology for decidable unbounded verification is to transform the

model expressed in first-order logic to a model that has an inductive invariant whose verification

condition is in EPR, and is therefore decidable to check. The methodology is manual, but following

it ensures soundness of the verification process. The key idea is to use derived relations to simplify

the transition relation and the inductive invariant. Derived relations extend the state of the system

and are updated in its transitions. Derived relations are somewhat analogous to ghost variables.

However there are two key differences. First, derived relations are typically not used to record the

history of an execution. Instead, they capture properties of the current state in a way that facilitates
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verification using EPR. Second, derived relations are not only updated in the transitions, but can

also affect them.

The transformation of the model using derived relations is conducted in steps, as detailed below.

The various steps are depicted in Fig. 2. The inputs provided by the user are depicted by rectangles,

while the automated procedures are depicted as hexagons, and their outputs are depicted as ellipses.

As illustrated by the figure, the user is guided by the quantifier alternation graph of the verification

conditions.

In the sequel, we fix a model over a vocabulary Σ and let INIT and TR denote its initial condition

and transition relation, respectively.

(1) Defining a derived relation. In the first, and most creative part of the process, the user identifies

an existentially quantified formulaψ (x̄ ) that will be captured by a derived relation r (x̄ ). The selection
ofψ is guided by the quantifier alternation graph of the verification condition, with the purpose of

eliminating cycles it contains. Quantifier alternations in the verification condition originate both

from the model and the inductive invariant. As we shall see, using r will allow us to eliminate some

quantifier alternations. As an example for demonstrating the next steps, consider a program defined

with a binary relation p, and let r (x ) be a derived relation capturing the formulaψ (x ) = ∃y.p (x ,y).

(2) Trackingψ by r . This step automatically extends the model into a model (INITu ,TRu ) over
vocabulary Σ̂ = Σ∪ {r } which makes the same transitions as before, but also updates r to captureψ .

Formally, the transformed model (INITu ,TRu ) over Σ̂ is obtained by adding: (i) an initial condition

that initializes r , and (ii) update code that modifies r whenever the relations mentioned in ψ are

modified. The initial condition and update code are automatically generated in a way that guarantees

that the following formula is an invariant of (INITu ,TRu ):

∀x̄ . r (x̄ ) ↔ ψ (x̄ ). (1)

We call this invariant the representation invariant of r . Our scheme for automatically obtaining

(INITu ,TRu ) and the class of formulasψ that it supports, are discussed in Section 3.3. In our example,

suppose that initially p is empty. Then, the resulting model would initialize r to be empty as well.

For an action that inserts a pair (a,b) to p, the resulting model would contain update code that

inserts a to r .

(3) Rewriting the transitions using r . In this step, the user exploits r to eliminate quantifier

alternations in the verification condition by rewriting the system’s transitions, obtaining a model

(ÎNIT, T̂R) defined over Σ̂. The idea is to rewrite the transitions in a way that ensures that the

reachable states are unchanged, while eliminating quantifier alternations. This is done by rewriting

some program conditions used in assume commands in the code (e.g., to use r instead ofψ , but
other rewrites are also possible). The vocabulary of the model does not change further in this step,

nor does the initial condition (i.e., ÎNIT = INITu ).
While the rewrites are performed by the user, we automatically check that the effect of the

modified commands on the reachable states remains the same (under the assumption of the

representation invariant). Suppose the user rewrites assume φ to assume φ̂. The simplest way

to ensure this has the same effect on the reachable states is to check that the following rewrite
condition is valid: φ ↔ φ̂ [ψ (x̄ ) / r (x̄ )]. This condition guarantees that the two formulas φ and φ̂ are

equivalent in any reachable state, due to the representation invariant. In some cases, the rewrite is

such that φ̂ [ψ (x̄ ) / r (x̄ )] is syntactically identical to φ, which makes the rewrite condition trivial.

However, to allow greater flexibility in rewriting the code, we allow using an EPR check to verify

the rewrite condition, and also relax the condition given above in two ways. First, we observe

that it suffices to verify the equivalence of subformulas of φ that were modified by the rewrite.
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Formally, if φ is syntactically identical to φ̂
[
θ1 (ȳ1) / θ̂1 (ȳ1), . . . ,θk (ȳk ) / θ̂k (ȳk )

]
, then to establish

the rewrite condition, it suffices to prove that for every 1 ≤ i ≤ k the following equivalence is valid:

θi ↔ θ̂i [ψ (x̄ ) / r (x̄ )]. (The case where φ was completely modified is captured by the case where

k = 1, φ = θ1 and φ̂ = θ̂1.) Second, and more importantly, recall that we are only interested in

preserving the transitions from reachable states of the system. Thus, we allow the user to provide

an auxiliary invariant INVaux (by default INVaux = true) which is used to prove that the reachable

transitions remain unchanged after the transformation. Technically, this is done by automatically

checking that

(i) INVaux is an inductive invariant of (INIT,TR), and
(ii) the following rewrite condition holds for every 1 ≤ i ≤ k :

INVaux ∧ д |= θi ↔ θ̂i [ψ (x̄ ) / r (x̄ )], (2)

where д captures additional conditions that guard the modified assume command (д is auto-

matically computed from the program).

These conditions guarantee that the two formulas φ and φ̂ are equivalent whenever the modified

assume command is executed. To ensure that these checks can be done automatically, we require

that the corresponding formulas are in EPR. We note that verifying INVaux for (INIT,TR) can be

possible in EPR even in cases where verifying safety of (INIT,TR) is not in EPR, since INVaux can

be weaker (and contain less quantifier alternations) than an invariant that proves safety.

In our example, suppose the program contains the command assume ∃y.p (a,y). Then we

could rewrite it to assume r (a). For a more sophisticated example, suppose that the program

contains the command assume ∃y.p (a,y) ∧ q(a,y), and suppose this command is guarded by

the condition u (a) (i.e., the assume only happens if u (a) holds). Suppose further that we can

verify that INVaux = ∀x ,y.u (x ) ∧ p (x ,y) → q(x ,y) is an invariant of the original system. Then we

could rewrite the assume command as assume r (a) since (∀x ,y.u (x ) ∧ p (x ,y) → q(x ,y))∧u (a) |=
(∃y.p (a,y) ∧ q(a,y)) ↔ ∃y.p (a,y).

(4) Providing an inductive invariant. Finally, the user proves the safety of the transformed model

(ÎNIT, T̂R) by providing an inductive invariant ÎNV for it, whose verification condition will be in

EPR. Usually this is composed of: (i) Using r in the inductive invariant as a substitute to usingψ .
The point here is that usingψ would introduce quantifier alternations, and using r instead avoids

them. In our example, the safety proof might require the property that ∀x .u (x ) → ∃y.p (x ,y),
and using r we can express this as ∀x .u (x ) → r (x ). (ii) Letting the inductive invariant express

some properties that are implied by the representation invariant. Note that expressing the full

representation invariant would typically introduce quantifier alternations that break stratification.

However, some properties implied by it may still be expressible while keeping the verification

condition in EPR. In our example, we may add ∀x ,y.p (x ,y) → r (x ) to the inductive invariant. Note
that adding ∀x . r (x ) → ∃y.p (x ,y) to the inductive invariant would make the verification condition

outside of EPR.

Given (ÎNIT, T̂R) and ÎNV, we can now automatically derive the verification conditions in EPR

and check that they hold. The following theorem summarizes the soundness of the approach:

Theorem 3.1 (Soundness). Let (INIT,TR) be a model over vocabulary Σ, and P be a safety property
over Σ. If (ÎNIT, T̂R) is a model obtained by the above procedure, and ÎNV is an inductive invariant for
it such that ÎNV |= P , then P holds in all reachable states of (INIT,TR).

Proof Sketch. Let B = {(s, ŝ ) | s ∈ R ∧ ŝ ∈ R̂ ∧ ŝ |Σ = s}, where R and R̂ denote the reachable

states of (INIT,TR) and (ÎNIT, T̂R) respectively, and ŝ |Σ denotes the projection of a state ŝ (defined
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over Σ̂) to Σ. Steps 2 and 3 of the transformation above ensure that B is a bisimulation relation

between (INIT,TR) and (ÎNIT, T̂R), i.e., every transition possible in the reachable states of one of

these systems has a corresponding transition in the other. This ensures that (ÎNIT, T̂R) has the
same reachable states as (INIT,TR), up to the addition of relation r . Therefore, any safety property

expressed over Σ which is verified to hold in (ÎNIT, T̂R) also holds in (INIT,TR). □

As shown in the proof of Theorem 3.1, the transformed model (ÎNIT, T̂R) is bisimilar to the

original model. While this ensures that both are equivalent w.r.t. to the safety property, note that

we check safety by checking inductiveness of a candidate invariant. Unlike safety, inductiveness is

not necessarily preserved by the transformation. Namely, given a candidate inductive invariant

ÎNV which is not inductive for (ÎNIT, T̂R), the counterexample to induction cannot in general be

transformed to the original model, as it might depend on the derived relations and the rewritten

assume commands. An example of this phenomenon appears in Section 6.2.

Using the methodology. Our description above explains a final successful verification using the

proposed methodology. As always, obtaining this involves a series of attempts, where in each

attempt the user provides the verification inputs, and gets a counterexample. Each counterexample

guides the user to modify the verification inputs, until eventually verification is achieved. As

depicted in Fig. 2, with the EPR verification methodology, the user provides 5 inputs, and could

obtain 3 kinds of counterexamples. The inputs are the model, the derived relations, the rewrites, the

auxiliary invariant for proving the soundness of the rewrites, and finally the inductive invariant for

the resulting model. The possible counterexamples are either a counterexample to inductiveness

(CTI) for the auxiliary invariant and the original model, or a counterexample to the soundness of

the rewrite itself, or a CTI for the inductive invariant of the transformed model. After obtaining any

of the 3 kinds of counterexamples, the user can modify any one of the 5 inputs. For example, a CTI

for the inductive invariant of the transformed model may be eliminated by changing the inductive

invariant itself, but it may also be overcome by an additional rewrite, which in turn requires an

auxiliary invariant for its soundness proof. Indeed, we shall see an example of this in Section 6.2.

The task of managing the inter-dependence between the 5 verification inputs may seem daunting,

and indeed it requires some expertise and creativity from the user. This is expected, since the inputs

from the user reduce the undecidable problem of safety verification to decidable EPR checks. This

burden on the user is eased by the fact that for every input, the user always obtains an answer from

the system, either in the form of successful verification, or in the form of a finite counterexample,

which is displayed graphically and guides the user towards the solution. Furthermore, our experience

shows that most of the creative effort is reusable across similar protocols. In the verification of all

the variants of Paxos we consider in this work, we use the same two derived relations and very

similar rewrites (as explained in Sections 6 and 8).

Incompleteness of EPR verification. While the transformation using a given set of derived relations

and rewrites results in a bisimilar transition system, the methodology for EPR verification is not

complete. This is expected, as there can be no complete proof system for safety in a formalism

that is Turing-complete. For the EPR verification methodology, the incompleteness can arise from

several sources. It may happen that after applying the transformation, the resulting transition

system, while safe, cannot be verified with an inductive invariant that results in EPR verification

conditions. Another potential source for incompleteness is our requirement that the rewrites should

also be verified in EPR. It can be the case that a certain (sound) rewrite leads to a system that can

be verified using EPR, but the soundness of the rewrite itself cannot be verified using EPR. Another

potential source of incompleteness can be the inability to express sufficiently powerful axioms

about the underlying domain. We note that the three mentioned issues interact with each other, as
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it may be the case that a certain axiom is expressible in first-order logic, but it happens to introduce

a quantifier alternation cycle, when considered together with either the inductive invariant or the

verification conditions for the rewrites.

We consider developing a proof-theoretic understanding of which systems can and cannot be

verified using EPR to be an intriguing direction for future investigation. We are encouraged by the

fact that in practice, the proposed methodology has proven itself to be powerful enough to verify

Paxos and its variants considered in this work.

Multiple derived relations. For simplicity, the description above considered a single derived

relation. In practice, we usually add multiple derived relations, where each one captures a different

formula. The methodology remains the same, and each derived relation allows us to transform

the model and eliminate more quantifier alternations, until the resulting model can be verified

in EPR. In this case, the resulting inductive invariant may include properties implied by the

representation invariants of several relations and relate them directly. For example, suppose we add

the following derived relations: r1 (x ) defined byψ1 (x ) = ∃y.p (x ,y), and r2 (x ) defined byψ2 (x ) =
∃y,z.p (x ,y) ∧ p (y,z). Then, the inductive invariant may include the property: ∀x . r2 (x ) → r1 (x ).

Overapproximating the reachable states. Our methodology ensures that the transformed model

is bisimilar to the original model. It is possible to generalize our methodology and only require

that the modified model simulates the original model, which maintains soundness. This may allow

more flexibility both in the update code and in the manual rewrites performed by the user.

3.3 Automatic Generation of Update Code
In this subsection, we describe a rather naïve scheme for automatic generation of initial condition

and update code for derived relations, which suffices for verification of the Paxos variants considered

in this paper.We refer the reader to, e.g., [Paige and Koenig 1982; Reps et al. 2010], for more advanced

techniques for generation of update code for derived relations.

We limit the formulaψ (x̄ ) which defines a derived relation r (x̄ ) to have the following form:

ψ (x1, . . . ,xn ) = ∃y1, . . . ,ym . φ (x1, . . . ,xn ,y1, . . . ,ym ) ∧ p (xi1 , . . . ,xik ,y1, . . . ,ym )

where φ is a quantifier-free formula, p is a relation symbol and xi j ∈ {x1, . . . ,xn } for every 1 ≤ j ≤ k .
Note that p occurs positively, and that it depends on some (possibly none) of the variables xi and
all of the variables yi . Our scheme further requires that the relations appearing in φ are never

modified, and that p is initially empty and only updated by inserting a single tuple at a time
3
.

Since p is initially empty, the initial condition for r (x̄ ) is that it is empty as well, i.e.:

∀x1, . . . ,xn . ¬r (x1, . . . ,xn ).

The only updates allowed for p are insertions of a single tuple by a command of the form:

p (xi1 , . . . ,xik ,y1, . . . ,ym ) := p (xi1 , . . . ,xik ,y1, . . . ,ym ) ∨ *.
,

k∧
j=1

xi j = aj ∧
m∧
j=1

yj = bj
+/
-
.

For such an update, we generate the following update for r (x̄ ):

r (x1, . . . ,xn ) := r (x1, . . . ,xn ) ∨
*.
,
φ (x1, . . . ,xn ,b1, . . . ,bm ) ∧

k∧
j=1

xi j = aj
+/
-
.

3
These restrictions can be relaxed, e.g., to support removal of a single tuple or addition of multiple tuples. However, such

updates were not needed for verification of the protocols considered in this paper, so for simplicity of the presentation we

do not handle them.
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Notice that the update code translates to a purely universally quantified formula, sinceφ is quantifier-

free, so it does not introduce any quantifier alternations.

Lemma 3.2. The above scheme results in a model which maintains the representation invariant:
∀x̄ . r (x̄ ) ↔ ψ (x̄ ).

Proof Sketch. The representation invariant is an inductive invariant of the resulting model. Ini-

tiation is trivial, since bothp and r are initially empty. Consecution follows from the following, which

is valid in first-order logic: (∀x̄ .r (x̄ ) ↔ ψ (x̄ )) ∧
(
∀w̄ ,ȳ.p ′(w̄ ,ȳ) ↔ p (w̄ ,ȳ) ∨ (w̄ = ā ∧ ȳ = ¯b)

)
∧(

∀x̄ .r ′(x̄ ) ↔ r (x̄ ) ∨
(
φ (x̄ , ¯b) ∧

∧k
j=1

xi j = aj
))
|= (∀x̄ .r ′(x̄ ) ↔ ψ ′(x̄ )). □

4 INTRODUCTION TO PAXOS
A popular approach for implementing distributed systems is state-machine replication (SMR)

[Schneider 1990], where a (virtual) centralized sequential state machine is replicated across many

nodes (processors), providing fault-tolerance and exposing to its clients the familiar semantics of

a centralized state machine. SMR can be thought of as repeatedly agreeing on a command to be

executed next by the state machine, where each time agreement is obtained by solving a consensus
problem. In the consensus problem, a set of nodes each propose a value and then reach agreement

on a single proposal.

The Paxos family of protocols is widely used in practice for implementing SMR. Its core is the

Paxos consensus algorithm [Lamport 1998, 2001]. A Paxos-based SMR implementation executes a

sequence of Paxos consensus instances, with various optimizations. The rest of this section explains

the Paxos consensus algorithm (whose verification in EPR we discuss in Sections 5 and 6). We

return to the broader context of SMR in Section 8.

Setting. We consider a fixed set of nodes, which operate asynchronously and communicate

by message passing, where every node can send a message to every node. Messages can be lost,

duplicated, and reordered, but they are never corrupted. Nodes can fail by stopping, but otherwise

faithfully execute their algorithm. A stop failure of a node can be captured by a loss of all messages

to and from this node. Nodes must solve the consensus problem: each node has a value to propose

and all nodes must eventually decide on a unique value among the proposals.

Paxos consensus algorithm. We assume that nodes in the Paxos consensus algorithm can all

propose values, vote for values, and learn about decisions. The algorithm operates in a sequence of

numbered rounds in which nodes can participate. At any given time, different nodes may operate

in different rounds, and a node stops participating in a round once it started participating in a

higher round. Each round is associated with a single node that is the owner of that round. This
association from rounds to nodes is static and known to all nodes.

Every round represents a possibility for its owner to propose a value to the other nodes and

get it decided on by having a quorum of the nodes vote for it in the round. Quorums are sets of

nodes such that any two quorums intersect (e.g., sets consisting of a strict majority of the nodes).

To avoid the algorithm being blocked by the stop failure of a node which made a proposal, any

node can start one of its rounds and make a new proposal in it at any time (in particular, when

other rounds are still active) by executing the following two phases:

phase 1. The owner p of round r starts the round by communicating with the other nodes to

have a majority of them join round r , and to determine which values are choosable in lower

rounds than r , i.e., values that might have or can still be decided in rounds lower than r .
phase 2. If a value v is choosable in r ′ < r , in order not to contradict a potential decision in

r ′, node p proposes v in round r . If no value is choosable in any r ′ < r , then p proposes a
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value of its choice in round r . If a majority of nodes vote in round r for p’s proposal, then it

becomes decided.

Note that it is possible for different values to be proposed in different rounds, and also for several

decisions to be made in different rounds. Safety is guaranteed by the fact that (by definition of

choosable) a value can be decided in a round r ′ < r only if it is choosable in r ′, and that if a value v
is choosable in round r ′ < r , then a node proposing in r will only propose v . The latter relies on
the property that choosable values from prior rounds cannot be missed. Next, we describe in more

detail what messages the nodes exchange and how a node makes sure not to miss any choosable

value from prior rounds.

Phase 1a: The owner p of round r sends a “start-round” message, requesting all nodes to join

round r .
Phase 1b: Upon receiving a request to join round r , a node will only join if it has not yet joined a

higher round. If it agrees to join, it will respond with a “join-acknowledgment” message that will

also contain its maximal vote so far, i.e., its vote in the highest round prior to r , or ⊥ if no such

vote exists. By sending the join-acknowledgment message, the node promises that it will not join

or vote in any round smaller than r .
Phase 2a: Afterp receives join-acknowledgment messages from a quorum of the nodes, it proposes

a value v for round r by sending a “propose” message to all nodes. Node p selects the value v
by taking the maximal vote reported by the nodes in their join-acknowledgment messages, i.e.,

the value that was voted for in the highest round prior to r by any of the nodes whose join-

acknowledgment messages formed the quorum. As we will see, only this value can be choosable in

any r ′ < r out of all proposals from lower rounds. If all of these nodes report they have not voted

in any prior round, then p may propose any value.

Phase 2b: Upon receiving a propose message proposing value v for round r , a node will ignore
it if it already joined a round higher than r , and otherwise it will vote for it, by sending a vote

message to all nodes. Whenever a quorum of nodes vote for a value in some round, this value is

considered to be decided. Nodes learn this by observing the vote messages.

Note that a node can successfully start a new round or get a value decided only if at least one

quorum of nodes is responsive. When quorums are taken to be sets consisting of a strict majority

of the nodes, this means Paxos tolerates the failure of at most ⌊n/2⌋ nodes, where n is the total

number of nodes. Moreover, Paxos may be caught in a live-lock if nodes keep starting new rounds

before any value has a chance to be decided on.

5 PAXOS IN FIRST-ORDER LOGIC
The first step of our verification methodology is to model the Paxos consensus algorithm as a

transition system in many-sorted first-order logic over uninterpreted domains. This section explains

our model, listed in Fig. 3, as well as its safety proof via an inductive invariant.

5.1 Model of the Protocol
Our model of Paxos involves some abstraction. Since each round r has a unique owner that will
exclusively propose in r , we abstract away the owner node and treat the round itself as the proposer.
We also abstract the mechanism by which nodes receive the values up for proposal, and allow them

to propose arbitrary values.

Additional abstractions are needed as some aspects of the protocol cannot be fully expressed

in uninterpreted first-order logic. One such aspect is the fact that round numbers are integers, as

arithmetic cannot be fully captured in first-order logic. Another aspect which must be abstracted is
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1 sort node, quorum, round, value

2

3 relation ≤ : round, round

4 axiom total_order(≤)

5 constant ⊥ : round

6

7 relation member : node, quorum
8 axiom ∀q1, q2 : quorum. ∃n : node.member(n, q1 ) ∧member(n, q2 )
9

10 relation start_round_msg : round
11 relation join_ack_msg : node, round, round, value
12 relation propose_msg : round, value
13 relation vote_msg : node, round, value
14 relation decision : node, round, value

15

16 init ∀r . ¬start_round_msg(r )
17 init ∀n, r1, r2,v . ¬join_ack_msg(n, r1, r2,v )
18 init ∀r ,v . ¬propose_msg(r ,v )
19 init ∀n, r ,v . ¬vote_msg(n, r ,v )
20 init ∀n, r ,v . ¬decision(n, r ,v )
21

22 action start_round(r : round) {
23 assume r , ⊥
24 start_round_msg(r) := true

25 }

26 action join_round(n : node, r : round) {
27 assume r , ⊥
28 assume start_round_msg(r)
29 assume ¬∃r ′, r ′′,v . r ′ > r ∧ join_ack_msg(n, r ′, r ′′,v )
30 # find maximal round in which n voted, and the corresponding vote.

31 # maxr = ⊥ and v is arbitrary when n never voted.

32 local maxr, v := max {(r ′,v ′) | vote_msg(n, r ′,v ′) ∧ r ′ < r}

33 join_ack_msg(n, r,maxr, v) := true

34 }

35 action propose(r : round, q : quorum) {
36 assume r , ⊥
37 assume ∀v . ¬propose_msg(r,v )
38 # 1b from quorum q

39 assume ∀n . member(n, q) → ∃r ′,v . join_ack_msg(n, r, r ′,v )
40 # find the maximal round in which a node in the quorum reported

41 # voting, and the corresponding vote.

42 # v is arbitrary if the nodes reported not voting.

43 local maxr, v := max {(r ′,v ′) | ∃n . member(n, q)
44 ∧join_ack_msg(n, r, r ′,v ′) ∧ r ′ , ⊥}
45 propose_msg(r, v) := true # propose value v

46 }

47 action vote(n : node, r : round, v : value) {
48 assume r , ⊥
49 assume propose_msg(r, v)
50 assume ¬∃r ′, r ′′,v . r ′ > r ∧ join_ack_msg(n, r ′, r ′′,v )
51 vote_msg(n, r, v) := true

52 }

53 action learn(n : node, r : round, v : value, q : quorum) {
54 assume r , ⊥
55 # 2b from quorum q

56 assume ∀n . member(n, q) → vote_msg(n, r, v)
57 decision(n, r, v) := true

58 }

Fig. 3. Model of Paxos consensus algorithm as a

transition system in many-sorted first-order logic.

Fig. 4. Quantifier alternation graph for EPR

model of Paxos. The graph is obtained for the

model of Fig. 5, and the inductive invariant

given by the conjunction of eqs. (4) to (10)

and (13) to (15). The ∀∃ edges come from:

(i) the quorum axiom (Fig. 3 line 8) - edge

from quorum to node; (ii) eq. (7) – edges from

round and value to quorum, and an edge from

quorum to node (from the negation of the in-

ductive invariant in the VC); and (iii) eq. (13) –

edges from round, value and quorum to node.

1 relation left_round : node, round
2 relation joined_round : node, round
3

4 init ∀n, r . ¬left_round(n, r )
5 init ∀n, r . ¬joined_round(n, r )
6

7 action join_round(n : node, r : round) {
8 assume r , ⊥
9 assume start_round_msg(r)
10 assume ¬left_round(n, r ) # rewritten
11 local maxr, v := max {(r ′,v ′) |
12 vote_msg(n, r ′,v ′) ∧ r ′ < r}

13 join_ack_msg(n, r,maxr, v) := true

14 # generated update code for derived relations:

15 left_round(n, R ) := left_round(n, R ) ∨ R < r

16 joined_round(n, r) := true

17 }

18 action propose(r : round, q : quorum) {
19 assume r , ⊥
20 assume ∀v . ¬propose_msg(r,v )
21 # rewritten to aviod quantifier alternation

22 assume ∀n . member(n, q) → joined_round(n, r)
23 # rewritten to use vote_msg instead of join_ack_msg
24 local maxr, v := max {(r ′,v ′) | ∃n . member(n, q)
25 ∧vote_msg(n, r ′,v ′) ∧ r ′ < r}

26 propose_msg(r, v) := true

27 }

28 action vote(n : node, r : round, v : value) {
29 assume r , ⊥
30 assume propose_msg(r, v)
31 assume ¬left_round(n, r) # rewritten
32 vote_msg(n, r, v) := true

33 }

Fig. 5. Changes to the Paxos model that allow

verification in EPR. Declarations that appear in

Fig. 3 are omitted, as well as the learn action

which is left unmodified.
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the use of sets of nodes as quantification over sets is also beyond first-order logic. We model these

aspects according to the principles of Section 3.1:

Sorts and Axioms. We use the following four uninterpreted sorts: (i) node - to represent nodes of

the system, (ii) value - to represent the values subject to the consensus algorithm, (iii) round - to

model the rounds of Paxos, and (iv) quorum - to model sets of nodes with pairwise intersection in

a first-order abstraction. While nodes and values are naturally uninterpreted, the rounds and the

quorums are uninterpreted representations of interpreted concepts: integers and sets of nodes that

intersect pairwise, respectively. We express some features that come from the desired interpretation

using relations and axioms.

For rounds, we include a binary relation ≤, and axiomatize it to be a total order (Fig. 1). Our model

also includes a constant ⊥ of sort round, which represents a special round that is not considered an

actual round of the protocol, and instead serves as a special value used in the join-acknowledgment

(1b) message when a node has not yet voted for any value. Accordingly, any action assumes that

the round it involves is not ⊥.

The quorum sort is used to represent sets of nodes that contain strictly more than half of the

nodes. As explained in Section 3.1, we introduce a membership relation between nodes and quorums.

An important property for Paxos is that any two quorums intersect. We capture this with an axiom

in first-order logic (Fig. 3 line 8).

State. The state of the protocol consists of the set of messages the nodes have sent. We represent

these using relations, where each tuple in a relation corresponds to a single message. The relations

start_round_msg, join_ack_msg, propose_msg, vote_msg correspond to the 1a, 1b, 2a, 2b phases of

the algorithm, respectively. In modeling the algorithm, we assume all messages are sent to all nodes,

so the relations do not contain destination fields. Note that recording messages via relations (i.e.,

sets) is an abstraction of the network but it is consistent with the messaging model we assume, in

which messages may be lost, duplicated, and reordered. The decision relation captures the decisions

learned by the nodes.

Actions. The different atomic steps taken by the nodes in the protocol are modeled using actions.

The start_round action models phase 1a of the protocol, sending a start round message to all

nodes. The join_round action models the receipt of a start round message and the transmission of a

join-acknowledgment (1b) message. The propose action models the receipt of join-acknowledgment

(1b) messages from a quorum of nodes, and the transmission of a propose (2a) message which

proposes a value for a round. The vote action models the receipt of a propose (2a) message by

a node, and voting for a value by sending a vote (2b) message. Finally, the learn action models

learning a decision by node n, when it is voted for by a quorum of nodes.

In these actions, sending a message is expressed by inserting the corresponding tuple to the

corresponding relation. Different conditions (e.g., not joining a round if already joined higher round,

properly reporting the previous votes, or appropriately selecting the proposed value) are expressed

using assume statements. To prepare a join-acknowledgment message in join_round, as well as

to propose a value in propose, a node needs to compute the maximal vote (performed by it or

reported to it, respectively). This is done by a max operation (line 32 and line 44) which operates

with respect to the order on rounds, and returns the round ⊥ and an arbitrary value in case the

set is empty. The r ,v := max

{
(r ′,v ′) | φ (r ′,v ′)

}
operation is syntactic sugar for an assume of the

following formula:

(r = ⊥ ∧ ∀r ′,v ′. ¬φ (r ′,v ′)) ∨ (r , ⊥ ∧ φ (r ,v ) ∧ ∀r ′,v ′. φ (r ′,v ′) → r ′ ≤ r ). (3)

Note that if φ is a purely existentially quantified formula, then eq. (3) is alternation-free.
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5.2 Inductive Invariant
The key safety property we wish to verify about Paxos is that only a single value can be decided

(it can be decided at multiple rounds, as long as it is the same value). This is expressed by the

following universally quantified formula:

∀n1,n2 : node,r1,r2 : round,v1,v2 : value. decision(n1,r1,v1) ∧ decision(n2,r2,v2) → v1 = v2 (4)

While the safety property holds in all the reachable states of the protocol, it is not inductive.

That is, assuming that it holds is not sufficient to prove that it still holds after an action is taken. For

example, consider a state s in which decision(n1,r1,v1) holds and there is a quorum q of nodes such

that, for every node n in q, vote_msg(n,r2,v2) holds, with v2 , v1. Note that the safety property

holds in s . However, a learn action introduces a transition from state s to a state s ′ in which both

decision(n2,r1,v1) and decision(n2,r2,v2) hold, violating the safety property. This counterexample

to induction does not indicate a violation of safety, but it indicates that the safety property needs

to be strengthened in order to obtain an inductive invariant. We now describe such an inductive

invariant.

Our inductive invariant contains, in addition to the safety property, the following rather simple

statements that are maintained by the protocol and are required for inductiveness:

∀r : round,v1,v2 : value. propose_msg(r ,v1) ∧ propose_msg(r ,v2) → v1 = v2 (5)

∀n : node,r : round,v : value. vote_msg(n,r ,v ) → propose_msg(r ,v ) (6)

∀r : round,v : value.

(∃n : node. decision(n,r ,v )) → ∃q : quorum.∀n : node. member(n,q) → vote_msg(n,r ,v ) (7)

Equation (5) states that there is a unique proposal per round. Equation (6) states that a vote for

v in round r is cast only when a proposal for v has been made in round r . Equation (7) states

that a decision for v is made in round r only if a quorum of nodes have voted for v in round r . In
addition, the inductive invariant restricts the join-acknowledgment messages so that they faithfully

represent the maximal vote (up to the joined round), or ⊥ if there are no votes so far, and also

asserts that there are no actual votes at round ⊥:

∀n : node, r ,r ′ : round, v,v ′ : value. join_ack_msg(n,r ,⊥,v ) ∧ r ′ < r → ¬vote_msg(n,r ′,v ′) (8)

∀n : node, r ,r ′ : round, v : value. join_ack_msg(n,r ,r ′,v ) ∧ r ′ , ⊥ → r ′ < r ∧ vote_msg(n,r ′,v ) (9)

∀n : node, r ,r ′,r ′′ : round, v,v ′ : value.

join_ack_msg(n,r ,r ′,v ) ∧ r ′ , ⊥ ∧ r ′ < r ′′ < r → ¬vote_msg(n,r ′′,v ′)
(10)

∀n : node,v : value. ¬vote_msg(n,⊥,v ) (11)

The properties stated so far are rather straightforward, and are usually not even mentioned in

paper proofs or explanations of the protocol. The key to the correctness argument of the protocol

is the observation that when the owner of round r2 proposes a value in r2, it cannot miss any value

that is choosable at a lower round: whenever a value v2 is proposed at round r2, then in all rounds

r1 prior to r2, no other value v1 , v2 is choosable. The property that no v1 , v2 is choosable at r1 is

captured in the inductive invariant by the requirement that in any quorum of nodes, there must be

at least one node that has already left round r1 (i.e., joined a higher round), and did not vote for v1

at r1 (and hence will also not vote for it in the future). Formally, this is:

∀r1,r2 : round,v1,v2 : value,q : quorum. propose_msg(r2,v2) ∧ r1 < r2 ∧v1 , v2 →

∃n : node,r ′,r ′′ : round,v : value. member(n,q) ∧ ¬vote_msg(n,r1,v1) ∧ r
′ > r1 ∧ join_ack_msg(n,r ′,r ′′,v )

(12)

The fact that this property is maintained by the protocol is obtained by the proposal mechanism

and the interaction between phase 1 and phase 2 (see [Padon et al. 2017] for a detailed explanation).
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Equations (4) to (12) define an inductive invariant that proves the safety of the Paxos model of

Fig. 3. However, the verification condition for this inductive invariant contains cyclic quantifier

alternations, and is therefore outside of EPR. We now review the quantifier alternations in the

verification condition, which originate both from the model and from the inductive invariant.

In the model, the axiomatization of quorums (Fig. 3 line 8) introduces a ∀∃-edge from quorum to

node. In addition, the assumption in the propose action that join-acknowledgment messages were

received from a quorum of nodes (line 39) introduces ∀∃-edges from node to round and from node

to value.

In the inductive invariant, only eqs. (7) and (12) include quantifier alternations (the rest are

universally quantified). Equation (7) has quantifier structure ∀round,value∃quorum∀node4. Note
that the inductive invariant appears both positively and negatively in the verification condition,

so eq. (7) adds ∀∃-edges from round to quorum and from value to quorum (from the positive

occurrence), as well as an edge from quorum to node (from the negative occurrence). While

the latter coincides with the edge that comes from the quorum axiomatization (line 8), the for-

mer edges closes a cycle in the quantifier alternation graph. Equation (12) has quantifier prefix

∀round,value,quorum∃node,round,value. Thus, it introduces 9 edges in the quantifier alternation

graph, including self-loops at round and value. In conclusion, while the presented model in first-

order logic has an inductive invariant in first-order logic, the resulting verification condition is

outside of EPR.

6 PAXOS IN EPR
The quantifier alternation graph of the model of Paxos described in Section 5 contains cycles. To

obtain a safety proof of Paxos in EPR, we apply the methodology described in Section 3 to transform

this model in a way that eliminates the cycles from the quantifier alternation graph. The resulting

changes to the model are presented in Fig. 5, and the rest of this section explains them step by step.

6.1 Derived Relation for Left Rounds
We start by addressing the quantifier alternation that appears in eq. (12) as part of the inductive in-

variant. We observe that the following existentially quantified formula appears both as a subformula

there, and in the conditions of the join_round and the vote actions (Fig. 3 lines 29 and 50):

ψ1 (n,r ) = ∃r
′,r ′′ : round,v : value. r ′ > r ∧ join_ack_msg(n,r ′,r ′′,v )

This formula captures the fact that noden has joined a round higher than r , which means it promises

to never participate in round r in any way, i.e., it will neither join nor vote in round r . We add a

derived relation called left_round to captureψ1, so that left_round(n,r ) captures the fact that node
n has left round r . The formulaψ1 is in the class of formulas handled by the scheme described in

Section 3.3, and thus we obtain the initial condition and update code for left_round. The result
appears in Fig. 5 lines 4 and 15.

Rewriting (steps 3+4). Using the left_round relation, we rewrite the conditions of the join_round
and vote actions (Fig. 5 lines 10 and 31). These rewrites are trivially sound as explained in Section 3.2

(with a trivial rewrite condition). We also rewrite eq. (12) as:

∀r1,r2 : round,v1,v2 : value,q : quorum. propose_msg(r2,v2) ∧ r1 < r2 ∧v1 , v2 →

∃n : node, member(n,q) ∧ ¬vote_msg(n,r1,v1) ∧ left_round(n,r1)
(13)

Equation (13) contains less quantifer alternations than eq. (12), and it will be part of the inductive

invariant that will eventually be used to prove safety.

4
The local existential quantifier in (∃n : node.decision(n, r ,v )) does not affect the quantifier alternation graph.
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Fig. 6. Counterexample to induction of EPR model of Paxos after the first attempt. The counterexample con-

tains one node n1 (depicted as square), two rounds r1 < r2 (depicted as circles), two values v1,v2, and a single

quorum (that contains n1). The figure displays the the join_ack_msg, joined_round, propose_msg, vote_msg
relations, as well as the < relation (derived from ≤). The action occurring in the counterexample is propose,

where an arbitrary value is proposed for r2, even though node n1 voted for v1 in r1. This erroneous behavior

occurs due to the fact that the representation invariant of joined_round is violated in the pre-state of the

counterexample: joined_round(n1,r2) holds, eventhough there is no corresponding join_ack_msg entry. This
allows a propose action to erroneously propose v2 for r2, in spite of the fact that v1 is choosable at r1.

6.2 Derived Relation for Joined Rounds
After the previous transformation, the verification condition is still not stratified. The reason is the

combination of eq. (13) and the condition of the propose action (Fig. 3 line 39):

∀n : node. member(n,q) → ∃r ′ : round, v : value. join_ack_msg(n,r ,r ′,v ).

While each of these introduces quantifier alternations that are stratified when viewed separately, to-

gether they form cycles. Equation (13) introduces ∀∃-edges from round and value to node, while the

propose condition introduces edges fromnode to round and value. The propose condition expresses

the fact that every node in the quorum q has joined round r by sending a join-acknowledgment (1b)

message to round r. However, because the join-acknowledgment message contains two more fields

(representing the node’s maximal vote so far), the condition existentially quantifies over them. To

eliminate this existential quantification and remove the cycles, we add a derived relation, called

joined_round, that captures the projection of join_ack_msg over its first two components, given by

the formula:

ψ2 (n,r ) = ∃r
′

: round,v : value. join_ack_msg(n,r ,r ′,v )

This binary relation over nodes and rounds records the sending of join-acknowledgment messages,

ignoring the maximal vote so far reported in the message. Thus, joined_round(n,r ) captures the fact
that node n has agreed to join round r . The formulaψ2 is in the class of formulas handled by the

scheme of Section 3.3, and thus we obtain the initial condition and update code for joined_round,
as it appears in Fig. 5 lines 5 and 16.

Rewriting (steps 3+4): first attempt. We rewrite the condition of the propose action to use

joined_round instead ofψ2. (The rewrite condition is again trivial, ensuring soundness.) The result

appears in Fig. 5 line 22, and is purely universally quantified. When considering the transformed

model, and the candidate inductive invariant given by the conjunction of eqs. (4) to (11) and (13),

the resulting quantifier alternation graph is acyclic. This means that the verification condition is

in EPR and hence decidable to check. However, it turns out that this candidate invariant is not

inductive, and the check yields a counterexample to induction.

The counterexample is depicted in Fig. 6. The counterexample shows a propose action that leads

to a violation of eq. (13). The example contains a single node n1 (which forms a quorum), that

has voted for value v1 in round r1, and yet a different value v2 is proposed for a later round r2

(based on the quorum composed only of n1) which leads to a violation of eq. (13). The propose

action is enabled since joined_round(n1,r2) holds. However, an arbitrary value is proposed since
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join_ack_msg is empty. The root cause for the counterexample is that the inductive invariant does

not capture the connection between joined_round and join_ack_msg, so it allows a state in which

a node n1 has joined round r2 according to joined_round (i.e., joined_round(n1,r2) holds), but it
has not joined it according to join_ack_msg (i.e., ∃r ′,v . join_ack_msg(n1,r2,r

′,v ) does not hold).
Note that the counterexample is spurious, in the sense that it does not represent a reachable state.

However, for a proof by an inductive invariant, we must eliminate this counterexample nonetheless.

Rewriting (steps 3+4): second attempt. One obvious way to eliminate the counterexample discussed

above is to add the representation invariant of joined_round to the inductive invariant. However,

this will result in a cyclic quantifier alternation, causing the verification condition to be outside of

EPR. Instead, we will eliminate this counterexample by rewriting the code of the propose action,

relying on an auxiliary invariant to verify the rewrite, as explained in Section 3.2. We observe

that the mismatch between joined_round and join_ack_msg is only problematic in this example

because node n1 voted in r1 < r2. While the condition of the propose action is supposed to ensure

that the max operation considers past votes of all nodes in the quorum, such a scenario where

the joined_round is inconsistent with join_ack_msg makes it possible for the propose action to

overlook past votes, which is the case in this counterexample. Our remedy is therefore to rewrite

the max operation (which is implemented by an assume command, as explained before) to consider

the votes directly by referring to the vote messages instead of the join-acknowledgment messages

that report them. We first formally state the rewrite and then justify its correctness.

As before, we rewrite the condition of the propose action to use joined_round (Fig. 5 line 22). In
addition, we rewrite the max operation in Fig. 3 line 44, i.e., max {(r ′,v ′) | φ1 (r

′,v ′)} where

φ1 (r
′,v ′) = ∃n.member(n,q) ∧ join_ack_msg(n,r ,r ′,v ′) ∧ r ′ , ⊥

to the max operation in Fig. 5 line 25, i.e., max {(r ′,v ′) | φ2 (r
′,v ′)} where

φ2 (r
′,v ′) = ∃n.member(n,q) ∧ vote_msg(n,r ′,v ′) ∧ r ′ < r

The key to the correctness of this change is that a join-acknowledgment message from node n to

round r contains its maximal vote prior to round r , and once the node sent this message, it will

never vote in rounds smaller than r . Therefore, while the original propose action considers the

maximum over votes reflected by join-acknowledgment messages from a quorum, looking at the

actual votes from the quorum in rounds prior to r (as captured by the vote_msg relation) yields the
same maximum.

Formally, we establish the rewrite condition of step 3 given by eq. (2) using an auxiliary in-

variant INVaux, defined as the conjunction of eqs. (5), (6) and (8) to (11). This invariant captures

the connection between join_ack_msg and vote_msg explained above. The invariant INVaux is

inductive for the original model, and its verification condition is in EPR (the resulting quanti-

fier alternation graph is acyclic). Second, we prove that under the assumption of INVaux and

the condition ∀n.member(n,q) → ∃r ′,v .join_ack_msg(n,r ,r ′,v ) (Fig. 3 line 39), the operation

max{(r ′,v ′) | φ1 (r
′,v ′)} is equivalent to the operation max{(r ′,v ′) | φ2 (r

′,v ′)} (recall that both
translate to assume’s according to eq. (3)). This check is also in EPR. In conclusion, we are able to

establish the rewrite condition using two EPR checks: one for proving INVaux, and one for proving

eq. (2).

Inductive Invariant. After the above rewrite, the conjunction of eqs. (4) to (11) and (13) is still not

an inductive invariant, due to a counterexample to induction in which a node has joined a higher

round according to joined_round, but has not left a lower round according to left_round. As before,
the counterexample is inconsistent with the representation invariants. However, this time the coun-

terexample (and another similar one) can be eliminated by strengthening the inductive invariant

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 108. Publication date: October 2017.



108:20 Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham

with the following facts, which are implied by the representation invariants of joined_round and
left_round:

∀n : node, r1,r2 : round. r1 < r2 ∧ joined_round(n,r2) → left_round(n,r1) (14)

∀n : node, r ,r ′ : round, v : value. join_ack_msg(n,r ,r ′,v ) → joined_round(n,r ) (15)

Both are purely universally quantified and therefore do not affect the quantifier alternation graph.

Finally, the invariant given by the conjunction of eqs. (4) to (11) and (13) to (15) is indeed an

inductive invariant for the transformed model. Fig. 4 depicts the quantifier alternation graph of the

resulting verification condition. This graph is acyclic, and so the invariant can be verified in EPR.

This invariant proves the safety of the transformed model (Fig. 5). Using Theorem 3.1, the safety of

the original Paxos model (Fig. 3) follows.

7 MULTI-PAXOS
In this section we describe our verification of Multi-Paxos. Multi-Paxos is an implementation of

state-machine replication (SMR): nodes run a sequence of instances of the Paxos algorithm, where

the ith instance is used to decide on the ith command in the sequence of commands executed by the

machine. For efficiency, when starting a round, a node uses a single message to simultaneously do

so in all instances. In response, each node sends a join-acknowledgment message that reports its

maximal vote in each instance; this message has finite size as there are only finitely many instances

in which the node ever voted. The key advantage over using one isolated incarnation of Paxos per

instance is that when a unique node takes on the responsibility of starting a round and proposing

commands, only phase 2 of Paxos has to be executed for every proposal.

Belowwe provide a description of the EPR verification ofMulti-Paxos. Themain change compared

to the Paxos consensus algorithm is in the modeling of the algorithm in first-order logic, where we

use the technique of Section 3.1.2 to model higher-order concepts. The transformation to EPR is

essentially the same as in Section 6, using the same derived relations and rewrites.

7.1 Model of the Protocol
Multi-Paxos uses the same message types as the basic Paxos algorithm, but when a node joins

a round, it sends a join-acknowledgment message (1a) with its maximal vote for each instances

(there will only be a finite set of instances for which it actually voted). Upon receipt of join-

acknowledgment messages from a quorum of nodes that join round r , the owner of the round r
determines the instances for which it is obliged to propose a value (because it may be choosable

in a prior round), and the set of available instances for which it can propose any value. Next, the

owner of round r can propose commands in available instances. This means that the propose action

of Paxos is split into two actions in Multi-Paxos: one that processes the join-acknowledgment

messages from a quorum and another that proposes new values.

Our model of Multi-Paxos in first-order logic appears in Fig. 7. We explain the key differences

compared to the Paxos model from Fig. 3.

State. We extend the vocabulary of the Paxos model with two new sorts: instance and votemap.

The instance sort represents instances, and the propose_msg, vote_msg and decision relations are

extended to include an instance in each tuple. In practice, instances may be natural numbers that

give the order in which commands of the state machine must be executed by each replica. However,

we are only interested in proving consistency (i.e., that decisions are unique per instance), and the

consistency proof does not depend on the instances being ordered. Therefore, our model does not

include a total order over instances.
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1 sort node
2 sort quorum
3 sort round
4 sort value
5 sort instance
6 sort votemap

7

8 relation ≤ : round, round

9 axiom total_order(≤)

10 constant ⊥ : round

11 relation member : node, quorum
12 axiom ∀q1, q2 : quorum. ∃n : node. member(n, q1 ) ∧member(n, q2 )
13

14 relation start_round_msg : round
15 relation join_ack_msg : node, round, votemap

16 relation propose_msg : instance, round, value
17 relation available : round, instance
18 relation vote_msg : node, instance, round, value
19 relation decision : node, instance, round, value

20 function roundof : votemap, instance→ round

21 function valueof : votemap, instance→ value

22

23 init ∀r . ¬start_round_msg(r )
24 init ∀n, r ,m . ¬join_ack_msg(n, r ,m)
25 init ∀i, r ,v . ¬propose_msg(i, r ,v )
26 init ∀r , i . ¬available(r , i )
27 init ∀n, i, r ,v . ¬vote_msg(n, i, r ,v )
28 init ∀r ,v . ¬decision(r ,v )
29

30 action start_round(r : round) { assume r , ⊥ ; start_round_msg(r) := true }

31 action join_round(n : node, r : round) {
32 assume r , ⊥ ∧ start_round_msg(r) ∧ ¬∃r ′,m . r ′ > r ∧ join_ack_msg(n, r ′,m)
33 local m : votemap := ∗
34 assume ∀i . (roundof(m, i ), valueof(m, i )) = max

{
(r ′,v ′) | vote_msg(n, i, r ′,v ′) ∧ r ′ < r

}
35 join_ack_msg(n, r,m) := true

36 }

37 action instate_round(r : round, q : quorum) {
38 assume r , ⊥
39 assume (∀i . ¬available(r, i )) ∧ (∀i,v . ¬propose_msg(i, r,v ))
40 assume ∀n . member(n, q) → ∃m . join_ack_msg(n, r,m)
41 local m : votemap := ∗
42 assume ∀i . (roundof(m, i ), valueof(m, i )) = max

{
(r ′,v ′) | ∃n,m′ . member(n, q) ∧ join_ack_msg(n, r,m′) ∧

43 r ′ = roundof(m′, i) ∧ v ′ = valueof(m′, i) ∧ r ′ , ⊥
}

44 available(r, I ) := (roundof(m, I ) = ⊥)
45 propose_msg(I , r,V ) := (roundof(m, I ) , ⊥ ∧V = valueof(m, I ))
46 }

47 action propose_new_value(r : round, i : instance, v : value) {
48 assume r , ⊥
49 assume available(r, i) ∧ ∀v . ¬propose_msg(i, r,v )
50 propose_msg(r, v) := true

51 }

52 action vote(n : node, i : instance, r : round, v : value) {
53 assume r , ⊥ ∧ propose_msg(i, r, v) ∧ ¬∃r ′,m . r ′ > r ∧ join_ack_msg(n, r ′,m)
54 vote_msg(n, i, r, v) := true

55 }

56 action learn(n : node, i : instance, r : round, v : value, q : quorum) {
57 assume r , ⊥ ∧ ∀n′ . member(n′, q) → vote_msg(n′, i, r, v)
58 decision(n, i, r, v) := true

59 }

Fig. 7. Model of Multi-Paxos as a transition system in many-sorted first-order logic.
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The votemap sort models a map from instances to (round,value) pairs, which are passed in the

join-acknowledgmentmessages (captured by the relation join_ack_msg : node,round,votemap).We

use the encoding explained in Section 3.1.2, and add two functions, roundof : votemap, instance→
round and valueof : votemap, instance→ value, that allow access to the content of a votemap. We

also add a new relation available : round, instance, which records the instances each round owner

considers to be available.

Actions. The start_round action is identical to Paxos, and the vote and learn actions are

identical except they are now parameterized by an instance. The join_round action is identical in

principle, except it now must obtain and deliver a votemap that maps each instance to the maximal

vote of the node (and ⊥ for instances in which the node did not vote). To express the computation

of the maximal vote of every instance i, we use an assume statement in line 34 of the form

∀i . (roundof(m,i ),valueof(m,i )) = max

{
(r ′,v ′) | φ (i,r ′,v ′)

}
which follows a non-deterministic

choice of m : votemap. The assume statement is realized by the following formula in the transition

relation (which is an adaptation of eq. (3) to account for multiple instances):

∀i . (roundof(m,i ) = ⊥ ∧ ∀r ′,v ′. ¬φ (i,r ′,v ′)) ∨

(roundof(m,i ) , ⊥ ∧ φ (i,roundof(m,i ),valueof(m,i )) ∧ ∀r ′,v ′. φ (i,r ′,v ′) → r ′ ≤ roundof(m,i ))
(16)

Note that for line 34, φ is quantifier free, so eq. (16) is purely universally quantified.

The most notable difference in the actions is that, in Multi-Paxos, the propose action is split

into two actions: instate_round and propose_new_value. instate_round processes the join-

acknowledgment messages from a quorum, and propose_new_value proposes new values, mod-

eling the fact that only phase 2 is repeated for every instance.

The instate_round action takes placewhen the owner of a round received join-acknowledgment

messages from a quorum of nodes. The owner then finds the maximal vote reported in the messages

for each instance, which is done in line 42. This is realized using eq. (16). Observe that φ here

contains existential quantifiers over node and votemap. This introduces quantifier alternation,

which results in ∀∃ edges from instance to both node and votemap. Fortunately, these edges do

not create cycles in the quantifier alternation graph. Next, in line 44, all rounds for which no votes

were reported are marked as available, and in line 45, all obligatory proposals are made.

The propose_new_value action models the proposal of a new value of in an instance considered

to be available by the round owner. This action occurs due to client requests, which are abstracted

in our model.Therefore, the only preconditions of this action in our model are that the instance is

considered available by the round owner (captured by the available relation), and that it has not

proposed any other value for this instance. In practice, a round owner will choose the next available

instance (according to some total order). However, since this is not necessarily for correctness, our

model completely abstracts the total order over instances, and allows a new value to be proposed

in any available instance.

7.2 Inductive Invariant
The safety property we wish to prove for Multi-Paxos is that each Paxos instance is safe. Formally:

∀i : instance,n1,n2 : node,r1,r2 : round,v1,v2 : value.

decision(n1,i,r1,v1) ∧ decision(n2,i,r2,v2) → v1 = v2

(17)

Equation (17) generalizes eq. (4) by universally quantifying over all instances. The inductive

invariant that proves safety contains similarly generalized versions of eqs. (5) to (10) and (12),

where the join_ack_msg relation is adjusted to contain a votemap element instead of a round,value
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pair as the message content. In addition, for inductiveness, we must capture the connection between

the available relation and past votes. Namely, that whenever an instance i is marked available in

some round r , then no value is choosable for instance i at any round lower than r . Formally:

∀i : instance,r1,r2 : round,v : value,q : quorum. available(r2,i ) ∧ r1 < r2 →

∃n : node,r ′ : round,m : votemap. member(n,q) ∧ ¬vote_msg(n,r1,v ) ∧ r
′ > r1∧

join_ack_msg(n,r ′,m)

(18)

7.3 Transformation to EPR
As with the Paxos model of Fig. 3, the resulting verification condition for the Multi-Paxos model is

outside of EPR, and must be transformed to allow EPR verification. The required transformations

are essentially identical to the Paxos model (the new sorts do not appear in any cycles in the

quantifier alternation graph), where we define the left_round relation by:

ψ1 (n,r ) = ∃r
′,m. r ′ > r ∧ join_ack_msg(n,r ′,m)

And the joined_round relation by:

ψ2 (n,r ) = ∃m. join_ack_msg(n,r ,m)

The last step required for EPR verification is to rewrite the max operation in line 42 of Fig. 7 to use

vote_msg instead of join_ack_msg, which is exactly the same change that was required to verify

the Paxos model. Thus, the transformations to EPR are in this case completely reusable, and allow

EPR verification of Multi-Paxos.

8 PAXOS VARIANTS
In this section we briefly describe our verification in EPR of several variants of Paxos. More elaborate

explanations are provided in the extended version of this paper [Padon et al. 2017]. In all cases, the

transformations to EPR of Section 6 were employed (with slight modifications), demonstrating the

reusability of the derived relations and rewrites across different Paxos variants.

8.1 Vertical Paxos
Vertical Paxos [Lamport et al. 2009] is a variant of Paxos whose set of participating nodes and

quorums (called the configuration) can be changed dynamically by an external reconfiguration

master. By using reconfiguration to replace failed nodes, Vertical Paxos makes Paxos reliable in the

long-term. The reconfiguration master dynamically assigns configurations to rounds, which means

that each round uses a different set of quorums. A significant algorithmic complication is that old

configurations must be eventually retired in practice. This is achieved by having the nodes inform

the master when a round r becomes complete, meaning that r holds all the necessary information

about choosable values in lower rounds. The master tracks the highest complete round and passes

it on to each new configuration to indicate that lower rounds need not be accessed. Rounds below

the highest complete round can then be retired safely.

We model configurations in first-order logic by introducing a new sort config that represents

a set of quorums, with a suitable member relation called quorum_in. Moreover, we change the

axiomatization of quorums to only require that quorums of the same configuration intersect:

∀c : config,q1,q2 : quorum. quorum_in(q1,c ) ∧ quorum_in(q2,c ) →

∃n : node.member(n,q1) ∧member(n,q2)

To model the complete round associated to each configuration, we introduce a function symbol

complete_of : config→ round. This function symbol introduces additional cycles to the quantifier
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alternation graph. The transformation to EPR replaces the complete_of function by a derived relation
defined by the formula complete_of(c ) = r . With this derived relation, we can rewrite the model

and invariant so that the function no longer appears in the verification condition, and hence the

cycles that it introduced are eliminated. Other than that, the transformation to EPR uses the same

derived relations and rewrites of Section 6 (in fact, it only requires the left_round derived relation).

A full description appears in [Padon et al. 2017].

8.2 Fast Paxos
Fast Paxos [Lamport 2006] is a variant of Multi-Paxos that improves its latency. The key idea is to

mark some of the rounds as fast and allow any node to directly propose values in these rounds

without going through the round owner. As a result, multiple values can be proposed, as well as

voted for, in the same (fast) round. In order to maintain consistency, Fast Paxos uses two kinds of

quorums: classic quorums and fast quorums. The quorums have the property that any two classic

quorums intersect, and any classic quorum and two fast quorums intersect. Now, in a propose

action receiving join-acknowledgment messages from the classic quorum q with a maximal vote

reported in a fast roundmaxr , multiple different values may be reported by nodes in q inmaxr .
To determine which one may be choosable inmaxr , a node will check whether there exists a fast
quorum f such that all the nodes in q ∩ f reported voting v inmaxr . If yes, by the intersection

property of quorums, only this value v may be choosable inmaxr , and hence must be proposed.

Wemodel fast quorumswith an additional sort f_quorum (and relation f_member), and axiomatize

its intersection property as:

∀q : quorum, f1, f2 : f_quorum. ∃n : node. member(n,q) ∧ f_member(n, f1) ∧ f_member(n, f2)

The rest of the details of the model appear in [Padon et al. 2017]. The transformation to EPR is similar

to Section 6. This includes the rewrite of the new condition for proposing a value. Interestingly, in

this case, the verification of the latter rewrite is not in EPR when considering the formulas as a

whole, but it is in EPR when we consider only the subformulas that change (see [Padon et al. 2017]).

8.3 Flexible Paxos
Flexible Paxos [Howard et al. 2016] extends Paxos based on the observation that it is only necessary

that the quorums used in phase 1 intersect with the quorums used in phase 2 (as initially observed

in [Lampson 2001]). This allows greater flexibility, and introduces a trade-off between the cost of

deciding on new values and the cost of starting a new round. For example, in a system with 10

nodes, one may use sets of 8 nodes as phase 1 quorums, and sets of 3 nodes phase 2 quorums. EPR

verification of Flexible Paxos is essentially the same as for normal Paxos, except we introduce two

quorum sorts (for phase 1 and phase 2), and adapt the intersection axiom to:

∀q1 : quorum
1
,q2 : quorum

2
. ∃n : node. member1 (n,q1) ∧member2 (n,q2)

The detailed model and the adjusted invariant appear in [Padon et al. 2017].

8.4 Stoppable Paxos
Stoppable Paxos [Lamport et al. 2008] extends Multi-Paxos with the ability for a node to propose a

special stop command in order to stop the algorithm, with the guarantee that if the stop command

is decided in instance i , then no command is ever decided at an instance j > i . Stoppable Paxos
therefore enables Virtually Synchronous system reconfiguration [Birman 2010; Chockler et al. 2001]:

Stoppable Paxos stops in a state known to all participants, which can then start a new instance of

Stoppable Paxos in a new configuration (e.g., in which participants have been added or removed);
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EPR INVaux RW FOL − 2 FOL − 4 FOL − 8 FOL − 16

Protocol µ σ µ σ µ σ µ σ τ µ σ τ µ σ τ µ σ τ
Paxos 1.0 0.3 0.5 0 0.3 0 1.0 0.1 0 4.7 4.9 0 82 113 2 300 0 10

Multi-Paxos 1.2 0.1 0.6 0 0.7 0.2 1.4 0.2 0 6.0 1.4 0 230 109 7 300 0 10

Vertical Paxos 2.3 0.3 − − − − 26 10 0 45 18 0 300 0 10 300 0 10

Fast Paxos 3.6 0.9 0.7 0 0.4 0 3.7 1.0 0 14 9.5 0 209 109 5 300 0 10

Flexible Paxos 0.8 0 0.5 0 0.3 0 0.8 0.1 0 1.7 0.9 0 65 98 1 229 113 7

Stoppable Paxos 5.1 3.7 0.9 0.1 0.5 0.1 163 134 4 300 0 10 300 0 10 300 0 10

Fig. 8. Run times (in seconds) of checking verification conditions using IVy and Z3. Each experiment was

repeated 10 times (with random seeds used for Z3’s heuristics). µ reports the mean time, σ reports the

standard deviation, and τ reports the number of runs that timed out at 300 seconds (where this occurred).

EPR is the verification of the EPR model. INVaux is the verification of the auxiliary invariant. RW is the

verification of the rewrite condition. FOL − N is the run time of semi-bounded verification of the first-order

model, with bound 2 for values and bound N for rounds (in all variants, bounding the number of values and

rounds eliminates cycles from the quantifier alternation graph).

moreover, no pending commands can leak from a configuration to the next, as only the final state

of the command sequence is transfered from one configuration to the next.

Stoppable Paxos may be the most intricate algorithm in the Paxos family: as acknowledged by

Lamport et al. [Lamport et al. 2008], “getting the details right was not easy”. The main algorithmic

difficulty in Stoppable Paxos is to ensure that no command may be decided after a stop command

while at the same time allowing a node to propose new commands without waiting, when earlier

commands are still in flight (which is important for performance). In contrast, in the traditional

approach to reconfigurable SMR [Lamport et al. 2010], a node that has c outstanding command

proposals may cause up to c commands to be decided after a stop command is decided; Those

commands needs to be passed-on to the next configuration and may contain other stop commands,

adding to the complexity of the reconfiguration system.

Before proposing a command in an instance in Stoppable Paxos, a node must check if other

instances have seen stop commands proposed and in which round. This creates a non-trivial

dependency between rounds and instances, which are mostly orthogonal concepts in other variants

of Paxos. This manifest as the instance sort having no incoming edge in the quantifier alternation

graph in other variants, while such edges appear in Stoppable Paxos. Interestingly, the rule given

by Lamport et al. to propose commands results in verification conditions that are not in EPR, and

rewriting seems difficult. However, we found an alternative rule which results in EPR verification

conditions. This alternative rule soundly overapproximates the original rule (and introduces new

behaviors), and, as we have verified (in EPR), it also maintains safety. The details of the modified

rule and its verification appear in [Padon et al. 2017].

9 EXPERIMENTAL EVALUATION
We have implemented our methodology using the IVy tool [McMillan 2016; Padon et al. 2016],

which uses the Z3 theorem prover [de Moura and Bjørner 2008] for checking verification conditions.

Fig. 8 lists the run times for the automated checks performed when verifying the different Paxos

variants. The experiments were performed on a laptop running Linux, with a Core-i7 1.8 GHz CPU.

Z3 version 4.5.0 was used, along with the latest version of IVy. Z3 uses heuristics which employ

randomness. Therefore, each experiment was repeated 10 times using random seeds. We report the

mean times, as well as the standard deviation and the number of experiments which timed out at
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300 seconds (these are included in the mean). The IVy files used for these experiments are available

at the supplementary web page of this paper
5
.

For each variant, Fig. 8 reports the time for checking the inductive invariant that proves the

safety of the EPR model, as well as the times required to verify auxiliary invariants and rewrite

conditions (see Section 3.2). We also report on the times required to check the inductive invariant

for the original first-order logic models, using semi-bounded verification. In all variants, quantifier

alternation cycles can be eliminated by bounding the number of values and rounds. We bound the

number of values to 2, and vary the bound on the number of rounds.

As Fig. 8 demonstrates, using our methodology for EPR verification results in verification

conditions that are solved by Z3 in a few seconds, with no timeouts, and with negligible variance

among runs. In contrast, when using semi-bounded verification, the run time quickly increases

as we attempt to increase the number of rounds. Moreover, the variance in run time increases

significantly, causing an unpredictable experience for verification users. We have also attempted

to use unbounded verification for the first-order logic models, but Z3 diverged in this case for all

variants. This shows the practical value of our methodology, as it allows to transform models whose

verification condition cannot be handled by Z3 (and demonstrate poor scalability and predictability

for bounded verification), into models that can be verified by Z3 in a few seconds.

10 RELATEDWORK
Automated verification of distributed protocols. Here we review several works that developed

techniques for automated verification of distributed protocols, and compare themwith our approach.

The Consensus Verification Logic CL [Dragoi et al. 2014] is a logic tailored to verify consensus

algorithms in the partially synchronous Heard-Of Model [Charron-Bost and Schiper 2009], with a

decidable fragment that can be used for verification. PSync [Dragoi et al. 2016] is a domain-specific

programming language and runtime for developing formally verified implementations of consensus

algorithms based on CL and the Heard-Of Model. Once the user provides inductive invariants

and ranking functions in CL, safety and liveness can be automatically verified. PSync’s verified

implementation of LastVoting (Paxos in the Heard-Of Model) is comparable in performance with

state-of-the-art unverified systems.

Many interesting theoretical decidability results, as well as the ByMC verification tool, have been

developed based on the formalism of Threshold Automata [Bloem et al. 2015; Konnov et al. 2017,

2015a,b]. This formalism allows to express a restricted class of distributed algorithms operating in

a partially synchronous communication mode. This restriction allows decidability results based on

cutoff theorems, for both safety and liveness.

[Alberti et al. 2016] present a decidable fragment of Presburger arithmetic with function symbols

and cardinality constraint over interpreted sets. Their work is motivated by applications to the veri-

fication of fault-tolerant distributed algorithms, and they demonstrate automatic safety verification

of some fault-tolerant distributed algorithms expressed in a partially synchronous round-by-round

model similar to PSync.

#Π [v. Gleissenthall et al. 2016] present a logic that combines reasoning about set cardinalities

and universal quantifiers, along with an invariant synthesis method. The logic is not decidable, so a

sound and incomplete reasoning method is used to check inductive invariants. Inductive invariants

are automatically synthesized by method of Horn constraint solving. The technique is applied to

automatically verify a collection of parameterized systems, including mutual exclusion, consensus,

and garbage collection. However, Paxos-like algorithms are beyond the reach of this verification

methodology since they require more complicated inductive invariants.

5
http://www.cs.tau.ac.il/~odedp/paxos-made-epr.html
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Recently, [Maric et al. 2017] presented a cutoff result for consensus algorithms. They define ConsL,
a domain specific language for consensus algorithms, whose semantics is based on the Heard-Of

Model. ConsL admits a cutoff theorem, i.e., a parameterized algorithm expressed in ConsL is correct

(for any number of processors) if and only if it is correct up to a some finite bounded number

of processors (e.g., for Paxos the bound is 5) . This theoretical result shows that for algorithms

expressible in ConsL, verification is decidable. However, ConsL is focused on algorithms for the

core consensus problem, and does not support the infinite-state per process that is needed, e.g., to

model Multi-Paxos and SMR.

The above mentioned works obtain automation (and some decidability) by restricting the pro-

gramming model. We note that our approach takes a different path to decidability compared

to these works. We axiomatize arithmetic, set cardinalities, and other higher-order concepts in

an uninterpreted first-order abstraction. This is in contrast to the above works, in which these

concepts are baked into specially designed logics and formalisms. Furthermore, we start with a

Turing-complete modeling language and invariants with unrestricted quantifier alternation, and

provide a methodology to reduce quantifier alternation to obtain decidability. This allows us to

employ a general-purpose decidable logic to verify asynchronous Paxos, Multi-Paxos, and their

variants, which are beyond the reach of all of the above works.

Deductive verification in undecidable logic. IronFleet [Hawblitzel et al. 2015] is a verified imple-

mentation of SMR, using the Dafny [Leino 2010] program verifier, with verified safety and liveness

properties. Compared to our work, this system implementation is considerably more detailed. The

verification using Dafny employs Z3 to check verification conditions expressed in undecidable

logics that combine multiple theories and quantifier alternations. This leads to great difficulties due

to the unpredictability of the solver. To mitigate some of this unpredictability, IronFleet adopted a

style they call invariant quantifier hiding. This style attempts to specify the invariants in a way

that reduces the quantifiers that are explicitly exposed to the solver. Our work is motivated by the

IronFleet experience and observations. The methodology we develop provides a more systematic

treatment of quantifier alternations, and reduces the verification conditions to a decidable logic.

Verification using interactive theorem provers. Recently, the Coq [Bertot and Castéran 2004] proof

assistant has been used to develop verified implementations of systems, such as a file system

[Chen et al. 2016], and shared memory data structures [Sergey et al. 2015]. Closer to our work is

Verdi [Wilcox et al. 2015], which presents a verified implementation of an SMR system based on

Raft [Ongaro and Ousterhout 2014], a Paxos-like algorithm. This approach requires great effort,

due to the manual process of the proof; developing a verified SMR system requires many months

of work by verification experts, and proofs measure in thousands of lines.

[Rahli et al. 2015; Schiper et al. 2014] verify the safety of implementations of consensus and SMR

algorithms in the EventML programming language. EventML interfaces with the Nuprl theorem

prover, in which proofs are conducted, and uses Nuprl’s code generation facilities.

Other works applied interactive theorem proving to verify Paxos protocols at the algorithmic

level, without an executable implementation. [Jaskelioff and Merz 2005] proved the correctness

of the Disk Paxos algorithm in Isabelle/HOL [Nipkow et al. 2002], in about 6,500 lines of proof

script. Recently, [Chand et al. 2016] presented safety proofs of Paxos and Multi-Paxos using the

TLA+ [Lamport 1994] specification language and the TLA Proof System TLAPS [Chaudhuri et al.

2010]. TLA+ has also been used in Amazon to model check distributed algorithms [Newcombe et al.

2015]. However, they did not spend the effort required to obtain formal proofs, and only used the

TLA+ models for bug finding via the TLA+ model checker [Yu et al. 1999].

Compared to our approach, using interactive theorem provers requires more user expertise and is

more labor intensive. We note that part of the difficulty in using an interactive theorem prover lies
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in the unpredictability of the automated proof methods available and the considerable experience

needed to write proofs in an idiomatic style that facilitates automation. An interesting direction of

research is to integrate our methodology in an interactive theorem prover to achieve predictable

automation in a style that is natural to systems designers.

Works based on EPR. [Padon et al. 2016] and [McMillan 2016] have also used EPR to verify

distributed protocols and cache coherence protocols. [Padon et al. 2016] develops an interactive

technique for assisting the user to find universally quantified invariants (without quantifier alter-

nations). In contrast, here we use invariants that contain quantifier alternations, as used in proofs

of Paxos protocols. [McMillan 2016] goes beyond our work by extracting executable code from

the modeling language. In the future, we plan to apply a similar extraction methodology to Paxos

protocols.

In [Itzhaky 2014; Itzhaky et al. 2014, 2013] it was shown that EPR can express a limited form

of transitive closure, in the context of linked lists manipulations. We notice that in the context

of our methodology, their treatment of transitive closure can be considered as adding a derived

relation. This work and our work both show that EPR is surprisingly powerful, when augmented

with derived relations.

In [Feldman et al. 2017], bounded quantifier instantiation is explored as a possible solution to

the undecidability caused by quantifier alternations. This work shares some of the motivation and

challenges with our work, but proposes an alternative solution. The context we consider here is also

wider, since we deal not only with quantifier alternations in the inductive invariant, but also with

quantifier alternations in the transition relation. [Feldman et al. 2017] also shows an interesting

connection between derived relations and quantifier instantiation, and these insights may apply

to our methodology as well. An appealing future research direction is to combine user provided

derived relations and rewrites together with heuristically generated quantifier instantiation.

11 CONCLUSION
In this paper we have shown how to verify interesting distributed protocols using EPR—a decidable

fragment of first-order logic, which is supported by existing solvers (e.g., [Barrett et al. 2011;

de Moura and Bjørner 2008; Korovin 2008; Riazanov and Voronkov 2002]). To mitigate the gap

between the complexity of Paxos-like protocols and the restrictions of EPR, we developed a

methodology for gradually eliminating complications. While this process requires assistance from

the user, its steps are also mechanically checked (in EPR) to guarantee soundness.

We believe that our methodology can be applied to other distributed protocols as well, as our

setting is very general. The generality of our approach is rooted in the use of first-order logic, with

arbitrary relations and functions, and a Turing-complete imperative language.

While EPR has shown to be surprisingly powerful, we note that it is not a panacea, as some

cyclic quantifier alternations may not be avoided. Still, we have successfully used our methodology

to eliminate the cycles from several variants of Paxos, which is considered a rich and complex

protocol of great practical importance.
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