
Lossless Separation of Web Pages
into Layout Code and Data

Adi Omari, Benny Kimelfeld, Eran Yahav
Technion

{omari,bennyk,yahave}@cs.technion.ac.il

Sharon Shoham
Tel Aviv University

sharon.shoham@gmail.com

ABSTRACT
A modern web page is often served by running layout code on
data, producing an HTML document that enhances the data with
front/back matters and layout/style operations. In this paper, we
consider the opposite task: separating a given web page into a
data component and a layout program. This separation has various
important applications: page encoding may be significantly more
compact (reducing web traffic), data representation is normalized
across web designs (facilitating wrapping, retrieval and extraction),
and repetitions are diminished (expediting updates and redesign).

We present a framework for defining the separation task, and de-
vise an algorithm for synthesizing layout code from a web page
while distilling its data in a lossless manner. The main idea is
to synthesize layout code hierarchically for parts of the page, and
use a combined program-data representation cost to decide whether
to align intermediate programs. When intermediate programs are
aligned, they are transformed into a single program, possibly with
loops and conditionals. At the same time, differences between the
aligned programs are captured by the data component such that ex-
ecuting the layout code on the data results in the original page.

We have implemented our approach and conducted a thorough
experimental study of its effectiveness. Our experiments show that
our approach features state of the art (and higher) performance in
both size compression and record extraction.

1 Introduction
Many modern webpages are served by applying layout code to
structured data, producing an HTML page that is presented to the
user. The resulting HTML page contains both formatting elements
inserted by the layout code, and values that are obtained from the
structured data. The page is therefore a blend of formatting ele-
ments, and actual data.

Goal Our goal is to separate a given HTML page into a layout
code component and a data component such that: (i) the separation
is lossless, running the extracted layout code on the extracted data
reproduces the original page, and (ii) the separation is efficient such
that common elements become part of the layout code, and varying
values are represented as data.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD ’16, August 13-17, 2016, San Francisco, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4232-2/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2939672.2939858

This separation has various important applications: page encod-
ing may be significantly more compact (reducing traffic), data rep-
resentation is normalized across different Web designs (facilitating
wrapping, retrieval and extraction), and repetitions are diminished
(expediting updates and redesign). Many of these applications are
not limited to static web pages but can also be applied to dynami-
cally generated pages (e.g., by using a headless browser to obtain a
static HTML page).

Existing Techniques There has been a lot of past work on data
extraction from web pages [1, 3, 6, 8, 18, 19, 24–28, 32–35, 37, 42].
Techniques have also been presented for wrapper induction, using
the template structure of a page to produce a wrapper that extracts
particular data elements [7, 10, 22]. While the use of templates is
essential for improving uniformity, readability, and maintainabil-
ity of web-pages, templates are considered harmful for many au-
tomated tasks like semantic-clustering, classification and indexing
by search engines. Therefore, a lot of past work tackled the chal-
lenges of template identification [2, 21, 24, 29, 42] and template-
extraction [4, 9, 13–15, 20, 36]. Typically, the goal of these works
is to identify or extract the template so it can be ignored/discarded,
and the data could be passed to further processing.

Separation combines, and generalizes, two aspects of the ex-
traction problem that are typically considered separately—record
extraction, and template extraction—and seeks to balance them.
Rather than treating the template as noise when extracting data,
or eliminating data when extracting a template, separation seeks to
extract both at the same time. The separation algorithm we present
extracts layout code and not a static template. Furthermore, it at-
tempts to maintain a balance between the quality of extracted layout
code, and the structure of the extracted data.

Our Approach We present, implement, and evaluate a method for
automatically separating a static template-generated HTML page
into a template layout-code and data. The main idea of the separa-
tion algorithm is to synthesize layout code hierarchically for parts
of the page, and use a combined program-data representation cost
to decide whether to align intermediate programs. When inter-
mediate programs are aligned, they are transformed into a single
program, possibly with loops and conditionals. At the same time,
differences between the aligned programs are captured by the data
component.

In contrast to previous work on template extraction, which iden-
tifies template-chunks to remove or extract as features, we syn-
thesize fully working template-code which when invoked on the
extracted data reproduces the original static HTML page. There
are many possible ways to represent a page as a layout-code and
data. We guide our choice of separation by attempting to min-
imize the joint representation size of the page, according to the
MDL [31] principle. Our approach could be applied to any form of

http://dx.doi.org/10.1145/2939672.2939858


tree-structured data, and can be used for applications such as tree
retrieval [23].

We have implemented our approach in a tool called SYNTHIA, and
conducted a thorough experimental study of its effectiveness. Our
experiments show that SYNTHIA features state of the art (and higher)
performance in both size compression and record extraction.

2 Related Work
There has been a considerable amount of work on page-level data
extraction (e.g., [1, 5, 12, 19, 33, 34, 40]) and record-level extrac-
tion (e.g., [3, 6, 11, 24, 26, 27, 32, 35, 37, 42]). In the following, we
focus on closely related work.

A lot of related work has dealt with the problem of template ex-
traction or wrapper induction, for record extraction. As such, the
focus has been on templates that are based on regular expressions,
and more importantly, the resulting separation into templates and
records is lossy; that is, we cannot recover the original HTML doc-
ument from the output records and template. We focus on lossless
separations into data and code, where the code involves (nested)
loops and conditions. The notion of wrappers and patterns is dif-
ferent from our notion of code, since the former describes how to
access the DOM tree to extract data, whereas the latter states how
data is processed to generate the DOM tree. Moreover, we aim
at finding separations of a short description; traditionally there has
not been much focus on the complexity of the template, but rather
mainly on its ability to perform high-quality record extraction. An-
other distinction between our solution and many existing ones is
that those require multiple different pages (of the same template) as
input, whereas our solution already works on a single page. Next,
we describe some of these systems.

FiVaTech [19] works on a set of pages to automatically detect
their shared schema and extract the data. Their solution applies
several techniques such as alignment and pattern mining to con-
struct a structure called “fixed/variant pattern tree,” which can be
used to identify the template and detect the schema. TEX [34] ex-
tracts data, but does not extract the template or the schema of the
data. Trinity [33] builds on TEX and improves it by using the tem-
plate tokens to partition the document into prefixes, separators and
suffixes. They recursively analyze the results to discover patterns
and build a “Trinity tree,” which is later transformed into a regu-
lar expression for data extraction. RoadRunner [7] uses a matching
algorithm to identify differences between the input documents and
build a common regular expression. It starts by considering one
page as a wrapper, and matches it with another page. It then re-
fines it using generalization rules to compensate for mismatches.
EXALG [1] uses the concept of equivalence classes and “differen-
tiating roles” to discover a template, which is a regular expression.
TPC [28] considers a web document as a string of HTML tag paths.
It detects the repeated patterns of tags paths called “visual signals”
within a page, clusters them based on a similarity measure that cap-
tures how closely the visual signals appear in the document. For
each one of the clusters the method uses the paths of its visual sig-
nal to extract records from the page. RSP [35] takes as an input a
web page and a sample subject string which is used to help identify
subject nodes. The method uses the repetitive pattern of subject
items in a page to identify the boundary of data records. It aligns
data records to find a generalized pattern, which is used to generate
a wrapper. The method generates a template wrapper that describes
the location of data records and can be used to extract them.

MDR [24] and DEPTA [42] use tag strings representation of
DOM nodes to compare individual nodes and combinations of adja-
cent nodes. Similar individual nodes or node combinations are con-
sidered as generalized nodes, and sequences of generalized nodes

Figure 1: A simple webpage.

1 < div ><img s r c =" / h e a l t h . j p g " / ><h2>HEALTH< / h2>
2 < ul c l a s s =" s t r i p p e d ">
3 < l i ><a hre f =" / Medic ine "> Medc ic ine < / a> ( 1 7 6 ) < / l i >
4 < l i ><a hre f =" / D i e t P i l l s "> D i e t P i l l s < / a> ( 6 9 ) < / l i >
5 < l i ><a hre f =" / D i e t s "> D i e t s < / a> ( 7 0 ) < / l i >
6 < l i ><a hre f =" / T o o t h b r u s h e s "> T o o t h b r u s h e s < / a> ( 6 5 ) < / l i >
7 < l i ><a hre f =" / M u l t i v i t a m i n s "> M u l t i v i t a m i n s < / a> ( 1 0 9 ) < / l i >
8 < / ul >
9 < / div >

10 < div ><img s r c =" / b a b i e s . j p g " / ><h2>BABIES< / h2>
11 < ul c l a s s =" s t r i p p e d ">
12 < l i ><a hre f =" / B o t t l e s "> B o t t l e s < / a> ( 5 4 ) < / l i >
13 < l i ><a hre f =" / Baby Formula ">Baby Formula < / a> ( 8 2 ) < / l i >
14 < l i ><a hre f =" / D i a p e r s "> D i a p e r s < / a> ( 7 4 ) < / l i >
15 < l i ><a hre f =" / S t r o l l e r s "> S t r o l l e r s < / a> ( 2 6 4 ) < / l i >
16 < / ul >
17 < / div >

Figure 2: A sample static html snippet that we would like to sepa-
rate into code and data.

are considered as a data region. DEPTA [42] uses partial tree align-
ment to align generalized nodes and extract their data. DeLa [37]
automatically generate regular expression wrappers based on the
page HTML-tag structures to extract data objects from the result
pages. IEPAD [6] discovers repeated patterns in a document by
coding it into a binary sequence and mining maximal repeated pat-
terns. These patterns are then used for data extraction.

In contrast to alignment algorithms used in other works (e.g., [19,
28, 35, 42]), our tree-alignment algorithm operates on layout code
trees with their data, and updates both the code and the data com-
ponents. In addition, as opposed to classical alignment algorithms,
which define a fixed cost per alignment operation, the costs in our
algorithm are context dependent.

To the best of our knowledge, none of the related works are able
to produce runnable layout code and provide lossless separation
into layout code and data.

3 Overview: Problem and Solution
In this section, we give an informal overview of the problem we
formulate in this paper, and of our solution SYNTHIA. We provide a
formal treatment in the following sections.

3.1 Motivating Example

Fig. 1 shows part of a navigation web page taken from www.
viewpoints.com/explore (we focus on a part of a page for illustrative
purposes; the solution of this paper works on full pages). Given this
page, our goal is to separate it to a layout-code component, and a
data component. Technically, a layout tree is a tree representation

www.viewpoints.com/explore
www.viewpoints.com/explore


Figure 3: (a) The DOM tree of the original HTML document, and
(b) the layout tree produced by our approach from this DOM tree.

of a program that formats data into a web page. We formally define
layout trees in Section 4.

Fig. 2 shows the HTML document of Fig. 1. This HTML con-
tains repeated formatting elements for the listed items. For exam-
ple, the items Medicine, Diet Pills, Diets, Toothbrushes,
and Multivitamins are formatted in a similar HTML structure.

The HTML document can be viewed as a DOM tree [39]. Fig. 3(a)
shows the DOM tree for the HTML document of Fig. 2. In this tree,
the subtrees of the div elements share a similar structure, and so do
the subtrees under the ul elements. SYNTHIA is able to detect these
common structures, synthesize the corresponding layout trees, and
extract hierarchical data that captures the different contents that are
laid in the common structures.

Synthesized layout tree Fig. 4 shows the code synthesized by our
technique for the page of Fig. 2. The code can also be viewed in
tree form as the layout tree shown in Fig. 3(b).

This code uses two iteration (for) instructions to create a nested
loop structure that is used to format the data. Our layout tree uses
standard control constructs common in any layout language, and
uses a syntax similar to JSP. The tree refers to variables, such as f1
and v1, that are assigned actual values in the extracted data.

Extracted data Fig. 5 shows the data extracted by our technique.
Data is extracted as a hierarchical structure, where data elements
are labeled by their corresponding loop or variable. For example,
the data elements under the label f1 are the elements that are iter-
ated over by the for operation in line 1 of the extracted code. The
data elements under the label f2 (in lines 3 and 7 of Fig. 5) are the
elements that are iterated over by the for operation in line 4 of the
code. As our data is viewed as an assignment of values to variables
that are used in the layout tree, we refer to a data instance as an
environment. An important feature of our approach is the fact that
the separation is lossless—executing the synthesized layout tree on
the extracted environment reproduces an exact copy of the original
HTML document. This should be contrasted with common lossy
techniques for wrapper induction and record extraction.

3.2 Our Approach

From a high-level perspective, SYNTHIA works by folding adjacent
subtrees of a layout tree. Initially, the layout tree is simply the
DOM tree representing the web page. As subtrees are being folded,
we synthesize unified code that represents their common structure,
and create separate data elements to represent their different values.
There are two trivial solutions to this problem. The first is where
all subtrees are folded, forcing a single layout tree and effectively
pushing all differences into the data. The other trivial solution ap-
plies no folding at all, and then the layout tree effectively dumps
the entire web page. Naturally, we are not interested in the trivial

1 <% f o r ( v a r loop1 : f1 ) { %>
2 <div >
3 <img s r c =" /<%= loop1 . v1%>. j p g " / > <h2><%=loop1 . v2%></h2>
4 < u l c l a s s =" s t r i p p e d ">
5 <% f o r ( v a r loop1 : loop2 : f2 ) {
6 < l i ><a h r e f =" /<%= loop2 . v3%>">
7 <%=loop2 . v3%></a>(<%= loop2 . v4%>)</ l i >
8 <% } %>
9 </ ul >

10 </ div >
11 <% } %>

Figure 4: Code synthesized for the given static HTML.

1 f1 : {
2 { v1 : " h e a l t h " , v2 : "HEALTH" ,
3 f2 : { { v3 : " Medc ic ine " , v4 : " 176 " } ,{ v3 : " D i e t P i l l s " , v4 : " 69 " } ,
4 { v3 : " D i e t s " , v4 : " 70 " } ,{ v3 : " T o o t h b r u s h e s " , v4 : " 65 " } ,
5 { v3 : " M u l t i v i t a m i n s " , v4 : " 109 " }}
6 } ,
7 { v1 : " b a b i e s " , v2 : "BABIES" ,
8 f2 : { { v3 : " B o t t l e s " , v4 : " 54 " } ,{ v3 : " Baby Formula " , v4 : " 82 " } ,
9 { v3 : " D i a p e r s " , v4 : " 74 " } ,{ v3 : " S t r o l l e r s " , v4 : " 264 " }}

10 }}

Figure 5: The data extracted for the given static HTML.

solutions, but rather in a solution that minimizes the representation
cost. Intuitively, this means that we should only fold subtrees when
they share a sufficiently common structure.

To find a folding that minimizes the representation cost, we have
to answer two technical questions:
• When should we fold given layout subtrees?
• How should we fold such subtrees to produce the desired sep-

aration of code and data?
We address both of these questions using a novel alignment al-

gorithm. We use the alignment algorithm as a building block for
deciding when to fold subtrees, and also for computing the separa-
tion into layout tree and data when subtrees are folded.
Subtree folding In a bottom-up manner, we analyze adjacent lay-
out subtrees by evaluating their structural similarity. This is done
by calculating the representation cost for representing the subtrees
using a shared single layout tree and two data components. That is,
we estimate the benefit of forcing the subtrees into using the same
layout tree with separate data.

To that end, we use our alignment algorithm to compute an align-
ment that attempts to minimize the resulting representation cost,
and also returns the cost. We fold together adjacent subtrees which
are found to be similar (based on the calculated shared representa-
tion cost). Folding is done by (i) applying the calculated alignment.
The result may include conditional instructions and variable refer-
ences in text nodes and attributes to overcome differences; (ii) in-
troducing a for instruction whose body is the resulting shared lay-
out tree while verifying losslessness (i.e., when invoked on the data,
the result is the same as that of the sequence of folded subtrees).
Alignment We present a novel tree-alignment algorithm, that is tai-
lored to handling layout trees, enabling it to handle loops, condi-
tions and variables in the template. In addition, we enable it to
perform data extraction and modifications to the data representa-
tion, in order to fit changes in the layout trees, so that invoking the
layout trees on the data will result in the original HTML.

EXAMPLE 1. Fig. 6 shows a few steps of our algorithm applied
to the (partial) tree of Fig. 3. Initially, the layout tree is the orig-
inal DOM tree (L1), with no folding, and no extracted data (D1).



L1 L2 L3

D3D2D1

Figure 6: Example steps of the separation algorithm.

The algorithm works in a bottom-up manner, looking for folding
opportunities. The algorithm detects that the subtrees rooted at list
items (<li>) for Medicine,Diet Pills,Diets,Toothbrushes,
and Multivitamins could be folded with common structure and
extracting the varying data. The algorithm folds the subtrees cor-
responding to the following items:

<li><a href="/Medicine">Medcicine</a>(176)</li>
<li><a href="/Diet Pills">Diet Pills</a>(69)</li>
<li><a href="/Diets">Diets</a>(70)</li>
<li><a href="/Toothbrushes">Toothbrushes</a>(65)</li>
<li><a href="/Multivitamins">Multivitamins</a>(109)</li>

By introducing new layout trees and extracted data. The layout
tree is as follows:

<% for(var loop:f1){
<li>
<a href="/<%=loop.v1%>"><%=loop.v1%></a>
(<%=loop.v2%>)

</li>
<% } %>

This synthesized layout tree uses variables v1 and v2 to refer to
data elements in the extracted data. The synthesized code is shown
in Fig. 6 (L2) as the subtree rooted at FOR:f1. The extracted data
is shown at the bottom part of the figure (D2). The data is struc-
tured and is labeled by names corresponding to the variables in the
layout tree. For example, the data maps the variable f1, used at
FOR:f1, to a sequence of four possible values, each providing the
data for one invocation of the loop body, resulting in one of the four
aligned subtrees. The inner data values provide the interpretation
of variables v1 and v2.

This folding reduces the original combined description length of
the code and data, as the template part that repeats in all four items
is described only once, in the code, and only the differentiating
details are described for each item (in the data).

The subtrees rooted at list items for Bottles,. . .,Strollers
are folded in a similar manner, resulting with the layout subtree
rooted at FOR:f2 (this is also depicted in L2 in Fig. 6).

After creating the layout trees rooted at FOR:f1 and FOR:f2,
the algorithm proceeds by identifying that these subtrees could be
folded together. This folding renames variables of the two subtrees
to match each other (e.g., f1 is renamed to f2, unifying it with
the existing f2 variable of the subtree on the right). Folding also
introduces new variables, v1 and v2, to account for differences
(note that these are fresh variables, as the previously used v1 and

v2 were renamed). Finally, folding introduces an additional ex-
ternal for loop with variable f1 (recall that the previous f1 was
renamed). The produced layout tree is shown in Fig. 4. A graphical
representation is shown in Fig. 6 (L3). The corresponding extracted
data is shown in (D3). Note that folding also adds another layer to
the data, corresponding to the nested loop structure.

In this simple example folding does not introduce conditional
constructs. However, if, for example, all items in the first list had an
additional attribute, the folding of the two for subtrees depicted in
L2 would introduce a conditional construct guarded by a boolean
variable, with “true” in the first loop and ”false” in the second.

3.3 Key Aspects

The example of the previous section highlights a few key aspects
of our approach:
• Lossless separation: In contrast to other extraction schemes,

the separation to layout tree and data performed by SYNTHIA

is lossless. That is, applying the synthesized layout tree on
the extracted environment reproduces the original web page.
• Minimization of representation cost: The separation com-

puted by SYNTHIA is tailored to minimizing the description
cost of the result.
• Synthesis of loops and conditionals: SYNTHIA synthesizes

layout trees that may include loops to generalize repetition
of layout across items. When some of the layout differs be-
tween items that could otherwise be formatted using looping
code, SYNTHIA is able to insert conditional formatting. With
that, SYNTHIA allows for a compact (and lossless) looping
structure for formatting elements that exhibit a loosely simi-
lar structure.
• Extraction of hierarchical data: SYNTHIA supports nested

repetitions (e.g., a list of categories, each containing a list of
products) by allowing nesting of loops in data trees alongside
hierarchical structures of environments.

4 Preliminaries and Model
In this section we formally define the notions of a webpage, data
and template code which is used to generate webpages by invoking
it on a given data.

DOM Trees We model an HTML document as a DOM tree, which
is a tree of elements and textual values. Formally, a DOM tree is
a rooted and ordered tree with two types of nodes. An element



node has a name, and an attribute set, which is a mapping from a
finite set of attribute names to values (strings). The children of an
element node form an (ordered) sequence of nodes. A text node
is associated with a textual value. We require all text nodes to be
leaves (i.e., childless).

Environment As we explain later, we model the construction of
DOM trees by executing programs over data. We model data by
means of an environment, which is a hierarchy of assignments to
variables. Formally, we assume an infinite set Var of variables.
An environment is inductively defined as follows. It is a mapping
from a finite set of variables to values, where a value is either (i) a
text item, or (ii) a list of environments.

Layout Trees We now define our model of a program, namely the
layout tree, that executes over an environment to produce a DOM
tree. This model is very simple, and is straightforward to translate
into common languages that embed code with HTML/XML (e.g.,
server side like ASP and JSP, or client side like Javascript, Angu-
larJS and XSLT).

Recall that a DOM tree has two types of nodes: element and text
nodes. A layout tree is similar to a DOM tree, except that it has a
third type of nodes, namely instruction nodes. An instruction node
v is associated with a type and a variable. The type of an instruction
node can be one of three: condition, iteration, and reference. The
variable of an instruction node is a member of Var. We refer to an
instruction node with the variable x and the type condition, iteration
and reference as if(x), for(x) and ref(x), respectively. The root of
a layout tree is either an element node or a text node.1

Semantics of a Layout Tree The result of executing a layout pro-
gram π over an environment E is a DOM tree that we denote by
π(E). To define π(E) formally, we need some notation.

A DOM hedge is a sequence of DOM trees. Similarly, a lay-
out hedge is a sequence of layout trees, except that we allow each
layout tree to be rooted at an instruction node. For hedges h =
t1, . . . , tk and g = u1, . . . , um, we denote by h · g the hedge that
is obtained by concatenating g to h (i.e., t1, . . . , tk, u1, . . . , um).
If v is a node and h is a hedge, then we denote by v[h] the tree that
is obtained by adding v to h as the root (with the roots of h being
the children of v). If t is a tree with the root v, then we denote by
t−v the hedge that is obtained from t by removing v.

To define π(E), we give a more general (inductive) definition of
the semantics of executing a layout hedge Π over E , again denoted
by Π(E), and is generally a DOM hedge.
• If Π consists of a single tree π with a non-instruction root v,

then Π(E) is the tree v[π−v(E)].
• If Π consists of a single tree π with the root if(x), then the

following holds. If E(x) is defined and E(x) = 1, then Π(E)
is the hedge π−v(E); otherwise, Π(E) is the empty hedge.
• If Π consists of a single tree π with the root for(x), then

the following holds. If E(x) is defined and E(x) is a list
(E1, . . . , Em), then Π(E) is the hedge π−v(E1) · · ·π−v(Em);
otherwise, Π(E) is the empty hedge.
• If Π consists of a single tree π with the root ref(x), then the

following holds. If E(x) is defined and E(x) is a string, then
Π(E) = E(x); otherwise, Π(E) is the empty hedge.
• If Π is a hedge π1, . . . , πk where k > 1, then Π(E) is the

hedge π1(E) · · ·πk(E).
Finally, recall that a layout tree has a non-instruction root. Then

the above definition implies that the result of executing a layout tree
over an environment is always a single DOM tree.

1Our approach creates layout trees by folding subtrees of a DOM
tree. As the root is never folded, it remains a non-instruction node.

5 Problem Definition
In this section we formally define the space of separation solutions,
and the desirable separation solutions in that space.

5.1 Separation and Solution Space
Our goal is to describe a given DOM tree by a layout tree and an
environment. Formally, a separation of a DOM tree t is a pair
(π, E), where π is a layout tree and E is an environment, such that
π(E) = t. Separating t is the process of constructing a separation
(π, E) of t. Note that a DOM tree may have many separations (in
fact, infinitely many separations). We denote by Sep(t) the set of
all separations of t.

Sep(t)
def
= {(π, E) | π(E) = t}

A special case of a separation in Sep(t) is the trivial one (π, E)
where π is identical to t and E is empty.

5.2 Separation Quality
Since there are many possible ways to separate a given DOM tree,
it is important to define what makes one separation better than an-
other. In this work, we define a quality metric that is inspired by
the principle of Minimal Description Length (MDL) [31]. Accord-
ing to MDL, one should favor the model that gives the shortest
description of the observed data [17]. MDL is well-suited for deal-
ing with model selection, estimation, and prediction problems in
situations where the models under consideration can be arbitrarily
complex, and overfitting the data is a serious concern [16]. In par-
ticular, SYNTHIA aims at synthesizing a separation that minimizes
the length of the representation of the separation. To define the
length of the separation, we define a size measure for a given sepa-
ration (π, E). The description length of (π, E) is defined based on
the size in characters of the string representations of π and E , de-
noted sizeof(π) and sizeof(E), respectively. Hence, we define the
following: cost(π, E)

def
= sizeof(π) + sizeof(E).

Our algorithm (defined in the next section) does not guarantee a
separation of minimal cost. Instead, it applies a heuristic approach
that uses the above cost for guiding intermediate decisions along
the way. We leave for future work the challenge of obtaining opti-
mality and analyzing the associated computational complexity.

6 Our Approach
In this section we describe our algorithm for folding a DOM tree
into a layout tree and an associated environment.

6.1 The General Separation Algorithm
Given a DOM tree t, our algorithm constructs the separation (π, E)
recursively, as we describe below. We denote the input DOM tree t
as v[t1, . . . , tn] (that is, the root is v and it has n children, each is
the root of a subtree ti). The separation algorithm goes as follows.

1. Recursively separate each ti into a separation si = (πi, Ei).
2. Split s1, . . . , sn into m chunks (s1, . . . , sj1−1),

(sj1 , . . . , sj2−1), . . . , (sjm , . . . , sn) where, intuitively, each
chunk consists of “similar” separations.

3. Fold each chunk (sjl , . . . , sjl+1−1) into a single separation
(π′l, E ′l). Roughly speaking, π′l will be rooted at a for(x)
node, and E ′l will map its variable x to a list of environ-
ments (one for each of the folded trees) such that π′l(E ′l) =
πjl(Ejl) · · ·πjl+1−1(Ejl+1−1). That is, executing π′l on E ′l
will result in the same hedge as the concatenation of the
hedges obtained by executing the layouts of each si in the
chunk on its environment.

4. Return the separation (π, E) where π = v[π′1 · · ·π′m], and
E = E ′1 ∪ · · · ∪ E ′m.



Note that in step 4, the different E ′l use pairwise-disjoint sets of
variables; hence, their union E is a legal environment.

We denote by fold(s1, . . . , sk) the procedure used in step 3 for
folding a sequence s1, . . . , sk of separations si = (πi, Ei) into a
new separation s = (π, E). Next, we explain how splitting and
folding are implemented (In practice, they are weaved together).

6.2 Splitting
To split a sequence s1, . . . , sn of separations into chunks, we de-
fine a pairwise similarity function σ that assigns a score to each pair
of separations. We define a chunk to be a maximal continuous sub-
sequence sjl , . . . , sjl+ql of s1, . . . , sn where σ(si, si+1) is larger
than some fixed threshold for every i = jl, . . . , jl+ql−1. That is,
the chunks are broken where similarity is below the threshold. The
similarity function σ is based on the fold procedure, as follows. For
two separations s and s′, let sf = fold(s, s′). Recall the definition
of cost(s) in . Then σ(s, s′) is the relative reduction of cost gained
by replacing s and s′ with sf ; that is,

σ(s, s′) =
cost(s) + cost(s′)− cost(sf )

cost(s) + cost(s′)
.

6.3 Folding
In the rest of the section, we describe the procedure fold. Recall
that the input is a sequence s1, . . . , sk of separations si = (πi, Ei),
and the output is a single separation (π, E) with the property that
π(E) is the hedge π1(E1) · · ·πk(Ek).

fold(s1, . . . , sk) is performed by introducing a new for(x) node
with a single child πc. The single child πc captures the common
layout of π1, . . . , πk. The differences between them are captured
by conditional and reference nodes in πc, along with an environ-
ment, Eci , that is generated for each πi. The environment Eci is
based on Ei (the environment that πi was accompanied with), but
also includes the values of the new conditional and reference vari-
ables that are introduced in πci . Finally, the output environment E
that accompanies π is constructed by

E = {x 7→ Ec1(x) · . . . · Eck(x)}.
REMARK 1. Splitting is aimed at identifying separations that

will be unified by fold into a new for root with a single child that
generates all of them (with proper environments). If the number
of chunks exceeds some threshold (above 30% of the number of
children number), we consider folding into a for node with d > 1
children. To do so, SYNTHIA looks for chunks in which separations
in distance d from each other are similar. Folding is adapted ac-
cordingly to collapse separations in distance d from each other to
one child of the for node (rather than collapsing all separations in
the chunk to a single child). This enables SYNTHIA to deal with data
items that correspond to a sequence of adjacent nodes in the tree.

The crux of folding is the construction of πc (the child of the for
node), along with the environments Ec1 , . . . , Eck . This construction
is done by applying on the input trees π1, . . . , πk and their envi-
ronments E1, . . . , Ek an alignment algorithm, which we describe
next. Alignment operations may introduce conditional and refer-
ence nodes, and may align trees (or hedges) with for nodes, but
they never introduce new for nodes. for nodes are introduced by
folding (the procedure fold).

6.4 Alignment
We consider alignment of two layout trees with their environments.
To handle a larger number of layout trees, we apply alignment
incrementally: we first align two layout trees (and their environ-
ments), then align the result with another and so on, until all are
aligned.

Intuitively, when given two separations (π1, E1) and (π2, E2),
alignment unifies their layout trees by establishing a common lay-
out tree and updating the environments. The result is a triple
(π′, E ′1, E ′2) such that π′(E ′1) = π1(E1) and π′(E′2) = π2(E2). In
order to allow an incremental alignment (as needed for the align-
ment of more than two layout trees), where we apply alignment on
the result of a previous alignment which consists of two environ-
ments, we work with environment series E = (E1, . . . , Ek) instead
of environments E . Alignment is defined inductively, and for that
another generalization is required. Namely, instead of two layout
trees π we work with two layout hedges Π. The need for this gener-
alization will later become apparent. We denote by Π(E) the series
(Π(E1), . . . ,Π(Ek)) of DOM hedges.

DEFINITION 1. Let Π1 and Π2 be layout hedges and E1 and
E2 be two environment series. An alignment of (Π1,E1) and
(Π2,E2) is a triple (Π′,E′1,E

′
2) such that Π′(E′1) = Π1(E1)

and Π′(E′2) = Π2(E2).

The objective of our alignment is to minimize the combined de-
scription length of the unified layout tree and the corresponding
environments. We therefore define an alignment cost, similarly to
the notion of separation cost:

cost(Π′,E′1,E
′
2) =

∑
π∈Π′

sizeof(π)+
∑
E∈E′

1

sizeof(E)+
∑
E∈E′

2

sizeof(E)

6.4.1 Scope Environments
The most tricky part of the alignment is the update of the environ-
ments. To explain this update we need the following definitions.

Scope. Given a layout tree π, each iteration node in π defines a
scope. The scope of a node v in π is determined by its lowest
ancestor vs which is an iteration node for(x) (or by the root if no
such ancestor exists). In the former case, we say that vs is the
scope node and x is the scope variable of v. To simplify matters
and prevent ambiguity, we do not allow two iteration nodes to have
the same variable. We define the scope node and variable of a hedge
similarly by considering the lowest common ancestor.

Scope environments. Given a layout tree π and an environment E ,
the scope environments of a node v in π, denoted S(v), are defined
inductively based on the scope of v. If the scope of v is the root,
then S(v) = {E}. Otherwise, let vs and x be the scope node and
scope variable of v, respectively (i.e., v resides in the subtree of
vs = for(x)). Then S(v) =

⋃
Es∈S(vs){Ei | Es(x) = E1·. . .·Em}.

That is, that scope environments of v are all the environments in the
lists that x is mapped to.

EXAMPLE 2. Consider the layout tree L3 in Fig. 6 and the en-
vironment depicted in D3. The node <li> resides in the subtree
of the node FOR:f2. Therefore, its scope environments are the
nine environments consisting of the five environments in the first
list of environments associated with variable f2: E11 = {v3 :
“Medcicine′′, v4 : “176′′}, . . . , E15 = {v3 : “Multivitamins′′,
v4 : “109′′}, along with the four additional environments in the
second list, E21 = {v3 : “Bottles′′, v4 : “54′′}, . . . , E24 = {v3 :
“Strollers′′, v4 : “264′′}.

6.4.2 Alignment Operations
Alignment of two hedges Π1 and Π2, (usually these are children
hedges of two nodes that are being aligned) with environment se-
ries E1 and E2 respectively, is performed using a dynamic pro-
gramming algorithm. The algorithm advances along the two given
hedges simultaneously and aligns their trees.



The operations considered by our alignment algorithm are: Align,
Skip andAlignFor, which we describe next. Align and Skip are
conventional operations in alignment algorithms (unlike traditional
alignments, in our case special care is taken to ensure that the align-
ment is lossless). TheAlignFor operation enables for-rooted trees
to be aligned with a hedge rather than a single tree.

Align. aligns (π1,E1) with (π2,E2) where π1 and π2 are two sin-
gle trees with matching roots, which means that they have the same
name and type. In this case, we introduce a new root node v which
unifies the roots v1 and v2 of π1 and π2 (as demonstrated below).
The children of the new root are the result of recursively aligning
the children hedges Π1 and Π2 into a hedge Π. In particular, the
recursive operation might update E1 and E2.

For example, if v1 and v2 are both text nodes (meaning that Π1

and Π2 are empty) and text(v1) = text(v2), then the unified root
v is identical to (both of) them and E1 and E2 remain unchanged.
However, if text(v1) 6= text(v2), then v is a reference node of the
form ref(x), where x is a fresh variable. For i = 1, 2, we add to
each scope environment of vi in Ei the mapping x 7→ text(vi).

If v1 and v2 are for(x1) and for(x2), then v is for(x), where x
is a fresh variable, and we update all the scope environments of v1

and v2 in E1 and E2 respectively by renaming every occurrence of
xi with x.

Skip. aligns (Π1,E1) with (π2,E2) where Π1 is an empty hedge
and π2 is a tree by introducing a conditional node v of the form
if(x), where x is a fresh variable. The alignment result is then the
tree π′ = v[π2], with E1 updated by adding the mapping x 7→ 0
to each scope environment of Π1, and E2 updated by adding the
mapping x 7→ 1 to each scope environment of π2. Technically, in
this case, we also receive the scope node (and variable) of Π1 (the
empty hedge) as input (in other cases this input is not needed since
it is uniquely defined given the tree or hedge).

AlignFor. aligns (π1,E1) and (π2,E2) where π1 is a for-rooted
tree (which is possibly the result of alignment with previous trees
from Π2). Intuitively, the result of the alignment will be a for-
rooted tree that in addition to the trees captured by π1 also generates
π2. Repeated applications of AlignFor enable aligning a for tree
with a hedge. This operation has some resemblance to fold, yet
it utilizes an existing for node (from π1), rather than introducing
a new one. The tricky part in this operation is that it breaks up
existing scopes in π2 due to the import of the for-node from π1. As
a result, a new hierarchical level is also created in the environments
in E2. Due to space constraints we omit the detailed description.

6.4.3 Alignment Algorithm

Given (Π1,E1) and (Π2,E2) our algorithm computes an align-
ment while trying to minimize its cost. It also calculates the re-
sulting cost. It uses dynamic programming to find the sequence of
alignment operations which minimizes the alignment cost.

The algorithm gradually fills a two dimensional matrixB of size
n ×m, where n = |Π1| and m = |Π2|. For each 1 ≤ i ≤ n and
1 ≤ j ≤ m B[i, j].cost contains the minimal alignment cost of
the prefix hedge Πi

1 of Π1 of length i, and the prefix hedge Πj
2 of

Π2 of length j. B[i, j].op contains the operation for πi1 and πj2 that
resulted in the minimal cost.

The algorithm calculates B[i, j].cost and B[i, j].op by calculat-
ing the cost of all possible alignment operations for πi1 and πj2 and
by using the costs calculated in B for i′ < i and j′ < j. The algo-
rithm picks the option with the minimal cost. Finally,B[n,m].cost
is the alignment cost of (Π1,E1) and (Π2,E2).

The cost of operations The cost of an operation reflects the change
in both the layout tree and environment costs. As the following

example demonstrates, the latter is not fixed per operation, but de-
pends on E1 and E2.

EXAMPLE 3. Consider the alignment of two subtrees, πl and
πr , where πl is a subtree residing under a loop node for(x) which
has 10 scope environments and πr is an element subtree with a
single scope environment. A conditional subtree insertion during
the alignment will introduce a new conditional value in these 11
environments (one of πr and 10 of πl). As such, its effect on the
cost depends on the number of scope environments.

We demonstrate the cost calculation on some of the operations.

Align (aligning single trees). The algorithm recursively calcu-
lates the minimal alignment cost for (πi1,E1) and (πj2,E2), where
πi1 is rooted at v1 and πj2 is rooted at v2.
• Two text nodes alignment. If v1 and v2 are text nodes with

different text, the cost of applying the two text nodes align-
ment operation isB[i−1, j−1].cost+sizeof(text1)|S(v1)|+
sizeof(text2)|S(v2)|−sizeof(text1)−sizeof(text2), where
S(vi) is the set of scope environments of vi in Ei.
• Two element nodes alignment. If v1 and v2 are element nodes,

the cost of applying the two element nodes alignment isB[i−
1, j−1].cost plus the cost of aligning their children, subtract-
ing the cost of one of them.

Skip (aligning an empty hedge with a tree (to left)). We calculate
the code cost of wrapping πi1 with a conditional node vc, and the
data cost of updating every scope environment in E1 and E2. We
denote the cost of adding the conditional subtree and updating the
environments as costleftc . Then the cost of applying the skip align-
ment operation is costleftc +B[i− 1, j].cost.

EXAMPLE 4. Consider the folding of the left-most sequence of
<li> nodes in the layout tree L1 from Fig. 6. Each of these nodes
is accompanied by an environment capturing the mapping of the
variables in its subtree. In our case these environments are initially
empty, as the <li> subtrees have no variables (yet). The fold op-
eration first aligns these subtrees. Alignment recursively aligns the
respective text nodes under the <a> nodes from different subtrees.
These text nodes have different values (e.g., Medicine vs. Multi-
vitamins). Therefore alignment introduces a reference node with
variable name v1 and updates the scope environments of the dif-
ferent subtrees to include a mapping of v1 to the respective value.
Similarly, v2 is introduced. Therefore, each of the environments
includes a mapping of both v1 and v2. The fold operation then
wraps the resulting aligned subtree with a for node FOR:f1 (intro-
duced in layout tree L2) and adds a mapping of the variable f1 in
the main environment to a list containing the updated environments
(as reflected in the environment D2).

REMARK 2. As a post-processing phase, SYNTHIA identifies vari-
ables that always have the same value whenever they appear to-
gether in the same environment. Such variables are renamed to the
same variable to avoid duplications in the data.

7 Evaluation
In this section, we evaluate our approach across multiple dimen-
sions. First, we show that our technique is good for data extrac-
tion by evaluating it on standard datasets, and comparing it to three
other state of the art data extraction techniques. Then, we show that
our technique is good for separation of code and data by computing
the combined representation size (MDL).



7.1 Evaluation of Data Extraction

7.1.1 Methodology

To evaluate the effectiveness of our approach for data extraction,
we have used the common testbeds TBDW [41] and RISE [30].
We compare our approach to DEPTA [42], a technique that works
on single pages, as well as to techniques that handle multiple pages:
MDR [24], TPC [28], FivaTech, and Trinity (as reported by [33]).

Testbed 1: TBDW The TBDW testbed contains 253 web pages
from 51 sites. Each web page in the testbed is manually labeled
with the correct number of records, and the content of the first
record. We use TBDW to compare the performance of our algo-
rithm with that of DEPTA [42], MDR [24], and TPC [28]. For
DEPTA, where the code is available, we reproduce the results by
running the DEPTA tool. For MDR and TPC, we compare our re-
sults to those reported in [24, 28].

Testbed 2: RISE The RISE testbed contains 663 pages from 5 dif-
ferent site. We use it to compare the performance of SYNTHIA to
FivaTech and Trinity as reported by [33]. RISE checks the perfor-
mance of page-level record extractors. It contains pages with single
records, something that SYNTHIA is not meant to handle, but is able
to handle if pages are merged into a single page. To enable our tool
to deal with single record pages, we put all the DOM trees of these
different pages as children subtrees under a shared “root” node, and
apply SYNTHIA on the resulting tree. DEPTA is excluded from the
comparison on RISE, because it was not designed to handle multi-
ple pages, and applying it to our single merged page produces very
poor results (which we consider unfair comparison).

Experiment We run SYNTHIA on the 253 pages from TBDW and
663 pages from RISE, and collect the records extracted from each
page. For each page, our approach extracts a hierarchical represen-
tation (json) of the data on the page. We consider the list of envi-
ronments in the data corresponding to a “for” variable as a table of
records. If the relevant data was separated to two or more different
tables, we only consider the table containing the biggest number of
relevant records as the table of records identified by SYNTHIA.

Ground Truth As suggested in TBDW, the first record on a page,
together with the page itself, defines the ground truth of the set of
data records of the page. The ground truth for each site is obtained
by the union of all ground truth sets of its pages.

Comparing Results We ran both our algorithm and DEPTA [42]
on the 253 webpages from the 51 websites in the testbed. We com-
pare the set of records extracted by each approach to the ground
truth. For the comparison, we consider the ground truth over all
websites, as well as the set of true positives, which consists of data
records correctly extracted by the algorithms, and the set of false
positives, which consists of items that are wrongfully identified as
data records. We report the precision and recall of each approach:

Precision =
|true-positives|

|true-positives|+ |false-positives|

Recall =
|true-positives|
|ground-truth|

In addition, to compare our results with TPC [28] and MDR [24],
we use the same partial set of 43 websites containing 213 web pages
from TBDW used in [28]. In this case, the ground truth, true posi-
tives and false positives, are computed per website. The results are
the average recall and precision aggregated for all sites.

To compare to FivaTech and Trinity, we ran our tool on RISE
dataset and compared its results to those reported by Trinity in [33].

7.1.2 Results

The results of SYNTHIA when compared to DEPTA on the whole
TBDW dataset are reported in Table 1. As seen from the table,
SYNTHIA is favorable in both recall and precision. We found that in
many cases DEPTA fails to find the boundaries of the data records,
frequently merging several records into one.

Table 1: Accuracy comparison with DEPTA on the TBDW dataset

DEPTA SYNTHIA

Ground Truth 4620
True Positives 2506 4445
False Positives 27 23

Precision 98.9% 99.5%
Recall 54.2% 96.2%

F-Score 70% 97.8%

Table 2: Accuracy comparison on TBDW-P dataset

Algorithm Precision Recall F-score

DEPTA 97.6% 59.5% 73.9%
MDR 93.2% 61.8% 74.3%
TPC 96.2% 93.1% 94.6%

SYNTHIA 99.7% 95.6% 97.6%

Table 2 shows the results of our tool when compared to DEPTA,
MDR and TPC on a partial set of 43 websites containing 213 web
pages from TBDW (we denote it TBDW-P). The TBDW-P is sug-
gested by TPC [28] and it excludes pages from TBDW containing
nested structures, in order to provide a fair comparison with the
MDR algorithm, which is designed for flat data records. The As
can be seen from the results, MDR suffers from similar recall is-
sues as DEPTA, while having a lower recall. Generally speaking,
our algorithm has the best performance, both in precision and recall
compared to the three other algorithms.

The TBDW dataset contains a few pages with a single result
record. Our algorithm fails to extract such records since it works on
a single page and not on a group of pages generated using a similar
template. This contributes to the small loss of recall (95.6% and
96.2% on the partial and full sets respectively) of our algorithm.

The results for running our tool on RISE dataset are reported in
Table 3. Our tool outperforms both Trinity and FivaTech in most
of the sites of this dataset. Trinity is the closest among the two
in terms of performance. Our tool has low recall when extracting
the records from IAF. We reviewed the web pages, and found that
different data records are not of the same length. While our tool is
capable of dealing with data records of length>1 (not wrapped by
a single html tag, which is not so common), our tool does not deal
with records of varying lengths.

Table 3: Record extraction performance comparison between
SYNTHIA, Trinity and FivaTech on RISE dataset.

SYNTHIA Trinity FivaTech
P R F1 P R F1 P R F1

BigBook 0.99 1 0.99 0.95 0.94 0.94 - - -
IAF 1 0.11 0.2 0.84 0.38 0.52 0.53 0.69 0.6
Okra 1 1 1 1 0.82 0.9 0.49 0.34 0.4

LA.W 1 0.75 0.86 0.97 0.92 0.94 0.83 0.57 0.68
Zagat 1 1 1 1 0.86 0.92 1 0.98 0.99



7.2 Evaluation of Code and Data Separation

7.2.1 Methodology

The TBDW dataset contains the search results generated by search-
able databases, also called search result records (SRRs). These
pages are always of a common format of list of results. In this
dataset, our approach recognizes that the format does not vary be-
tween records, and that formatting is part of the template. To eval-
uate the quality of the resulting code/data on general websites, we
consider benchmarks with more significant page structure. We cre-
ated our own dataset(available at: https://goo.gl/PKY0VI) by col-
lecting 200 pages from 40 popular websites in 8 categories, with
5 different pages from each site. In all of our experiments we also
verify that the separation computed by SYNTHIA is indeed lossless
by running the extracted code on the extracted data and comparing
the result to the original page.

Quality of Separation Inspired by the MDL principle [9], we con-
sider the length of the combined code/data representation as an in-
dicator for the quality of separation. On the one hand, considering
similar code subtrees as separate subtrees will prevent potential re-
duction in representation size due to the code representation. On
the other hand, folding together different subtrees and represent-
ing them using a single code tree will introduce many conditional
constructs and dynamic references, resulting in a more complicated
and bigger data. A good solution will know when to fold two sub-
trees and when to keep them separate, in a way that keeps the rep-
resentation length minimal.

For each page we compute the size in bytes of the data and code
representation produced by our approach, denoted |data(page)|
and |code(page)| respectively. We use these to compute

Reduction-Ratio =
|code(page)|+ |data(page)|

|page|

When the entire page is considered code (this is one of the triv-
ial solutions for separation), the reduction-ratio is 1. The reduction
in representation size results from deduplication of the shared tem-
plate repeating in a code-generated page. The reduction is bigger
in pages having more regularity. Previous work on template ex-
traction [15] reported that the template size is around 40%-50% of
the page size. If this template is regular, we can expect to obtain
significant savings in representation from this part of the page.

Comparing Results Since we are not aware of any other approach
that separates a single page into data and code, we compute the
reduction-ratio of our approach and compare it to 2 other simpli-
fied implementations with different features (referred to as basic
and w/nesting in the table). The first implementation is inspired
by RTDM [29, 36] and is based on a traditional tree edit distance
metric both for the decision which subtrees to fold and for folding
them. The second algorithm is based on a bottom-up tree edit dis-
tance computation. The main difference between the two is that the
latter can deal with nested data regions by first running on a node’s
children before trying to fold them. In contrast, our algorithm cal-
culates the minimal shared representation size of two subtrees, and
uses it as the basis for deciding which subtrees to fold. In addition,
folding minimizes the shared representation of the folded subtrees.

7.2.2 Results

The results in Table 4 show that using a bottom-up algorithm, which
enables dealing with nested data-regions, improves the reduction-
ratio compared to the simpler approach based on tree edit distance.
Furthermore, the results show that our algorithm significantly out-
performs both of the algorithms that are based on tree edit distance
in terms of representation size.

Table 4: Ratio of reduced size to original size (reduction ratio).
Lower numbers represent better reduction.

basic w/nesting SYNTHIA

Movie 87.8% 66.4% 65.3%
Cars 81.6% 74.1% 59.1%

Real-estate 96.2% 86% 68.9%
Forums 92.7% 77.4% 61.3%
Sports 94.9% 80.4% 64.5%

Jobs 97% 90.5% 81.8%
E-commerce 71.9% 62.5% 43.5%
Photography 82.1% 78.3% 67.5%

Overall 87.4% 75.5% 62.8%
TBDW 93.9% 89.9% 65.8%

Figure 7: Running times as a function of the nodes count for the
different documents in the two datasets

7.3 Running Time

We recorded the running time of our algorithm on the 453 different
web pages from both TBDW and our dataset. All experiments were
run in a single thread on a Macbook Pro with Core i7 CPU and
16GB memory. The running time is reported in Fig. 7. We found
that our tool has an average run-time of 53ms on pages from the
two datasets. It processes 95.9% of the pages in the two datasets in
less than 150ms and 99.5% of the documents in less than 1sec.

8 Conclusion and Future Work
We presented a technique for separating a webpage into layout code
and structured data. Our technique computes a separation that is
lossless, which means that running the extracted code on the ex-
tracted data reproduces the original page. Because there are many
ways to separate a webpage into layout code and data, we make
sure that our separation is efficient by aiming to minimize the joint
description length of code and data. What this means intuitively, is
that our technique attempts to find a separation such that common
elements become part of the layout code, and varying values are
represented as data. The ability to separate webpages has various
important applications: page encoding may be significantly more
compact (reducing Web traffic), data representation is normalized
across different Web designs (facilitating wrapping, retrieval and
extraction), and repetitions are diminished (expediting site updates
and redesign). We show the effectiveness of our approach by evalu-
ating its performance both for size compression and record extrac-
tion. Despite the fact that our approach is not specifically tailored
to these applications, it outperforms state of the art data extraction
tools, and achieves impressive compression ratios.

As code becomes increasingly important in producing the con-
tent of a page [38], we believe that layout code (more generally,
page code) and the problem of code extraction should receive more

https://goo.gl/PKY0VI


attention. In future work, we plan to address the separation problem
with primitives for data generalization.

Acknowledgment
The research leading to these results has received funding from
the European Union’s Seventh Framework Programme (FP7) un-
der grant agreement no. 615688 - ERC-COG-PRIME and the Is-
rael Ministry of Science and Technology, grant no. 3-9779. The
research of Benny Kimelfeld is supported by the Israeli Science
Foundation, grant no. 1295/15 and grant no. 1308/15.

9 References
[1] ARASU, A., AND GARCIA-MOLINA, H. Extracting

structured data from web pages. In SIGMOD (2003).
[2] BAR-YOSSEF, Z., AND RAJAGOPALAN, S. Template

detection via data mining and its applications. In WWW’02.
[3] CAI, D., YU, S., WEN, J.-R., AND MA, W.-Y. Vips: a

vision-based page segmentation algorithm. Tech. rep.,
Microsoft technical report, MSR-TR-2003-79, 2003.

[4] CHAKRABARTI, D., KUMAR, R., AND PUNERA, K.
Page-level template detection via isotonic smoothing. In
Proc. of the international conf. on World Wide Web (2007).

[5] CHANG, C. H., KAYED, M., GIRGIS, M., AND SHAALAN,
K. A survey of web information extraction systems. IEEE
Trans. on Knowledge and Data Engineering 18, 10 (2006).

[6] CHANG, C.-H., AND LUI, S.-C. IEPAD: information
extraction based on pattern discovery. In WWW (2001).

[7] CRESCENZI, V., MECCA, G., AND MERIALDO, P.
Roadrunner: Towards automatic data extraction from large
web sites. In VLDB (2001).

[8] DALVI, N., BOHANNON, P., AND SHA, F. Robust web
extraction: an approach based on a probabilistic tree-edit
model. In SIGMOD (2009).

[9] DHOLI, M. P. R., AND CHAUDHARI, K. Template
extraction from heterogeneous web pages using MDL
principle.

[10] FAZZINGA, B., FLESCA, S., AND TAGARELLI, A. Learning
robust web wrappers. In Database and Expert Systems
Applications (2005), Springer, pp. 736–745.

[11] FUMAROLA, F., WENINGER, T., BARBER, R., MALERBA,
D., AND HAN, J. Extracting general lists from web
documents: A hybrid approach. In IEA/AIE’11 (2011).

[12] FUMAROLA, F., WENINGER, T., BARBER, R., MALERBA,
D., AND HAN, J. Hylien: a hybrid approach to general list
extraction on the web. In WWW (2011).

[13] GAO, B., AND FAN, Q. Multiple template detection based
on segments. In Advances in Data Mining. Applications and
Theoretical Aspects. Springer, 2014, pp. 24–38.

[14] GERACI, F., AND MAGGINI, M. A fast method for web
template extraction via a multi-sequence alignment
approach. In KIC3K. Springer, 2013, pp. 172–184.

[15] GIBSON, D., PUNERA, K., AND TOMKINS, A. The volume
and evolution of web page templates. In Special interest
tracks and posters of WWW (2005).

[16] GRÜNWALD, P. D. The minimum description length
principle. MIT press, 2007.

[17] HANSEN, M. H., AND YU, B. Model selection and the
principle of minimum description length. Journal of the
American Statistical Association 96, 454 (2001), 746–774.

[18] HAO, Q., CAI, R., PANG, Y., AND ZHANG, L. From one
tree to a forest: a unified solution for structured web data
extraction. In SIGIR (2011).

[19] KAYED, M., AND CHANG, C.-H. Fivatech: Page-level web
data extraction from template pages. Knowledge and Data
Engineering, IEEE Transactions on 22, 2 (2010), 249–263.

[20] KIM, C., AND SHIM, K. Text: Automatic template
extraction from heterogeneous web pages. Knowledge and
Data Engineering, IEEE Transactions on 23, 4 (2011).

[21] KOHLSCHÜTTER, C., FANKHAUSER, P., AND NEJDL, W.
Boilerplate detection using shallow text features. In Web
Search and Data Mining (WSDM) (2010).

[22] KUSHMERICK, N., WELD, D. S., AND DOORENBOS, R. B.
Wrapper induction for information extraction. In IJCAI’97.

[23] LI, J., LIU, C., YU, J. X., AND ZHOU, R. Efficient top-k
search across heterogeneous XML data sources. In Database
Systems for Advanced Applications (DASFAA) (2008).

[24] LIU, B., GROSSMAN, R., AND ZHAI, Y. Mining data
records in web pages. In KDD (2003).

[25] LIU, D., WANG, X., LI, H., AND YAN, Z. Robust web
extraction based on minimum cost script edit model.
Procedia Engineering 29 (2012), 1119–1125.

[26] LIU, W., MENG, X., AND MENG, W. Vision-based web
data records extraction. In Proc. 9th International Workshop
on the Web and Databases (2006), pp. 20–25.

[27] LIU, W., MENG, X., AND MENG, W. Vide: A vision-based
approach for deep web data extraction. Knowledge and Data
Engineering, IEEE Transactions on 22, 3 (2010), 447–460.

[28] MIAO, G., TATEMURA, J., HSIUNG, W.-P., SAWIRES, A.,
AND MOSER, L. E. Extracting data records from the web
using tag path clustering. In WWW (2009).

[29] REIS, D. D. C., GOLGHER, P. B., SILVA, A. S., AND
LAENDER, A. Automatic web news extraction using tree
edit distance. In WWW (2004).

[30] RISE. Rise: A repository of online information sources used
in information extraction tasks.
[http://www.isi.edu/integration/RISE/index.html] (1998).

[31] RISSANEN, J. Modeling by shortest data description.
Automatica 14, 5 (1978).

[32] SIMON, K., AND LAUSEN, G. Viper: augmenting automatic
information extraction with visual perceptions. In
Information and knowledge management (2005).

[33] SLEIMAN, H., CORCHUELO, R., ET AL. Trinity: on using
trinary trees for unsupervised web data extraction. IEEE
Trans. on Knowledge and Data Engineering 26, 6 (2014).

[34] SLEIMAN, H. A., AND CORCHUELO, R. Tex: An efficient
and effective unsupervised web information extractor.
Knowledge-Based Systems 39 (2013).

[35] THAMVISET, W., AND WONGTHANAVASU, S. Information
extraction for deep web using repetitive subject pattern.
World Wide Web (2013).

[36] VIEIRA, K., DA SILVA, A. S., PINTO, N., DE MOURA,
E. S., CAVALCANTI, J., AND FREIRE, J. A fast and robust
method for web page template detection and removal. In
Information and knowledge management (2006).

[37] WANG, J., AND LOCHOVSKY, F. H. Data extraction and
label assignment for web databases. In WWW (2003).

[38] WENINGER, T., PALÁCIOS, R., CRESCENZI, V.,
GOTTRON, T., AND MERIALDO, P. Web content extraction -
a meta-analysis of its past and thoughts on its future. CoRR
abs/1508.04066 (2015).

[39] WOOD, L., ET AL. Document object model (dom) level 1
specification. W3C Recommendation 1 (1998).

[40] WU, S., LIU, J., AND FAN, J. Automatic web content
extraction by combination of learning and grouping. In
WWW (2015).

[41] YAMADA, Y., CRASWELL, N., NAKATOH, T., AND
HIROKAWA, S. Testbed for information extraction from deep
web. In Proc. of the WWW conf. - papers & posters (2004).

[42] ZHAI, Y., AND LIU, B. Web data extraction based on partial
tree alignment. In WWW (2005).


	Introduction
	Related Work
	Overview: Problem and Solution
	Motivating Example
	Our Approach
	Key Aspects

	Preliminaries and Model
	Problem Definition
	Separation and Solution Space
	Separation Quality

	Our Approach
	The General Separation Algorithm
	Splitting
	Folding
	Alignment
	Scope Environments
	Alignment Operations
	Alignment Algorithm


	Evaluation
	Evaluation of Data Extraction
	Methodology
	Results

	Evaluation of Code and Data Separation
	Methodology
	Results

	Running Time

	Conclusion and Future Work
	References

