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1. INTRODUCTION
We present Universal Property Directed Reachability (PDR∀), a semi-algorithm for automatic in-
ference of quantified inductive invariants, and its application for the analysis of programs that ma-
nipulate unbounded data structures such as singly-linked and doubly-linked list data structures. For
a correct program, the inductive invariant generated ensures that the program satisfies its specifica-
tion. For an erroneous program, PDR∀ produces a concrete counterexample. Historically, this has
been addressed by abstract interpretation [Cousot and Cousot 1977] algorithms, which automati-
cally infer sound inductive invariants, and bounded model checking algorithms, which explore a
limited number of loop iterations in order to systematically look for bugs [Biere et al. 1999; Clarke
et al. 2003]. We continue the line of recent work [Itzhaky et al. 2014; Albarghouthi et al. 2015]
which simultaneously search for invariants and counterexamples. We follow Bradley’s PDR/IC3
algorithm [Bradley 2011] by repeatedly strengthening a candidate invariant until it either becomes
inductive, or a counterexample is found.
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void split(List h, List g) {
i :=h;
j :=null; k :=null;
while (i 6=null) {
if ¬ok(i) then {
if i=h then
h :=i.n

else
j.n :=i.n;

if g=null then
g :=i

else
k.n :=i;

k :=i; i :=i.n;
k.n :=null

}
else { j :=i; i :=i.n }

}
}

requires :
g = null ∧ h = h ∧ (∀x , y .n∗(x , y)↔ n∗(x , y))

ensures :
(∀z . h 6= null ∧ n∗(h, z )→ ok(z )) ∧
(∀z . g 6= null ∧ n∗(g , z )→ ¬ok(z )) ∧
(∀z . z 6= null → (n∗(h, z )↔ n∗(h, z ) ∨ n∗(g , z ))) ∧
(∀x , y .
n∗(h, x ) ∧ n∗(x , y) ∧ ok(x ) ∧ ok(y)→ n∗(x , y)) ∧

(∀x , y .
n∗(h, x ) ∧ n∗(x , y) ∧ ¬ok(x ) ∧ ¬ok(y)→ n∗(x , y))

(a) A procedure that moves all the elements not satisfying ok(·) from list h to list g and its specification
using pre- nd post-conditions. Variables h, g, i, j, and k are pointers to list nodes, and l.n denotes the
“next” field of node l. n∗(x , y) means a (possibly empty) path of n-fields from x to y . The ghost variables
h and n∗(·, ·) record the head of the original list and the reachability order between its elements.

void filter(List h) {
i :=h; j :=null;
while (i 6=null) {
if ¬ok(i) then
if i=h then
h :=i.n

else
j.n :=i.n

else j :=i;
i :=i.n

}
}

requires :
true

ensures :
∀z . h 6= null ∧ n∗(h, z )→ ok(z )

(b) A procedure that deletes all the nodes not satisfying ok(·) from list h.

Fig. 1: Motivating examples.

In our experience, the correctness of many programs can be proven using universal invariants.
Hence, we simplify matters by focusing on inferring universal first-order invariants. When PDR∀

terminates, it yields one of the following outcomes: (i) a universal inductive invariant strong enough
to show that the program respects the property, (ii) a concrete counterexample which shows that
the program violates the desired safety property, or (iii) a proof that the program cannot be proven
correct using a universal invariant in a given vocabulary.

Diagram Based Abstraction. Unlike previous work [Itzhaky et al. 2014; Albarghouthi et al.
2015], we neither assume that the predicates which constitute the invariants are known, nor apri-
ori bound the number of universal quantifiers. Instead, we rely on first-order theories with a finite
model property: for such theories, SMT-based tools are able to either return UNSAT, indicating that
the negation of a formula ϕ is valid, or construct a finite model σ of ϕ. We then translate σ into a
diagram [Chang and Keisler 1990] — a formula describing the set of models that extend σ — and
use the diagram to construct a universal clause to strengthen a candidate invariant.
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I = L1 ∧ L2 ∧ L3 ∧ L4 ∧ L5 ∧ L6 ∧ L7 where
L1 = i 6= h ∧ i 6= null → n∗(j , i)

L2 = i 6= h → ok(h)

L3 = n∗(h, j ) ∨ i 6= j

L4 = ∀x . i 6= h ∧ n∗(j , x ) ∧ x 6= j → n∗(i , x )

L5 = i 6= h → ok(j )

L6 = ∀x . x = h ∨ j = null ∨ ¬n∗(h, x ) ∨ n∗(h, j ) ∨ ¬ok(j )

L7 = ∀x . j 6= null ∧ n∗(h, x ) ∧ x 6= h ∧ ¬ok(x )→ n∗(j , x )

Fig. 2: Invariant for filter(). For better readability, some of the inferred clauses are displayed in
the form of implications.

Property-Directed Invariant Inference. Similarly to IC3, PDR∀ iteratively constructs an increas-
ing sequence of candidate inductive invariants F0, . . . ,FN . Every Fi over-approximates the setRi

of states that can be reached by up to i execution steps from a given set of initial states. In every
iteration, PDR∀ uses SMT to check whether one of the candidate invariants became inductive. If so,
then the program respects the desired property. If not, PDR∀ iteratively strengthens the candidate
invariants and adds new ones, guided by the considered property. Specifically, it checks if there ex-
ists a bad state σ which satisfies FN but not the property. If so, we use SMT again to check whether
there is a state σa in FN−1 that can lead to a state in the diagram ϕ of σ in one execution step. If
no such state exists, the candidate invariant FN can be strengthened by conjoining it with the nega-
tion of ϕ. Otherwise, we recursively strengthen Fi−1 to exclude σa from its over-approximation of
Ri−1. If the recursive process tries to strengthen F0, we stop and use a bounded model checker to
look for a counterexample of length N . If no counterexample is found, PDR∀ determines that no
universal invariant strong enough to prove the desired property exists (see Lemma 4.5). We note
that PDR∀ is not guaranteed to terminate. In Section 6, we show that under certain conditions,
e.g., when reasoning about programs manipulating singly-linked lists, it does. Furthermore, in our
experiments it terminates even when these conditions do not hold.

Example 1.1. Procedure split(), shown in Figure 1(a), moves the elements not satisfying the
condition ok from the list pointed to by h to the list pointed by g. PDR∀ can infer tricky induc-
tive invariants strong enough to prove several interesting properties: (i) memory safety, i.e., no null
dereference and no memory leaks; (ii) all the elements satisfying ok are kept in h; (iii) all the ele-
ments which do not satisfy ok are moved to g ; (iv) no new elements are introduced; and (v) stability,
i.e., the reachability order between the elements satisfying ok is not changed. Our implementation
verified that split() satisfies all the above properties fully automatically by inferring an inductive
loop invariant consisting of 33 clauses (among them 17 are universal formulae). (The invariant is
given in Appendix A.)

Example 1.2. Procedure filter(), shown in Figure 1(b), removes and deallocates the ele-
ments not satisfying the condition ok from the list pointed to by h. Figure 2 shows the loop invariant
inferred by PDR∀ when it was asked to verify a simplified version of property (iii): all the elements
which do not satisfy ok are removed from h. The invariant highlights certain interesting properties
of filter(). For example, clause L4 says that if the head element of the list was processed and
kept in the list (this is the only way i 6= h can hold), then j becomes an immediate predecessor of
i . Clause L7 says that all the elements x reachable from h and not satisfying ok must occur after j .

Experimental Evaluation. We implemented PDR∀ on top of the decision procedure of [Itzhaky
et al. 2014], and applied it to a collection of procedures that manipulate (possibly sorted) singly
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linked lists, doubly-linked lists, and multi-linked lists. Our analysis successfully verified interest-
ing specifications, detected bugs in incorrect programs, and established the absence of universal
invariants for certain correct programs.

Main Contributions. The main contributions of this work can be summarized as follows.
• We present PDR∀, a pleasantly simple, yet surprisingly powerful, combination of PDR [Bradley

2011] with a strengthening technique based on diagrams [Chang and Keisler 1990]. PDR∀ enjoys
a high degree of automation because it does not require predefined abstraction predicates.

• The diagram-based abstraction is particularly interesting as it is determined “on-the-fly” accord-
ing to the structural properties of the bad states discovered in PDR’s traversal of the state space.

• We prove that the diagram-based abstraction is precise in the sense that if PDR∀ finds a spurious
counterexample then the program cannot be proven correct using a universal invariant. We believe
that this is a unique feature of our approach.

• We provide sufficient conditions that ensure that PDR∀ terminates.
• We implemented PDR∀ on top of a decision procedure for the logic EAR [Itzhaky et al. 2013]1,

and applied it successfully to verify a collection of list-manipulating programs, detect bugs, and
prove the absence of universal invariants. We show that our technique outperforms an existing
state-of-the-art PDR-based verification technique [Itzhaky et al. 2014] which uses the same deci-
sion procedure but requires user-supplied abstraction predicates. The implementation is available
for download at https://bitbucket.org/tausigplan/updr-distrib/

• The modeling of acyclic lists is based on the encoding developed in [Itzhaky et al. 2013]. We also
present a novel encoding that allows to model programs that manipulate (restricted) cyclic lists in
EAR and to apply our analysis to them.

2. PRELIMINARIES
This section formalizes the verification problem and sets terminology and notation. We start by
explaining the way in which we use first-order logic to represent a transition system, which consists
of a set of states and transitions between states. We then explain how we translate a program into a
transition system and obtain a verification problem which captures the correctness of the program.

2.1. Verification Problems and Their Representation in First-Order Logic
States. A state is represented by a finite2 first-order model σ = (D , I) over a vocabulary V which

consists of constants and relation symbols, where D is the finite domain of the model, and I is the
interpretation function of the symbols in V . We assume that the domain D of every state is a subset
of a fixed set U , called a universe.

Transition Relation. The set of transitions of a transition system is defined using a transition re-
lation. A transition relation is a set of models of a double vocabulary V̂ = V ]V ′, where vocabulary
V is used to describe the source state of the transition and vocabulary V ′ = {v ′ | v ∈ V} is used
to describe its target state: A model σ′ = (D , I ′) over V ′ describes a program state σ = (D , I),
where I(v) = I ′(v ′) for every symbol v ∈ V .

Definition 2.1 (Reduct). Let σ̂ = (D , I) be a model of V̂ , and let Σ ⊆ V̂ . The reduct of σ̂ to Σ,
denoted reductΣ(σ̂), is the model (D , IΣ) of Σ where for every symbol v ∈ Σ, IΣ(v) = I(v).

We often write a transition σ̂ as a pair of states (σ1, σ2), such that σ1 is the reduct of σ̂ to vocabulary
V , and σ2 is the state described by the reduct to V ′. We say that σ2 is a successor of σ1, and σ1 is a
predecessor of σ2.

1In [Itzhaky et al. 2013], the logic AERwas presented, whose validity is decidable. In this paper, we are interested in satisfi-
ability and consider the logic EAR . The negation of an EAR-formula is an AER-formula, hence (un)satisfiability of EAR can
be reduced to validity of AER , and is hence decidable.
2All first-order models considered in this work are finite, i.e., have a finite domain.
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Verification Problem. A transition system is represented by a pair TS = (Init , ρ), where Init is
a closed first-order formula over V used to denote the initial states of the program, and ρ is a closed
formula over V̂ used to denote its transition relation. A state σ is initial if σ |= Init , and a pair of
states (σ1, σ2) is a transition if (σ1, σ2) |= ρ. We say that a state is reachable by at most i steps
of ρ (or i -reachable for short, when ρ is clear from the context) if it can be reached by at most i
applications of ρ starting from some initial state. We denote the set of i -reachable states byRi . We
say that a state is reachable if it is i -reachable for some i . We say that TS satisfies a safety property
P if all reachable states satisfy P . We often define Bad def

= ¬P , and refer to states satisfying Bad as
bad states.

Properties and Assertions. Properties are sets of states. We express properties, such as pre- and
post-conditions, and assertions within the loop body, using closed logical formulae over V .

Invariants. An invariant of a transition system is a property that should hold for all reachable
states. It is inductive if it is closed under application of ρ. In the following, we use (ϕ)′ to denote
the formula obtained by replacing every constant and relation symbol in formula ϕ with its primed
version.

Definition 2.2 (Invariants). Let TS = (Init, ρ) be a transition system and P a safety property
over V . A closed formula I is a safety inductive invariant (invariant, in short) for TS and P if
(i) Init⇒ I, and (ii) I ∧ ρ⇒ (I)′, and (iii) I ⇒ P .

If there exists an invariant for TS and P , then TS satisfies P . An invariant is universal if it is equiv-
alent to a universal formula (i.e., a formula with a ∀∗ quantifier prefix in prenex normal form). We
note that the invariants inferred by PDR∀ are conjunctions of universal clauses, where a universal
clause is a universally quantified disjunction of literals (positive or negative atomic formulae).

2.2. From Programs to Verification Problems
Programs. We handle single loop programs, i.e., we assume that a program has the form

while Cond do Cmd , where Cmd is loop-free. We encode more complicated control structures,
e.g., nested or multiple loops, by explicitly recording the program counter. For clarity, in our exam-
ples we allow for a sequence of instructions preceding the loop. Technically, we encode their effect
in the loop’s precondition.

Program Semantics and Verification Problem. The semantics of a program is described by a
transition system. We consider the states of the program at the beginning of each iteration of the
loop. Each transition (σ1, σ2) describes one possible execution of the loop body, Cmd , i.e., it relates
the state σ1 at the beginning of an iteration of the loop to the state σ2 at the end of the iteration.

Technically, following [Itzhaky et al. 2013], we derive the semantics of the loop body as a tran-
sition relation formula ρ from a weakest liberal precondition predicate transformer, wlp, defined
for each command type. As an example, the top of Table II presents the definition of wlp for the
simple language IMP [Winskel 1993]. To construct the transition relation using wlp, we define an
identity formula Id that specifies that the input and the output states are identical. That is, Id is a
two-vocabulary closed formula such that (σ, σ′) |= Id⇔ σ = σ′. Formally, Id is defined by

Id def
=

∧
c∈C

c = c′ ∧
∧

R∈R
∀α. R(α)↔ R′(α) (1)

where C and R denote the sets of constants and relation symbols in V , respectively, and α is a list
of variables according to the arity of the relation symbol R. The vocabulary V corresponds to the
structure σ, and V ′ corresponds to σ′.

We then define

ρ
def
= Cond ∧ wlp[[Cmd ]] Id (2)
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Γn∗
def
= ∀α, β.n∗(α, β) ∧ n∗(β, α)↔ α = β reflexivity + acyclicity
∧ ∀α, β, γ.n∗(α, β) ∧ n∗(β, γ)→ n∗(α, γ) transitivity
∧ ∀α, β, γ.n∗(α, β) ∧ n∗(α, γ)→ n∗(β, γ) ∨ n∗(γ, β) semi-linearity

Table I: Effectively propositional axiomatization of deterministic reflexive-transitive closure.

where wlp[[Cmd]] denotes the weakest liberal precondition of the loop body.
We define Init and Bad using the programs pre- and post-conditions, as well as its assertions:

Init
def
= Pre and Bad def

= (¬Cond ∧ ¬Post) ∨ (Cond ∧ ¬wlp[[Cmd ]] true). (3)

That is, a state is initial if it satisfies the precondition, and it is bad in one of two cases: (i) if the
state satisfies the negation of the loop condition (which indicates termination of the loop) but does
not satisfy the post-condition. This captures the requirement that when the loop terminates the post-
condition needs to hold. (ii) if the state leads to a violation of an assertion within the loop body
when it is encountered in the loop head. This is captured by the subformula ¬wlp[[Cmd ]] true of
Bad .

The construction of ρ, Init and Bad ensures that TS = (Init , ρ) satisfiesP = ¬Bad if and only if
any execution of the program starting at a state which satisfies the given precondition never violates
an assertion, and if it terminates then it ends in a state which satisfies the postcondition.

3. REASONING ABOUT HEAP-MANIPULATING PROGRAMS USING EFFECTIVELY
PROPOSITIONAL LOGIC

In this section we exemplify how we represent heap-manipulating programs, such as the ones used
in our running examples and experiments, as well as the corresponding verification problems in
first-order logic.

We start by defining the fragment of logic used, and continue to describe the construction of the
formulae ρ, Init and Bad for a program. First, we present the construction of the formulae for
programs that manipulate acyclic data structures, as developed in [Itzhaky et al. 2013]. Next, we
develop a novel construction that also handles restricted cyclic data structures.

EPR and EAR. Effectively-Propositional logic (EPR), also known as the Bernays-Schönfinkel-
Ramsey class, is a fragment of first-order logic which allows for relational first-order formulae
with a quantifier prefix of the form ∃∗∀∗, but forbids functional symbols. Satisfiability of EPR is
decidable. EPR enjoys the small model property: every satisfiable formula in EPR is guaranteed to
have a finite model [Lewis 1980].

In our running examples and experiments, we represent programs and the corresponding veri-
fication problems using EAR [Itzhaky et al. 2013], an auxiliary logic built on top of EPR, which
enables natural reasoning about programs manipulating linked-data structures. EAR extends EPR
by allowing a deterministic transitive-closure operator ∗ over acyclic relations. Satisfiability of EAR

is reducible to that of EPR, and enjoys the same properties. Technically, the reduction introduces
first-order axioms (EPR formulae) that provide a complete characterization of ∗. These axioms are
given in Table I.

Programs manipulating linked-data structures as transition systems. To represent memory states
of list manipulating programs, we fix an infinite countable universe U whose individuals represent
dynamically allocated objects. Recall that a state is represented by a finite first-order model σ =
(D , I) with D ⊆ U .

We use a vocabulary V which associates every program variable x with a constant x , contains a
designated constant null to denote the null value, and contains the special binary predicate symbol
n∗(· , ·) which defines reachability over every pointer field n, e.g., in Examples 1.1 and 1.2. Notice
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that n itself is not part of the vocabulary, but it is definable using the (open) formula ϕn in Table II.
We use n+(α, β) as a shorthand for n∗(α, β)∧α 6= β. Clearly, these definitions for ϕn and n+ rely
on acyclicity of n: if there was a cycle, then for every node u on the cycle we would have n+(u, u),
and also for any two nodes u, v we would have n∗(u, v), so there would not be enough information
in n∗ to define ϕn based on it. In particular, the order of the node in the cycle is not encoded in n∗.

In addition, we represent a Boolean function ok with a unary predicate ok(·), and an order relation
(e.g. for sorting) with a binary predicate R(· , ·).

We depict memory states σ = (D , I) as directed graphs (e.g., Figure 3). Individuals in D , rep-
resenting heap locations, are depicted as circles labeled by their name. We draw an edge from the
name of constant x or a unary predicate ok to an individual v if σ |= x = v or σ |= ok(v),
respectively. For clarity, we do not directly depict the interpretation of the n∗ relation. Instead,
we use a more compact drawing scheme where we draw an n-annotated edge between v and u if
σ |= ϕn(v , u). The interpretation of n∗ can be inferred from the n-annotated edges by (i) omitting
the incoming edges of the element that corresponds to the null constant, and (ii) considering the
reflexive transitive closure of the remaining edges.

Transition relation. We express the semantics of loop-free code as a transition relation ρ over
the above vocabulary by defining a weakest liberal precondition predicate transformer, wlp[[−]], for
each command type. We do this in a simple language IMPR, which is an extension of IMP [Winskel
1993] with heap-related commands. The rules for wlp are shown in Table II. The notation Q [t/x ] is
used to denote substitution of all the occurrences of the constant x in Q with the term t . The notation
Q [ϕ/n∗(α, β)] denotes substitution of any atom of the form n∗(· , ·) in Q with the formula ϕ, where
α and β may occur as term placeholders in ϕ and are filled in with the arguments of n∗. vars is the
set of (constant symbols pertaining to) variables used in the program. As shown in [Itzhaky et al.
2014], the rules for wlp are sound and complete.

The encoding of lists using n∗ and the corresponding update rules wlp may seem confounding at
first, but follow a fairly simple intuition: when removing a pointer link, all paths that go through the
changed node are disconnected; when adding a link, all paths into the source get connected to the
(single) path from the target. This is expressed, respectively, by the formulae

n∗(α, β) ∧ (¬n∗(α, x ) ∨ n∗(β, x )) (for x .n := null)

and

n∗(α, β) ∨ (y 6= null ∧ n∗(α, x ) ∧ n∗(y , β)) (for x .n := y) .

The former describes all n-paths except those that go through x , and the latter describes all n-paths
with the addition of those that were connected by the new edge from x to y . Here, α and β denote
aribitrary heap locations. When traversing a pointer (x := y .n), the successor can be expressed by
its transitive closure n∗ using the formula ϕn: for any two locations s and t (which are not null ), the
successor of s is t iff t is on the path starting at s (but not s itself), and no other node lies between
s and t . The successor of s is null iff the path starting at s is empty. Our ability to recover the
successor from n∗ is key to having a complete encoding of heap structures using transitive closure.

Given the wlp definition, the transition relation ρ is defined as in Equation (2) (see Section 2.2).
It is important to notice that, since ϕn is a universal formula occurring in a negative context in
wlp[[x := y .n]]Q , which is itself defined by a universal formula, the resulting formula ρ will have a
quantifier prefix ∀∗∃∗. We would like to get an EAR formula for our purposes; we achieve this by
changing the quantified rules slightly, resulting in the variants in Table III. All other rules remain
unchanged. From here on we switch to the definition of the transition relation as

ρ
def
= Cond ∧ wlp∃[[Cmd ]]Id (4)

Notice that the equivalence of semantics relies on the fact that for every location s ∈ U which is
different from null there is exactly one location t such that ϕn(s, t), as follows from the definition.
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wlp[[skip]]Q
def
= Q

wlp[[x := y ]]Q
def
= Q [y/x ]

wlp[[Cmd1 ; Cmd2]]Q
def
= wlp[[Cmd1]]

(
wlp[[Cmd2]]Q

)
wlp[[if B then Cmd1 else Cmd2]]Q

def
= [[B ]] ∧ wlp[[Cmd1]]Q ∨ ¬[[B ]] ∧ wlp[[Cmd2]]Q

wlp[[assert B ]]Q
def
= [[B ]] ∧Q

wlp[[x .n := null]]Q
def
= Q [n∗(α, β) ∧ (¬n∗(α, x ) ∨ n∗(β, x ))/n∗(α, β)]

wlp[[x .n := y ]]Q
def
= ¬n∗(y , x ) ∧Q [n∗(α, β) ∨ (y 6= null ∧ n∗(α, x ) ∧ n∗(y , β))/n∗(α, β)]

wlp[[x := y .n]]Q
def
= ∀α.ϕn(y , α)→ Q [α/x ]

where ϕn(s, t)
def
= (n+(s, t) ∧ ∀γ.n+(s, γ)→ n∗(t , γ)) ∨ (t = null ∧ ∀γ.¬n+(s, γ))

wlp[[x := new]]Q
def
= ∀α.

(∧
p∈vars∪{null} ¬n∗(p, α)

)
→ Q [α/x ]

Table II: Rules for computing weakest liberal preconditions for procedures in IMPR. Q is a post-
condition expressed as a first-order formula. The top frame shows the standard wlp rules for IMP,
the bottom frame contains our additions for heap updates, dereference, and memory allocation.
We assume that the program nullifies a field before modifying it, i.e., every command of the form
x .n := y is preceded by a command x .n := null.

wlp∃[[x := y .n]]Q
def
= ∃α.ϕn(y , α) ∧Q [α/x ]

wlp∃[[x := new]]Q
def
= ∃α.

(∧
p∈vars∪{null} ¬n∗(p, α)

)
∧Q [α/x ]

Table III: Leading-existential variant of wlp rules.

Example 3.1. Since the transition relation obtained for filter() is large, we demonstrate the
construction of ρ on a simpler program, where the loop body consists of the following command:

Cmd = k := i .n ; i .n := null ; i := k

We then have

wlp∃[[Cmd ]]Q = wlp∃[[k := i .n ; i .n := null ; i := k ]]Q

= wlp∃[[k := i .n]]
(
wlp∃[[i .n := null]]

(
wlp∃[[i := k ]]Q

))
= ∃α.ϕn(i , α) ∧

(
wlp∃[[i .n := null]](Q [k/i ])

)
[α/k ]

= ∃α.ϕn(i , α) ∧
(
(Q [k/i ])[n∗(α, β) ∧ (¬n∗(α, i) ∨ n∗(β, i))/n∗(α, β)]

)
[α/k ]

The transition relation is then constructed as follows:

ρ = i 6= null ∧ wlp∃[[Cmd ]]Id

= i 6= null ∧ wlp∃[[Cmd ]](i = i ′ ∧ k = k ′ ∧ ∀α, β.n∗(α, β)↔ n∗′(α, β))

= i 6= null ∧
∃α.ϕn(i , α) ∧

(
α = i ′ ∧ α = k ′ ∧ ∀α, β.

(
n∗(α, β) ∧ (¬n∗(α, i) ∨ n∗(β, i))

)
↔ n∗′(α, β)

)
PROPOSITION 3.2. EAR is closed under wlp∃[[Cmd ]]; that is, if Q ∈ EAR then wlp∃[[Cmd ]]Q ∈

EAR. In particular, ρ ∈ EAR (as defined by Equation (4)).
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Initial and bad states. We express properties of list-manipulating programs, e.g., their pre- and
post-conditions, Pre and Post, respectively, using assertions written in EAR over the above vocabu-
lary. Init and Bad are defined based on these assertions, as shown in Equation (3) (see Section 2.2).

Example 3.3. In Example 1.2, we have Pre = i = h ∧ j = null and Post = h 6= null →
∀z .n∗(h, z ) → ok(z ). Note that these refer to the pre- and post-conditions that should hold right
before the loop begins and right after it terminates, respectively. Therefore, Init def

= i = h∧ j = null

and Bad
def
= i = null ∧ ¬(h 6= null → ∀z .n∗(h, z ) → ok(z )). Here, a state is bad if i = null

(i.e., it occurs when the loop terminates) and h points to a non-empty list that contains an element
not having the property ok . In this example there are no assert statements in the body, hence the
second disjunct in the definition of Bad in Equation (3), which captures the semantics of assertion
violations, simplifies to false and is subsumed by the first disjunct.

In our analysis, the EAR formulae Init , Bad and ρ are translated into equisatisfiable EPR formu-
lae [Itzhaky et al. 2013].

3.1. Modeling of Programs Manipulating Cyclic Linked Lists
As an extension of previous work [Itzhaky et al. 2014; Karbyshev et al. 2015], which targeted acyclic
data structures, we augment the formalism shown above to handle a restricted form of cycles. The
new formalism allows at most one cycle to be present in the heap at any given time. This is achieved
by decomposing the pointer edges, labeled n , into a set of acyclic edges labeled k plus at most one
additional edge labeled m . This is always possible — if the heap contains (at most) one cycle, then
it is enough to remove (at most) one edge to make it acyclic.

We denote n∗ and k∗ the reflexive transitive closures of n and k , and 〈ms ,mt〉 the source and
destination of the edge labeled m , if it is present (if m is not present, ms = mt = null ). The
following relationship holds between n∗ and k∗,ms ,mt :

∀α, β.n∗(α, β) ⇔ k∗(α, β) ∨ (ms 6= null ∧ k∗(α,ms) ∧ k∗(mt , β)) (5)

Therefore k∗,ms ,mt fully characterize the heap reachability. The axioms in Table I now hold
for k∗ instead of n∗. In addition, we require that if m is present, then ms has no k -successor, and
the edge m closes the cycle; that is, ms 6= null → k∗(mt ,ms)∧¬∃α. k+(ms , α). We now modify
the wlp formulae from Table II to reflect the new situation. The new semantics for x .n := null,
x .n := y , and x := y .n are shown in Table IV. The multiple substitutions in the brackets are done
in parallel. The operator ite(p, a, b) denotes a term that is equal to a if p is true, and b otherwise.3
ψkm(s, t) is a formula expressing a path between s and t utilizing the special edge m . ψkm(u, u)
means that u lies on the cycle.

The semantics maintains the edge m by creating it when a cycle is closed as a result of an assign-
ment of the form x .n := y , and removing it or replacing it with a k edge when the cycle is broken
by x .n := null. Notice that wlp[[x := y .n]] remains as in Table II, except that the definition of ϕn is
changed. The adjustment in Table III for wlp∃ is suitable in this case as well.

4. UNIVERSAL-PROPERTY-DIRECTED REACHABILITY
In this section, we present Universal Property Directed Reachability (PDR∀), an algorithm for
checking if a transition system TS satisfies a safety property P . PDR∀ is an adaptation of Bradley’s
property-directed reachability (IC3) algorithm [Bradley 2011] that uses universal formulae instead
of propositional predicates [Bradley 2011; Eén et al. 2011; Hoder and Bjørner 2012] or predicate
abstraction [Itzhaky et al. 2014]. We use Example 1.2 as a running example throughout this section.

We note that several flavors of PDR have been developed in the past years, including both partic-
ular implementations [Bradley 2011; Eén et al. 2011] and abstract presentations [Hoder and Bjørner

3Any formula containing ite can be translated to an equivalent first-order formula using only standard connectives; however,
SMT-LIB-compliant solvers natively support ite [Barrett et al. 2010] so this translation is not needed.
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wlp[[x .n := null]]Q
def
= Q


ite(ψkm(x , x ),null ,ms)/ms ,

ite(ψkm(x , x ),null ,mt)/mt ,

k∗(α, β) ∧ (¬k∗(α, x ) ∨ k∗(β, x )) ∨
(ψkm(α, β) ∧ ¬k∗(α, x ) ∧ k∗(β, x ) ∧ x 6= ms)/k∗(α, β)


where ψkm(s, t)

def
= ms 6= null ∧ k∗(s,ms) ∧ k∗(mt , t)

wlp[[x .n := y ]]Q
def
= (k∗(y , x )→ ms = null) ∧

Q


ite(k∗(y , x ), x ,ms)/ms ,

ite(k∗(y , x ), y ,mt)/mt ,

k∗(α, β) ∨
(y 6= null ∧ ¬k∗(y , x ) ∧ k∗(α, x ) ∧ k∗(y , β))/k∗(α, β)


wlp[[x := y .n]]Q

def
= ∀α.ϕn(y , α)→ Q [α/x ]

where ϕn(s, t)
def
=


t = mt s = ms

(k+(s, t) ∧ ∀γ. k+(s, γ)→ k∗(t , γ)) ∨
(t = null ∧ ∀γ.¬k+(s, γ)) otherwise

Table IV: Modified wlp rules for handling (restricted) cyclic lists.

2012]. In this paper, we use a deterministic implementation of PDR that employs recursion instead
of the more commonly used obligation queue. This allows us to simplify the presentation and focus
on the unique aspects of PDR∀ at the expense of precluding discussion of several optimizations.

Requirements. We require that the transition relation ρ, as well as the Init and Bad conditions, are
expressible in a logic L, which is a fragment of first-order logic. (We can partly handle transitive
closure using the approach of [Itzhaky et al. 2013]. See Section 3.) We assume that L is closed under
conjunction and contains all universal and existential formulae. We require that every satisfiable
formula in L has a finite model, and assume to have a decision procedure SAT (ψ), which checks if
a formula ψ in L is satisfiable, and a function model(ψ), which returns a finite model σ of ψ if such
a model exists and None otherwise. EPR (and EAR) is an example of a logic L that can be used
to express transition systems and properties. In particular, as P is the negation of Bad, it has to be
described by a negation of an EPR (or EAR) formula, that is P is a ∀∗∃∗ formula.

4.1. Diagrams as Structural Abstractions

PDR∀ iteratively strengthens a candidate invariant by retrieving program states that lead to bad
states and checking whether the retrieved states are reachable. In that sense, PDR∀ is similar to
IC3. The novel aspect of our approach is the use of diagrams [Chang and Keisler 1990] to generalize
individual states into sets of states before checking for reachability. Diagrams provide a structural
abstraction of states by existential formulae: The diagram of a finite model σ, denoted by Diag(σ),
is an existential cube which describes explicitly the relations between all the elements of the model.4

Definition 4.1 (Diagrams). Given a finite model σ = (D , I) over alphabet V , the diagram of σ,
denoted by Diag(σ), is a closed formula over alphabet V which denotes the set of models in which
σ can be isomorphically embedded. Diag(σ) is constructed as follows.
— For every element ei ∈ D , a fresh variable xei is introduced.

4Def. 4.1, as well as the property formulated by Lemma 4.5, are an adaptation of the standard model-theoretic notion of a
diagram [Chang and Keisler 1990].
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— ϕdistinct is a conjunction of inequalities of the form xei 6= xej for every pair of distinct elements
ei 6= ej in the model.

— ϕconstants is a conjunction of equalities of the form c = xe for every constant symbol c such
that σ |= c = e .

— ϕatomic is a conjunction of atomic formulae which include for every predicate p ∈ V the atomic
formula p(x̄e) if σ |= p(ē), and ¬p(x̄e) otherwise.

Thus: Diag(σ)
def
= ∃xe1 . . . xe|D| . ϕdistinct ∧ ϕconstants ∧ ϕatomic .

Intuitively, one can think of Diag(σ) as the formula produced by treating individuals in σ as exis-
tentially quantified variables and explicitly encoding the interpretation of every constant and every
predicate using a conjunction of equalities, inequalities, and atomic formulae. Note that Diag(σ) is
well defined, because we consider only models with a finite domain.

Example 4.2. The diagram of σb , depicted in Figure 3(σb), is

Diag(σb)
def
= ∃x0, x1, x2. x0 6= x1 ∧ x0 6= x2 ∧ x1 6= x2 ∧

h = x0 ∧ j = x1 ∧ i = x2 ∧ null = x2 ∧
¬ok(x0) ∧ ¬ok(x1) ∧ ¬ok(x2) ∧
n∗(x0, x0) ∧ n∗(x1, x1) ∧ n∗(x2, x2) ∧ n∗(x0, x1) ∧
¬n∗(x0, x2) ∧ ¬n∗(x1, x0) ∧ ¬n∗(x1, x2) ∧ ¬n∗(x2, x0) ∧ ¬n∗(x2, x1)

The first line records the fact that the domain of σb consists of three elements. The second line
characterizes the interpretations of all the constant symbols in σb . The other lines capture precisely
the interpretation of predicates ok and n∗ in σb .

We say that σ1 = (D1, I1) is a substructure of σ2 = (D2, I2) if D1 ⊆ D2 and for every v ∈ V ,
I1(v) is the restriction of I2(v) to D1. The following lemma is well known:

LEMMA 4.3. σ′ |= Diag(σ) iff σ is isomorphic to a substructure of σ′.

That is, the diagram of σ abstracts away the exact number of elements in the domain of σ and as
such, provides a natural abstraction of states.

Example 4.4. In Figure 3, several models of Diag(σb) are depicted. For clarity, the edges drawn
correspond to n-links extracted from n∗ of each structure using ϕn (recall from Table II). Note
that all of them contain σb as a substructure. For example, in σ1

b , there is an additional element (v3)
representing a node pointing to the head of the list, as well as an additional element (v4) representing
an additional list with a single element. In σ2

b , there is an additional element (v3) representing an
additional node in the list between h and j (represented by elements v0 and v1 respectively). To
see why σ2

b contains σb as a substructure, recall that the vocabulary contains n∗, and not n itself;
while no n-annotated edge appears in σ2

b from v0 to v1, n∗(v0, v1) does hold in σ2
b as well due to

the transitive nature of n∗. Similarly, σ3
b , which represents a list that contains two additional nodes

between h and j , also contains σb as a substructure. As these examples demonstrate, for linked list
programs modelled with n∗, the diagram-based abstraction allows us to “forget” the exact length of
list segments.

The following property of diagrams will be useful in the sequel.

LEMMA 4.5. Let σ be a model over V , and let ϕ be a closed existential first-order formula over
V . If σ |= ϕ then Diag(σ)⇒ ϕ.

Stated differently, Diag(σ) is the strongest existentially quantified formula that has σ as a model.
Semantically, Lemma 4.5 means that for any models σ and σ′ such that σ′ |= Diag(σ) if σ |= ϕ then
σ′ |= ϕ. This implies that if a bad state is reachable from σ and the program can be proven correct
using an inductive universal invariant I then all the states in σ’s diagram are unreachable too: I is
an inductive invariant, thus any state σ leading to a bad state must satisfy the (closed existential)
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Fig. 3: Graphical depiction of the model σb and models σ1
b , σ2

b , σ3
b of Diag(σb).

formula¬I. Hence, Diag(σ)⇒ ¬I, which means that all states satisfying Diag(σ) are unreachable.
In this sense, the abstraction based on diagrams is precise for programs with universal invariants.
This property of the diagrams will allow PDR∀ to also prove absence of universal invariants (see
Prop. 5.6).

4.2. Data Structures and Frames
PDR∀ is shown in Algorithm 1. It uses procedures block() and analyzeCEX(), shown in Algo-
rithm 2 and Algorithm 3, respectively, as subroutines. The algorithm uses an array F of frames,
where a frame is a conjunction of closed universal clauses. For clarity, we refer to the i th entry of
the array using subscript notation, i.e., Fi instead of F [i ]. Intuitively, frame Fi over-approximates
Ri , the set of i -reachable states. The algorithm also maintains a frame counter N which records the
number of frames it developed. We refer to F0 as the initial frame, to FN as the frontier frame, and
to any Fi , where 0 ≤ i < N , as a back frame.

PDR∀ maintains several invariants which ensure that every frame Fi is an over-approximation
of Ri , and hence that the sequence of developed frames is an over-approximation of all the traces
of the program of length N + 1 or less. Technically, this means that the algorithm constructs an
approximate reachability sequence.

Definition 4.6. Let TS = (Init, ρ) be a transition system and P a safety property. A sequence
〈F0,F1, . . . ,FN 〉 of closed formulae is an approximate reachability sequence for TS and P if:

(i) Init⇒ F0.
(ii) Fi ⇒ Fi+1, for all 0 ≤ i < N , i.e., for every state σ, if σ |= Fi then σ |= Fi+1.

(iii) Fi ∧ ρ⇒ (Fi+1)′, for all 0 ≤ i < N , i.e., for every transition (σ1, σ2) |= ρ, if σ1 |= Fi then
σ2 |= Fi+1.

(iv) Fi ⇒ P , for all 0 ≤ i ≤ N .

Items (ii) and (iii) ensure that every frame includes the states of the previous frame and their suc-
cessors, respectively. Together with item (i), it follows by induction that for every 0 < i ≤ N the
set of states (models) that satisfy Fi is a superset of the set Ri . Furthermore, by item (iv) no frame
includes a bad state.

4.3. Iterative Construction of an Approximate Reachability Sequence

PDR∀ is an iterative algorithm. At every iteration, the algorithm either strengthens the N th frame, if
it contains a bad state, or otherwise starts to develop the N+1st frame. In addition, in every iteration,
it might also strengthen some of the back frames. Each strengthening of frame Fi is performed by
determining a universal clause ϕi which holds for any i -reachable state, and then conjoining Fi

with ϕi .

Initialization. The algorithm first checks that the initial states and the bad states do not intersect.
If so, it exits and returns the state that satisfies both Init and Bad as a counterexample (line 2).
Otherwise, it sets F0 to represent the set of initial states (line 3), F1 to represent all possible states
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Algorithm 1: PDR∀ (Init, ρ,Bad)

1 if SAT (Init ∧ Bad) then
2 exit invalid : model(Init ∧ Bad)
3 F0 := Init
4 F1 := true
5 N := 1
6 while true do
7 if there exists 0 ≤ j < N

such that Fj+1 ⇒ Fj then
8 return valid
9 if ¬SAT (FN ∧ Bad) then

10 FN+1 := true
11 N := N + 1
12 else
13 σb := model(FN ∧ Bad)
14 block(N , σb)

Algorithm 2: block(j , σ)

21 ϕ = Diag(σ)
22 if (j = 0) ∨ (j = 1 ∧ SAT (ϕ ∧ Init)) then
23 analyzeCEX(j ,N )
24 while SAT (Fj−1 ∧ ρ ∧ (ϕ)′) do
25 σa = reductV(model(Fj−1 ∧ ρ ∧ (ϕ)′))
26 block(j − 1, σa)
27 for i = 0 . . . j do
28 Fi := Fi ∧ ¬ϕ

Algorithm 3: analyzeCEX(j ,N )

31 if j = 0∧ there exists σ0, . . . , σN such that
32 σ0 |= Init
33 (σi , σi+1) |= ρ for every 0 ≤ i < N , and
34 σN |= Bad
35 then exit invalid : σ0, . . . , σN
36 else exit no universal invariant exists

(line 4), and the frame counter to 1. Note that at this point, F1 is a trivial over-approximation of the
set of initial states and their successors, but it might contain bad states.

Iterative Construction. The algorithm then starts its iterative search for an inductive invariant
(line 6). Recall that when the algorithm develops the N th frame, it has already managed to de-
termine an approximate reachability sequence 〈F0, . . . ,FN−1〉. Hence, every iteration starts by
checking whether a fixpoint has been reached (line 7). If true, then an inductive invariant proving
unreachability of Bad has been found, and the algorithm returns valid (line 8). Otherwise, the algo-
rithm keeps on strengthening the frontier frame FN by searching for a bad witness, a bad state in the
frontier frame (line 9). If no such state exists, it means that no bad state is N -reachable. Moreover, at
this point 〈F0, . . . ,FN 〉 is an approximate reachability sequence. Thus, the iterative strengthening
of FN terminates and a new frontier frame is initialized to true (lines 10 and 11).

If the frontier frame contains a bad witness, i.e. FN ∧ Bad is satisfiable, then there might be an
N -reachable bad state. Due to our requirement for finite satisfiability of the logic, the bad witness is
a finite model. Given a bad witness σb (line 13), the algorithm tries to determine whether it is indeed
reachable, and thus the program does not satisfy its specification, or whether σb was discovered due
to some over-approximation in one of the back frames. This check is done by invoking procedure
block() with the index of the frontier frame and σb as parameters (line 14). The latter either re-
turns a counterexample, determines that it is impossible to prove the specification using a universal
invariant (in the given logic and vocabulary), or strengthens the frontier frame to exclude the set
of states in the diagram of σb , and possibly strengthens some back frames too (see below). The
iterative construction and strengthening of the frames continues until reaching a fixpoint, finding a
counterexample, or determining the absence of a universal invariant.5

Example 4.7. When analyzing the running example, our algorithm discovers that state σb ,
shown in Figure 4 (as well as in Figure 3), is a bad witness when F1 = true , and thus it invokes
block(1, σb). In this example, block() succeeds to block σb . Unfortunately, the strengthened frame
F 1

1 (see below) still has bad models. Therefore, the iterative strengthening continues and the next

5For efficiency, in our implementation we represent each frame as a set of clauses (with the meaning of conjunction) and
check implication (line 7) by checking inclusion of these sets. To facilitate this fixpoint computation, any clause ϕ in Fi

that is inductive in Fi , i.e., Fi ∧ ρ⇒ (ϕ)′ is also propagated forward to Fi+1. In particular, this allows to initialize a new
frontier frame FN , for 1 < N , to a tighter over-approximation ofRN than true (line 10) [Bradley 2011].
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Fig. 4: Graphical depiction of models found during the analysis of the running example.

iterations find σ′b , depicted in Figure 4, as a bad witness model for F 1
1 , σ′′b as a bad witness model of

F 2
1 and σ′′′b as a bad witness model of F 3

1 . At that point, however, the algorithm determines that the
strengthened frame F 4

1 does not have a bad witness. 〈F0,F
4
1 〉 is now an approximate reachability

sequence and PDR∀ goes on and initializes a new frame, F2, to true , and the search for an inductive
invariant continues.

Diagram-Based Abstract Blocking. Procedure block(j , σ), shown in Algorithm 2, gets an index
of a frame j = 0, . . . ,N and a state σ which is included in the j th frame, i.e., σ |= Fj , and tries
to determine whether σ is j -reachable. The unique aspect of our approach is the way in which it
abstracts σ to a set of states in order to accelerate the strengthening routine. Namely, the use of
diagrams. More specifically, PDR∀ computes the diagram ϕ of σ (line 21) and then checks whether
there is a j -reachable state satisfying ϕ. Importantly, due to Lemma 4.5, if a universal invariant
exists then the generalization of σ to its diagram will not include any reachable state, hence the
abstraction is precise in the sense that it maintains unreachability. In this case the strengthening of
Fj is also guaranteed to succeed, excluding not only σ, but its entire diagram.

The check if the diagramϕ of σ includes a j -reachable state is done conservatively by determining
whether some state of ϕ is an initial state or has a predecessor in Fj−1. (Recall that Fj−1 over-
approximatesRj−1.) The former is equivalent to checking if ϕ ∧ Init is satisfiable. Note that if we
reached the initial frame, i.e., if j = 0, then σ |= Init , hence the above formula is guaranteed to be
satisfiable. Explicitly checking that ϕ ∧ Init is satisfiable is required only at the second frame, i.e,
if j = 1 (see proof in Section 5.1):

LEMMA 4.8. For every 1 < j ≤ N , when block(j , σ) is called, Fi ⇒ ¬Diag(σ) for every
i ≤ j − 1. In particular, Init ⇒ ¬Diag(σ).

If the algorithm finds an adverse initial state, i.e., an initial state satisfying ϕ, (line 22),6 it invokes
procedure analyzeCEX() for further analysis (see below). Otherwise, the algorithm checks if the
formula δ = Fj−1 ∧ ρ∧ (ϕ)′ is satisfiable (line 24),7 i.e., whether some state of ϕ has a predecessor
in Fj−1. There can be two cases:
Case I. If δ is unsatisfiable then no state represented by ϕ is j -reachable. Hence, Fj remains an
over-approximation of Rj even if any state of ϕ is excluded. The exclusion is done by conjoining
the j th frame with the universal formula ¬ϕ (line 28), and results in a strengthening of Fj . In fact,
¬ϕ is conjoined to any back frame (line 27). Similarly to traditional PDR, the last step is done in
order to maintain the inclusion property of frames (Def. 4.6 (ii)). Moreover, this update maintains
all the properties of Def. 4.6, in particular, Fi ∧ ρ ⇒ (Fi+1)′ (iii) is preserved despite conjoining

6If Init is a universal formula, then Lemma 4.8 holds for j = 1 as well, hence j = 1 ∧ SAT (ϕ ∧ Init) never holds, and
its check can be omitted (line 22).
7As an optimization, one can consider δ′ = Fj−1 ∧ ¬ϕ ∧ ρ ∧ (ϕ)′ instead of δ. The two formulae are equivalent since
Fj−1 ⇒ ¬ϕ (by Lemma 4.8 for j > 1, and since it was checked for j = 1), but the strenthening of δ can make the
satisfiability check cheaper.
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(Fi+1)′ with (¬ϕ)′ because frame inclusion ensures that for every i < j , Fi ∧ρ⇒ Fj−1∧ρ and the
latter implies (¬ϕ)′. Note that preserving the properties of the approximate reachability sequence
means that after the update, Fi remains an over-approximation of Ri . In the following, we refer to
the exclusion of the states of ϕ as the blocking of (the diagram of) σ from frame Fj .

Example 4.9. In our running example, in the first iteration block(1, σb) updates F 0
1 to F 1

1 =
true ∧ ¬Diag(σb). This excludes σb , but also all states where i = null , ok is empty, and j is n-
reachable from h in any (nonzero) number of steps (e.g. the states σ2

b and σ3
b depicted in Figure 3).

In later iterations block updates F 2
1 = F 1

1 ∧ ¬Diag(σ′b), F 3
1 = F 2

1 ∧ ¬Diag(σ′′b ), and F 4
1 =

F 3
1 ∧ ¬Diag(σ′′′b ).

Case II. If δ is satisfiable, then there exists an adverse state σa in frame Fj−1, a state which is the
predecessor of some state of the diagram of σ that we try to block at frame Fj . Note that σa is not
necessarily a predecessor of σ itself. The adverse state σa is found by taking the reduct of a (finite)
model of δ to V (line 25). If an adverse model σa exists then the algorithm recursively tries to block
it from Fj−1 (line 26). The recursive procedure continues until the adverse state is either blocked or
the algorithm finds an adverse initial state (line 22). Note that blocking an adverse state during the
development of the N th frame leads to a strengthening of some back frame Fi , and thus tightens its
over-approximation ofRi .

Finding concrete counterexamples and proving the absence of universal invariants. Procedure
analyzeCEX(), shown in Algorithm 3, is called when an adverse initial state is found. Such a state
indicates that an abstract counterexample exists:

Definition 4.10 (Abstract and Spurious Counterexamples). A sequence of closed formulae
〈ϕj , ϕj+1, . . . , ϕN 〉 is an abstract counterexample if the formulae ϕj ∧ Init, ϕN ∧ Bad, and
ϕi ∧ ρ ∧ (ϕi+1)′, for every i = j , . . . ,N − 1, are all satisfiable. The abstract counterexample
is spurious if there exists no sequence of states 〈σj , σj+1, . . . , σN 〉 such that σj |= Init, σN |= Bad ,
and for every j ≤ i < N , (σi , σi+1) |= ρ.

An abstract counterexample does not necessarily describe a real counterexample. In fact, if j 6=
0, the counterexample is necessarily spurious (as, if a real counterexample shorter than N had
existed, the algorithm would have already terminated during the development of the N −1th frame).
However, when j = 0, the algorithm determines if the abstract counterexample is real or spurious
by checking whether a bad state can be reached by N applications of the transition relation (line 31).
Technically, analyzeCEX() can be implemented using a symbolic bounded model checker [Biere
et al. 2003]. If a real counterexample is found, the algorithm reports it (line 35). Otherwise, the
obtained counterexample is spurious. Technically, this means that the property is neither verified
nor falsified. In our case, the algorithm can determine that the verification effort is doomed: The
spurious counterexample is in fact a proof for the absence of a universal invariant (see Prop. 5.6).

Generalization of blocked diagrams. Rather than blocking a diagram ϕ from frames 0, . . . , j by
conjoining them with the clause ¬ϕ (line 28), our implementation uses a minimal unsat core of
ψ = ((Init)′ ∨ (Fj−1 ∧ ρ)) ∧ (ϕ)′ to define a clause L which implies ¬ϕ and is also disjoint from
Init and unreachable from Fj−1. Blocking is done by conjoining L with Fi for every i ≤ j .8

5. CORRECTNESS
In this section we formalize the correctness guarantees of PDR∀. We start by formalizing the in-
variants of the sequence of frames maintained by PDR∀. We then prove that the output of PDR∀ is
correct.

8We can also use inductive generalization, i.e., look for a minimal subclause L of ¬ϕ that is still inductive relative to Fj−1,
meaning ((Init)′ ∨ (Fj−1 ∧ L ∧ ρ)) ∧ (¬L)′ is unsatisfiable.
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5.1. Properties of the Frames Computed by PDR∀

The following lemma summarizes the invariants of the sequence of frames computed by PDR∀. It
follows from a simple induction on the steps of PDR∀. These invariants are adopted from traditional
PDR.

LEMMA 5.1. Let TS = (Init, ρ) be a transition system and P a safety property. For every
N ≥ 1, the sequence 〈F0,F1, . . . ,FN 〉 obtained by PDR∀ right before N is increased in line 11, is
an approximate reachability sequence for TS and P (Def. 4.6). Further, in every other step of the
while loop (Line 6), the sequence 〈F0,F1, . . . ,FN 〉 satisfies all the requirements of Def. 4.6, except
for, possibly, requirement (iv) for i = N .

In order to provide a slightly tighter characterization of the frames computed by PDR∀, which,
unlike Lemma 5.1, is specific to PDR∀, we need the following definition.

Definition 5.2 (Relaxed Traces). Given a transition system TS = (Init, ρ), we say that a se-
quence of states σ0, . . . , σn is a relaxed trace of TS if for every 0 ≤ i ≤ n − 1, there exists σ′i+1
such that (σi , σ

′
i+1) |= ρ and σ′i+1 |= (Diag(σi+1))′.

For a transition system TS and a property P , with Bad = ¬P , we denote by Bi the set of states
that can reach a bad state in at most i steps via a relaxed trace. That is, σ ∈ Bi if and only if
there exists a relaxed trace σ0, . . . , σn such that σ0 = σ, σn |= Bad , and n ≤ i . In particular,
B0 = {σ | σ |= Bad}. We denote by B the set of states that can reach a bad state in some number
of steps via a relaxed trace, i.e. B =

⋃
i≥0 Bi .

The following lemma states that the frames computed by PDR∀ do not contain states that lead to
bad states via relaxed traces, where the length of the considered traces depends on the frame index.

LEMMA 5.3. Let TS = (Init, ρ) be a transition system and P a safety property. For every
N ≥ 1 and 0 ≤ j ≤ N − 1, if σ |= Fj then σ 6∈ BN−1−j .

That is, Fj does not include any state that reaches a bad state via a relaxed trace in N − 1− j steps
or less. Note that this lemma holds in particular when N is increased to N + 1 (line 11), in which
case it implies that for every 0 ≤ j ≤ N , if σ |= Fj then σ 6∈ BN−j . The proof follows a simple
induction on j that shows that if σ ∈ BN−1−j , then it is excluded from Fj .

On the other hand, it is easy to prove by induction that every state that PDR∀ attempts to block
in frame Fj is a state in B :

LEMMA 5.4. Let TS = (Init, ρ) be a transition system and P a safety property. For every
N ≥ 1 and 0 ≤ j ≤ N , if block(j , σ) is called, then σ ∈ BN−j .

We can now return to the proof of Lemma 4.8.

PROOF OF LEMMA 4.8. Suppose σ |= Fj is discovered in the backward traversal from FN . By
Lemma 5.4, σ ∈ BN−j . Therefore, by Lemma 5.3, σ 6|= Fj−1. To complete the proof, recall that we
consider j > 1. Therefore j − 1 > 0, hence Fj−1 is a universal formula. Therefore, by Lemma 4.5,
Diag(σ)⇒ ¬Fj−1, or equivalently, Fj−1 ⇒ ¬Diag(σ). Since Fi ⇒ Fj−1 for every i ≤ j − 1, we
conclude that Fi ⇒ ¬Diag(σ) for every i ≤ j − 1.

Note that if Init is a universal formula, then the claim formulated by Lemma 4.8 holds for j = 1
as well. That is, when block(1, σ) is called, F0 ⇒ ¬Diag(σ). In this case, the additional check of
(j = 1∧SAT (ϕ∧ Init)) performed in line 22 of block(j , σ) is always false, and hence not needed.

5.2. Correctness of the Outcome of PDR∀

We recall that if PDR∀ terminates it reports that either the program is safe, the program is not safe,
providing a counterexample, or the program cannot be verified using a universal inductive invariant.
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LEMMA 5.5. Let TS = (Init, ρ) be a transition system and let P be a safety property. If PDR∀

returns valid then TS satisfies P . Further, if PDR∀ returns a counterexample, then TS does not
satisfy P .

PROOF. PDR∀ returns valid if there exists i such that Fi+1 ⇒ Fi . Therefore, Fi ∧ ρ ⇒
(Fi+1)′ ⇒ (Fi)

′. Recall that, by the properties of an approximate reachability sequence, Init ⇒
F0 ⇒ Fi and Fi ⇒ P . Therefore, Fi is an inductive invariant, which ensures that TS satisfies P .
The second part of the claim follows immediately from the definition of a counterexample.

Note that the proof of Lemma 5.5 also implies that when PDR∀ determines that TS satisfies P , it
also obtains a universal inductive invariant. Namely, the frame Fi in which a fixpoint was identified
comprises such an invariant. (Recall that each frame is a universal formula as it is obtained as a
conjunction of negated diagrams.)

PROPOSITION 5.6. Let TS = (Init, ρ) be a transition system and let P be a safety property.
If PDR∀ obtains a spurious counterexample 〈ϕj , . . . , ϕN 〉 then there exists no universal safety
inductive invariant I for TS and P over the given vocabulary.

In order to prove Prop. 5.6, we first show that if a universal inductive invariant exists for TS and P ,
then no state that reaches a bad state via a relaxed trace satisfies the invariant:

PROPOSITION 5.7. Let TS = (Init, ρ) be a transition system and P a safety property, and let
B be the set of states that reach a bad state via a relaxed trace (see Section 5.1). Let I be a universal
inductive safety invariant for P . For any σ ∈ B , we have σ |= ¬I.

PROOF. We show by induction on i that σ ∈ Bi implies σ |= ¬I. For the base case, σ ∈ B0, we
have σ |= Bad. Since Bad = ¬P and I ⇒ P , we conclude that σ |= ¬I.

For the inductive step, let σ ∈ Bi+1. By definition of Bi+1, there exist models σi and σ′i such
that (σ, σ′i) |= ρ ∧ (Diag(σi))

′. and σi ∈ Bi . Moreover, by the induction hypothesis, σi |= ¬I.
Since ¬I is an existential formula, this means by Lemma 4.5 that Diag(σi) ⇒ ¬I. We conclude
that ρ ∧ (Diag(σi+1))′ ⇒ ρ ∧ (¬I)′. Therefore, (σ, σ′i) is also a model of the formula ρ ∧ (¬I)′.

If we assume that σ |= I, we would get that I ∧ ρ∧ (¬I)′ is satisfiable, in contradiction I being
inductive. Hence, σ |= ¬I.

PROOF OF PROP. 5.6. Assume that there exists a universal safety inductive invariant I over V .
By Lemma 5.4, for every state σi generated by PDR∀ at frame Fi , σi ∈ B . Hence by Prop. 5.7,
σi |= ¬I. This implies, by Lemma 4.5, that every diagram ϕi generated by PDR∀ at frame Fi is
such that ϕi ⇒ ¬I, and hence ϕi ⇒ ¬Init. (Recall that by definition Init ⇒ I, i.e., ¬I ⇒ ¬Init).
This contradicts the existence of a spurious counterexample, where ϕj ∧ Init is satisfiable.

Example 5.8. Procedure traverseTwo(), presented in Figure 5 together with its pre- and post-
condition, traverses two lists until it finds their last elements. If the lists have a shared tail then p
and q should point to the same element when the traversal terminates. The program indeed satisfies
this property. However, this cannot be proven correct using an inductive universal invariant: Take,
as usual, Init to be the procedure’s precondition and P to be the safety property whose negation
is Bad = (i = null ∧ j = null) ∧ ¬Post, where Post is the procedure’s postcondition. Consider
the state σ0 depicted in Figure 6. Clearly, this model satisfies Init. Therefore, if I exists, σ0 |= I.
σ0 is a predecessor of σt

1 and hence it should be the case that σt
1 |= I. Now consider σ1, which is

a submodel of σt
1 and interprets all constants as in σ1. If I is universal, then σ1 |= I as well. The

model σ2 is a successor of σ1 and hence σ2 |= I. However, σ2 6|= P , in contradiction to the property
of a safety invariant. Indeed, when using PDR∀, the spurious counterexample 〈σ0, σ1, σ2〉 presented
in Figure 6 is obtained. This indicates that no universal invariant for P exists. Note that state σ1 is
a predecessor of σ2 and recall that σ0 is a predecessor of σt

1. The spurious counterexample was
obtained because σt

1 satisfies the diagram of state σ1.
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requires : p = null ∧ q = null ∧ i = g ∧ g 6= null ∧ j = h ∧ h 6= null ∧
∃v .n∗(g , v) ∧ n∗(h, v) ∧ v 6= null

ensures : p = q ∧ p 6= null ∧ i = null ∧ j = null
void traverseTwo(List g, List h) {

i := g; j := h;
while (i 6= null ∨ j 6= null) {

if i 6= null then { p := i; i := i.n };
if j 6= null then { q := j; j := j.n }

}
}

Fig. 5: A procedure that finds the last elements of two non-empty acyclic lists.
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Fig. 6: A spurious counterexample found for procedure traverseTwo(), shown in Figure 5.

6. SUFFICIENT CONDITIONS FOR TERMINATION
The PDR∀ algorithm is in general not guaranteed to terminate: it does not restrict the number of
distinct existentially quantified variables in diagrams. This comes as a blessing for finding invariants
with an arbitrary number of quantified variables, but is a curse when it comes to bounding the search
space. There are however non-trivial classes of programs where it terminates. In particular, we show
that PDR∀ terminates for programs that manipulate singly linked lists. Inferring universal invariants
for this class of programs was shown to be decidable [Padon et al. 2016, Theorem 4.2] using the
naı̈ve backwards reachability algorithm presented in Algorithm 4. The main result in this section
bridges backwards reachability with PDR∀, here formulated for a transition system TS = (Init , ρ)
and a property P , with Bad = ¬P:

PROPOSITION 6.1. If backwards reachability, given by Algorithm 4, terminates on input tran-
sition system TS and property P , then PDR∀ terminates as well.

In order to establish this result, we introduce a notion of effective encodings of the (backwards)
reachable states, B (defined in Section 5.1). In a nutshell, a set of (backwards) reachable states B is
effective for a class of transition systems and properties if the set of reachable states can be defined
using a finitary existential formula, i.e., a formula that uses a finite number of quantified variables
and contains a finite number of sub-formulae. This allows us to connect backwards reachability with
PDR∀ using the two lemmas:

LEMMA 6.2. If Algorithm 4 terminates on TS and P then B is effective.

and

LEMMA 6.3. If B is effective for TS and P then PDR∀ is guaranteed to terminate.

We start with the description of Algorithm 4. It computes the complement of the least fixpoint
of diagrams that can reach (via a relaxed trace) the bad states Bad . If the states represented by the
resulting formula do not properly contain the initial states Init , then there are no universal inductive
invariants, otherwise there is one.
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Algorithm 4: Naı̈ve Backward Reachability
1 I := true
2 while SAT (I ∧ Bad) or SAT (I ∧ ρ ∧ (¬I )′) do
3 (σ, σ′) := model((I ∧ Bad) ∨ (I ∧ ρ ∧ (¬I )′))
4 I := I ∧ ¬Diag(σ)
5 if SAT (Init ∧ ¬I ) then
6 return no universal inductive invariant
7 else
8 return I is a universal inductive invariant

Next, let us define what we mean by a set of backward reachable states being effective. Recall
that we use Bi to denote the set of states that can reach a bad state via a relaxed trace of TS in at
most i steps, and B to denote the set of states that can reach a bad state via a relaxed trace in some
number of steps. Thus, B =

⋃
i≥0 Bi (see Section 5.1).

Definition 6.4. We say that B is effective if it can be described by an existential formula. That
is, there exists an existential formula ψB such that B = {σ | σ |= ψB}.

Lemma 6.2 follows from the description of the naı̈ve algorithm and the definition of effective
states:

PROOF OF LEMMA 6.2. Suppose Algorithm 4 terminates, and let ¬I be the negation of the
obtained formula, I . Then B = {σ | σ |= ¬I }. Further, since ¬I is equivalent to a disjunction of
diagrams, it is an existential formula. This ensures effectiveness.

Establishing Lemma 6.3 requires a bit more context. Recall that we require that every satisfiable
formula in L has a finite model, and assume to have a decision procedure SAT (ψ), which checks if
a formula ψ in L is satisfiable, and a function model(ψ), which returns a finite model σ of ψ if such
a model exists and None otherwise. For the termination argument, we place a stronger requirement:
that finite model sizes are functions of the number of constants and existentially quantified variables.
In other words, we require the existence of a function bound : N → N that given a formula ψ in
L, with at most nψ existentially quantified variables and constants, ψ has a finite model if and
only if it has a model which contains no more than bound(nψ) elements. Note that such as bound
only depends on the existential quantifiers and constants, and not, e.g., on the number of universal
quantifiers. We note that EPR has such a bound; see Section 6.1.

Further, we also assume that model(ψ) always returns a model of size at most bound(nψ). As-
suming that L satisfies the additional requirement, and that all satisfiability checks performed by
PDR∀ are in L, we can prove Lemma 6.3.

PROOF OF LEMMA 6.3. The proof consists of two main arguments. First, we show that there
exists a window of frames of a fixed length in which PDR∀ generates new clauses. Then, we show
that the size of generated clauses is bounded by a function that depends on their distance from the
last frame. As the latter is bounded by the length of the window, we obtain a bound on the size of
clauses, which ensures termination.

We first note that since B is effective, there exists k such that B = Bk . This holds because every
existential formula can be written as a finite disjunction of diagrams. Indeed, this can be achieved by
converting the formula to DNF and performing for every existential cube a case splitting on whether
the existentially quantified variables are distinct or not and on whether the missing instances of
constants and relations appear negatively or positively. Therefore, effectiveness of B implies that
there exists a finite set of states σ1, . . . , σm such that B = {σ | σ |=

∨m
i=1 Diag(σi)}. For each

i = 1, . . . ,m , let ki be the length of a shortest relaxed trace leading from σi to a bad state, and let
k = maxm

i=1 ki . Since every state in B is a model of Diag(σi) for at least one of the states σi , every
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such state starts a relaxed trace of length at most ki to a bad state. Therefore, B = Bk . Hence for
every i > k , Bi = Bk as well.

We now turn to show that in each step, PDR∀ only generates new clauses in the last k frames.
Consider a fixed N . By Lemma 5.3, it holds that for every j < N , if σ |= Fj then σ 6∈ BN−1−j . By
the choice of k , if N − 1 − j ≥ k then BN−1−j = B . This means that for every j ≤ N − 1 − k ,
if σ |= Fj then σ 6∈ B . On the other hand, by Lemma 5.4, every state that PDR∀ attempts to block
in frame Fj is a state in B . As no such state exists for j ≤ N − 1 − k , we conclude that no state
is blocked at Fj for j ≤ N − 1 − k . Therefore, new clauses, which result from blocked states, are
only generated in the last k + 1 frames FN−k to FN . (They are of course pushed backwards once
generated.)

We now show that we can bound the size of models obtained by PDR∀ in its backward traversal,
and hence can bound the size of generated clauses. Let nc denote the number of constants in V ,
nBad denote the number of existential quantifiers in Bad and nρ denote the number of existential
quantifiers in ρ. We show by induction on j that we can bound the size of models obtained by
PDR∀ in frame N − j by a function of nc , nBad and nρ (i.e., the bound does not depend on
additional parameters such as N ). For the base case (j = 0) recall that the backward traversal starts
from a state σ |= FN ∧ Bad . Since FN is a universal formula, the properties of L ensure that the
size of the obtained model is bounded by bound(nc + nBad). For the induction step, when PDR∀

makes a step backward from a diagram of a state σ using ρ, it uses the formula Fj−1 ∧ ρ ∧ (ϕ)′,
where ϕ = Diag(σ). The only existential quantifiers in this formula result from ρ and ϕ, where the
number of the latter is equal to the size of the domain of σ (by the construction of the diagram).
Our assumptions on L and on model(ψ) therefore ensure that the size of the domain of the obtained
model is bounded by

bound(nc + nρ + n) (*)

where n is the size of σ. By the induction hypothesis, n is bounded by a function of nc , nBad and
nρ only, hence the claim follows.

We denote by fj the function of nc , nBad and nρ that provides a bound on the size of models
obtained by PDR∀ in frame N − j . Therefore, when PDR∀ makes at most k backward steps from
Bad , the number of elements in the obtained models is bounded by

max =
k

max
j=0

fj (nc ,nBad ,nρ) .

This provides a bound on the number of elements in the models that PDR∀ tries to block.
Altogether, we conclude that the clauses generated by PDR∀ (blocked diagrams) have at most

max quantifiers, which makes the potential number of clauses finite and hence ensures termination
of PDR∀.

6.1. Termination when Reasoning with Effectively Propositional Logic
If Init and ρ are EPR formulae and P is a universal formula, then all the satisfiability queries made
by PDR∀ are of EPR formulae. EPR has the finite model property, and its satisfiability is decidable.
Further, EPR meets the additional requirement needed for termination, as an EPR formula ψ is
satisfiable if and only if it has a satisfying model whose size is bounded by nψ , where nψ is the
number of constants and existentially quantified variables in ψ. That is, for every EPR formula ψ,
bound(nψ) = nψ . The existence of this bound is a well-known property of the Bernays-Schönfinkel-
Ramsey class of first-order formulae [Börger et al. 2008].

Note that in this case, the bound on the number of quantifiers in clauses generated by PDR∀ in
the last k +1 frames can be explicitly expressed as (k +1) ·nc +k ·nρ+nBad , where nc denotes the
number of constants in V , nBad denotes the number of existential quantifiers in Bad and nρ denotes
the number of existential quantifiers in ρ. This can be proven by induction on k using the bound (*).
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In [Padon et al. 2016], it is shown that Algorithm 4 is guaranteed to terminate in the case where
the substructure relation is a well-quasi-order on the set of states9. This is the case for programs
manipulating singly linked lists which are modeled in EPR using a single transitive reflexive binary
relation for n∗ (axiomatized as in [Itzhaky et al. 2013]), any number of constants and any number of
unary relations (but no additional binary or higher-arity relations) [Padon et al. 2016]. We therefore
conclude that PDR∀ also terminates on such programs.

7. IMPLEMENTATION AND EMPIRICAL EVALUATION
PDR∀ is parametric in the vocabulary, and can be implemented on top of any decision procedure
for finite satisfiability of first-order logic formulae. The language of these formulae should be ex-
pressive enough to capture the assertions, transition system, and space of candidate invariants. Our
algorithm is not guaranteed to terminate, thus the underlying logic does not have to be decidable.
Our implementation, however, uses EAR as explained in Section 3.

We note that the use of EAR is key for the ability of PDR∀ to infer inductive invariants of list-
manipulating programs through generalization of particular counterexamples: At first blush, one
might expect the tool to keep enumerating formulae about lists of every possible length. Luckily,
EAR specifies transition relations and properties using n∗ instead of n . This formulation gives a nat-
ural abstraction for the lengths of list segments. In combination with generalization, via diagrams
and unsat cores, this allows inferring clauses that apply to many lengths. In particular, we can rea-
son about reachability without having to enumerate all the possible lengths. For example, consider
Example 4.7: when blocking the diagram of the state σb presented in Figure 4, we also block all
lists in which j is reachable from h in any number of steps.

Benchmarks. We implemented10 PDR∀ and applied it to a collection of procedures that manipu-
late singly-linked lists, doubly-linked lists, multi-linked lists, and implementations of an insertion-
sort algorithm [Cormen et al. 2009], and a union-find algorithm [Cormen et al. 2009]. Our experi-
ments were conducted using a 3.6GHz Intel Core i7 machine with 32GB of RAM, running Ubuntu
14.04. We used the 64bit version of Z3 4.4.0 (build hashcode 0482e7fe727c) [de Moura and Bjørner
2008] with the default settings to check satisfiability of EPR formulae. Table V summarizes our
experimental results.

(a) Verification. Our analyzer successfully verified(i) memory safety, i.e., the absence of null-
dereferences and of memory leaks, (ii) preservation of data-structure integrity, meaning that the
procedure never creates cycles in the list (for acyclic list manipulating procedures) or that the cyclic
structure is preserved (for procedures operating on cyclic lists), and (iii) functional correctness,
for several singly- and doubly-linked list manipulating procedures, and procedures operating with
(restricted) cyclic lists. The precondition says that the expected input is a (possibly empty) (a-)cyclic
list, and the post-condition is the one expected from the procedure’s name. For example, the post-
condition of reverse() is that it returns a list comprised of the same elements as in its input, but
in reversed order.

To verify the absence of memory leaks, we used a unary predicate alloc(·) to record whether
a node is allocated. We encode the instructions new or free by means of alloc(·) by updating it
accordingly in the transition relation. The absence of memory leaks then is formulated, informally,
by saying that all non-reachable elements do not satisfy alloc: ∀α. alloc(α)→

∨
x∈PVar n

∗(x , α),
where PVar denotes the set of variables in the program. Additionally, we used auxiliary (ghost)
constants and predicates and to mark the elements of the input list and record the reachability or-
der between them. For example, we can specify a reversed order condition by introducing a ghost

9A well-quasi-orderingv on a set X is a preorder (i.e., a reflexive, transitive binary relation) such that any infinite sequence
of elements x0, x1, . . . from X contains an increasing pair xi v xj with i < j .
10The implementation is available for download at https://bitbucket.org/tausigplan/updr-distrib/
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Table V: Experimental results. Running time is measured in seconds. “[2014]” stands for results
obtained using the analysis of [Itzhaky et al. 2014]. N denotes the highest index for a developed
frame Fi . “# Z3” denotes the number of calls to Z3. AF denotes “Abstraction Failure” of [Itzhaky
et al. 2014]. TO means timeout (> 1 hr). (a) Correct programs; “# Cl. (∀)” = number of (∀-)clauses
in the inferred invariant, after the elimination of redundant clauses. (b) Correct programs for which
there is no universal inductive invariant. (c) Incorrect program; “C.e. size”is the maximal number of
elements in a model that arises in the counterexample.

Full Memory safety Memory safety [2014]
(a) Verification Time N # Z3 # Cl. (∀) Time N # Z3 # Cl. (∀) Time N # Z3 # Cl.
Singly-linked lists
concat 1.2 3 56 7 (4) 0.5 3 42 4 (1) AF
create 1.4 3 62 7 (1) 0.8 3 40 5 (1) 1.8 3 28 3
delete 13.2 5 278 24 (11) 1.5 3 67 9 (1) 5.1 4 91 10
delete-all 10.3 5 255 15 (8) 0.6 3 40 3 (1) 1.6 3 56 5
filter 37.1 6 430 26 (16) 1.9 3 80 10 (3) 9.9 5 123 8
insert-at 1.8 3 69 8 (1) 1.5 4 60 9 (1) 6.6 4 130 14
insert 1.5 3 68 9 (2) 0.8 3 54 7 (1) 0.8 3 67 9
merge 244.6 7 1429 36 (21) 10.7 6 260 13 (1) AF
reverse 19.7 5 289 13 (9) 2.7 5 114 5 (1) 5.0 6 246 4
split 178.0 8 1079 33 (17) 5.9 5 146 11 7.0 5 97 9
uf-find 43.3 8 590 25 (18) 3.1 8 144 4 6.1 10 266 8
uf-union 178.8 7 1189 28 (13) 92.1 9 974 20 (5) TO
Sorted singly-linked lists
sorted-insert 3.9 3 85 13 (5) 1.2 3 56 8 (1) 6.8 3 63 8
sorted-merge 400.3 8 1535 34 (21) 29.1 6 414 11 (2) AF
bubble-sort 90.5 11 904 23 (9) 2.1 5 61 6 (2) 2.3 4 34 3
insertion-sort 1681.1 13 4601 48 (25) 100.2 11 1220 35 (5) TO
Doubly-linked lists
create 5.7 5 139 7 (3) 3.0 5 104 7 (2) 60.9 4 99 8
delete 3.1 4 90 10 (5) 0.8 3 36 5 (2) 38.5 4 78 8
insert-at 4.8 4 132 17 (8) 1.7 3 64 10 (3) 141.4 5 151 12
Composite linked-list structures
nested-flatten 564.6 17 3019 39 (24) 169.5 17 1810 22 (11) AF
nested-split 660.5 9 1144 27 (21) 6.8 4 143 9 (1) AF
overlaid-delete 188.5 6 1054 27 (4) 101.0 7 843 24 (2) TO
Restricted cyclic singly-linked lists
is-cycle 1.5 4 81 6 0.1 2 3 0 0.1 2 3 0
last 4.6 6 143 8 (1) 1.6 4 56 5 (1) 10.2 8 155 5
unchain 823.8 9 1986 50 (30) 0.1 2 3 0 0.1 2 3 0
insert 91.2 5 208 18 (6) 9.6 5 101 11 (2) 405.1 5 127 10
delete 8.2 4 138 16 (4) 5.1 4 95 10 (1) 55.4 3 81 13
reverse 253.9 8 1202 24 (10) 20.2 8 319 13 (4) 84.1 7 421 12

(b) Absence of a universal invariant Description Time N Z3
shared-tail See Example 5.8 3.6 2 42
comb See Section 7(b) 2 3 52

(c) Bug finding Bug description Time N Z3 C.e. size
insert-at Precondition is too weak (omitted e 6= null) 0.4 1 11 4
filter Forgot a corner case where ¬ok(h) 3 1 21 4
insertion-sort Typo: typed j instead of i 5 4 68 4
sorted-merge Forgot to link the two segments 7.5 1 49 4

predicate n∗ for the initial reachability, and using the following formula as the post-condition:
∀αβ.n∗(h, α) ∧ n∗(α, β)↔ n∗(β, α) ∧ n∗(α, h).

Our current implementation uses a fault avoidance version of wlp which ensures that the programs
do not perform null-pointer dereferences and preserve the data structure integrity. Checking for the
absence of memory leaks is done by adding the aforementioned formula to the post-condition. Thus,
the user is required only to come up with the post-conditions pertaining to functional correctness.

We also verified the correctness of several procedures that manipulate sorted lists:
sorted-insert() inserts an element into its appropriate place in a sorted list, sorted-merge()
creates a sorted list by merging two sorted ones, and bubble-sort() and insertion-sort()
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Name Formula
x 〈f 〉y ϕf (x , y) (see Table II)

f .ls [x , y ] ∀α, β. f ∗(x , α) ∧ f ∗(α, y) ∧ f ∗(β, α)→ (f ∗(β, x ) ∨ f ∗(x , β))

f .stable(h) ∀α. f ∗(h, α)→ alloc(α)

f /b.rev [x , y ] ∀α, β.

(
α 6= null ∧ β 6= null ∧
f ∗(x , α) ∧ f ∗(α, y) ∧ f ∗(x , β) ∧ f ∗(β, y)

)
→ (f ∗(α, β)↔ b∗(β, α))

f .sorted [x , y ] ∀α, β.

(
α 6= null ∧ β 6= null ∧
f ∗(x , α) ∧ f ∗(α, β) ∧ f ∗(β, y)

)
→ dle(α, β)

Table VI: Instrumentation predicates that were manually provided in the previous work [Itzhaky et
al. 2014]. f and b denote pointer fields. dle is an uninterpreted predicate that denotes a total order
on the data values; its semantics is enforced by an appropriate total-order background theory.

sort their input lists. We represented the order on data elements by a binary predicate together with
the appropriate axioms. Using this predicate we express sortedness, without directly considering the
data.

In addition, we verified several procedures that manipulate multi-linked lists:
overlaid-delete() takes an overlaid list and deletes a given element. (Overlaid lists use
multiple pointer fields to index the same set of elements in different orders.) nested-split()
moves all the elements not satisfying ok into a sublist. flatten() takes a nested list and flattens
it by concatenating its sublists. We also verify the union-find algorithm. E.g., for compressing
find() operation, we prove that it maintains the reachability between every node and its root and
preserves the elements.

Finally, we verified several procedures manipulating cyclic linked lists that contain not more than
one cycle. is-cycle() checks if a given list is cyclic. unchain() breaks every n-edge of a given
cyclic list. delete() deletes a given element from an input cyclic list. insert() insert a given
element into a given sorted cyclic list while preserving the sortedness.

We compared our results to [Itzhaky et al. 2014], where EAR was used to verify properties of list-
manipulating programs with PDR, using the human-supplied (universally-quantified) abstraction
predicate templates given in Table VI. The templates are parameterized for arbitrary pointer fields
f and b and program variables x , y , and h . They have the following meanings

— x 〈f 〉y — x is the immediate f -successor of y ;
— f .ls [x , y ] — the list segment from x to y is not shared by any heap location;
— f .stable(h) — h is the head of a list containing only allocated objects;
— f /b.rev [x , y ] — field b is a back-pointer for field f in list segment from x to y ;
— f .sorted [x , y ] — the list segment from x to y is sorted.

Note that some of the predicates are far from trivial, and some are specific for one or two exam-
ples. Our technique was able to discover similar properties without the need for manually provided
instrumentation predicates. We note that [Itzhaky et al. 2014] can also establish certain functional
correctness properties, but theirs are strictly weaker than ours. For example, they do not verify that
a reversed list does not contain more elements than in its input list.

(b) Verifying the Absence of Universal Invariants. Our tool was also able to show that certain
properties cannot be verified with a universal invariant. It proved that procedure shared-tail(),
described in Example 5.8, does not have a universal invariant. We applied our tool to procedure
comb(), which for a given list h and every element a of h allocates a new element b and places a
pointer p from a to b, hence resulting in a heap shaped like a comb. The tool discovered that it is not
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possible to use a universal invariant to prove that when comb() terminates there is no null-valued
p-field in the input list.

(c) Bug Finding. We also ran our analysis on programs containing deliberate bugs. In all of the
cases, the method was able to detect the bug and generate a concrete trace in which the safety or
correctness properties are violated.

In our experience, the tool works well when the body of the loop is simple, even if the resulting
invariants are not small. However, as the loop’s body becomes more complicated, in particular
containing conditional statements, the first-order formula describing the transition system can grow
quite large, which has an adverse effect on scalability. This is most evident in the verification of
insertion-sort(), where a nested loop was encoded using a single loop and some additional
control statements.

8. RELATED WORK
Synthesizing quantified invariants has received significant attention. Several works have considered
discovery of quantified predicates, e.g., based on counterexamples [Das and Dill 2002] or by exten-
sion of predicate abstraction to support free variables [Flanagan and Qadeer 2002; Lahiri and Bryant
2007]. Our inferred invariants are comprised of universally quantified predicates, but unlike these
approaches, our computation of the predicates is property directed and does not employ predicate
abstraction. Additional works for generation of quantified invariants include using abstract domains
of quantified data automata [Garg et al. 2013a; Garg et al. 2013b] or ones tailored to Presburger
arithmetic with arrays [Dillig et al. 2010], instantiating quantifier templates [Bjørner et al. 2013;
Srivastava and Gulwani 2009], or applying symbolic proof techniques [Hoder et al. 2011].

Other works aim to identify loop invariants given a set of predicates as candidate ingredients.
Houdini [Flanagan and Leino 2001] is the first such algorithm of which we are aware. Santini
[Thakur et al. 2015; Thakur et al. 2013] is a recent algorithm which is based on full predicate ab-
straction. In the context of IC3, predicate abstraction was used in [Birgmeier et al. 2014; Cimatti
et al. 2014; Itzhaky et al. 2014], the last of which specifically targeting shape analysis. The above
require a a predefined set of predicates, and are therefore less automatic than our approach, since the
diagrams provide an “on-the-fly” abstraction mechanism. A CEGAR-based approach for inferring
predicates, is shown in [Podelski and Wies 2010]. They go beyond the usual state predicates by in-
troducing unary predicates that range over heap locations. This allows to infer quantified properties
and permits lazy refinement to improve performance, but does not provide completeness guarantees.
In addition, the inferred invariants have quantifier-nesting depth of one, whereas PDR∀ allows for
arbitrary nesting depth.

PDR has been shown to work extremely well in other domains, such as hardware verification
[Bradley 2011; Eén et al. 2011]. Subsequently, it was generalized to software model checking
for program models that use linear real arithmetic. The approach in [Hoder and Bjørner 2012]
uses conflict-based projection for linear real arithmetic, while [Cimatti and Griggio 2012] em-
ploys a quantifier-elimination procedure for linear real arithmetic to provide an approximate pre-
image operation. Finally, [Komuravelli et al. 2014] uses model-based projection to extract under-
approximations of pre-images. In contrast, our use of diagrams allows us to obtain a natural approx-
imation which is precise for programs that can be verified using universal invariants.

The reduction we use into EPR creates a parametrized array-based system (where the range of
the arrays are Booleans). A number of tools have been developed for general array-based systems.
The SAFARI [Alberti et al. 2012] system is relevant. It is related to MCMT and Cubicle [Ghi-
lardi and Ranise 2010b; Ghilardi and Ranise 2010a; Conchon et al. 2013; Conchon et al. 2012].
SAFARI uses symbolic preconditions to propagate symbolic states in the form of cubes that are
conjunctions of literals over array constraints, and uses interpolants to synthesize universal invari-
ants. Our method for propagating and inductively generalizing diagrams differs by being based on
PDR. More generally, our use of diagrams lazily produces finite state abstractions of array-based
systems. Lazy abstraction was applied in [Henzinger et al. 2002], and shown to terminate when the
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abstraction structures satisfy the ascending-chain condition, e.g., that every chain of abstractions is
well-founded. In [Jhala and McMillan 2006], various abstraction domains are considered based on
interpolation where termination of the interpolation process can be enforced by limiting the creation
of atomic formulae to use only existing sub-terms. In contrast, our termination argument is based
on well-quasi-orders.

The logic used by our implementation has limited capabilities to express properties of list
segments that are not pointed to by variables [Itzhaky et al. 2014]. This is similar to the self-
imposed limitations on expressibility used in a number of past approaches, including (a) canoni-
cal abstraction [Sagiv et al. 2002]; (b) a prior method for applying predicate abstraction to linked
lists [Manevich et al. 2005]; (c) an abstraction method based on “must-paths” between nodes that
are either pointed to by variables or are list-merge points [Lev-Ami et al. 2006]; and (d) domains
based on separation logic’s list-segment primitive [Distefano et al. 2006; Berdine et al. 2007] (i.e.,
“ls[x , y ]” asserts the existence of a possibly empty list segment running from the node pointed to by
x to the node pointed to by y). Decision procedures have been used in previous work to compute the
best transformer for individual statements that manipulate linked lists [Yorsh et al. 2004; Podelski
and Wies 2010].

Several logics used for heap verification have decision procedures obtained by reduction to tra-
ditional logics. STRAND [Madhusudan and Qiu 2011; Madhusudan et al. 2011] has the ability
to reason about heap data structures and the data they contain, using MSO-defined relations over
trees to describe heaps. It has a decidable fragment inspired by EPR where universally quantified
variables can be used only in so-called elastic relation. Essentially, elasticity is a generalization
of transitive closure. STRAND is similar to the earlier PALE [Møller and Schwartzbach 2001],
which also translates reachability properties to MSO, and is based on graph types [Cook and Op-
pen 1975]. STRAND does not have an invariant inference mechanism, thus it can be interesting to
use STRAND as the logic L in PDR∀. The logic CSL [Bouajjani et al. 2009] has a similar flavor
to STRAND, with similar sort restrictions on the syntax, but generalizes to handle doubly linked
lists, and allows size constraints on structures. Its decidability is obtained by proving a small model
property and via a reduction to first order logic.

A logic for reasoning about (cyclic) singly-linked lists is proposed by [Rakamaric et al. 2007]. The
logic contains transitive closure of a single link function symbol, and has a decision procedure based
on custom inference rules. A logic for reasoning about list segments and data is given in [Lahiri and
Qadeer 2008]. The logic, LISBQ, provides a ternary primitive · → · → · that corresponds to heap
paths through three nodes. This allows reasoning about pointer cycles. The decision procedure is
based on a custom proof system, and its termination relies on stratification of the sorts — a semantic
property of the formulae. A previous work by the same authors [Lahiri and Qadeer 2006] proposes
a translation to first-order logic, but requires manual instantiations of quantifiers.

Separation logic [Reynolds 2002] uses inductive predicates conjoined with the ∗-operator to de-
scribe unbounded heaps. It has been used as a basis for static shape analyses, e.g., [Distefano et al.
2006], and also has some decidable fragments, e.g., [Berdine et al. 2004]. The latter allows to de-
scribe heaps as a collection of separated list segments between program variables or existentially
quantified ones. Our logic uses similar segments, however it does not express separation explic-
itly, but rather as a collection of properties that hold at all the heaps. TREX [Wies et al. 2011] and
GRIT [Piskac et al. 2014a; Piskac et al. 2014b] are essentially similar decidable fragments of sep-
aration logic. The former has a decision procedure based on reduction to first order logic, and the
latter was recently shown to be reducible to EPR. GRIT also allows to reason on numerical data
stored in heap cells.

9. CONCLUSIONS
PDR∀ is a combination of PDR/IC3 [Bradley 2011] with the model-theoretic notion of dia-
grams [Chang and Keisler 1990]. The latter provide PDR an aggressive strengthening scheme in
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which the structural properties of a bad state are abstracted “on-the-fly” by a formula describing
all of its possible extensions, which are then blocked together within the same iteration of PDR’s
main refinement loop. This obviates the need for user-supplied abstraction predicates. This form of
automation is particularly important when one tries to verify tricky programs, e.g., programs that
manipulate unbounded data structures, against a variety (of possibly changing) specifications. In-
deed, our implementation successfully analyzed multiple specifications of tricky list-manipulating
programs, discovered counterexamples, and, uniquely to our approach, showed that certain pro-
grams cannot be proven correct using a universal invariant. Interestingly, we noticed that sometimes
the tool had to work harder to verify simple properties than when it was asked to verify complicated
ones. In particular, verifying partial correctness properties was done faster when verified together
with memory safety than without. In hindsight, this might not be surprising due to the property
guided nature of the analysis.

We are very pleased with the simplicity of our approach and believe that the notion of diagram-
based abstractions is particularly useful for the verification of programs that manipulate unbounded
state. Recent work [Frumkin et al. 2017] has extended PDR∀ to interprocedural analysis, where
procedure summaries [Reps et al. 1995] are inferred instead of invariants. The interprocedural ver-
sion was used to verify correct use of iterators in Java programs. In the future, we plan to apply it in
other contexts too, e.g., for the verification of network programs [ONF 2016].
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A. THE INVARIANT OBTAINED FOR SPLIT()

I =

32∧
i=0

Li where

L0 = (j 6= i) ∨ (i = h)

L1 = ∀α. (ok(α) ∨ n∗(α, k) ∨ (g = h) ∨ n∗(j , α) ∨ ¬n∗(g , α))

L2 = ((g = null) ∨ ¬ok(g))

L3 = (n∗(k , j ) ∨ ¬n∗(j , k))

L4 = ((h = i) ∨ n∗(j , i) ∨ (null = i))

L5 = (n∗(j , i) ∨ (j = null) ∨ (null = i))

L6 = ∀αβ. (n∗(h, α) ∨ ¬n∗(h, α) ∨ ¬n∗(h, β) ∨ ¬n∗(α, β))

L7 = ∀α. (¬n∗(h, α) ∨ ok(α) ∨ (g = null) ∨ n∗(g , α))

L8 = ∀αβ. (n∗(α, h) ∨ ¬n∗(α, β) ∨ n∗(α, β) ∨ n∗(α, k))

L9 = (¬n∗(h, h) ∨ n∗(h, h))

L10 = ∀α. (n∗(i , α) ∨ ¬n∗(j , α) ∨ (α = j ) ∨ n∗(j , k))

L11 = (ok(j ) ∨ (j = null))

L12 = (n∗(h, j ) ∨ (j = null))

L13 = ∀α. (n∗(g , α) ∨ ok(α) ∨ ¬n∗(h, α) ∨ (g = k) ∨ n∗(k , α))

L14 = ((h = g) ∨ (h = h))

L15 = ∀αβ. (¬n∗(α, β) ∨ n∗(α, β))

L16 = n∗(g , k)

L17 = ∀α. (¬n∗(h, α) ∨ n∗(h, α) ∨ n∗(g , α))

L18 = ∀αβ. (n∗(k , β) ∨ ¬n∗(α, β) ∨ n∗(α, β) ∨ ¬ok(β) ∨ ¬n∗(h, α) ∨ n∗(α, k))

L19 = ∀α. (n∗(h, α) ∨ ¬n∗(h, α) ∨ n∗(h, α))

L20 = ((null = i) ∨ n∗(k , i) ∨ (g = null))

L21 = ∀α. ((h = i) ∨ n∗(j , α) ∨ (k 6= null) ∨ ok(α) ∨ ¬n∗(h, α))

L22 = ∀α. (n∗(α, k) ∨ ¬ok(h) ∨ n∗(α, g) ∨ n∗(j , h) ∨ n∗(α, j ) ∨ ¬n∗(α, k))

L23 = ∀αβ. (n∗(j , α) ∨ (α = k) ∨ ¬n∗(k , α) ∨ n∗(k , β) ∨ ¬n∗(h, β) ∨ n∗(β, α) ∨ n∗(β, k))

L24 = ∀α. ((α = k) ∨ n∗(i , α) ∨ ¬n∗(k , α) ∨ n∗(k , j ))

L25 = ((h = null) ∨ n∗(h, h))

L26 = (n∗(h, g) ∨ (g = null))

L27 = ∀α. (¬n∗(j , α) ∨ ¬n∗(α, k) ∨ n∗(α, k) ∨ n∗(α, j ))

L28 = ∀α. (¬n∗(g , α) ∨ n∗(α, g) ∨ ¬ok(α))

L29 = ((h = h) ∨ (k 6= h))

L30 = ∀αβ. (¬n∗(α, β) ∨ ok(β) ∨ n∗(j , β) ∨ (α = β) ∨ ¬n∗(k , j ) ∨ ¬n∗(k , α))

L31 = (n∗(h, i) ∨ (i = null))

L32 = (n∗(j , g) ∨ (i 6= g) ∨ (g = null))

Fig. 7: The inferred invariant for split. It contains 33 clauses, of which 17 are universal.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.


	Introduction
	Preliminaries
	Verification Problems and Their Representation in First-Order Logic
	From Programs to Verification Problems

	Reasoning about Heap-Manipulating Programs using Effectively Propositional Logic
	Modeling of Programs Manipulating Cyclic Linked Lists

	Universal-Property-Directed Reachability
	Diagrams as Structural Abstractions
	Data Structures and Frames
	Iterative Construction of an Approximate Reachability Sequence

	Correctness
	Properties of the Frames Computed by PDR
	Correctness of the Outcome of PDR

	Sufficient Conditions for Termination
	Termination when Reasoning with Effectively Propositional Logic

	Implementation and Empirical Evaluation
	Related Work
	Conclusions
	The Invariant Obtained for split()

