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The Nash theorem on the existence of equilibrium points in N-person non-
cooperative games in normal form is generalized to the case when there isa
continuum of players endowed with a nonatomic measure. The mathematical
tools are those used in mathematical economics, in particular, markets with
a continuum of traders. The main result shows that under a restriction
on the payoff functions there exists an equilibrium in pure strategies.
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A nonatomic game is a game where the set of the players is endowed with a
nonatomic measure. The purpose of this paper is to define a nonatomic game
in a normal form, to define its equilibrium points in the sense of Nash,®
and to prove their existence.

Nonatomic games enable us to analyze a conflict situation where the
single player has no influence on the situation but the agregative behavior
of “large” sets of players can change the payoffs. The examples are numerous:
Elections, many small buyers from a few competing firms, drivers that can
choose among several roads, and so on.

In our model the set of players T is the unit interval [0, 1] endowed with
Lebesgue measure A. Each player has to choose one of 7 activities. We
represent an activity (or a pure strategy of a player) by a basis vector e;in R”,
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the n-dimensional Euclidean space. The vector e; is the vector in R” with
one as ith coordinate and zero otherwise. Denote

P = %x=(x1,‘..,x")eR"fo;>0,liién,in: 1t
i=1

Then P = conv({e, ,..., €,}) (conv stands for convex hull) and it is the set of
mixed strategies of each player. A T-strategy is a measurable function
£ from 7" to P. Thus, & = (£%,..., #7), where # is a measurable real-valued
function from 7 to [0, 1]. In this case & is Lebesgue-integrable and we write
[s &for ([ 8(t) dM,..., [s £7(t) dX). As usual we neglect the distinction between
integrable functions and equivalence classes of such functions. Hence, a
T-strategy & belongs to L,(T X {1,...,n}). Let P denote the set of all 7-
strategies endowed with L, weak topology. The set P is a compact, convex
subset of a locally convex linear topological space.

Before defining the payoff function we define an auxiliary (utility)
function, 4(-, ) : T x P — R~ Now, #(t, , &) describes the utility of player
to when a.e. player chooses £(¢) and #, chooses e; . So the payoff to player ¢,
h; , is defined as

hy(&) = £(t) - #(t, £)

where x - y denotes the inner product in R" for x, y € R".

Thus a nonatomic game in a normal form is defined completely by the
function 4.

We shall need the following conditions:

(a) Foralltin 7, 4(z, -) is continuous on P.
(b) Forall £in Pandi,j=1,.,n, the set {reT| e, &) > @1, £)}
is measurable.
A T-strategy £ is in equilibrium iff, a.e.,
VpeP  h(%) =p i, £)
Theorem 1. A nonatomic game in a normal form fulfilling conditions
(a) and (b) has a T-strategy in equilibrium.

A T-strategy £ is called pure iff, a.e., #(¢) € {e, ,..., &,}, i.e., almost each
player uses a pure strategy. Our main result is the following theorem.

Theorem 2. 1If in addition to the conditions of Theorem I, a.ce.,
4(z, £) depends only on [r#, then there is a pure Ttstrategy in equilibrium.

The importance of Theorem 2 lies in the fact that in many real, gamelike
situations, a mixed strategy has no meaning. The additional condition is
not too restrictive, as is explained later in remark 2.
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A game in a normal form is finite if there is a finite number of players
and each player has a finite number of pure strategies.

Corollary (Nash theorem): Every finite game has a strategy in
equilibrium.

We shall show that this is a simple corollary of Theorem 2 (and not of
Theorem 1).

Proof of Theorem 1. For player r and T-strategy #, set
B, %) ={peP|VgeP:p (i > q - i %)

This is the set of the best answers for player ¢ when 7-strategy # is
chosen. Obviously B(z, £) is convex and nonempty.

Claim 1. For each ¢ the graph of B(z, -) is closed in P x P.
Given ¢, let £, — &, , p, — p, and for each g in P,

P Ut £) = q AL (1 &), no= 1,2,

Because of the continuity of #(z, -), the inequality holds in the limit. So,
the proof of claim 1 is completed.
We define a set-valued function o : P — P by

(@ ={yecPlae 5() e B@, &)}

Claim 2. For each &, «(£) is nonempty and convex.
Define for i = 1,...,n

T, ={teT| Wt &) <4t &), j=l,.,n}

One has (J;_; 7; = T and for t e T;, e; € B(t, £). Because of condition
(b), T, is measurable. Let S; — T, and S, = Ti\(U;: T;), i = 2,...,n. The
T-strategy §, defined by #(r) = e, for r€ S, belongs to «(£). The convexity
of B(t, £) implies that of «(#).

Claim 3. The graph of « is closed in P x P.

Let £, — %, 9, —>g,and forn > 1, §, ¢ «(£,). Assume per absurdum
that for a nonnull, measurable subset S of T, $4(t) & B(t, £,). For each 1,
B(z, %,) is a convex hull of a subset of the set {e1 ..., e,}. So there is a nonnull,
measurable subset ¥ of S and a subset {eil yees eik} of {e, ,..., e,} such that
for each t € ¥, B(t, #,) = conv({e; ..., e;,}) and $4(2) ¢ B(z, 4,). Hence, there
ispin P such that p - $,(r) > Oandp - e, =0,j=1,.,kSop" [y3, >0,
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but for ench § in £ with #(1) € 81, &) for t F.p - v = 0. Now, $#, — 7y
implies fy fiy — lim, [ #,. Using Aumann’s™ Proposition 4.1, we et
lim, _[v $#.C _rp limy, Supf £,000, whese

[P lim, Supf )} = L[P #lae in ¥, §r) is a limit point of
BT

But because of claim 1, each limit point of { #.0))7; belongs o
Bir, dg)—a comradiction.

To complete the proof of Theorem 1, notice that by elaims 2 and 3,
e fulfills the conditions of the Fan-Glicksberg ™ fixed-point thearem and
if & = ool then obviously £ i3 an equilibrium.

Proof of Theorem 1. By Theosem 1, there is a Testralepy £ in
equilibrium. We have to prove that there is a pure Testrateey § such thai
Ird = s and, ae., fiz) = Bir, £). As was mentioned previcusly,

Bz, £) = convi{e, | ¢, & By, )

From Aumann's'* Theorem 3, we have
@ [ B = [ (e e B0 B
T [
iF{it, e} | e = Biv, 43} is a Bosel subser of T = B*, where
JI By, #) = i_| #|pePandae e F{r,.ﬁj#
r Jr
§ . . : i
J’r{.—:. | #w B, 215 = JTJJ |3 Pand ac. J(rhe e, | e, Bir, )]

OF course, [ & belongs to the left side of (), Te complete the proof,
we shall demonstrate the Borel messurability condition, The set-valued
function {e, | &, & B(", £)} attains a finite number of values, and each of them
i  finite subset of &= and hence a Borel set in 8%, Given @ subsct e, w82}
of f¢0 1.0 €a] We have to show that {r | convife, ..., e} — Bit, ¥} ia Borel
subset of T\ The last statement i implied by condition (),

Proof of the Corollary. Let m be the number of plavers in the fnite
game. For i = 1,..., m let K be the set of pure strategies of player j. We
assume that | K, |, the cardinality of &, | is finite. We assume also, without loss
of generulity, that the payoif function of player f has nonnegative values, We
represent this finite game by a nonatomic game where 1 = T3, | K[ Let
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(T, be a partition of T with A(T3) == 1/m for every j. Given ¢ in T} and a
pure T-strategy £, we have to define @(z, £). If i ¢ K; , we define #%(¢, &) = —1.
Ifi e K; , we define #i(z, £) as the payoff obtained by player j in the finite game
when he plays the pure strategy i and player j'(j’ # j) plays i’ € K;» with
probability mA({t e Ty (1) = i’}). We choose an arbitrary k in K;- and attach
to it the probability mA({t € T} | £(¢) = k or &(¢) ¢ K;}). Thus 4 is well defined
and depends on [r £ only. The definition of 4 implies also that if £ is a pure
T-strategy in equilibrium, then, a.e. in T}, £(t) € K;, for every j. Hence, a
pure T-strategy, which exists by Theorem 2, induces a strategy in equilibrium
in the finite game.

Remarks

1. The dimension of R” means that the number of activities of all
players is uniformly bounded on 7 and it does not mean that all the players
have the same number of different choices.

2. Theorem 2 can be generalized in the following manner: Instead of
“i(t, £) depends only on [r#” once can assume “i(t, £) depends only on
{Jr, 17, where {T}}} ; are Lebesgue-measurable subsets of 7, k = 1,2,....
A similar proof applies (because the last restriction is equivalent to “{T;};,
is a measurable partition of 7.”)

3. The set of all pure T-strategies is dense in £ (in the weak topology).
Hence the function 4(z, -), which is continuous on P, is determined by its
values on the pure 7-strategies. So the following problem is suggested:
“Is the conclusion of Theorem 2 true under the conditions of Theorem 17?7
We shall answer negatively by the following example: Let n = 2 and for
i = 1,2 we define ui(r, £) = || re; — [(o. £, where || - || denotes the distance
in R*. Assume that # is in equilibrium and that, a.e., £(t) € {e, , e,}. First, we
show that the set S = {¢ | [o.n & = 3#(e; + e,)} is null. Otherwise there is an
interval [r, s]C S with 0 < r < s < 1. This, in turn, implies that the density
of the set E; = {t € [r, s]| £(¢) = e,;} in the interval [r, s] is & for i =1, 2,
which is impossible. [There is no Lebesgue-measurable set £ on the real line
such that for every Lebesgue-measurable set Fin [r, 5], A(E N F) = $A(F).]

Let 0 < s < 1 be such that || se, — [r0.9 £ < || 5e; — [0, # . Because
of the continuity in 7 of [}, , & there is a first r such that r <s and for
all r <t<s the inequality | fe; — [0 &1 < | te; — fo.0 £[| holds.
Hence for a.e. t € [r, 5] the assumption that £ is in equilibrium implies that
#(t) = e, ; a contradiction to the inequality in 5. QED.

4. Although the main result of this work is Theorem 2, there is some
interest in Theorem 1. One may ask, and the referee did, whether the
techniques of the proof of Theorem 1™ could yield a stronger result. The
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answer 5 positive. The generalimtion of Theorem 1 is obtained not by
weakening one of the explicit assumptions () or {b) but by weakening the
sssumption that P is a simplex (ie. 2 convex hall of linearfy independent
vectons in R™) and that d(r, ) is affine on P Instend we assume that for ezch f
in Tthe set P, is & compact, convex subsst of f®, A T-strategy iz a messurable
function £ from T to RS, st., Hr}= P, for all & Mow, £ denotes the set of ]
Tstrategics, and set G = {{r, NeT X R | xe Pl

Using Aumann's*" Theorem 2, £ g nonemply if we assmume the following
condition: (A) 7 is a Borel subset of grt? and the real-valued function on T,
tmax{|x || x4 P i3 integrable,

Makt we nssume the existence of utility fanction d : G = P — & and for all
vin Twe defing by : £ — B by (£} = g, A1), ). The assumptions equivilent
to (a) and (b} needed in the proof of existence of & stralegy in equilibrivm
are: Assumption (B): for all (r, x) in G, dr, x, '} i continwons and quasi.
concave on £ Assomption (C): For all £ in B, 4(-, 'y 43 s Borel-measurable
on O, We define, of course, £ to be in equilibrium if, a.e, k(&) = i, x, 9
for all x in F, ., The proof of existence in this generalized model Tollows that
of Theorem 1. (The proofs of claims 2 and 3 are mare complicated in this
case; Aumann's™ Theorem 2 s needed in the proof of claim 2.)

We also mention that in this model under the additional azsumption of
Theorem 2 there is a T-sirategy £ in equilibrium, s.ta.e, §7) s an extreme
point of P, . Almost the same proof applies,
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