
International Journal of Game Theory, Vol. 16, Issue 3, pag.e 205 -222 

On Weighted Shapley Values 

By E. Kalai I and D. Samet 2 

Abstract: Nonwmmetric Shapley values for coalitional form games with transferable utility 
are studied. The nonsymmetries are modeled through nonsymmetric weight systems defined on 
the players of the games. It is shown axiomatically that two families of solutions of this type are 
possible. These families are strongly related to each other through the duality relationship on 
games. While the first family lends itself to applications of nonsymmetric revenue sharing problems 
the second family is suitable for applications of cost allocation problems. The intersection of 
these two families consists essentially of the symmetric Shapley value. These families are also char- 
acterized by a prObabilistic arrival time to the game approach. It is also demonstrated that lack 
of symmetries may arise naturally when players in a game represent nonequal size constituencies. 

1 I n t r o d u c t i o n  

The Shapley (1953b) value is considered by many game theorists and economists as 
the main solution concept to cooperative games with transferable utility. These games 
and this solution concept have been applied to problems of revenue sharing and cost 
allocations. 

One of the main axioms that characterize the Shapley value is one of symmetry. 
The underlying motivation for using this axiom is the assumption that except for the 
parameters of the games, the players are completely symmetric. However, in many 
applications this assumption of symmetry seems unrealistic for the situation that is 
being modeled and the use of nonsymmetric generalizations of the Shapley value was 
proposed in such eases. 
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Consider, for example, a situation involving two players. If the two players co- 
operate in a joint project they can generate a unit profit which is to be divided be- 
tween them. On their own they can generate no profit. The Shapley value views this 
situation as being symmetric and would allocate the profit from cooperative equally 
between the two players. However, in some applications lack of symmetry may be 
present in the underlying situation. It may be, for example, that a greater effort is 
needed on the part of player one than on the part of player two in order for the 
project to succeed. Another example arises in situations where player one represents 
a large constituency with many individuals and player two's constituency is composed 
of a small number of individuals. Other examples where lack of symmetry is present 
can easily be constructed for problems of cost allocations. Also, lack of symmetriy 
may arise when different bargaining abilities for different players are modelled. 

The family of weighted Shapley values was introduced by Shapley (1953a). Each 
weighted Shapley value associates a positive weight with each player. These weights 
are the proportions in which the players share in unanimity games. The symmetric 
Shapley value is the special case where all the weights are the same. In this paper we 
extend the notion of "weights" to "weight systems" enabling a weight of zero for 
some players. We then define in Section 2 the notion of the weighted Sharpley value 
with a given weight system and relate it to a procedure of dividend allocation that 
was proposed by Harsanyi (1959) (see also Owen 1982) for games without sidepay- 

ments. In Section 3 we give an equivalent definition of the weighted Shapley value 
by random orders which generalize the random order approach to the symmetric 
Shapley value. In Section 4 we give an axiomatic characterization of the family of 
weighted Shapley values - that is, we provide a list of properties of a solution which 
is satisfied by and only by weighted Shapley values. 

Shapley (1981) proposed also a family of weighted cost allocations schemes and 
axiomatically characterized, for exogenously given weights, the schemes associated 
with these weights. This family of solutions is related to the weighted Shapley values 
by duality. We explore further the relationship between these two families, provide 
an axiomatization of the latter family (which does not use the weights explicitly in 
the axioms as Shapley's axioms do) and get as a result an axiomatization of the sym- 
metric Shapley value which does not use the symmetry axiom. 

Owen (1968 and 1972) showed that weighted Shapley values can be computed 
by a "diagonal formula" providing another interpretation of the weights associated 
with the players. In Section 6 we extend the "diagonal formula" for weight systems 
and allocation schemes. 

Finally, we note that if one accepts the axioms in Section 4, one is obliged to use 
a weighted Shapley value but no recommendation of the weights is implied by the 
axioms. The weights should be determined by considering such factors as bargaining 
ability, patience rates, or past experience. In Section 7 we examine cases in which 
the "size" of the players (where the players themselves are groups of individuals) are 
appropriate weights for the players. 
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2 Weighted Shap ley  Values 

Let N be a finite set, the members of which will be called players. Subsets of N are 
called coalitions and N is called the grand coalition. Set INI = n. For each coalition 
S we denote by E s the tSI-dimensional Euclidian space indexed by the players of S. 

A game v is a function which assigns to each coalition a real number and in particular 
v(~) = 0. The set of all games is denoted by F. Addition of two games v and w in F 
is defined by (v + w)(S) = v(S) + w(S) for each S and multiplication of the game v by 
a scalar a is defined by (av)(S) = ~v(S) for each coalition S. Thus F is a vector space. 
For each coalition S the unanimity game o f  the coalition S, u s, is defined by us(T) = 
1 if T_3S and us(T) = 0 otherwise. It is well known that the family of games 

{Us)s c_ N is a basis for F. 
The Shapley value r is the linear function r F -->E N, which for each unanimity 

1 
game Us is defined by ~i(Us) = ~ if i E S and ~i(Us) = 0 otherwise. Intuitively, in 

the game Us any coalition which contains S can split one unit between its members 

and therefore players outside S do not contribute anything to the coalition they 
join. Hence, O~i(u~) = 0 for i q~S. The members of S on the other hand split equally 
the one unit between themselves. Since {Us)s c_ N is a basis to F and ~ is linear, r is 
defined for all the games. A weighted Shapley value generalizes the Shapley value by 
allowing different ways to split one unit between the members of S in u s. We pre- 
scribe a vector of positive weights X = Cai)t~ n and in each Us players split propor- 

tionally to their weights. We want to allow some players to have weight zero. This 
means that if they split one unit with players who have positive weights, they get 

zero. But then we have to specify how these zero-weight players stilit a unit when no 
positive-weight player is with them. This brings us to the following lexicographie 
definition of a weight system. 

A weight system co is a pair 0~, E) where X EEN++ and Z = (Sz, ..., Sin) is an 

ordered partition of N. A weight system co = (~, Y,) is called simple if Z = (N). The 
weighted Shapley value with weight system co is the linear map ~o : P -* E N which 
is defined for each unanimity game Us as follows. 

Let k = max (] IS l n S =/= 0) and denote S = S n Stc. Then 

(r i(us) = 
F , x  i 

for i E S  and Oo~)i(us) = 0 otherwise. 

In other words, the weights of players in S i are 0 with respect to players in S i 
with ] > i. The positive weights of players in Si are used only for games us such that 
no player from Sj with ] > i is in S. Observe that ~ is the (symmetric) Shapley value 
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if and only if co = (k, (N)) and ~ is proportional to the vector (1, 1, . . . ,  1). Another 
computation procedure of r is along the lines proposed by Harsanyi (1959). In 
this procedure each coalition S allocates dividends to its members after all the proper 
subcoalltio'ns of S have done it. The dividend allocation proceeds as follows. We first 
allocate to each player i his worth v({i)). Suppose that all the coalitions of size k or 
less have already allocated dividends and let S be a coalition of size k + 1. Denote 
by z(S) the sum of the dividends that members of S were paid by proper subcoalitions 
of S. Then v(S) - z (S )  (which is possibly 0) is the amount that S will allocate to its 
members. To determine how the amount is divided, we define the coalition S (which 
is a subset of S) as above. The members of S will divide v(S) - z (S )  in proportion to 
their weights while the rest of the players in S get nothing. The total amount that 
each player accumulated at the end of the procedure (i.e., after N allocated its divi- 
dends) is exactly (r To see this one can easily prove by induction that if v = 

asU s then for each coalition S, v(S) - z (S )  = as and the dividend allocation is 
s_clv 
therefore the allocation of the coefficients a s in accordance with the definition of 

~bto. 
A generalization of this procedure for the computation of the Shapley value was 

proposed by Maschler (1982). The same generalization applies also for Cto. We start 
by choosing any coalition S with v(S) ~ 0 and allocating v(S) according to ~.  In later 
steps of the computation we choose for dividend allocation any S for which v(S)-  
z(S) r 0 where z(S) is the sum of the dividends paid for the players in S by subcoali- 
tions of S which already allocated dividends (notice that a coalition may be chosen 
several times in this procedure). The procedure ends when v(S) - z (S )  = 0 for all the 
coalitions. The proof that such procedure always terminates and gives indeed ~oJ is 
the same as in Maschler (1982). Harsanyi (1959) defined also a procedure of weighted 
dividend allocation for games without sidepayments. A family of solutions obtained 
by these procedures was axiomatized by Kalai and Samet (1985). They refer to these 
solutions as egalitarian, and it is shown there that the restriction of each egalitarian 
solution to games with sidepayments is a weighted Shapley value. 

In the next section we provide a probabilistic approach to the weighted Shapley 
values, one which generalizes the probabilistic formula of the (symmetric) Shapley 

value. 

3 Probabilistic Defini t ion o f  Weighted Shapley Values 

Let ~(S) denote the set of all orders R of players in the coalition S. For an order R 
in R(N) we denote by B R'i the set of players preceding i in the order R. For an 
ordered partition Z = ($1 . . . . .  Sin) of N, ~ is the set of orders for N in which all 



On Weighted Shapley Values 209 

the players of S i precede those of Si+l for i = 1, . . . ,  m - 1. Each R in ~ can be 
described as R = (R t . . . .  , R m) where R i E IR(Si) , i = 1,. . . ,  m. 

Let IS I = s and let k E Es+. We associate with ), a probability distribution Px 
over ~(S). For R = (il . . . . .  is) in ~(S), we define 

e x ( R )  = 11 
i=1 i 

Z Xik 
/ r  

One way to obtain this probability distribution is by arranging the players of S in an 
order, starting from the end, such that the probability of adding a player to the 

beginning of a partially created line is the ratio between his weight and the total 
weight of the players of S that are not yet in the line. 

With each weight system co = (~, Z) where ~ = (Sl . . . . .  Sin) we associate a prob- 
ability distribution P~ over ~ (N)  as follows. The distribution Pro vanishes outside 

m 

~ z ,  and for R = (RI, . . . ,Rm) in ~ ,  Pco(R) = H where ksi is the projec- 
tion of X onE si. i= 1 Pxsi(Ri)' 

For a given game v and order R in ~ (N)  the contribution of player i is G(v, R) = 
v(B R,i u { i ) ) -  v(BR'i). We prove now: 

Theorem 1: For each player i EN,  weight system 6o, and game v, 

(~,~)~(v) = e~,~ (G(v, ")) 

where the right hand side is the expected contribution of player i with respect to the 
probability distribution Pro. 

Proof." We say that i is last for S in the order R if i E S and S _C B g,i  U {i}. For a given 
order R and player i the coalition N~(B R'i W {i}) is called the tail o f i  in R. A coali- 
tion Tis said to be a tailforR if for some i, Tis a tail of  i in  R. 

Let r = (~, ($1, ..., Sin)) be a weight system and let S be a coalition. Denote k = 
max {1 IS n S i 4= 0} _and S = S n Sk. We show that for each i E S\S,  e~( i  is last for 
S) = 0, for each i ES,  P~(i  is last for S) > 0, and for each], i ES:  

P~(i  is last for S) X l 

eto(J is last for S) ~,/ 
(*) 
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Indeed, if i E S \ S  then in order to be last for S, i must be preceded by players from 
Sk which occurs with probability 0. Now suppose i , j  ES .  Let A = ( U St ) \S  then 
we have t t> k 

Pco(iislastforS) = E P ~ ( T i s a t a i l o f i )  
T C A  

= )2 P ~ ( T i s a t a i l o f i l T i s a t a i l ) P ~ ( T i s a t a i l )  
TC_A 

= ~, Xi(I/  Y-, Xr)Pto(Tisatail  ) 
TC_A r E ( N \ T ) n S  k 

= Xih where h is positive. 

Similarly, P~(]  is last for S) = Xlh and (*) follows. 

Now consider the game u s. The contribution of i ~ S is 0 in each order and thus 

Ep~o(Ci(u s ,  ") )=0 = (r The contribution of i E S  in the order R is 1 if i is 
last for S in R, and is 0 otherwise. If i E S \ S  then 

Epco(Ci(us, ")) = Pto(i is last for S) = 0 = (r 

If i, j E S, then 

Ep~(Ci(us,  .)) P~(i  is last for S) X i 

ee~(Ci(us, ")) e ~ ( j  is last for s)  x/ 

But 

Y_, Ee,o(q(us,  . ) )=E~ ,  ( r, 
i E N  i E N  

Ci(u s ,  ")) = Epr = 1. 

On the other hand, as we have shown: 

Y~ lrp~(q(us, "))= ~_ Fe~(G(us,  ")) 
i E N  i ~ 8  

and therefore for each i E 

gp~(G(us,  ")) = 
Xi 

Y.,_ kj 
iE8  

= O~)i(us) .  
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Clearly Ep~(Ci(v , -)) is a linear map from r to E and so is (r162 and therefore, 

since they coincide on the basis consisting of the unanimity games, they coincide 
on P. Q.E.D. 

4 An A x i o m a t i c  Charac te r i za t ion  o f  the  Weighted Shap ley  Values  

A solution for I ~ is a function ~ from F to E ~v. For a coalition S we denote by r 

the sum ~ ~i(v). A coalition S is said to be a coalition of  partners or a p-type 
iES 

coalition, in the game v, if for each T C S and each R C_ N\S,  v(R U T) = v(R). 

Consider now the following axioms imposed on ~. For all games v, w E P: 

1. Efficiency. ~(v)(N) = v(N) 

2. Additivity. O(v + w) = r + r 

3. Positivity. If v is monotonic (i.e., v(T) >>- v(S) for each T and S such that 

T _3 S) then ~(v) i> 0. 

4. Dummy Player. If  i is a dummy player in the game v (i.e., for each S, v(S tJ 
(i}) = v(S)) then r = 0. 

5. Partnership. If  S is a p-type coalition in v then r = r for 
each i E S. 

Axioms 1 - 4  are standard in various axiomatizations of  the Shapley value. In order to 

examine axiom 5 consider first the character of  a p-type coalition. A p-type coalition 

S in the game v behaves in a certain sense like one individual in the game v since all 

its subcoalitions are completely powerless. In this sense S behaves internally the same 

in V as in Us. One can expect therefore that S will take its share in the game v as one 
individual and then bargain over this share. This is the content of axiom 5. ~(v)(S)us 
is a unanimity game in which the members of  S bargain over ~v)(S) which is what 
they received together in ~(v). ~i(~(v)(S)us) is what i receives as a result of  this 
bargaining. This should be exactly what he received in v. 

Theorem 2: A solution ~ satisfies axioms 1 - 5  if and only if there exists a weight 
system co such that ~ is the weighted Shapley value ~ .  
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Proof" We first show that for w = (X, (S l, ..., Sin)), r  satisfies axioms 1 - 5 .  To prove 

efficiency we observe that for each v and R, ~ Ci(v, R) = v(N) and therefore 
i ~ N  

r = ~ (~)i(v)  = ~ Ep~(G(v ,  ")) =Ep~( ~ N C~(v, ) )  = v(N). 
i E N  i ~ N  " 

The additivity of  Ow follows from the additivity of  Ep w and C/. The positivity and 

the dummy player axioms follow also immediately. To check the partnership axiom 

assume that S is a p-type coalition in a game v. Observe first that since S is of  p-type 

a player i in S makes a nonzero contribution in an order R only if i is last for S in R. 

Now let k = max (]IS i N S =~ ~b} and let S = S c~ S k. For i E S \ S  the orders in which 

i is last for S have probability zero and therefore (r = O. For i E S we have: 

(r = Ee~(G(v, -)) 

= E Epw(C/(v, "))l T is a tail of  i)Pto(T is a tail of  i) 
T C_ N \ S  

But 

Epto(C/(v, ")lTis a tail o f i )  

is the same for every i E S since S is of  p-type. Moreover P~(T is a tail o f / )  is of  the 

form Xih(T ) where h(T) is the same for each i E S. 
Thus, there exists a constant K such that for every i E S, ( ~ ) i ( v )  = XiK which 

shows that Ow satisfies the partnership property. 
Now let ~ be a solution which satisfies axioms 1 -5  and we will show that for 

some weight system co, ~ = r We define first a weight system o3 = (X, ($1 . . . . .  Srn)) 

as follows. The coalition $1 contains all players i for which 4~i(UN) 4= O, (Sl :/= r be- 
cause of  the efficiency axiom). 3 We define Xi = r for each i E S  1 . Assuming that 

the coalitions S1, . .-,Sk are already defined then denote T=/V'k(S1 u ... u Sk) and 
let Sk+l contain all the players i for which (~i(Ur) ~e 0 and define Xi = ~i(ur) for all 
i E Sk § 1- (Sk + 1 is not  empty because of  the efficiency and dummy player axioms.) 

By the positivity axiom, X > 0 .  Now for i=  1 . . . . .  m we define Si=Sm_i+l and w = 

Qk, (S1, 82, ..., a m )  ). 

3 This is the only place where we use the efficiency axiom. Therefore we could use a much 
weaker axiom, namely that for each S, r 8) ~ O. It is easy to see that such an axiom plus axiom 5 
imply efficiency. 
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Next we show that ~b is homogeneous, i.e. ~ t v )  = t ~ v )  for each game v and scalar 

t. Since every game is the difference of two monotonic games it is enough, by the ad- 
ditivity axiom, to consider only monotonic games. Again by additivity, homogeneity 
follows for rational scalars. Let v be a monotonic game. Choose sequences of rationals 

{rk} and {sk} which converge to t from above and below, correspondingly. By the 
additivity and positivity axioms, r  ) - ~(tv)  = r k - t )v )  >~ 0 and similarly r  - 

r >10. But r ) - r  ) = (rk - sg)C(v) -~ 0 as k -+ ~ and therefore r -+ 

r and r  ) = rkr  ) -~ tr which proves the homogeneity of ~b. Since both r 

and ~w are linear maps on F, it suffices to show as we do next that ~ and ~r coincide 
on each unanimity game. 

For a unanimity game Us define k = max  (] IS ~ S! ~ r and let ,~ = S n S k. Let 
k 

T = U S i. The coalition S is of p-type in u r  (as each subset of T is) and by the 
j = l  

partnership axiom for each i E S 

~i (ur)  = ~ i (~ (ur ) (S )us )  = ~(uT-)(S)~i(us).  

By the definition of T the only members of T who have nonzero payoffs in UT are 
those of Sk, thus r  = Z_ h i > 0 and therefore 

j ~ s  

~i(ur) 
~(us)= Z_ h i 

It follows that for i E S, 

hi 
~i(Us) = F,_ hj 

and for i qSS, ~i(Us) = 0, i.e., r = (r Q.E.D. 

The family of all weighted Shapley values r for simple weight systems co, can also 
be characterized by slightly changing the positivity axiom. We replace now axiom 3 
by the following one. 

(3') Positivity. If v is monotonic and there are no dummy players in v then ~(v) > 0. 

Theorem 3: A solution ~ satisfies axioms 1,2, 3', 4, and 5 if and only if there exists 
a simple weight system ~ = (h, (N)) such that r = r 
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Proof." If co is a simple weight system then for each order R in N(N), Pro(R) > 0. If v 
satisfies the condition of axiom 3' then for each player i, Ci(v; ") >1 0 and for some 

R, Ci(v, R) > 0 which shows that 4ko(v) > 0. 

The proof of the other direction is along the same line of the proof of Theorem 2. 
The only difference is that became of axiom 3', r > 0 and therefore the partition 

built in the proof of Theorem 2 contains only N. 

In the next theorem we show that weighted Shapley values can be approximated 

by simple weighted Shapley values. 

Theorem 4." For each weight system co = Q,, (Sl . . . .  , Sin) ) there exists a sequence of 
simple weight systems co t =  CA t, (N)) such that for each game v, Ctot(v)-*(%o(v) 
when t ~ oo. 

Proof" Let O < e <  1 and define for each t, 1 <~l<~m and i E S  t, X~=et(m-t+l)Xi, 
and define cot = CAt, (N)). It is easy to see that for each S, ~wt(Us) -* 4)(Us) and since 

4ko and Owt are linear, O j ( v )  ~ O~o(v) for each v. Q.E.D. 

5 Dual i ty  

The dual game of a game v is denoted by v* and is defined by 

v*(S) = v(N) - v(N~S) for each S C_ N. 

The transformation v ~ v* is a one-to-one linear map from F onto itself. In particular 
u* the set ( S)SC_N is a basis for F. Observe that u ~ ( T ) = 0  for each Twith  T n s =  

r and u](T) = 1 if T n S :/: r We call the game u~ the representation game for the 
coalition S. The game u~ has a natural interpretation as a cost-game where u~(T) is 
the cost incurred by T. The presence of any number of members of S in T incurs a 

unit cost (compare Shapley 1981). For a weight system co = (X,(S1 . . . . .  Sin) ) we 

{us)sc_N as define a linear map * �9 * ~to. F ~ R  N by defining ~b* on the basis follows. 

For a given S denote k = max {] IS i n S :/: O} and let S = S n Sk. Then for i ES,  

(O~)t(us)  = :~. xj 

and (r  = 0 i f / ~ S .  
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An equivalent random order approach is defined for * Sto. For an order R we 
denote by R* the reverse order. For a given probability distribution P over R(N) 
we define P* by P*(R) = P(R*). We now have the following equivalence. 

Theorem 1 *: For each player i, weight system co and game v, 

( r  = E ~  ( G(v, .)). 

The proof is analogous to the proof of Theorem 1, where the notion " i  is last for S 
in R" is replaced by "i  is first for S in R"  which means S n B R,i = ~. The solutions 
~ and r  can be related in a simple way. 

Theorem 5: For each game v and weight system co, 

,L(v) = ,~(v*). 

Proof: Consider the game v = u~. Then v* = (u~)* = us, and by the definition of @o~ 
and $* ,  r  = r Now let v = Z asU~. Then 

S C N  

~ , * ( v ) =  :~ * * aSr = ~ aS$to(Us) = $~o( ~, asUs) =$~(v*).  Q.E.D. 
SC_N S C N  SC_N 

An axiomatic characterization of the family {r  is obtained by changing axiom 5. 

We say that a coalition S is of p*-type in the game v if for each R D S and T C S, 

v (R \T )  = v(R). Here again, as in the case of p-type coalitions, a p*-type coalition can 
be considered as one individual represented by several agants. But in the p*-type case 
any nonempty subcoalition of agents has the same effect on the cost as the coalition 
of all agents, while in the p-type case all the proper subcoalitions of agents are power- 
less. We call a coalition of a p*-type a coalition o f  representatives. Common to both 
p-type and p*-type coalitions is the fact that the inner coalitional structure of such 
coalitions is trivial. Axiom 5* is analogous to Axiom 5; it requires that i fS  is a p*-type 
coalition in the game v, then the cost shared by each one of its members can be 
computed by letting the players in S bargain over the splitting of the total cost shared 

by S in r Clearly by the nature of the p*-type coalition this bargaining is rep- 
resented by the game u~. 

Axiom 5*: I fS  is ofp*-type in v, then r = r for each i ES. 
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Theorem 2*: A solution r satisfies axioms 1,2, 3, 4, and 5* if and only if there exists 

a weight system ~ such that r -- Cw.* 
The proof is analogous to that of Theorem 2. 
One might expect that r  can be obtained from r by an appropriate transfor- 

mation of the weight system. To see that this is not the case we examine first simple 
weight systems. 

Theorem 6." Let iNI >~ 3. If ~ = (p, (N)) and 6o'= (h, (N)) are two simple weight 
systems and O*(v) = r for each game v then both h and/a are multiples of the 
vector (1, 1 . . . . .  1) and thus both r  and ~to' are the Shapley value. 

Proof.' Assume r162  * .  Then for any coalition {i,]}C_N, (r = 

(r But 

h i 
(e~,~,)i(u { u } )  - ;',t + h; 

and 

, , u1 (O~)Ku{u } ) = ( r  }) = ( r  + u(;} - u{,j}) = ~i +---~j" 

Therefore, for each i and ] in N 

hi ~j 

hi + hi #i + Pi 

from which we conclude that ki#  i = h~/.tj for each i, ] e  N.  It follows that there exists 

a positive number C for which h t = --  for each i e N. Consider now a coalition {i, 

], k}. We find that P~ 

(~,)~(u{~, j ,  k}) = ?',i + ;'v + xk C/~ + C/~j + C/~k (1) 

lai P k 

Pi#k + Pigi + I~f~t~ 
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Using the probabilistic definition of 4 "  we can compute 

. _ u k  ~ i  
( ~ ) i ( u ( i , i , k ) )  - (2)  

tai+ taj + la~ /ai +/~ i 

+ 
/.ti +/ai +/a k /ai +/ak 

Equating the two expressions (1) and (2), dividing by/li/h:, and multiplying by ~i + 
/aj +/a k we find that: 

1 i lai+lai+la k 
- -  + - -  = �9 ( 3 )  

1.1 i + 12 i Idi + 12 k ld/l.lk + Idil2 j + blild k 

We can obtain an equation similar to (3) for (4r and (4") i  applied to the game 
u(i,i,k). By symmetry the right hand side of this equation will be the same as in (3) 
and therefore equating the left hand sides we get: 

1 1 1 1 
- - + - - = - - +  

/~i +/~i /ai +/~k /~i +/ai /a i +/ak 

From that we conclude/a i =/~i and therefore k i = X i. Since this true for any i, ] EN, 
the proof is completed. Q.E.D. 

Corollary 1: For IN]/> 3, the only distribution which is common to the family of 
distributions (Pr and the family (P*~} where co ranges over all simple weight systems 
is Pr o where coo -- ((1, ..., 1), (N)). 

We can also obtain a characterization of the (symmetric) Shapley value, one which 
does not use the symmetry axiom. 

Theorem 7." For IN[ i> 3, a solution 4 satisfies axioms 1,2, 3', 4, 5, and 5* if and only 
if it is the Shapley value. 

For N = 2 there exists a transformation co ~ co* of simple weight systems such 
that r  = 4w*. Indeed, it is easy to see that if for co = (k, (iV)) we set co* = (k*, (N)) 
where ~,* =(~2,~1) then 4 "  =4to.- We state now the extension of Theorem 6 to 
general weight systems and omit the proof. 
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Theorem 8: If co = (la, (S l . . . . .  S in))  and co' = (~, (T 1 . . . .  , Tk) ) are weight systems for 
which ~* = ~ ,  then: 

( i )  m = k, 

(2) S i =  T m + l _ i f o r i  = l , . . . , m  

(3) If ISil > 3 then l~si and ~Tm+l - i  are proportional to (1, 1 . . . . .  1). 

(4) If ISil -- 2 then tasi is proportional to X~'m+l - r  

6 Other  Formulas  fo r  q~to and ~b* 

Owen (1972) has shown that r for co = (~, (N)) can be computed as an integral 

of the gradient of the multilinear extension over some path. We now generalize this 

result for general weight systems and develop an integration formula for r The 
multilinear extension for a game v is the function F v defined on the unit cube [0, 
1] n as follows: 

F v ( x  1 . . . . .  xn )  = ~ H x i H (1-x j )v (S) .  
S e N  i ~ s  jq~s 

The coordinate x i can be interpreted as the probability that player i will join the 

game to form a coalition and Fv (x l  . . . . .  x n )  is the expected payoff made. For a given 

co = (~, (S1 . . . .  , Sin)  ) define for i E S g  

k - 1  
0 if t ~ < - - ,  

m 

I (  , 1  m t -  i f ~ < t ~ < - - ,  
m m 

k 
if - -  ~<t 

m 

and 

Intuitively ~i(t) is the probability that player i will join the game until time t. One can 
prove that 

(Or176 = )o OFV ~(t) d~i(t--~)dt d t  
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just by checking the equality for v = us,  since the right hand side is linear in v (observe 

that Fus(x)  = II x i )  It is easy to see that if the players' arrival time is distributed 
t~ s  

according to the ~i's, then the probability that they arrive in a certain order R is 
Pc~(R). 

Now define F~* by 

F*(x l . . . . .  Xn) = v(N) - Fv(1 - x l . . . . .  1 - xn)  

It is easy to cheek that Fv*(x) = F * ( x )  Therefore 

l aF* dgt(t) 

( r  = (r = o y axi ~(t) dt  
R d t  

aF~*l aF~ d~ d~ 
Denote r~t(t ) = 1 - ~t(t) and observe that __ax-T [(~(t)) = __~x,x, I(n(t)) and d-7 = - d 7  

It follows that 

o d ?i(t) 
(q~*), (v) = f - -  - -  dt 

1 ~xi I(n(t)) dt  

rlt(t) can be interpreted as the probability that player i arrives after time t 

7 R e d u c t i o n  o f  p - t ype  and p * - t y p e  Coali t ions 

Part of the reasoning of the partnership axiom is that a coalition of partners can be 
treated in a certain sense as one individual. In this section we show how a p-type 
coalition can be practically defined as one player, thereby reducing the size of  the 
game. Let us fix a coalition S o with more than one player. Consider the set N which 
consists of all the players of N except that all the players in So are replaced by a single 
player denoted by s, i.e., N =(ArkSo) t3 {s). For any game v on N we define a game z~ 
on-N by ~(S )=v (S )  if s~-S  and ~ ( S ) = v ( ( S \ { s ) ) t d S o )  if s E S .  Let o3=(;L(S1, 
.... Sin)) be a weight system for N, and let k be the highest index for which Sk C~ 
So =/= 0. The weight system ff~ = (X, (Sl . . . . .  Sin) for .~ is defined as follows. For each 
i=/=s, )~t=)~i and Xs = Z )~t. For each]=/:k,  S j = S j \ S o  and S k = ( S k \ S o )  t3{S}. 
We can state now t ~ So 
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Theorem 9: If S O is a p-type coalition in v then for each i q: s, (r = ($w) i (v)  

a n d ( $ ~ ) s ( f )  = ~ (r  
i E S  o 

Similarly, if S o is a p*-type coalition then for each i ~ s, (~*)i(~) = (r 

and ( r  ~ (r  To prove this theorem we use the following lemmas. 
i E 8  o 

L e m m a l :  I f i i s  a dummy player in r a n d  v = ~ asU s then a s  = 0  for e a c h S  
which contains i. s _ N 

Proof.' By induction on the size of  S. For S = {i}, 0 = v({i}) = a(i}. Suppose we proved 

for all coalitions of  size k which contain i and let S be a coalition of  size k + 1 and 

such that i E S. Then 0 = v ( S ) -  v(S\{i})  = Y, a T -  ~ aT = ~ aT. But 
T C S  TC_S\i i E T C S  

for i E T C S, a T = 0 and therefore as  = 0. Q.E.D. 
r 

Lemma 2: Let S O be a p-type coalition in v and let v = 
SC_N 

each S which satisfies S n So 4= 0 and S n So 4= So. 

asU s then a s = 0 for 

Proof." For a coalition T and a game v denote by V T the restriction of  the game u to 

the coalition T. Sinve v ~ v T is a linear map from the space o f  games on N to the space 

of  games on T and since u~" = 0 i fS  r T it follows that 

v r =  X asu  r =  Y, a r s u s .  (*) 
S C N  SC_T 

Now if T satisfies T r3 S O 4= 0 and T r So 4= So then all the players of  T N So are 

dummies in the game v r .  In particular, we conclude by Lemma 1 and (*) that a r = 0. 

Q.E.D. 

Proof  o f  Theorem 9: It can be easily shown by Lemma 2 that if v = ~ asU s then 

f~ = ~_, a s a  s + Z, asa  s .  Therefore for i :/: s 
sq~S s~8  

(r = X - -  as + X a s  
~es  Z ~,j ~es  x 7,; 

i ~ S  j ~ S  

Z 
S e N \ S o  l ~ s  xi 

- -  a S + Y, ~ s  = (r )Av)  �9 
S 2 S o  I ~ s X i  
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For i = s 

~s i~S'O 
(r = ~ - - a S - -  ~ ~ a S  = ~, (r 

~ s  z ~i S~So Z s ~  i~So 
j ~ s  j 

Now if So is of p*-type in v, then So is of p-type in v*. To prove the second half of 
the theorem one has to observe only that (v--)* = v* and use the equality of Theorem 5. 

Q.E.D. 

The following corollary follows from Theorem 9. It is important for applications in 
which the players themselves are, or are representing, groups of individuals. Such is 
the case for example when the players are parties, cities, or management boards. 
The use of the symmetric Shapley value seems to be unjustified in certain cases of this 
type because the players represent constituencies of different sizes. A natural candi- 
date for a solution is the weighted Shapley value where the players are weighted by 
the size of the constituencies they stand for. The following corollary shows that such 
a procedure is justified in the two special cases described below. 

Corollary 2: Let v be a game on N (INI = n) in which each player i i sa  set of individ- 

uals M i with rn i members. Consider the set of individuals N = LI M i and the games 
vt and v2 defined on/V as follows. For each S C 3I, i ~ n 

vt(S)  = v((iIMi c S)) 

v2(S) = v({iIMi n S =/= 0}). 

Let w be the simple weight system ((rn 1 . . . . .  mn), (N)). Then for each i 

( * ~ ) t ( O  = , (v~) (Mi)  

and 

(~*)i(v) = ~(vD (Mi) 

where ~ is the symmetric Shapley value. 
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