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VECTOR MEASURES ARE OPEN MAPS* 

DOV SAMET 

Northwestern University 

Nonatomic vector measures are shown to be open maps from the a-field on which they are 
defined to their range, where the a-field is equipped with the pseudometric of the symmetric 
difference with respect to a given scalar measure. 

The main result we will prove is the following: 

MAIN THEOREM. Let X, i'l, . . ', Mn be nonatomic, a-additive, finite measures on a 
measurable space (I, :), and let X be a nonnegative measure. Then the vector measure 
Mt = (!,uI, . . . , n) is an open map from 2 to the range of M, where 2 is equipped with the 

topology induced by the pseudometric dx defined by dX(S, T) = X[(S\ T) U (T\S)], and 
the range of t is equipped with its relative topology in R . 

Tauman has shown [2, Lemma 2] that when / is a nonatomic nonnegative finite 
vector measure then for each x in the range of / there exists an S with u(S) = x such 
that each neighborhood of S (with respect to d, ) is mapped by b[ to a neighborhood of 
x. The Main Theorem strengthens this result mainly by showing that every S with 
Mi(S) = x has the same property. This stronger result is used in [3]. 

Let us introduce the following notations. For S in 2 we denote by S the complemen- 
tary set I\ S. The symmetric difference of S and T, (S\ T) U (T\S) is denoted by 
SAT. The Euclidean norm in R" is denoted by 11 11, and the scalar product of ~ and x 
in R" is denoted by <(, x>. By the relative boundary of a closed set K in R" we mean 
the set of all points in K which are not in the relative interior of K. The face of a 
convex closed set K in the direction / is the set 

F(Q) = ( x Ex K, <(,x> = max<, y>). 

We say that a closed set K in R" is strictly convex if all the points on the relative 
boundary of K are extreme, or alternatively if for each EC Rn, F(s) is either K or a 
singleton. For a scalar measure X, we denote by IXI the sum of the positive and the 
negative parts of X. For a vector measure M = (Mi . . . , ln), I j|I is the sum En7= I Jl- 
For each S we define R(M,S)= {t(T)I T C S}. Clearly R(t,S)+ R(M,S)= 
R (f, I). By Lyapunov Theorem [1], R ( ,S) is a convex and compact set. 

A convenient way to describe R(It, I) is as follows. Let f be the Radon-Nikodym 
derivative of Mi with respect to I LI and let f= (fl, . . . f,, fn). Then M(S) = fsfdI M1 and 
for ~ E R , <(, M(S)> = fs <, f>dl M1. Obviously M(S) is in the face of R(t,uI) in the 
direction ~, if and only if ft I <, f(t)> > 0) C S C { t <l, f(t)> > 0}) almost everywhere 
with respect to I. It follows then that R(M, I) is strictly convex if and only if the set 

t I <( f(t)> = 0) is of I| -measure zero for all supporting hyperplanes ~ of R( t, I) 
which do not contain R(,M,I), or alternatively if for each subspace V of Rn of 
dimension smaller than that of R( M, I), the set {t If(t) E V} is of ] tl-measure zero. 
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We can prove now: 

LEMMA 1. There is a decomposition R ( , I) = >iR( ,Si) such that U iSi is a 
partition of I and R( (a, Si) is strictly convex for each i. 

PROOF. The decomposition is built in n stages. In the stages 1, . . . k - 1 a family 
of disjoint sets S/, 1 < j < k - 1, 1 < i < i is defined (i is possibly oc or 0) such that 
R( t, S/) is strictly convex and of dimension j. Moreover, for each k - 1 dimensional 
subspace of R , V, the set {t t E I\U ,S/, f(t) E V) is of I Ml-measure zero. In the 
kth stage we define the sets Sik, 1 < i < ik which are all the subsets of I\U j S/ of the 
form ft If(t) E V} which have positive I L -measure, where V is a k-dimensional 
subspace of R". The disjointness of the sets Sk can be guaranteed since the intersec- 
tion of each such two sets is a set of t's for which f(t) belongs to a subspace of 
dimension less than k. The strict convexity of R (, ,S1k) follows similarly. Q.E.D. 

Let us call a vector measure M = (ti, . , Man) monotonic if each ti (1 < i < n) is 
either nonnegative or nonpositive. We will show now that it suffices to prove the Main 
Theorem for monotonic Mu with strictly convex range R( t, I). Indeed, there is a 
partition I = IU2n IIi such that the restriction of # to each Ii is monotonic. We can 
decompose, furthermore, each Ii according to Lemma 1 to get eventually a partition 
I = U iSi and a decomposition R(Mi, I) = i R(i,S,i) such that for each i?, / is 
monotonic on Si and R(M, Si) is strictly convex. For e > 0 and S E 2 denote 

2i(S,( )={ T T C Si, d,x(T,S n Si)< } and &(S,E )= U { I Ti TE i(S,e)}. 

It is easy to verify that the family of sets S2(S, ) where S ranges over Z and e ranges 
over the positive reals is a basis to the topology induced by dx on E. Moreover 
It(a(S,E)) = .i M(Qi(S, e)). But M(Qi(S, e)) C R( , S,) and R( t, Si) is strictly convex 
and the restriction of Mt to Si is monotonic. Therefore by proving the Main Theorem 
for monotonic Aj with strictly convex range we prove that t(it(S, e)) is relatively open 
in R( /j,Si) which says that Mt(Q(S, E)) is relatively open in R( ti, I). 

We assume now that It is monotonic and that R( I, I) is strictly convex. We start by 
proving the following lemma. 

LEMMA 2. If xo = AI(So) then for each 1 < i < n and c > 0 the set { Mu(S) I dl l(S, So) 
< e} contains a set {x I x E R(,I), ),x - xoll < 8) for some 8 > 0. 

We first prove the lemma in the case that x0 is in the relative interior of R (A, I), 
using Lemma 3. 

LEMMA 3. If Xo = t(So) is in the relative interior of R ( t, I), then the intersection of 
the relative interiors of R ( I, So) and R ( t, So) is not empty. 

PROOF OF LEMMA 3. Indeed, if this intersection is empty then there exists a 
hyperplane which separates the two sets and for at least one of them, say R(iti,So), 
contains only points from its relative boundary. Since 0 C R( , So) n R (, ,So) we 
conclude that there exists ~ E R" such that <(, x> 0 for x E R(M , So) and <K,x> < 0 
for x E R ( i, So) and moreover for some x in the relative interior of R( u,, So), 
<(,x> > 0. Now let S E 2 and denote S, = S n SO, S2 = S n SO. We have: 

<, (S2)> < 0o < <, (So\S)>= <, (So)>- <, (S)> 

and therefore, 
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This inequality holds for each S in 2 and, moreover, for some S the inequality is strict 
which shows that /i(So) is in the relative boundary of R( u,I), contrary to our 
assumption. Q.E.D. 

PROOF OF LEMMA 2. Assume first that xo is in the relative interior of R( u,I). Let 
Eo, E1 and E2 be the linear spaces spanned by R(,u,I), R(/L,So) and R(/L,So), 
respectively, and denote by Bo, B1 and B2 the intersection of the unit ball in R" with 
Eo, E1 and E2, respectively. Since 0 E R (, So) n R (,So), we find, using Lemma 3, a 
point w which belongs to the relative interiors of both R ( , So) and R (/, So) and for 
which llwll < E/4. Choose now 0< <q < e/4 such that w + 7qB1 C R(t,So) and w + 

iqB2 C R( /i, So). Clearly Eo = E1 + E2 and therefore we can choose 0 < 8 < E/4 such 
that Bo C_ 7(B2 + B1) = i(B2 - B1). Now let x e R(,L,I) with Ilx - xoll < 8 and 
denote z = x - xo. Since z E ?Bo there exist zI, E qB1 and z2 E qrB2 such that z = Z2 - 

zl. There exist also S C_ So, S2 C SO such that I/(Sl) = w + z, and 0(S2) = w + z2. 
Define S = (So\Si) U S2. We have 

A(S) 
= 

A(So)- (S1) + (S2) =x-Z1 + Z2 = X0 + Z = X, 

and using the monotonicity of ,i, 

dl l(S, So) < 11 (SAS0o)ll = II (Si) + [(S2)11 = 112w + z, + z211 < 2 E + 2q < E. 

We continue now to prove Lemma 2 for x0 on the relative boundary of R([,I). 
Consider a sequence x, = /i(S,) such that x, -> xo. We will show that (S,, ASo)- ->0 
which is more than we need to complete the proof of Lemma 3. Let T", = Sn n So and 
T7 = S,, n S. Since the sequences /s(T,) and tt(T') belong to the compact sets 
R( p, So) and R( t, 5o) we can assume without loss of generality that u(T,)-> t( T') and 

(T,')--->u(T") where T' C So and T" C So. It follows that i(T' U T") = tt(So) and 
since R( IL, I) is strictly convex T' = So and T" = 0 almost everywhere with respect to 
/A, which shows that t(S,,ASo) = ,i(So) - u(T') + t(T,')->O. Q.E.D. 

To complete the proof of the Main Theorem we have to show that dA can replace 

dlI in Lemma 2. There is a partition I = SI U S2 of I such that the restriction of X to 

S, is continuous with respect to I and I l(S2) = 0. Define Q2,(S, ) = ( T T |C Si, 
dX(T,S) < c}, i = 1,2, and 2(S,E) = {T1 U T21 Ti E 2i,(S,E), i = 1,2}. Clearly /(22(S, 
e)) = 0. But 521(S, e) is open in the topology induced by dli l on the a-field {T\ T T E 2, 
T C SI} and therefore by Lemma 2 j2((S, c)) = /(21(S, )) is relatively open in 
R(/t,S1) = R(t,I). Q.E.D. 

Although in general the projection of a convex compact set is not necessarily an 
open map, it is open when the set is the range of a vector measure as follows easily 
from the Main Theorem. 

COROLLARY. Let !u = (1, . . . In,+ ) be a nonatomic, a-additive, finite vector mea- 
sure. Then the projection 7T of the range of !t on its first n coordinates is an open map onto 
the range of ( , . . . , n). 

PROOF. Denote / = (Pl, . . ., j). Clearly 77tt = / and X = a/-1. The result follows 
since by the Main Theorem u is an open map with respect to dl,I and because I/ is 
continuous with respect to dl^,l. Q.E.D. 

The Main Theorem can be stated in terms of the integral of a set valued function as 
follows. Let X and v be nonatomic, positive and finite scalar measures. For a set valued 
function F: I -> R let us denote by J~ the set of all v-integrable functions 4: I -> R 
such that 4(t)E F(t) for each t, and let fJY = {J'fdv I\e Y i- }. If f: I- R" is a 
v-integrable function and F(t) = {0, f(t)}, then fY is the range of the vector measure 
whose Radon-Nikodym derivative with respect to v is f. By the Main Theorem we 
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conclude that the map ) -J f4) for 4E JY is open when 5Y is equipped with the norm 
topology of L'(X). This formulation raises the natural question: how general the set 
valued function F can be, such that the map 4) - fo4 is still open. 

Acknowledgment. The author acknowledges Zvi Artstein for a helpful discussion. 
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