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U n a n i m i t y  G a m e s  and  Pare to  O p t i m a l i t y  1 ) 

By E. KalaL and D. Samet, Evanston 2) 

Abstract: A central question in group decision theory is the existence of a simple mechanism that 
necessarily leads to Pareto optimal outcomes despite noncooperative behavior of the participants. 
It is shown that the multistage unanimity game is such a mechanism if we assume that the non- 
cooperative players end at an equilibria which is symmetric and persistent. 

1. Introduction and Summary of Results 

A group of players make one choice from a set of feasible states. This situation 
occurs frequently in real life and is addressed by economic theorists game theorists 
and political scientists. 

When the participants try to deal with the situation individually and selfishly, 
without the aid of some social mechanism or an arbitrator, inefficient outcomes often 
result. One observes this type of phenomena in strikes, wars, excessive competition 
between individuals and free rider type of situations. The classical game theoretic 
example is the prisoners' dilemma game where the only equilibrium that may be 
chosen noncooperatively by the group is inefficient. 

When the situation is repetitive and is analyzed as an infinitely repeated game, the 
problem becomes less severe [see Aumann].  One observes new equilibrium outcomes 
which are group efficient, but there are still many ~efficient ones. 

Purely cooperative game theory assumes that a group efficient outcome would, or 
should, result in such situations. This assumption is motivated by the observation that 
in real life binding agreements and contracts can be signed by players. However, the 
process describing how the group of players reaches this final agreement has not been 
explicitly studied. Clearly, any such process must give rise to a noncooperative game 
in which every player wishes to maximize his utility from the final outcome. Given 
that such a game is played, it is not clear that a group efficient outcome would 
necessarily result. 
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In this paper we study a noncooperative process called a unanimity game. The 
outcomes of this game are binding contracts that the players commit to. We show that 
under certain individual behavioral assumptions, group efficient outcomes would 
necessarily result. 

The environment we deal with is described as follows. There is a finite group of 
n (n > O)players denoted by N = ~1, 2 , . . . ,  n). There is a finite nonempty set of  
states, C. There is one distinct state, denoted by d, in C which is referred to as the 
status quo state. Our motivating intuition is that the group attempts to agree (sign a 
binding contract) on transforming into one of the states in C. I f  no such agreement 
is reached, then they would continue in the state d. Thus, d may be thought of as the 
state "procedure failed". 

Examples of such environments are numerous. In an economic context, one may 
view each state as a full description of the variables of the economy, such as trades 
and production allocations. The status quo state is the current state of the economy. 
The efficient outcomes that our procedure yield are the Pareto optimal states. 

In a social choice context, our procedure may be viewed as one implementing the 
unanimity social welfare function [see Sen]. Here, the states may describe possible 
candidates to occupy an office or possible social preferences. The status quo is the 
prevailing state. Our procedure will end up with a state which is maximal with respect 
to the unanimity social welfare function. 

In using our procedure to overcome lack of efficiency exhibited by noncooperative 
games, we assume that each state is a choice of a joint correlated strategy of the n- 
players. The status quo state stands for "play the noncooperative game without the 
use of the procedure". 

We assume that every player i ~ N has a Von-Neumann Morgenstern utility func- 
tion u i : C ~ R and we denote by u the vector of the utility functions. Without loss 

of generality, we assume that every u i has been normalized so that u (d) = 0. We 

also assume that there exists at least one uniformly positive state, i.e., there is a state 
c E C such that for every player i E N ,  u i (c) > 0. We say that a utility allocation vec- 

tor w = (wl, w2 . . . . .  Wn) is strongly individually rational if w > 0 (i.e., if 

w i > 0 for i = 1, 2 . . . . .  n). We say that w is weakly Pareto optimal if  there is no 

state c E Cwith u (c) = (u I (c), u 2 ( c ) , . . . ,  u n (c)) > w .  

Our unanimity game is described as follows. There is a normegative integer T which 
describes the number o f  attempts the group makes in order to reach unanimity. This 
number is exogenously given and is publicly known to the players prior to the 
beginning of the game. We define the extensive form of the unanimity game induc- 
tively on T as follows. 

I f  T = 0, the game has no moves by any of the players and the outcome is the 
status quo-state d. For T >  0, the following game is played. In the first attempt, 
simultaneously, every player i E N  chooses a state c i E C. These choices are publicly 

announced. If  all the ci's coincide, i.e., c i = c i for every two players i and], then we 

say that an agreement was reached. This agreed upon state is then the outcome of the 
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game. However, if no agreement was reached in this first attempt, then the players 
proceed to play the T -  1 attempts unanimity game. 

The one attempt Unanimity game (T = 1) has been studied before in the game 
theory literature [see Harsanyi]. These games have the nice mathematical structure 
that in the normal matrix description of the game all the off the diagonal" entries 
of the matrix are zero. It turns out that every uniformly positive "on the diagonal" 
entry in this game is a Nash equilibrium. However, it turns out that there are also 
(mixed and not mixed) equilibrium strategies resulting in off the diagonal zero 
payoffs. 

When studying the behavior according to more sophisticated equilibrium notions 
(Selten's [ 1975] perfect equilibrium, Myerson's [1978] proper equilibrium and hence 
also Kreps/tVilson's [ 1980] sequential equilibria) this phenomenon still occurs. That is, 
while there may be uniformly positive diagonal entries in the game, according to these 
equilibrium notions, the players may end up with a zero gain. 

The notion of persistent equilibrium [see Kalai/Samet] is different. It was shown 
to pick only the uniformly positive diagonal entries as persistent equilibria. In this 
paper we study the persistent equilibrium of the T-attempts unanimity games where 
T>~I. 

We show that if the number of attempts is sufficiently large (for example if 
T i> I C I) then the outcome resulting from every persistent equilibrium is weakly 
Pareto optimal (provided that it satisfies some symmetry condition). We show also 
the converse, that every state which is weakly Pareto optimal and strongly individually 
rational (relative to the status quo state) is a possible outcome of some persistent 
equilibrium. Thus, the unanimity games proposed here may serve as a mechanism 
to reach Pareto optimality without distinguishing among the Pareto optimal outcomes. 

In the next two sections, we give a formal description of the results discussed above 
and their proofs. This includes a formal definition of persistent equilibrium for exen- 
sive form games and some of its properties. 

2. Formal Description of the Unanimity Game 

For a given N, C, and T, as described in the previous section, we let U(T) denote 
the T attempts unanimity game described there. We first proceed to develop the formal 
notations for the description of the strategies in T. 

We call an n-tuple of states 3, = (3"1,3"2,. �9 �9 3"n ) a proposal (combination). I fa  
proposal 3' is of the form 3' = (c, c, . . . .  c) then we call it an agreement on c. We 
denote such an agreement by c n; otherwise we call it a disagreement proposal. For a 
positive integer l a history o f  length l is defined to be an lotuple h = (3,1 , 3 '2 . . . .  ,7/)  
where every 7 t is a disagreement proposal. We denote the set of all histories of length 
l by H l. t l  0 is defined to be {0} where 0 is def'med to be the only history o f lenght  

T-1 
zero. The set of all histories in U (7) is defined by H = H (7) = U H l. For every 

l--0 
history h E H w e  define l (h) to be its length. 
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We let A (C) be the set of probability distributions over C. Thus a E A (C) means 
that 0 ~< o (c) ~< 1 for every c E C, and Z o (c) = 1. With some abuse of notations 

cEC 

we sometimes let c stand for the probability distribution on C which puts its entire 
mass on c. In the next two paragraphs we describe the strategies and payoff structure 
of the game. 

Strategies: An (individual) strategy o f  a player i at h in U (7') is a point in A (C). A 
strategy of i is a function s i: H ~ A (C). Thus at every history the player has to decide 
how to randomize over the states that he may submit for the next proposal. This is 
what would be considered a behavioral strategy in the usual theory of extensive form 
games. A strategy combination is a vector s = (sl,  s2 . . . .  , Sn) consisting o fn  
individual strategies. 

Utilities: It was assumed in the previous section that every player i has a utility func- 
tion u i: C -~ R .  The utility of a player for a lottery in A (C) is computed in the usual 
way. To extend the utility definitions to the entire game we first define the probabil- 
ity p (h, s) induced on history h by a given strategy combination s. If h is the history 
of length 0 then p (0, s) = 1, that is, the game will start with probability 1. Now we 
assume for induction on the length of histories that for all histories of length 
t, p (h, s) has been defined. Let h' = (h, 3, t+l) (the first t components o fh '  are those 
ofh  and the last one is ,yt+l) be a history of length t + 1. We define 

p (h', s) = p  (h) fI si (h) (7t+1). 
i=1 

Thus,p (h', s) is the probability of arriving at h times the product of the probabilities 
assigned by the players to their corresponding parts in the proposal .yt+l at the 
history h. 

Now we define p (c, s), the probability that a state c be the outcome of the 
unanimity game for a given strategy combination s: 

n 

p (c, s) = ~, p (h, s) II s i (h) (c). 
hEH i=1 

It is now easy to extend the utility functions u i from A (C) to the space of strategy 
combinations in U (T): 

u i (s) = ~ p (c, s) u~ (c). 
c ~ C  

3. Equilibrium Analysis 

We say that a strategy combination s = (sa, s2, �9 �9 s n) is aNash equilibrium if 
for every player i and for every individual strategy of player i, ~., we have 

U i (S) >/U i (Sl . . . .  ' Si- l '  $i' Si+l . . . . .  Sn)" 

When this inequality holds we also say that s i is a best reply of player i to s. 
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In what follows we would also need a notion of local best reply, that is, a best 
reply after a history h has been observed and assuming that the game will proceed 
according to a specified strategy combination s. For a player i, an individual strategy 
s i , history h, and cr E A (6) we define (s i I h, a) by 

(s i l h, a) (h) = a and for every h ~ h and (s i I h, a) (h) = si (/7). 

Thus the strategy (s i [ h, a) is the same as s i except that after the history h player i 
plays a .  

The best reply set o f  player i to s at h is defined now by 

BR i (h, s) = argmax u i ( S l , . . . ,  si.1, (s i [ h, a), si+ 1 . . . . .  Sn). 
O 

We proceed now to defme the notion of a persistent strategy in the T-attempts un- 
animity game. We use for this purpose the definition given by Kalai and Samet of 
persistency for games in normal form and we apply it to the agent normal form of 
the game. (This development is analogous to the definition of perfect equilibrium 
[Selten] of a tree game as the perfect equilibrium of the normal agent form of the 
tree.) 

An (individual) retract of player i's strategies is a correspondence R i: H ~ A (6) 
with nonempty convex and closed values. We say that s i E R  i if  s i (h) E R  i (It) for 

every h E/-/. R = (R ~, R 2 . . . . .  R n) is a retract combination if  it consists of n 
individual retracts. A strategy combination s belongs to the retract combination 
R if for every player i, s i E R i. A neighborhood 0 o f  a retract combination R is an 

open valued correspondence O: H ~ ~ A (C) withR (h) _C O (h) for every h EH. 
A retract R is absorbing if it has a neighborhood O with the following property. 

For every strategy s E O (i.e., s (h) E O (h) for every h EH)  every history h and 
every player i there is a a E R  i (h) such that o E B R  i (h, s). That is, the agent of 
player i playing at history h can fmd a best reply to s within R i (h). 

For two individual retracts Ri and T i we say that R i C T i i f  R i (h) C_ T i (tl) for 

every history h, given two retract combinations R and Twe say thatR _C T if 
R i C_ T i for every player i. 

A retract is called persistent if it is a minimal absorbing retract, i.e., it does not 
properly contain another absorbing retract. A strategy combination s is persistent 
if it belongs to some persistent retract. 

In the unanimity game U (T) after every history h the remaining game is a new 
unamity game U ( T -  l (h)). The proof of our main theorem involves considerations 
of what are the equilibria of every such subgame. Given a strategy s in U (T) and a 
history h E H ( T )  we define s ~, the strategy combination induced by s on the subgame 
starting at h, U ( T - -  l (h)), as follows. For every h'  E H ( T -  l (h)) 

s h (h ' )  = s (h, h ' ) .  

((h, h') is the vector whose first l components are those o fh  and others are those of 
h'). 
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We say that a strategy combination s is subgame symmetric if for any two histories, 

h and h of the same length l, s h (h')  = s ~ (h')  for every history h' E H (T - / ) .  Thus 

a subgame symmetric strategy induces the same strategies on every two identical 
subgames. 

We also define the restriction of retracts to subgames. Given a retract combination 
R and a history h we define the retract combinat ion induced b y  R on the  subgame 
starting at h, U ( T -  l (h))  as follows. 

For every h'  ~ H  ( T - I  (h)) 

R h (h') =1~ (h, h'). 

Our first theorem relates persistent retracts to the retracts they induce on the subgames 
of U (7). 

Theorem 1: Subgame Persistency: Let  R be a persistent retract in U (7) and let h be a 
history in H (7). Then R h is a persistent retract in U (T- -  l (h)). 

Proof:  First we show that R h is absorbing. Let O be a neighborhood absorbed by R. 
�9 , , �9 h , �9 We will show that O h (h)  (= O (h, h )) is absorbed by R . Let s be a strategy comhi- 

nation in O h . Choose a strategy s in O such that s h = s' and p (h, s) > 0. Since R is 
absorbing, for every h' E H ( T -  l (h)), each player i has a best response s i to s at 
(h' h'), which belongs to R i (h, h ' )  = R~ (h').  Since p (h, s) > 0, s~/is a best response 
to s' (= sh)  at h '. 

Next we show that R h is minimal. If not then there exists a retract R'  _C R h which 
is absorbing in U ( T -  l (h)). Define the retract R in U (7) as follows. For each 

h'  = (h, h"),  k (h')  = R '  (h')  and R (h ') = R (h')  for all other h'. It is easy to see that 

/~ is absorbing in U (7) which contradicts the minimality ofR.  Q.E.D. 

The next lemma is needed in order to study the structure of certain persistent 
retracts in U (7). We say that two states, cl  and c2 are equivalent f o r  player  i at  the  
history h if for each strategy combination s = (sl . . . . .  S n). 

u i ( s l , . . . , ( s  i I h, c l ) , . . . , s  n)  = u  i ( s l  . . . .  , ( s  i [h, c2)  . . . .  ,Sn).  

L e m m a  1 : For each history h in H (7) with l (h) < T -  1, no player i has two distinct 
equivalent states at h. 

Proof:  Let  cl  and c2 be two distinct states and let c be a state such that 
u i (c) r u i ( c l ) .  (Either u i (cl)  r 0 and then choose c = d or u i (cl)  = 0, then choose 

c to be a uniformly positive state.) Let  s = (s~ . . . . .  Sn) be a strategy combination 

such thatp (h, s) = 1 and such that for each playerL s i (h) = cl  and s] (h, 7)  = c 

where 7 is the proposal in which every player] r i propose c, and i proposes c2. 
Obviously u i (s) = u i (cl  ) but u i (Sl . . . .  , (s i I h, c2 ), . . . , s n)  = u i (c). Q.E.D. 

From Lemma i we conclude 
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Lemma 2: I fR  = (Ri, �9 �9 �9 , R  n) is a persistent retract in U(T),then for each player i 

and each history h E H  (T), R i (h) = A (C) for a subset C of C, i.e., R i (h) is the set 

of all probability distributions over a certain subset of states C 

Proof: Observe tha tR i (h) is the retract of  the agent of player i at h (in the agent 
normal form of U (T)). Notice also that for each history h of length T and each player 
i, there are no two distinct equivalent states ci and c: for player i among his un- 
dominated strategies. The lemma follows then by Lemma 1 and Corollary 2 in Kalai/ 
Samet [1983]. Q.E.D. 

The structure of persistent retracts for the game U (1) is very simple as was shown 
in Kalai/Samet [ 1983]. A retract in this game is persistent if it is a singleton which 
contains an agreement on a uniformly positive state. A similar simplicity can be found 
in a certain type of persistant retracts in U (7'). 

Lemma 3: Let R = (R1 . . . .  , Rn)  be a persistent retract which contains a subgame 

symmetric strategy. If Tis sufficiently large, then there exists 0 ~< to < T and states 

Cto . . . .  , CT. 1 such that 

(i) for each player i and history h of length t (to ~< t < T), 

R i (It) = (ct). 

(ii) u (Cto) > u (cto + 1) >" "" > u (CT_ 1) > 0 (greater than in every coordinate). 

Cfii) Cto is not strongly dominated by any state, i.e., there is no state c with 

u (c) > u (%). 

Proof: We prove the lemma by showing first that to = T -  1 satisfies (i) and (ii) and 
by showing next that if a certain t~ satisfies (i) and (ii) and not Off) then to = t~ - 1 
also satisfies (i) and (fi). Observe first that for each history h of length T -  1, 
R h (0) ( = R  (h)) is a persistent retract in U(1). It follows then by Theorem 6 of 
Kalai/Samet [ 1983] that for each such history R (h) is an agreement on a uniformly 
positive state. Since R contains a subgame symmetric strategy if follows that there 
exists a positive state CT.lSUCh thatR (h) = (CT.1) for each history of length T -  1. 

Now assume that (i) and (i_i) hold for to = t '  and that there exists a state c with 
u (c) > u (ct,). Let us fix a history h = ('ri . . . .  , Tt,.1), and consider the retract 

R h (for the game U ( T - -  t' + 1)) which by Theorem 1 is persistent. We first show 
that R h (0) (= R (h)) contains an agreement on a state which strongly dominates 
ct,. Assume the contrary that R h (0) does not include such an agreement and let c 

be a state with u (c) > u (ct,). We contradict the assumption by showing c n E R  h (0) 

(c n = (c, c . . . . .  c)). Now by/_,emma 2, for each player i, R/h (0) contains a point 

from C (i.e., an extreme point of A (C)). We examine two cases. 
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(i) First Case: R h (0) = {(0) n } for some ~ ~ C (i.e., there is no disagreement at 0). 
By the negation assumption there exists a player i for which u i (~) <<. u i (ct,). 

Consider a strategy s close to R h in which at history 0 each player proposes 
with probability 1 -- e and c with probability e. Also at every history of 

length 1, s i (h) = ct,. By responding to s at 0 with c, player i gets 

e n ' l  u i (c) + (1 -- e n ' l )  u i (ct,), which is more than u i (ct,). By responding with 

any other proposal i gets no more than u i (ct,). Therefore R h (0) should contain 

also c which shows that the first case is impossible. 

(ii) Second Case: A disagreement ~ = (c I . . . . .  c n)  belongs to R h (0). We consider 
the case in which there are more than two players (n > 2). In "/each player, 
except perhaps one player, io, faces a group ofn  - 1 players which do not 
agree among themselves on one state. Consider now a strategy s close to R h (0) 
in which at history 0 each player i proposes c in probability e and c i in 
probability 1 - e. For each i g= io the best response to s at 0 is c and therefore 

c ER/h (0). Clearly also c ER/h ~ (0) since c is the best response for i0 at h when 

the rest of the players propose c at 0. Therefore c n E R  h (0). The case ofn  = 2 
is similarly proved. 

We have shown that for the persistant retract R h, e n ER h (0) for some state c which 
strongly dominates c t. We now show that by deleting fromR h (0) everything but c n 

we are left with an absorbing retract which, by the persistency o f R  h proves that 
R (h) = {cn }. 

Define a retract/} by/} (h') = R h (h')  for each h'  ~ 0 and/} (0) = {c n }. We show 

that/} is an absorbing retract. Since by Theorem 1, R h is absorbing it is sufficient to 

show that for a certain neighborhood O of/}, c is the best response at 0 to each 
strategy in O for each player. The expected payoff o f i  is: 

P (c is agreed upon at 0) u i (c) + e 

where e is the expected payoff if there was no agreement on c at 0. When a strategy 

g is close to/} g (0) is close to c n and therefore the probability of reaching an 
agreement on c at 0 is high while e is small. By responding to g at 0 with e, player 
i gets payoffs close to u i (c). If i is responding to g at 0 by ~ :~ c then his expected 
payoff is 

p (~ is agreed upon at 0) u i (~) + ~ p (h',  s") u i (~h'). 
{h':l(h')--1) 

Here the summation ranges over all histories h' of length 1. Agreement on ~ is not 
very likely at 0 when ~ is played. On the other hand, w (h ~) is close to 

/} (h3  = c n h ' =  { t,} for each (~/) and thus u i (fh ') is close to u i (ct,). It follows that 

by responding to ~ at 0 with ~, i's payoff is close to u i (ct,). Since u i (c) > u i (ct,) 

it follows that i's best response to ~ at 0 is c. 
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We have proved now that for each history h of length t '  - i, R (h) is a singleton 
which contains an agreement on a state c which strongly dominates ct, .  Because R 
contains a subgame symmetric strategy this state c should be the same for all such 
histories which finishes the proof. Q.E.D. 

We are now ready to prove the main theorem. 

Theorem 2: If T is sufficiently large (the cardinality of C suffices) then for every 
subgame symmetric Nash equilibrium of U (7) which is persistent, u (s) is strongly 
individual rational and is weakly pareto optimal. 

Proof:  By Lemma 3 there exists to and weakly pareto optimal state Co such that 

u (s h)  = u (co) for each history of length to. It suffices therefore to prove that 

u (s) >~ u (s h)  for each history h. Indeed, if for some history h, and player 

i, u i (s) < u i (sh),  then there exists a state c for which u i (c) > u i (s). Define now 

the strategy g= (sl . . . .  , s n)  such that ~ = sj for each player] 4: i and s t (h') = c when 

l (h ' )  < l (h)  and si (h ' )  = s i (h ' )  otherwise. If  the game with g is over in no more 

than l (h) steps then c is agreed with u i (c) = u i (s') > u i (s). Otherwise the game is 

over after more than l (h) steps and u i (s') = ~ P (~, h ') u i (s h ' )  where the summation 

is over all h'  with l (h') = l (h). But since s in symmetric u i (s') = u i (s h)  > u i (s). It 

follows that by playing si player i improves upon his payoff in contradiction to s 
being a Nash equilibrium. Q.E.D. 

Theorem 3: Let Tbe  a positive integer. I fc  is strongly individually rational and weakly 
Pareto optimal then there is a persistent subgame symmetric Nash equilibrium s in 
U (7) whose outcome is c (i.e., p (c, s) = 1.) 

Proof:  Let  s be the constant strategy c n, s i (h) = c for every player i at every history h. 

It is obvious that s is subgame symmetric and since c is strongly individually rational, 
s is a Nash equilibrium. We have to show that s belongs to some persistent retract. 

Consider the following retract R. For every history h with l (h) = T -  1, 
R i (h) = {c} for every player i. For every history h with l (h) < T -  1 and every 

player i R i (1-1) = A (C). 

To show that R is a persistent retract we first observe that it is absorbing. Since for 
histories with length less than T- -  1, R i (h) is the entire set of strategies, every strategy 
is absorbed by R at these histories. For histories of length T- -  1, we have an induced 
one stage unanimity game and hence, by Kalai /Samet  [ 1983], R (h) is absorbing. 

To show that R is a minimal absorbing retract it suffices to show that for every 
history h with l (h) < T- -  1, for every player i, and for every state 6, there is a strategy 
g, arbitrarily close to R, with 6 being a unique best reply of player i to # at h. For such 
h, i and ~ consider a strategy combination ~-which satisfies the following conditions. 
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(i) p ( h , s )  = 1. 

(ii) Foreachp layer / , - - /= iandh i s to ryh 'w i th l (h )< . l (h ' )<T  - 1, 

3/(h')  = d, and 3, (h') = e. 

(iii) For histories h '  with l (h ')  = T - 1, we distinguish two cases 

(a) I f  player i's part of  the proposal made at period number l (h) in h'  was 
5 then ~/(h')  = c for each player/. (including i). 

(b) Otherwise s] (h')  = (1 - e) c + ed for small e > 0 for all players/'. 

It  is clear that the only best reply of  player i at h is 6. By backwards induction on t, 
this illustrates that R is a minimal absorbing retract, since J is arbitrarily close to R.  
Thus, the constant strategy s is persistent. 

4. Nonterminating Unanimity Games 

A second natural generalization of  the one stage unanimity to a multistage one is in 
a game which does not terminate when an agreement is reached. We define inductively 
G (d, T), thenonterminating T (T  >1 1) attempts unanimity game with the status quo 
state d as follows. 

I f  T = 0, then G (d, 0) is the game with no strategies whose outcome is d. For 
T > 0, consider the following game. At the first iteration, each player i proposes a 
state 7 i E C. The joint proposal 3' = (71,3'2 . . . . .  3'n) is then publicly announced. I f  

71 = 72 = 73 . . . .  3'n = c then the players proceed to play G (c, T -  1). Otherwise 

they proceed to play G (d, T -  1). (The T -  1 attempts games are assumed to have 
been defined inductively.) 

We believe that the exact analyses of  Theorem 2 and 3 would hold for nontermina- 
ting games also. 
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