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MATHEMATICS OF OPERATIONS RESEARCH 
Vol. 9, No. 1, February 1984 
Printed in U.S.A. 

AN APPLICATION OF THE AUMANN-SHAPLEY PRICES 
FOR COST ALLOCATION IN TRANSPORTATION 

PROBLEMS* 

DOV SAMET,t YAIR TAUMANt AND ISRAEL ZANG$ 

The Aumann-Shapley (A-S) prices are axiomatically determined on certain classes of 
piecewise continuously differentiable cost functions. One of these classes consists of all cost 
functions derived from the transportation problems and some of their generalizations. These 
prices are used here to allocate costs among destinations in a way that each destination will 
pay its "real part" in the total transportation costs. An economic transportation model is 
presented in which the A-S prices are compatible with consumer demands. Finally an 
algorithm is provided to calculate both the optimal solution and the associated A-S prices for 
transportation problems. 

1. Introduction. Allocating cost among users becomes a challenge when the cost 
of producing a list of commodities is not the sum of the costs of producing each of 
them separately. This occurs usually in cases where the cost function is defined by the 
solution of a certain mathematical programming problem for which the cost of 
producing a certain vector of commodities a = (al, . . . , aM) is minimized under 

production constraints and a given vector of input prices c = (C,, . . . . ., ). If y 
= (Yl, . . .,YN) is an input vector which provides the minimal cost, then the total cost 
is c . y. However, it is not clear how to allocate this cost between the M types of goods 
and what is the "part" of each unit of mth good in the total cost c * y. 

Throughout this paper we restrict ourselves mostly to the specific class of cost 
functions derived from the optimal solution of the transportation problem (hereafter 
TP). This well-known optimization problem is a linear programming problem in which 
a certain good, available at several origins, is transported, under fixed transportation 
costs, to several destinations according to their needs, in a way that minimizes the total 
transportation cost. Given the optimal solution, it is sometimes natural to ask what is 
the contribution of a unit cargo in each destination to the total transportation cost. 
This is important, for instance in cost benefit analysis, where real costs vs. benefit are 
considered. For example, assume that the origins are army depot bases of ammunition 
and the destinations are field units. Given the transportation costs (which may include 
the price of the transported ammunition) it may be of interest for the army to 
determine the part of each field unit in the total cost, or, in other words, to determine 
the "real" expenses of each field unit. Another example deals with origins which are 
public monopoly (like government) regulated by a cost sharing rule. They produce, 
say, one good and transport it to several destinations in an optimal way. Their problem 
is to determine the price per unit of the good that each destination should be charged. 
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We propose to use Aumann-Shapley (A-S) prices which reflect, in a sense, the 
contribution of a unit of cargo, at each destination, to the total transportation cost. 
These prices were first used by Billera, Heath and Raanan [5] who applied the value 
concept of nonatomic games as studied by Aumann and Shapley [1] to determine 
telephone billing rates at Cornell University. 

Recently Billera and Heath [6] and independently Mirman and Tauman [8], [10], 
showed that the A-S price mechanism, as a price mechanism on the continuously 
differentiable cost functions, is uniquely determined by a set of natural and, in a sense, 
equitable axioms. These axioms, which do not depend on any notion of game theory, 
involve only cost functions and quantities consumed. Moreover, it is shown in [8] that 
the A-S price mechanism is compatible with demand and thus is justified from an 
economic point of view. It is worth mentioning that Samet and Tauman [13] discuss 
the relations between A-S prices and marginal cost prices. They show that by omitting 
the cost sharing assumption, the marginal cost prices can be uniquely determined by a 
set of axioms very similar to the one defining A-S prices. 

It should be pointed out that while our analysis suits models involving public 
monopoly regulated through a cost sharing rule, it may be irrelevant for other 
situations. For example if each origin consists of many small producers and each 
destination consists of many small consumers then competitive prices will prevail in 
this market, and generally these prices will not coincide with A-S prices. 

In ?2 of this paper we formally introduce the problem of allocating transportation 
cost, and demonstrate using a simple example, the difficulties with charging each 
destination that part of the cost arising from the optimal TP solution and the given 
transportation prices. 

In ?3 we introduce the A-S price mechanism and show that it is uniquely deter- 
mined, by the above mentioned axioms on three classes of cost functions. The first 
class consists of all piecewise continuously differentiable functions which satisfy 
certain requirements on the structure of their kinks. The second class consists of the 
piecewise linear functions in the first class and the third one, which is a subset of the 
former two, is spanned by those costs functions which emanate from generalized 
transportation problems. 

In ?4 we discuss an economic model in which there are several types of commodities 
each having different transportation prices (e.g., wheat and oil) and several consumers 
who consume bundles of commodities at the various destinations (e.g., chains and 
department stores). Each consumer endowed with a given budget has a utility function 
over these bundles. Given any consumption vector one cannot expect the total 
demand (dictated by utility maximization) under A-S prices to be equal to this 
consumption vector. However, we show in this section that an equilibrium in this 
context can be achieved, i.e., there exist A-S prices for a vector of outputs which is 
chosen by consumers who maximize their utilities subject to their budget constraints. 
This result is a special case of a more general theorem proved in [8] which deals with 
partial equilibrium. 

Finally, in ?5 we outline an algorithm which computes, for a given transportation 
problem and an overall consumption vector, the associated A-S prices and the optimal 
solution. This algorithm is an application of a general parametric programming 
approach by Srinivasan and Thompson [15], [16] for the TP. 

2. Cost allocation for TP cost functions. In this section we consider a transporta- 
tion model where a certain commodity, available at N origins B1,.. , BN, is shipped 
to M different destinations A ... , AM. The N x M nonnegative matrix C = (c,,m) 
represents the cost of shipping a unit from each origin to each destination. Let 
b = (b, .. ., bN) be the vector of the available resources in the N origins (b, in Bn). 
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The vector b is assumed to be fixed. Consider the vector of quantities x = 

(xI, . . . , xM) where xm is the demand at Am, satisfying the condition Zm= 1m 
< EN= l bn, and let F(x, .. ., xM) be the minimal cost of x. Formally 

F(xi,..., . . , ) = min nnm 
n,m 

N 

subject to Ynm =Xm X m = 1, .. ., M, 
n= 1 

M (TP) 
Ynm < bn. n= 1l,..., (, 

m=l 

Ynm > 0. 

It is well known that the cost function F, which is defined on the simplex {x E 

EM EM= xm < N= I bn} is piecewise linear and convex. 
The question is how should the total cost be allocated by prices per load at each 

destination Am, m = 1, . . ., M. A straightforward mechanism can be suggested: 
Suppose that the minimal cost of transporting x = (xl, ..., xM) under the above 
constraints is obtained by shipping ynm units from Bn to Am. Then the cost of 
transporting Ym = (Y . . . , Nm) to Am is N= I Cnmnm. The price Cn,,Ynm/Xm per 
unit in the mth destination will cover this cost. In general, this price does not reflect 
the "real" effect on the total cost of supplying the destination Am. The following 
example shows that since the amount is an outcome of an overall minimization which 
takes into account the whole system, it may yield distortions. 

EXAMPLE. Let M = N = 2, and suppose that the available resources are 20 units at 
each origin, i.e., b = (20, 20) and the demand at the destinations is the vector x = (20, 
20). The following table represents the costs of transportation: 

cll = 10 c12= 15 B1 bI = 20 

C21 = 1000 C22 = 1500 B2 b2 = 20 

A1 A2 
x, = 20 x2 = 20 

It is easy to verify that the optimal solution is obtained by transporting 20 units from 
B2 to A1 with associated cost of 20 * 1000 = 20,000, and by transporting 20 units from 
B1 to A2 with costs 20 15 = 300. However, destination A1 should not be allocated 
20,000 out of the total cost of 20,300. 

The above solution turns to be optimal since the penalty paid, once A2 is not 
supplied from its cheapest origin, is much higher than the penalty paid in case A, is 
not supplied from its cheapest origin. Therefore A 1 should be supplied from the more 
expensive origin for him, namely from B2, in order to achieve the minimal cost. Hence 
it seems that the destination A2 subsidizes destination A . But this cannot be a reason 
to charge Al a price higher than A2. On the contrary, since from each of the origins 
transportation to A 1 is cheaper than to A2 it is expected that the price per unit charged 
at A, should be less than the one charged at A2. 

It should be mentioned that shadow prices are not applicable in our study since we 
are interested in cost sharing prices. Because the cost function F(xl, . ... , xM) in our 
problem is convex, the shadow prices yield a profit. For instance, in the above example 
the shadow prices are 1000 and 1005 for A1 and A2, respectively. Thus, the total 
revenue under these prices is 20 * 1000 + 20 * 1005 = 40,100 and the profit is 40,100 - 
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20,300 = 19,800. Shadow prices are cost sharing prices for any x = (xt, . .. ., X) if and 
only if F is homogeneous of degree 1. This happens, for example, when resources at 
the origins are unlimited and then each destination is totally supplied by its cheapest 
origin. In these cases A-S prices and shadow prices coincide (see ?3). 

3. The Auimann-Shapley prices. Billera, Heath and Raanan [5] proposed equita- 
ble telephone billing rates which share the cost of service. Their approach is based on 
the theory of nonatomic games as studied in [1]. One can use their idea to allocate 
costs through prices when a finite number of infinitely divisible commodities is 
produced. Their idea can be described roughly as follows. Suppose that F(xl, . . ., xM) 
is a cost function satisfying F(0) = 0. The variables xm denote nonnegative quantities 
of the commodities produced. Let a = (a,, . .. , aM) be a vector of these commodities. 
Suppose that the commodities are various types of corn, and they are piled together 
into one heap. Identify this heap with a continuum of players and associate with it a 
cooperative game va defined as follows: For each subset S of the heap let va(S) be the 
cost of producing S. The Aumann-Shapley value for this nonatomic game is a 
measure defined on the space of players (the heap) which assigns to each coalition its 
contribution to the total cost of the heap, i.e., to the cost of producing a. The A-S price 
of the mth commodity is the value of a unit of this commodity, i.e., the contribution of 
this unit to the total cost. The existence of a value for the game v, described above is 
guaranteed whenever va belongs to a well-known class of games called pNAD. 
Moreover, on this class of games, there is only one continuous value (this follows from 
Proposition 43.13 and 44.22 of [1] together with Neyman's result stated in [12]). Using 
the formula for the value on pNAD, the value of the game va assigns to a unit of the 
mth commodity the magnitude, 

Pm(F,a) = 10F (ta)dt, 

which is defined to be the price of the mth commodity. The components of the vector 

P(F, a) = (P(F, a), . . .., PM(F, a)), 

are the Aumann-Shapley prices. Corollary 5 below guarantees that any game va 
derived from a TP cost function is in pNAD and therefore A-S prices are applicable 
for this class of functions. For an intuitive interpretation of the A-S prices, assume that 
the vector a is produced in an homogeneous way, starting from 0 and ending at a. 
Suppose also that along the above production process each time a "small" proportion 
(an "infinitesimal" one) of a is produced, the mth commodity is charged its current 
marginal production cost. Then the average cost per unit of the mth commodity once a 
has been produced will be its A-S price. 

A different derivation of A-S prices is introduced and discussed in [6], [8] and [13]. It 
has been shown in these works that A-S prices are uniquely determined by a set of 
neutral, and in a sense equitable, axioms imposed on price mechanisms. Rather than 
using game theoretic notions, these axioms are stated in purely economic terms, hence 
providing an economic justification for using the A-S prices. However, the above 
papers deal only with continuously differentiable cost functions and obviously, in 
general, TP cost functions are not of that type. In this section we prove that the above 
mentioned axioms uniquely determine A-S prices on some natural classes of cost 
functions that include the TP cost functions. 

Let y be a family of functions F, such that each F in iY is defined, for some M, on 
a full dimensional comprehensive subset, CF of EM (i.e., a E CF implies C_ c CF 
where C= (x E EM I x < a)). By a price mechanism on y we mean a function 
P(., .) that assigns to each cost function F in Y and each vector a in CF with a > 0 a 
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vector of prices, 

P(F,a) = (P,(F,a), ..., P(F,a)). 

The set of axioms that will be imposed on price mechanisms on y as stated in [8], is 
given by, 

AXIOM 1 (Cost Sharing). For every F E y and every a E CF, 

a. P(F,a)= F(a), 

i.e., total cost equals total revenue. 
AXIOM 2 (Additivity). If F and G are in y and a E CF n CG, then 

P(F+ G,a) = P(F,a) + P(G,a) 

where CF+G = CF n CG. 

AXIOM 3 (Positivity). If F E Y is nondecreasing on Ca for some a E CF then, 

P(F,a) > 0. 

AXIOM 4 (Consistency). Let F be in Y and assume that CF C E+M. Let C be the 
subset of E1 defined by C = {y E E Iy =M iXm, x E CF}, and let G be a 
function on CG = C such that, 

F(x X2 .. . .,X)= G 2 xm. 
m=l 

Then for each m, 1 < m < M, and for each a E CF, 

Pm(F,a)= P( G,S am 

This axiom is implied by the requirement that commodities which have the same effect 
on the cost have the same prices. 

AXIOM 5 (Rescaling). Let F be in Y with CF C EM. Let . . ., XM be M 
positive real numbers. Define C = {(xl, . . ., XM) I (xl, ... , XMX) E CF} and let G 
be the function defined on CG = C by 

G(x, . . ., XM) = F(XA1x, . . . , XMXM). 

Then for each a E CG, and each m, 1 < m < M, 

Pm (G,a) = Xm Pm (F, (X ,... X AMOM)). 

(A change in the scale of the commodities should yield an equivalent change in the 
prices.) 

DEFINITION. Let Y0 be the family of all functions F such that 
(a) F is defined for some M on a full dimensional comprehensive subset CF of EM . 
(b) F(0) = 0, i.e., F does not contain a fixed cost component. 
(c) F is continuously differentiable (c.d.) on Ca for each a E CF. 

THEOREM 1. There exists one and only one price mechanism P(.,.) on Yo which 
obeys the above five axioms. This is the A-S price mechanism, i.e., 

Pm (F, a) = 0a F (ta) dt, m = 1 ... .,M, 

for each F E -o and a E CF (C EM). 

Theorem 1 above is Theorem 1.2 of [8]. Its proof appears in [10] and [13]. 
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REMARK. Observe that the price mechanism which assigns to each pair (F, a), 
F E 5-0, a E CF, the shadow prices of F at a, obeys all the axioms but the 
cost-sharing one. A similar characterization (as of Theorem 1 above) for shadow prices 
is given in [13]. 

Cost functions which are derived from the solution of linear programming (LP) 
problems are piecewise linear. In many cases however, one may have an LP cost 
function F together with a vector a in its domain such that the line segment [0, a] 
contains a continuum of kinks (of F). For example let 

F(x , x2) = min y 

s.t. y> xI, 

y > x2, 

and let a = (1, 1). Then F(x,x2) = max(xl,x2), and F is not differentiable along the 
line segment [0, a]. Thus, one cannot apply the A-S formula to obtain prices for these 
F and a. Fortunately, this is not the case for TP cost functions or for the generalized 
TP cost functions (as shown in Corollary 4, below). The latter are cost functions of the 
form: 

N M 

F(x) = min CnmYnm 
n= m=1 

N 

subject to E anynm = xm m E , 
Mn1 (WDP) 

S d"nynm < bn n E 
'" 

Ynm > 0, n E . M, n m E , 

where -{ 1, . ..., N }, = { 1, . . ., M } and anm, dnm and Cnm are nonnegative for 
all n E ,V, m E X#. In addition, it is required that each Ynm has a nonzero coefficient 
in at least one equation. We also assume, without loss of generality, that the rank of 
the constraints matrix is M + N. This linear programming problem or some of its 
variations is known in the literature as the weighted distribution problem (WDP) or as 
the generalized transportation problem (see Dantzig [7, Chapter 21]). Our next lemma 
and theorem apply to WDP problems for which all constraints n E A/' are equalities. 
We denote this problem by WDPE. Note that a WDP problem can be transformed 
into an equivalent WDPE problem by the addition of slack variables to the constraints 
in X'. Thus, Theorem 3 below applies to WDP cost functions as a special case. To 
prove this theorem we use Theorem 1 of [7, p. 42] (Lemma 2, below) which makes use 
of the linear graph associated with the constraints of WDPE. There are N + M nodes 
in this graph, each corresponds to one of the constraints of WDPE. Two nodes are 
joined by an arc if and only if Y.n appears in both constraints with nonzero 
coefficients. When a variable appears in only one equation with a nonzero coefficient, 
the node corresponding to this equation is joined by an arc to itself. Note that it is 
impossible for two nodes in -I (or in ~4) to be joined by an arc. A basic graph for the 
above system will be the subgraph corresponding to a specific linear programming 
basis. This graph is obtained by deleting the arcs corresponding to the nonbasic 
variables. We have ([7]): 

LEMMA 2. Each maximal connected subgraph of a basic graph for the system of 
equations in WDPE has precisely one loop. 
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We now prove: 

THEOREM 3. Let F be a WDPE cost function. Then F is a piecewise linear function 
and there is a finite number of hyperplanes H1, . . . , HI of the form 

Hi=x E EM E XJxm = / )} (1) 
m ~ p 

where Xi > 0 and /3 > 0 such that F is continuously differentiable off U= HJ . 

PROOF. Observe that if the cost function F has a kink at x then the optimal 
solution must be degenerate. This follows since, in case the solution to WDP at x is 
nondegenerate, then, in a neighborhood of x, the same basis remains optimal. Hence F 
is linear in this neighborhood. To prove the theorem, we derive expressions for the 
basic variables Ynm in terms of x, and show that degeneracy implies that x lies in one of 
a finite number of hyperplanes of the form given in (1). Assume now that the optimal 
solution is degenerate at x and consider a maximal connected subgraph of the basic 
graph which contains one of the arcs that corresponds to a vanishing basic variable. 
Let us denote by P the set of nodes contained in the unique loop of this subgraph, the 
existence of which is implied by Lemma 2. To calculate the values of the basic 
variables, consider first all chains of this subgraph beginning with nodes having exactly 
one arc and containing exactly one node of P (necessarily the last one in the chain). In 
case no such chain exists then we proceed to calculate the variables in P as described 
below. 

In each of the above chains, a node n e X-I must be followed by a node m e - 

and vice versa. Thus, it is easy to verify that for the arcs joining these nodes we must 
have 

Ynm mXm-m 
- nbn (2) 

in case this arc joins a node n E IA to a node m E .4, or 

Ynm = 2Xnbn- EAmXm (3) 

in case m E # is joined to n E IV, where ~J C f, W- c_ -. Note that the 
coefficients X, and X, are positive, since they are products and ratios of numbers anm 
and d,m which are positive. Certainly, if one (or more) of these variables is zero, then 
by (2) or (3), x lies in a hyperplane of the form (1). Moreover, because the number of 
elements anm, dnm and b, is finite then there is a finite number of such possible 
hyperplanes. Suppose now that all the above chains are evaluated, none of the 
variables in these chains is degenerate, and that some y, corresponding to h, m E P is 
degenerate; that is y- = 0. Then it is left to evaluate the variables Y,m where both n 
and m are in P. In case P contains exactly one node then the corresponding ynm is 
given by (2) or (3) above. In any other case we have a loop with at least four nodes. 
Then, it is possible to solve for all the other variables yn,m n, m e P starting either from 
node h or from node m. Let n',m' E P, then accordingly, the following equivalent 
expressions for Yn'm' are obtained: 

Yn'm' = ~mXm-- ~n7bn , and 

Ynmt = X,, bn- X mXm, 
3,VnS^ 
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where X" c / , -' c V, c X4 and d C _ satisfying -I n Xf = 0 and 
' n k = 0 and where again Xm, X,, Xm and X, are positive. Equating the right-hand 

sides of the above expressions we see that x lies in an hyperplane of the form (1). This 
completes the proof. 

Obviously, TP is a special case of WDP. Moreover, since each XJ is a ratio of 
products of the anm and dnm and since for TP, anm = dnm =1 each XJ in (1) equals one. 
Note that cost functions derived from assignment problems (see [7, Chapter 15]) are a 
special case of the transportation problem. Hence, they too belong to the WDP class. 
Also note that if WDP is feasible for x = a then it is also feasible for all 0 < x < a. 
Hence, the domain of F is a comprehensive set. Moreover cnm > 0 implies F(0) = 0. 

Next we have an immediate consequence of Theorem 3. 

COROLLARY 4. If F(x1 . . , Xm) is a WDP cost function defined on a comprehensive 
domain C F, then for each a in CE , F is continuously differentiable along the line segment 
[0, a], except perhaps for finitely many points. 

For the readers who are familiar with the theory of nonatomic games we state one 
more corollary. 

COROLLARY 5. If F is a WDP cost function with F(O) = 0 defined on a comprehen- 
sive domain C , then for each a E C F the game v,, as described in the beginning of this 
section, is in pNAD. 

PROOF. Follows from Corollary 4 and from the main theorem of [11]. 
Let C be a subset of EM and let H,. . ., H, be l hyperplanes in EM. Each 

hyperplane Hj defines two closed halfspaces which we shall denote by Hj+ and Hj-. 
We call each nonempty subset of the form C n H' nl ... n H n , where Ej stands for 
+ or -, a region. 

DEFINITION. A function F defined on a subset C of EM is piecewise continuously 
differentiable (p.c.d.) if it is continuous and there are I hyperplanes H,. . . , H, in EM 
and r continuously differentiable function F 1 . . . , Fr on EM such that F coincides on 
each of the regions of C (determined by H, . . ., H,) with some FJ, 1 < j < r. 

DEFINITION. Let S- m be the family of all functions F such that: 

(a) F is defined, on a full dimensional comprehensive subset CF of EM; 

(b) F(O) = 0; 
(c) F is p.c.d.; 
(d) the hyperplanes H,, . . , H, involved in the definition of F are defined by 

positive functionals, i.e., 

Hj{= {xlx =a'} where XJ > 0, XJ#0, j=l ....l, m= . . .,M. 

Notice that Y-m is a linear space when F + G is taken to be the function on CF n CG 
defined by 

(F + G)(x) = F(x) + G(x), x CFn CG. 

Denote now Y~ = UM= 1 . i - Note that XY contains, in view of Corollary 4 and the 
discussion which preceded it, all WDP cost functions. Moreover all TP cost functions 
are always in Y1. 

Let XY2- be the linear space consisting of the piecewise linear functions in -Mm and 
let X2 = UM= 1 Y .2 By Y3- we denote the linear space spanned by all WDP cost 
functions with M variables. Again let X3 = U -9 J. Notice that Yl D 0 and 
that Y, D 2 _D 3. 

l For a precise definition of va see [8, p. 48]. 
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THEOREM 6. For each of the spaces X11, y2, and 13 there exists one and only one 
price mechanism P(.,. ) which obeys the five axioms. This is the A-S price mechanism, 
i.e., for each F E YM (i = 1,2, 3) and a E CF, a > 0, 

Pm(F, a) a (ta)dt, m= 1l,..., M. 

We shall first outline the proof of this theorem. It is easy to verify that the A-S 
formula indeed defines a price mechanism which obeys the five axioms on each of the 
three sets -1, -2, and -3. As for the uniqueness part, denote by j,M (i = 1,2,3), 
the minimal linear space containing both yiM and POM where the latter is the space 
of all polynomials p in M variables s.t. p(O) = 0. Note that the sum F + p for F E -iM 
and p E POM is defined on CF. Let i = U.=-iM . Clearly l = "1. We first 
prove that J-i is dense in Ai when the latter is equipped with an appropriate topology 
(Lemma 7, below). Then we show (Lemma 8, below) that any price mechanism which 
obeys the five axioms is continuous w.r.t. this topology. These two lemmas enable us to 
prove that any price mechanism on XJ (i = 1,2,3) can be extended to all of Ai (this is 
Lemma 10, below). Now on PO = U M= I POM which is a subset of Aj (i = 1,2,3) the 
extended price mechanism is given by the A-S formula since the A-S price mechanism 
is the only one on PO which obeys the five axioms (see [8] and [13]). Finally we prove 
that any function F in YJi, (i = 1,2,3), can be approached by polynomials in such a 
way that their A-S prices approach the prices determined for F by the given mecha- 
nism on -i. Since this sequence of polynomials is independent of the price mecha- 
nism on -i and depends only on F and a there is only one way to define the prices on 
Y, and this completes the proof of the theorem. 

The rest of the section is devoted to the formal proof of Theorem 6. 
DEFINITION. Let F E 5iM (i = 1,2,3) and let a E CF, a > 0. The a-norm of F, 

IIFIl is defined by 

M a L^ 

m=l || a 

where IlaF/axmllL_ is the Lo-norm of aF/axm on Ca. Observe that 1 * Ia| is a norm on 
Ym (i = 1,2,3). 

LEMMA 7. Let p be a polynomial in POM and let a E M+. Then for each i 
(i = 1, 2,3) there exists a sequence (Fn)n??l of functions in SM with a E n=l CFn such 
that 

IFn-PlIa0, as n-> oo. 

PROOF. Observe first that each polynomial p in POM is a linear combination of 
functions of the form 

M I 

g(x, . . ., xM) = ( nmXm 

where the nm's are nonnegative integers and 1 is a positive integer (e.g., see [1, p. 41]). 
Obviously it is sufficient to prove the lemma for polynomials g of the above form. 
Clearly there is a sequence of one variable piecewise linear functions (G,n)?? s.t. 

IIGn- HIId->0, as n->oo 

where d is an arbitrary positive number, CGn = [0, d] and H(z) = z1 for each z E E . 
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Thus if d is sufficiently large 

M 
11Gn2 nmm -g(x, * * *, XM)Id-0, as n-> oo. 

m= 

Finally notice that G0 is a TP cost function and thus also Gm(, =i Xm) (which is 
defined on {x E EMZ I= I xm < d)). Hence the function G(M= i nmXm) is a WDP 
cost function. 

Let Q(.,-) be a price mechanism on Yfi, for some i (i = 1,2,3), obeying Axioms 
1-5. 

LEMMA 8. Let (Fn).L1 be a sequence of functions in yiM (i = 1,2, 3) and let a be in 
n=Cl CFn. If 1l Fn I- O as n- oo then Q(Fno a)-->O as n --> oo. 

The proof of this lemma is analogous to the proof of Proposition 3 in [13]. 

COROLLARY 9. Let a E E M and let (Fn)?=1I be a sequence of functions in yiM s.t. 
a E f=lICr ". Then IFn - FkL. -0 as n,k-> oo implies that Q(Fn,a) approaches a 
limit as n-> oo. 

This corollary is a direct consequence of Lemma 8 together with the additivity of 
Q(., a) on it. 

LEMMA 10. The price mechanism Q(., ) on Yi can be extended to a price mecha- 
nism on v,i which obeys the five axioms. 

PROOF. Define a mechanism Q(-, ) on J by 

Q(F,a)= lim Q(Fn,a) n-* oo 

where (Fn)n 1 is a sequence of functions in Y,i such that a En l 1 C F and 

|| F - Fll, ->0 as n-> oo. The existence of such a sequence (Fn)nlI is guaranteed by 
Lemma 7. Furthermore by Corollary 9 the limit limn,,,o Q(Fn, a) is independent of the 
choice of this sequence. 

It is easy to verify that Q(.,.) obeys the cost-sharing, additivity, consistency and 
rescaling axioms. Let us verify the positivity property of Q(-, ) on Ai. Let F be a 
function in A which is nondecreasing on C, for some a E CF. By Lemma 7 there 
exists a sequence (Fn),l of functions in Sf s.t. a E nf_l CF" and IIFn - F,| ->0 as 
n -> oo. Since F is nondecreasing, for each e > 0 and for each sufficiently large n, 
Fn + Em=_ I xm is nondecreasing on C,. Hence by the positivity and the additivity of 
Q(-, .) on Yi and by the cost sharing axiom 

0< Qm Fn+ x = Q(Fn,a)+ c, m= 1, . . . ,M. 

By Corollary 9, Q(Fn,a) approaches a limit and thus 

Q (F,a)- lim Q(Fn, a) > 0, 

and the proof is completed. 
Finally, to establish the proof of Theorem 6 we need the following lemma. 

LEMMA 11. For each F E -i (i = 1,2,3) and a E CF, a> 0, there exist two 
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sequences (fn)n I and (gn)_ I_ of polynomials in PO with the following properties: 

fn 
- F is nondecreasing on Ca, (4) 

F - gn is nondecreasing on Ca, (5) 

fn(o) = gn(0) =0, (6) 

fO (ta)- (ta) dt->O, as n->oo, for m = 1, .. ., M. (7) 

PROOF. Since J-, D :-2 D -3 it is sufficient to prove the lemma for F in 9-1. Let 
F GE Y and let a > 0 be in CF. Let H ,.. ., H1 and F1,. .., F' be the hyperplanes 
and the functions respectively which are involved in the definition of F. Assume that 
CF C EM and that 

Hj= {xlXjx= a}, 
where XJ > 0 and XiJ - 0. 
Denote 

L = min{Xj > O , m = 1,..., M,j = 1,. .., }. 

Let F,k be the mth partial derivative of Fk, k = 1, .. ., r. The function Fm is similarly 
defined. Let 

T= max max max IFk(x)l. (8) 
l k r I < m<; M xE EC 

It is easy to verify that for each x and y in Ca, 

IF(x)- F(y)j < T x-y l. (9) 

For any n choose n > 0, s.t. cn ->0 asn -> oo. Fix n and choose 8 > 0 s.t. 8 < enL/8T. 
Let 

tH = (xlai- 8 < Xj < a + 8 j= 1, . . .,1, 

H =UH, and 

H= UHj. 
j=l 

For each a E E', let 4a be a c.d. function on E1 which obeys 

0 < T() < for each t E E', 

a(t)= 
2T for a- < t < a + 8, (10) 

Aa(t)=0, for t<a-28, 

4Pa(t)=En, for t > a+28. 

Define 1 functions G', . . ., G' by 

GJ(x) = 
4aj('ix), j= 1,...,l. 1. 
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The function G satisfies, 

(i) For each x E C0, 0 < GJ(x) < m 
L 

(ii) If 
xG/~s8 the n G(x) = X , (12) 

(iii) If x H ,26, then GJ(x) = 0. 

Let us choose qt > 0 s.t. q < min(8/llajll,?/T, 1) and 

lx-_yil < nilall\\lF(x)- F(y)j <k, k = 1, . . ., r, m = 1, . . ., M. (13) 

Now, for each continuous function defined on a box C, let g* be the function on C 
defined by 

g* (x) = (C) g((1 - X)x + qz)dz, 

where X is the Lebesgue measure on C. For each x E C, g*(x) is the average values of 
g over the box (1 - rt)x + tC. If C = X M [cm, dn], then 

g,(x) ...M(c)f f(l r);~+d' fg(z) dz, ... dzm. X 
71m(c) 

J (1- n)X7 + 1 
-.. 

Thus it is easy to verify that g is a c.d. function on C. Moreover if the derivative gm 
exists on (1 - qt)x + qC, then 

(g*)m(x) = (1 - )(gm)*(X). (14) 

The diameter of IqC, is 7l|a|ll < 8 and the diameter of (1 - ')x + 7qC~ is the same. 

Hence, for each x E Ca\HH there is a neighborhood of (1 - 71)x + /qC~ which is 
contained in C,\H. On this neighborhood F coincides with Fk for some k, 1 < k < r. 
Thus replacing g by F and C by C, we have, by (14), that for each m, 1 < m < M, 

(F*)m(x) = (1 - ?)(Fm )*(X), x E C\H6. (15) 

Moreover, in this neighborhood, Fm is continuous and thus averaging Fm on the box 
(1 - 7r)x + qiC~ yields a value of Fm at some point of this box. Therefore, from the 
choice of r we have, by (13), that for x E C.\H8 

[(Fm)*(x) - Fm(x)l < nr < e,. (16) 

Define the function f on Ca by, 

fn= F* + GJ+2Enu, 

where u(x) = M= l x. Let f, be the function on C, defined by fn(x)= fn(x) - fn(0). 
Clearly fn(0) = 0. To prove that f" - F is nondecreasing on Ca, let x be in Ca\H and 
let m, 1 < m < M, be fixed. We will show that (fn - F)m(x) > 0. Consider two 
possibilities: 

I. If x E CC\H6 we have by (8), (15) and (16) 

I(F* - 
F)m(x)l < (F*)(X) 

- 
(Fm )*(x) + I(Fm)*(x) 

- 
Fm(x)l 

< ,7l(Fm)*(x)l + E, < TT + en < 2n,. 
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Together with (12) we have 

fm(X) - Fm(x) = (F*)m(X) - Fm(x) + E Gm(X) + 2en 
j=l 

> 2 O)0. 
j=1 

II. If x E H8\H then there are two possible cases to check: 
(a) There is a jo, 1 < jo < 1, s.t. x E H8\H. and X0? > 0. Since by (9) F satisfies 

Lipshitz condition with constant T, so does F*, and therefore l(F*)ml < T. Thus by 
(12) we have 

fmn (x) - F =(x) = (F*)m(x) 
- 

Fm(x) + 2 GJ(x) + 2En 
j=l 

> -2T+ Gm?(x) + 2En > -2T+ 2T+ 2En > 0. 

(b) For each j with x E H8\Hj, X = 0. In this case the box C = (1 - q)x + qTC~ 
does not intersect any Hj with XJ > 0. Thus if Hj is a hyperplane which intersects C 
and if Fk' and Fk2 are two functions defined on the two sides of Hj n C then Fmk' and 
Fmk2 coincide on Hj. Hence, Fm is well defined on C and is continuous there. Therefore 

(F*)m(X) = (1 - t)(Fm )*(x). (17) 

Since the diameter of C is 71 allI we have by (13) that for any two points x andy in C, 

lFm(x)- Fm(y)l < r -= 

This together with (17) imply, as in case I, 

I(Fm)*(x)- Fm(x)l < 2En 

and the proof of this part can now be completed as in case I. 
Thus, we have proved that for any x E Ca\H, (fm - Fm)(x) > 0. Together with the 

continuity of fn - F it follows that fn - F is nondecreasing on Ca. 
In the same manner one can define the sequences (gn)nlI and (gn)??= on Ca by 

n= F* - G - 2Gcnu, 
j=l 

gn(x) = g(x)- n(O), 

to obtain that gn(O) = 0 and that F - g" is a nondecreasing function on Ca. 
It is well known that any function which is c.d. on some box in EM can be extended 

to a c.d. function on EM. Thus, we may assume that the functions fn and gn are 
defined on CF and belong to Y0. It remains to prove that 

gmn(ta)-fn(ta)l dt O, as n -oo. 

By the definition of fn and gn, 

gm(ta) - fm(ta) = 2 GJ (ta) + 4?,n (18) 
j=l 

and (11) implies that 

GJ(ta) = ^ aj(t a). -- 'm J(ttJ. 
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The length of the interval of t's for which a J - 28 < tXa < a i + 28 is 48/X ia, and by 
(11), 0 < aj < 2T/L in this interval. Outside this interval ij = 0. Thus, by the 
definition of 8 we get 

Z OmG(ta)dt<i .Z.2<^' .48 2T ' 
I=1 / = y1 Xa L j=1 AXJa 

The last summation is independent of n. Therefore by (18) we conclude 

fI gm(ta) -f,(ta)ldt->O, as n -oo. (19) 

Hence the two sequences (fn)n_i and (gn)nlI obey the four requirements (4), (5), (6) 
and (7). Thus to complete the proof of the lemma it is left to prove that these two 
sequences can be replaced by polynomials which still obey the above four require- 
ments. But this follows from the fact that the polynomials in M variables are dense in 
the set of all continuously differentiable functions on C F with the norm 11 * Ila for each 
a E CF (see [13]). 

We are now ready to complete the proof of Theorem 6. 
PROOF OF THEOREM 6. As was already mentioned it is easy to verify that the A-S 

formula indeed defines a price mechanism which obeys the five axioms on each of the 
sets J-1, 2, and Y3. For the uniqueness part let Q(-, ) be a price mechanism which 
obeys the five axioms on Yj for some i (i = 1,2,3). By Lemma 11 Q(-,.) can be 
extended to a price mechanism on J which obeys the five axioms. Now since , 
contains the polynomials and since on PO the A-S price mechanism is the only price 
mechanism that obeys the five axioms (see [8] and [13]) 

Qm(P, ) = 
axxm (ta)dt, m= 1,., M, (20) 

for each p e POM and a E E . 
Now let F E Yi and let a E C F, a >> 0. By Lemma 11 there exist two sequences of 

polynomials (fn)_ l and (gn)??_ which obey (4), (5), (6) and (7). By the positivity of 
Q(., -)on, 

Q(f -F,a) > 0 and 

Q(F- gn,a) > 0. 

Hence by the additivity of Q(., .) 

Q(gn,a) < Q(F,a) < Q(fn,a), n = 1,2,.... 

By (20) 

Joax ) Qg na) f (ta)dt, m = 1, . . ., M. 

This, together with (7), implies 

Q.(F,a) l= lim--o ' Xf (ta)dt, m = 1, . . ., M. (21) 

Since the sequence (fn),l depends on F and a and not on the price mechanism 
Q(-, -), the proof of the theorem follows now by (21). 

4. The economic model. A transportation model consists of N origins B . . ., 
BN, M destinations A . . . , AM, L consumers, and K + 1 commodities denoted by 
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0, 1, .. ., K. Commodities 1, . . ., K are transported from origins to destinations, and 
the other good called the input is used to measure the transportation cost (for example 
it can be money). For any k, I < k < K, Ck = (ck) is a matrix of order N X M where 
Cnk, is the cost, in terms of the input, of transporting a unit of the kth commodity from 
Bn to Am. This cost can include the price of the commodity as well as the profit of the 
transportating agency. 

Each consumer 1, 1 < I < L, can consume, in a given consumption set D' in 
El+KM, a vector x(l) = (x?(l),xl(l), . ., xm(l), ..., xM(1)). Here, for each m, 1 < m 
< M, Xm(l) = (x (l1)), . . , x K(l)) is a bundle in Am consisting of the K commodities 
and x?(l) E E 1 is the amount of input he consumes, i.e., each consumer consumes the 
input and the K commodities at each destination. The Ith consumer has a preference 
ordering on D' expressed by a utility function Ul, and is endowed with some amount 
wI of the input. The origins can be thought of as public monopolies, the consumers can 
be central distribution agencies, chains or individuals located at the destinations. Each 
consumer has a utility function which depends only on the coordinates corresponding 
to his location. 

For each n, 1 < n < N, and each k, 1 < k < K, origin Bn has a limited capacity of 
bk units of the kth commodity. Let L: be the subset of EKM defined by, 

f M N 
2 = x = (Xi, .... XM) y x m < 2 bn for every k, 1 < k < K. 

t~ w ~m=l n=l1 

Define the cost function F: I -> E1 by 

K 

F(x) = y Fk(xk), 
k= 1 

where for k = 1, . . ., K, xk = (xk, ..., xk), Fk is defined on 

CF{r 
M N E 

C^k X E EM E xm < E b = = + Z x^ 0n , 
m m=l n=l 

by 

Fk(xk) = min kk 
n,m 

subject to 

N 

2 ynkmXmk, m= 1,...,M, 

M 

2 ynmS<bn, n=l,..., N, 
m=l 

Ynkm>O, n=l,..., N, m=l,...,M, 

i.e., Fk is the TP cost function for the kth commodity. 
Each vector x in D' will be represented by a pair (x?,x ) where x? is the input's 

quantity and x E! EM is the bundle of the K commodities at each destination. For 
each 1, 1 < 1 < L, and each price vector p in EKM (price per commodity in each 
destination) define the budget set B,(p) of I by 

B,(p) = {(x0,X) 
E D' x0 + xp < w'}. 

A vector x E B,(p) is maximal in B,(p) if U'(x) > Ul(y), for each y E B,(p). Finally, 
a vector (x?, X) is feasible if F(x) < x?. 
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DEFINITION OF EQUILIBRIUM. A point of the form (x(l), . . ., x(L), p, . . PM), 
where x(l) is a vector of bundles in E4+KM and p E EK is a price vector for each of 
the K commodities at the mth destination Am, is an equilibrium if 

I. For each 1, 1 < I < L, x(l) is maximal in Bl(p) where p = (?p,... PM). 
II. (w - x?, X) is feasible, where w = =_ w, x? = I2= x?(l) and x = 215 (l). 
III. p = P(F, X), i.e., the price vector p is the vector of A-S prices associated with the 

cost function F and total vector transported x. 

ASSUMPTIONS. (i) For every 1, 1 < I < L, there is a vector d' = (dd,, d. . . ) in 
E+KM , where d4 EE and d = (dl,l ... d) E E K, 1 < m < M, such that the 
consumption set D1 is the box 

D'= {xeE I KMIx < d 1 

i.e., I can consume at most do units of input and at most dnk units of the kth commodity at 
the mth destination. 

(ii) For every 1, 1 < I < L, 0 < w1 < do. 
(iii) For every 1, 1 < I < L, Ul is a continuous and quasiconcave function on D . 
(iv) For every k, 1 < k < K, ZM=I ~2dL < N (iv) For every k, S k Id= Kb, d N 

I b, i.e., the total capacity of 
each commodity available for all consumers at all destinations together, does not exceed 
the total capacity of the commodity available in all origins together. 

THEOREM 12. The existence of an equilibrium is guaranteed under assumptions 
(i)-(iv). 

PROOF. The theorem can be proved along the lines of Theorem 2.1 of [8]. For each 
k, 1 < k < K, Fk is a continuous piecewise linear function with Fk(0) = 0. By Corol- 
lary 4 above, Fk is c.d. along the line segment [0, a(k)], except perhaps for finitely 
many points. Since F = K= I Fk, the above properties remain true if Fk is replaced by 
F and a(k) by a. In particular F(0) = 0 (which is Assumption (5) of [8]). Since the 
kinks of F lie on a finite number of hyperplanes the partial derivations of F are all 
bounded (on CF). Thus for each a E CF, the function g,: [0, 1] - E defined by 
g,(t) = 3F(ta)/3xm is bounded and continuous for each t, 0 < t < 1, except perhaps 
at a finite number of points. By the Lebesgue bounded convergence theorem, if / -> a 
then fJ gaf(t)dt-->f g,(t)dt. This means that Pm(F,a) is continuous at a (for each 
a E CF). Assumptions (6) and (7) of [8] are used only to obtain the continuity of A-S 
prices [9]. Thus it remains to check that assumptions (1)-(4) of [8] are fulfilled in our 
model. Indeed these four assumptions are assumptions (i), (ii), (iii), and (iv) above. 
Hence, the existence of an equilibrium in our model is guaranteed by Theorem 2.1 
of [8]. 

REMARKS. (1) Note that if for each 1, I < l < L, U' is increasing then it is easy to 
verify that the equilibrium (x(1), . . . , x(L), , . . . , PM) will be locally efficient in the 
sense that w - x? = F(x). This means that the amount spent by all the consumers 
equals the total transportation cost. Consequently there is no waste. 

(2) Consider a consumer I who is an individual at the mth destination and has an 
increasing utility function, dependent only on bundles in the mth destination. Under 
the assumption that transportation costs are always positive, this consumer gets, in 
equilibrium, a consumption vector of the form x(l) = (x?, 0 . ., x, 0 ,...*, 0), i.e., 
he receives commodities only at his destination. 

(3) Note that one can redefine F by replacing the TP cost functions by similar WDP 
cost functions and still retain all the properties needed for the existence of an 
equilibrium. 
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5. An algorithm for computing A-S prices for TP cost functions. In this section we 
refer to an algorithm which evaluates the A-S prices for a given TP and feasible vector 
a = (a1, . . ., aM). The algorithm can also be used to solve the associated TP problem 
for x = a. Consequently, to compute the A-S prices vector there is no need to solve TP 
separately in order to obtain the transportation plan. 

Since F is piecewise linear, by Corollary 4 we have that the A-S price vector P(F, a) 
is a finite sum of the gradients of the linear "pieces" of F along the line segment [0, a], 
where each of these is weighted by the normalized length of the sub-interval in which 
F has a constant gradient. Consequently it is sufficient to consider F(ta) for 0 < t < 1 
and find the values t , j = 0, .. ., J, where to? = 0, tJ = 1, for which F(ta) changes 
gradient. The algorithm which computes the points ti, the fixed gradient of F in each 
interval (tia, ti+ 'a) and solves the TP at a is described in detail in [14]. This algorithm 
is an application to the transportation problem of the general parametric programming 
approach suggested by Srinivasan and Thompson [15], [16]. 

To illustrate the computations of the A-S prices consider the example of ?2. For this 
problem, shown in Figure 1, 

CF = {(xI ,x2) |I x + x2 < 40, xI > 0, x2 > 0}, 

and the kinks are located on the hyperplanes x 1 + x2 = 20 and x2 = 20. 
In fact 

lOxI + 15x2, x > 0, x2 > 0, xI + x2 < 20, 

F(x ,x2) = 1000x1 + 1005x2 - 19800, 0 < x2 < 20, 20 < xI + x2 < 40, 

1OOOx1 + 1500x2 - 29700, xI > 0, x2 > 20, x, + x2 < 40. 

Consequently the algorithm will determine that 

VF(ta) = (10,15) for 0 < t <l, and 

VF(ta) = (1000,1005) for ? < t < 1, 

thus 

P(Fa) = a) 
10 + 1000/= 505) 

=J 15J2 1005 510/ 

Finally let us mention that the algorithm can also, in the view of the analysis in [15], 
[16], handle the capacitated transportation problem. This is a TP where the values of 
the variables Ynm are constrained to be bounded on both sides. Moreover, any cost 
function derived from this problem belongs to Y2 and thus, by Theorem 6 above, the 
A-S prices are applicable in this case as well. We also note that Balanchandran and 

x2 

40 

20 a X = (20,20) 
I/ \ 

/ \ \ X1 nn A ,\~~~x 

FIGURE 1 
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Thompson [2], [3] and [4] provide a complete parametric analysis for the generalized 
transportation problem. Their algorithms can be used to obtain an algorithm to 
compute the A-S prices for WDP cost functions. 
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