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In their seminal paper, Mertens and Zamir (Int. Game Theory 14 (1985), 1�29)
proved the existence of a universal Harsanyi type space which consists of all
possible types. Their method of proof depends crucially on topological assumptions.
Whether such assumptions are essential to the existence of a universal space
remained an open problem. Here we prove that a universal type space does exist
even when spaces are defined in pure measure theoretic terms. Heifetz and Samet
(mimeo, Tel Aviv University, 1996) showed that coherent hierarchies of beliefs, in
the measure theoretic case, do not necessarily describe types. Therefore, the univer-
sal space here differs from all previously studied ones, in that it does not necessarily
consist of all coherent hierarchies of beliefs. Journal of Economic Literature
Classification Numbers: D80, D82. � 1998 Academic Press

1. INTRODUCTION

We study here the foundations of that part of the theory of games with
incomplete information that deals with players' beliefs. We study it in the
broadest and most natural setup, that of probability (or measure) theory
without any topological notions, which have always been used for this
purpose until now. We show that even under this general setup there is a
largest measure theoretic type space��a universal space��which contains all
possible measure theoretic types.

Our study of beliefs in the most general setup leads us to a deeper under-
standing of the notions of types and universal spaces. The previously
studied universal spaces consist of all hierarchies of beliefs that satisfy
simple coherence conditions. This is why the universal space has become
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almost synonymous with the set of coherent hierarchies of beliefs. But,
as demonstrated by Heifetz and Samet [10], this happy coincidence is
restricted to the topological case. In the measure theoretic framework some
coherent hierarchies of beliefs fail to describe types. This raises the question
whether it is still possible to have a universal space in the general, measure
theoretic, case. Here we answer it in the affirmative. This answer shows that
the role of coherence in the theory of belief types turns out to be trickier
than previously assumed; the universal space is not defined in terms of
coherence alone.

Before describing our results in more detail we survey briefly the back-
ground.

A Single Agent's Beliefs. The starting point for the modeling of beliefs
of interacting agents is, naturally, the model of a single agent's belief. The
most prevalent such model, and the one that has proved most applicable,
is the Bayesian model. Beliefs, in this model, are about events, that is,
measurable subsets of a given measurable space, the elements of which are
states of nature. Belief is expressed as a _-additive probability measure on
this space. Belief types, in this case, are simply all such probability
measures.

A Multi-Agent Setup. When several agents interact it is not enough, of
course, to model their beliefs by assigning each of them a probability
measure on the set of states of nature. A belief type in such an interaction
should account for beliefs of agents regarding each other's beliefs. Here two
approaches are possible.

Explicit Description of Beliefs. The first approach is that of describing
agents' beliefs explicitly. Such a description specifies beliefs about states of
nature, beliefs about combinations of states of nature and beliefs about
them, and so on. Accordingly, a belief type consists of a whole hierarchy
of beliefs. Clearly, the different beliefs that are lumped together to define a
type must fit according to some consistency rules. The explicit descriptions
that obey these rules are said to be coherent.

Advantages and Drawbacks. Explicitly describing belief types seems to
be the straightforward approach to modeling agents' beliefs in interaction.
A type is defined and constructed solely in terms of the set of states of
nature. This kind of construction tells us what are all the possible types.
The main disadvantage of the approach is that this description of belief
types does not fit, prima facie, into the classical Bayesian paradigm of a
single agent's belief type��one that is described by one probability measure
over some space. It lacks, therefore, all the advantages that the Bayesian
model offers. For example, it does not enable integration with respect to
belief. In short, the entangled web of beliefs that explicitly describe types in
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interactive situations does not lend itself to making a workable model. For
a long time, it was the explicit description of types that hindered the
analysis of games with incomplete information. A remedy to this drawback
of explicit descriptions can be found only if it is possible to identify each
type with a single _-additive probability measure on some space.

Implicit Description of Beliefs. It was Harsanyi [7] who showed how to
cut the Gordian knot of interacting beliefs, by introducing the notion of
type space. Such spaces provide implicit description of a belief types. With
each point of a type space, called a state (or a state of the world ), are
associated a state of nature (which can be thought of as a specification of
the parameters of a game), as well as a probability measure, for each agent,
on the type space itself. The agent's probability measure is his type in the
state. It describes his beliefs about the states of the world. But since states
of the world are associated with the types of all agents, the agent's type in
a state describes his beliefs about all agents' types. Thus, a type is described
implicitly; it is, essentially, the belief that the agent has about types and the
state of nature.

Advantages and Drawbacks. Type spaces encapsulate the intricacy of
interacting beliefs in one tractable and manageable mathematical object.
Unlike the explicit description of types, the implicit one, as given in a type
space, is the classical Bayesian description of belief; it is given by one
probability distribution. It is little wonder then, that for the last three decades
type spaces have played a major role in economic theory and game theory.

But unlike the explicit description of types, the implicit one is not
expressed directly in terms of the set of states of nature. It is defined in
terms of one particular state space. The notion of ``all possible types'' in
this case is not well defined. Moreover, using type spaces may be restrictive
in the following sense. By modeling a specific game with incomplete
information using a fixed type space we may ``miss'' some types that are not
presented in this type space and can be found only in a larger one that
contains the former. If this is true for any type space, then the concept of
type space is necessarily restrictive.

Universal Spaces. Types defined in type spaces would not suffer from
these drawbacks only if there is a universal type space, one that ``contains''
all type spaces. If such a type space exists then the notion of ``all types'' is
formally defined, while being a type is still defined in terms of type spaces.
The existence of a universal type space guarantees that in principle a game
with incomplete information can be modeled using a type space without
any loss of generality.

To formalize the idea that the universal space ``contains'' all type spaces,
type morphisms are first defined. A type morphism from one type space to
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another is a map that preserves the structure of these spaces; that is, it
preserves the way states of nature and types are associated with states of
the world. A universal space is one into which each type space can be map-
ped by a type morphism in a unique way. It is straightforward to show that
when there exists a universal space it is necessarily unique up to type
isomorphism.

To summarize, the explicit description of belief types provides us, prima
facie, with a complicated object, different from the classical Bayesian
modeling of belief as a probability measure; the implicit description of
types, using type spaces, raises the question of the existence of a universal
type space. Finally one wonders how these two approaches are related.

The topological case. Mertens and Zamir [12] addressed these issues
and studied the relationship between the explicit and the implicit descrip-
tions of types in the special case where the set of states of nature is a
compact topological space. They showed that in this case the two
approaches amount to the same definition of belief types. More specifically,
they proved that the set of all coherent explicit descriptions of types is a
universal type space.

The topological aspect of their work went beyond the compactness of the
set of states of nature. Indeed, all probability measure spaces involved are
topologized to yield compact spaces, and all the functions involved are
assumed to be continuous.

The strategy of the proof in Mertens and Zamir [12] is the following.
Each coherent hierarchy of beliefs��comprising an explicit description��
defines, in a natural way, a finitely additive probability measure over the
set of all coherent hierarchies. In order to make the set of all such
hierarchies into a type space it is required to show that the associated
probability measure can be extended to a _-additive one. This is precisely
where the topological properties of the spaces (in particular compactness)
are used.

The results of Mertens�Zamir have been extended to cover more general
cases. Brandenburger and Dekel [4] showed it is enough to assume that
set of states of nature is a complete, separable metric space. Heifetz [8]
showed it is enough to assume that the set of states nature is a Hausdorff
space, provided beliefs are regular probability measures. Mertens, Sorin,
and Zamir, [11] showed that various other topological assumptions will
do as well. But in all these works the strategy of the proof remains the
same: the use of topology to show that the finitely additive probability
measure associated with a coherent hierarchy can be extended to a
_-additive one.

The Measure Theoretic Case. The question remains whether the equiv-
alence of explicit and implicit descriptions still holds when no topological
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assumptions are made, that is, when all spaces are assumed to be general
measurable space and all functions are assumed to be measurable. No way
has been found to carry out the above mentioned crucial step of the proof
without topological assumptions.

We now know that this cannot be done. In a companion paper, Heifetz
and Samet [10], we construct a measurable space of states of nature and
a coherent hierarchy of beliefs on it, which cannot be extended to a
_-additive probability measure over the set of all coherent hierarchies. Thus
the natural candidate for a universal space, the one that played this role in
all previously studied cases��the space of all coherent hierarchies��is not a
type space at all in the general measure theoretic case. The Mertens�Zamir
program breaks down in this case. The explicit description approach now
seems much less attractive. The attractiveness of the alternative approach,
by type spaces, hinges on the question of whether there exists a universal
space in the measure theoretic case. The answer given by Mertens and
Zamir is not applicable in this case; it can not be the set of all coherent
explicit descriptions.

In this work, we show that a universal space exists, nevertheless, even in
the general measure-theoretic case. The basic idea is surprisingly simple.
The elements of the universal space, like those in Mertens�Zamir [12] are
explicit descriptions. However unlike in Mertens�Zamir [12] these descrip-
tions are not created in accordance with some preconceived notion of
coherence, but are rather found ready made. In each given type space and
a state in it, it is possible to describe explicitly the beliefs of the players in
the state. Their beliefs concerning the state of nature, beliefs about those
beliefs and so on. We show that the set of all explicit descriptions that arise
in this way in type spaces is a universal space. It is easy to associate with
each element of this space a finitely additive measure on it. The extension
of this measure to a _-additive one is done here by using the probability
measure defined on one of the type space that gave rise to this element of
the universal one.

Two Ways to Describe Beliefs Explicitly. The explicit description of
beliefs that an agent has in a state of a type space can be given in two ways.
It is possible to give it as a sequence (or a hierarchy) of probability
measures: one over the states of nature, another over combinations of
states of nature and beliefs about them, and so on. Another way to describe
beliefs in a state would be by specifying the events that contain the
state. We consider only those events, which we call expressions, that
are expressed in terms of nature and p-belief operators similar to those
used in Monderer and Samet [13]. Thus each state in the universal
space can be given in terms of either a hierarchy of measures, or a set of
expressions.
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In the next section we give measure theoretic and notational
preliminaries. The definitions of type spaces, type morphisms and universal
spaces are given in Section 3. We construct the universal space in Section
4, using type descriptions in terms of expressions, and again in Section 5,
with descriptions in terms of hierarchies. We present the two different
constructions, which necessarily lead to the same space, because we find
that their complete equivalence merits our attention. We discuss our results
and compare them to other works in Section 6.

2. PRELIMINARIES

Let X be a measurable space with a _-field 7. We refer to the measurable
sets in 7 as events in X. The set of all _-additive probability measures on
X is denoted by 2(X ). We consider 2(X) as a measurable space with the
_-field �2 that is generated by all sets of the form ; p(E)=[+ | +(E)� p],
for an event E in X and 0� p�1.

For x # X we denote by $x the unique measure in 2(X ) which is concen-
trated at x. That is, $x is the measure + for which +(E)=1 for all events
E in X such that x # E.

For measurable spaces X and Y and a measurable function . : X � Y, we
denote by .̂ the function .̂ : 2(X ) � 2(Y) defined by .̂(+)=+ b .&1 (that
is, for each event F in Y, .̂(+)(F )=+(.&1(F )). It is easy to check that .̂
is a measurable function.

We fix a set I to be the set of players. The set I0=I _ [0] includes all
players and ``0'' which stands for ``nature''. For a family of sets (Xi) i # I0

we
denote by X the product >i # I0

Xi , and by X&i , for i # I0 , the product
>j # I0"[i] X j . If (Yi) i # I0

is another family of sets, and ( fi) i # I0
a family of

functions, fi : Xi � Yi , then the induced function f : X � Y is defined by
f ((xi) i # I0

)=( fi (x i)) i # I0
. We consider any product, finite or infinite, of

measurable spaces as a measurable space with the product _-field.

3. MEASURE-THEORETIC TYPE SPACES

Type spaces. Fix a measurable space S the elements of which are called
states of nature.

Definition 3.1. A type space on S is a pair ( (Ti)i # I0
, (mi) i # I) , or

(T, m) for short, where

(1) T0=S, and Ti , for i # I, is a measurable space.

(2) For each i # I, mi is a measurable function mi : Ti � 2(T ).
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(3) For each i # I and ti # Ti , the marginal of mi (ti) on Ti is $ti
.

The points of T are called states or states of the world. A point of Ti is
called an i-type.

The function mi endows the types with their content��it specifies for each
type ti its beliefs concerning states of the world. The claim that i assesses
a probability at least p to the event E in T is described by the set:

B p
i (E)=[t # T | mi (t i)(E)� p].

Clearly, B p
i (E)=m&1

i (; p(E))_T&i and therefore is measurable.

Remark. Condition (3) in the definition of type spaces expresses
players' self consciousness. Each player is certain of his type. That is, the
mass of the marginal probability of a given player's type on his type space
concentrates on that type. This condition plays a very minor role in this
paper. If we were to omit it only few lines in the paper would change. There
is another way to model self consciousness, by requiring that the measure
mi (ti) associated with an i-type is in 2(T&i) rather than 2(T ). We preferred
the latter for notational advantages.

Type morphisms. Let (T, m) and (T $, m$) be type spaces on S. We
define maps from one space to the other that preserve the structure of the
spaces as given by the functions mi and m$i .

Definition 3.2. Let (.i)i # I0
be an I0 -tuple, of measurable functions

.i : Ti � T $i . The induced function . : T � T $ is called a type morphism if,

(1) .0 is the identity on S;

(2) for each i # I, m$i b .i=.̂ b m i .

The morphism is a type isomorphism if . is an isomorphism (or equiv-
alently, if .i is an isomorphism for each i # I0).

Condition (2) in this definition means that for each i # I and
ti # Ti , .i (ti)=t$i implies that .̂(m i (ti))=m$i (t$i). In other words, using the
definition of .̂, for each i # I, ti # Ti and event E�T $:

m$i (.i (ti))(E)=mi (ti)(.&1(E)). (3.1)

It can be easily verified that condition (2) is equivalent to saying that .
preserves belief operators. That is, for each 0� p�1, i # I and event E�T $

B p
i (.&1(E))=.&1(B p

i (E)). (3.2)
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Definition 3.3. A type space T* on S is universal if for every type
space T on S there is a unique type morphism from T to T*.

Our first main result, which we prove in two different ways in the next
couple of sections, is:

Theorem 3.4. For any measurable space S there exists a universal type
space on S.

Before we discuss this result, we prove the following observation.

Proposition 3.5. There is at most one universal type spaces on S up to
type isomorphism.

Proof. Let T and T $ be universal type spaces on S. Then there is a type
morphism . from T to T $ and also a type morphism .$ from T $ to T.
Thus, .$ b . is a type morphism from T to T. But the identity map from T
to T is also a type morphism, and therefore by the uniqueness of type
morphisms to universal type spaces it follows that .$ b . is the identity on
T, which proves that . is a type isomorphism. K

The basic idea of the construction of the universal type space on S is as
follows. Using the functions mi , in a given type space, we provide for each
i-type a description of his beliefs. We then show that the set of all descrip-
tions forms a universal space. This construction is carried out in two
different ways corresponding to different formalization of the term ``descrip-
tion.'' In the next section we formalize it by a family of events, that we call
expressions, in the type space. In section 5, descriptions are formalized in
terms of a hierarchy of probability distributions.

4. THE UNIVERSAL SPACE IN TERMS OF EXPRESSIONS

Expressions. The building blocks we use in this section to construct the
universal space are formulas that express events defined solely in terms of
nature and beliefs. We call such formulas expressions and define formally
the set E of all expressions as follows:

(1) Each event E in S is an expression.

(2) If e and f are expressions then ce (read: the complement of e)
and (e & f ) are expressions.

(3) If e is an expression, then B p
i (e) for i # I and 0� p�1, is an

expression.
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An i-expression, for i # I, is one obtained by applying set theoretic opera-
tions, only, to expressions of the form B p

i (e). A 0-expression is an event E
in S. The set of all i-expressions, for i # I0 , is denoted by Ei .

Descriptions. Obviously, for any given type space T, every expression e
can be viewed as an event in T (with the caveat that 0-expressions E are
identified with E_T&0). Thus with some abuse of notation, but no
ambiguity, we will speak about event e in T where e is an expression. We
say that an expression e holds in t # T if t belongs to the event e in T. Let
D(t) the set of all expressions that hold in t. Denote by di (t) the set of all
i-expressions that hold in t, i.e., di (t)=D(t) & Ei . Clearly, if for t and t$ in
T, t i=t$i , then di (t)=di (t$). Thus d i (t) depends only on ti and we can
consider di as a function di : Ti � 2Ei. We denote by d0 the identity on S.
By convention, d=(di) i # I0

, is the induced function from T to >i # I0
2Ei. We

call di (ti) the i-description of ti . Likewise, d(t) is the description of t. di and
d are the i-description map and description map, respectively.

Proposition 4.1. Type morphisms preserve description maps.

Proof. To show that descriptions are preserved we show first that for
every type morphism . : T � T $, D(.(t))=D(t) for every t # T, i.e., that for
every expression e # E, t # e in T iff .(t) # e in T $. This is equivalent to
saying that .&1 preserves expressions. That is, .&1(e) for event e in T $ is
the event e in T. Indeed, .&1 preserves 0-expressions since .0 is the iden-
tity on nature. If e and f are preserved by .&1 then so are ce and (e & f ).
Also by (3.1),

m$i (.i (t i))(e)=mi (ti (.&1(e))=mi (ti)(e),

so t belongs to B p
i (e) in T iff .(t) belongs to B p

i (e) in T $, as required. Since
for each i # I0 , di (t)=D(t) & Ei , it is obvious that i-descriptions maps are
also preserved by type morphisms. K

The universal Type Space. We define now a type space T* on S, by set-
ting T 0*=S and letting T i*, for each i # I, to be the set of all i-descriptions
that appear in some type space over S.

We define for each expression e a subset [e] of T* as follows. If e is a
0-expression E, [e] is E in T*, i.e.,

[e]=[t* # T* | t0* # E].

For every i # I and i-expression e # Ei ,

[e]=[t* # T* | e # ti*].
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To extend the definition to expressions in E, it is enough to define for
e, f # E, [ce]=c[e] and [e & f ]=[e] & [ f ].

We let the _-field of T i* , for i # I, be the one generated by sets of the
form [ti* | e # t i*]. Thus, the product _-field of T* is the one generated by
the field [E]=[[e] | e # E].

Notice that by the definition of [e], d &1([e])=e for each i-expression.
Since such expressions generate E, we record this result and conclude:

Lemma 4.2. For each type space T, the description map d on T satisfies
d &1([e])=e for each expression e # E. In particular, d is measurable.

The following proposition helps to define the functions mi* on T*.

Proposition 4.3. There exists, for each i # I, a function mi* : T i* �
2(T*) such that for each type space T with description function d, and
ti # Ti ,

mi*(d i (ti))=mi (ti) b d &1. (4.1)

Proof. For a given ti* fix a space type T and an i-type ti in Ti , such that
di (t i)=ti*. Define mi*(ti*)=mi (ti) b d &1. Since d is measurable, mi*(ti*) is
well defined. In particular, by Lemma 4.2,

mi*(t i*)([e])=m i (ti)(d &1([e]))=mi (t i)(e). (4.2)

We show now that the definition is independent of the particular type
space T and type t i . Note that mi (ti)(e)=max[ p | ti # B p

i (e)]. The right-
hand side of this expression is, by definition of ti*, max[ p | B p

i (e) # t i*].
Thus by (4.2),

mi*(t i*)([e])=max[ p | B p
i (e) # ti*]. (4.3)

By (4.3), mi*(ti*) is determined on the generating field [E] independ-
ently of T and ti and therefore it is independent of them. Now, (4.1) holds
by the definition of mi*. K

Proposition 4.4. The space (T*, m*) is a type space on S.

To prove this proposition we use the following lemma, which plays the
central measure theoretic role in the construction of the universal space in
this section and in the next one.
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Lemma 4.5. Let (X, 7) be a measurable space with a _-field 7. Let F

be a field on X that generates 7, and F2 the _-field on 2(X ) generated by
sets of the form

[; p(E) | E # F, 0� p�1].

Then, F2=72 .

Proof. Denote by F$ be the set of all events F in X, such that
; p(F ) # F2 for all 0� p�1. We prove that F$ contains 7, which shows
that F2 contains all the generators of 72 . Since F$ contains the field F

that generates 7, it is enough to show that F$ is a monotone class (See,
e.g., Dudley [5, Theorem 4.4.2]). That is, we have to show that if (En)�

n=1

is a decreasing (increasing) sequence of events in F$ then ��
n=1 En # F$

(��
n=1 En # F$).

If (En)�
n=1 is decreasing, then for any + # 2(X), (+(En))�

n=1 is a decreasing
sequence converging to +(��

n=1 En). Therefore, by _-additivity,

; p \ ,
�

n=1

En+= .
�

n=1

; p(En) # F2 .

If (En)�
n=1 is increasing then for any + # 2(X), (+(En))�

n=1 is an increasing
sequence converging to +(��

n=1 En). In this case, _-additivity implies

; p \ .
�

n=1

En+= ,
�

m=1

.
�

n=1

; p&1�m(En) # F2 . K

Proof of Proposition 4.4. We have to prove that mi* is measurable. By
Lemma 4.5 the set of events [; p([e]) | e # E] generates the _-field of
2(T*). Hence, it is enough to prove that (mi*)&1 (; p([e]) is measurable in
T i*. That is, we have to show that [t i* | mi*(ti*)([e])� p] is measurable.
But by (4.3) this set is precisely the subset B p

i (e) in T i* which is measurable
by definition.

We show now that the marginal of mi*(t i*) on T i* is $t*i
. Let T be a

type space with di (t i)=ti* for some t i # Ti . Suppose that for some e # Ei ,
[ti*]_T*&i �[e]. Then [ti]_T&i �e in T, and therefore mi (t i)(e)=1.
By (4.2) mi*(t i*)([e])=1 as required. K

Lemma 4.6. For every expression e # E, [e]=e in T*.

Proof. Since the equality holds for 0-expressions, and [ ]* preserves set
theoretic operations, it is enough to show that it holds for expressions
B p

i ( f ), whenever it holds for f. But using (4.3) we have,
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[B p
i ( f )]=[t* # T* | B p

i ( f ) # t i*]=[t* # T* | max[q | Bq
i ( f ) # t i*]� p]

=[t* # T* | mi*(t i*)([ f ])� p]

=[t* # T* | mi*(t i*)( f )� p]=B p
i ( f ). K

Lemma 4.7. The description map d : T* � T* is the identity.

Proof. Let t* be in T*, i # I and e # Ei . Then, by Lemma 4.6,

di (t i*)=[e | t* # e]=[e | t* # [e]]=[e | e # ti*]=t i*. K

Theorem 4.8. The space (T*, m*) is a universal type space on S.

Proof. For each type space (T, m) the description map d : T � T* is
measurable (Lemma 4.2) and satisfies (4.1). Therefore it is a type
morphism. We show that this is the unique type morphism from T to T*.
Suppose that . is a type morphism from T to T*. Then for each i # I and
ti # Ti , di (.i (t i))=d i (t i), by Proposition 4.1. But by Lemma 4.7, di (.i (t i))
=.(ti). Thus .i=di . K

5. THE UNIVERSAL TYPE SPACE IN TERMS OF HIERARCHIES

In this section we offer an alternative construction of the universal space,
by defining the description of players' types in terms of hierarchies of beliefs
rather than expressions.

Hierarchies. We start by defining spaces of hierarchies H k
i for each

k�0 and i # I0 . For every k�0, H k
0=S, and for every i # I, H 0

i is a
singleton. As usual, for each k�0 we denote Hk=>i # I0

H k
i . We define

inductively:

H k+1
i =H k

i _2(Hk)=H 0
i _ `

k

l=0

2(H l).

The space of i-hierarchies for player i # I is:

Hi=H 0
i _ `

�

l=0

2(H l).

Thus, Hi is the space of all potential hierarchies of player i 's beliefs: about
nature, about nature and the players' beliefs about nature, and so on.
Denoting for nature, H0=S, we define H=> i # I0

Hi as the hierarchies
space. Denote by ?k

i is the projection from Hi to H k
i . The induced map

?k=(?k
i ) i # I0

is the projection from H to H k.
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Descriptions. Given a type space T, we define an i-description map
hi : T � Hi , for each i # I0 . The induced map h=(h i) i # I0

from T to H, that
associates with each t # T the corresponding hierarchy of beliefs for each i,
is the description map. The hierarchy hi (ti) is the i-description of ti and h(t)
is the description of t.

To define hi we define first maps hk
i : Ti � H k

i for k�0 and i # I0 . For
i=0 and every k�0, let hk

i be the identity (on S). For i # I, h0
i is uniquely

defined, since H 0
i is a singleton. Inductively, define

hk+1
i (t i)(hk

i (t i), mi (t i) b (hk)&1)=(h0
i (ti), mi (ti) b (h0)&1, ..., m i (ti) b (hk)&1),

where, by convention, hk=(hk
i ) i # I0

. Now, define hi , for each i # I, as the
unique function from T to Hi that satisfies for all k�0, hk

i =?k
i b hi . That

is,

hi (t i)=(h0
i (ti), mi (t i) b (h0)&1, ..., mi (ti) b (hk)&1, ...).

The definition of h is completed by letting h0 to be the identity on S.

Proposition 5.1. Type morphisms preserve descriptions and i-descriptions.

Proof. Let . : T � T $ be a type morphism. We have to show that
h$i (.i (t i))=hi (ti) for all ti # Ti and i # I0 . For i=0 this is immediate, since
.0 , hk

0 , h0 , h$k
0 and h$0 are all the identity on nature. For i # I,

h$0
i (.i (ti))=h0

i (ti) because H 0
i is a singleton. Inductively, if we have already

shown that h$k
i (.i (t i))=hk

i (ti) for every ti # Ti , i.e., that h$k
i b .i=hk

i for
every i # I0 , then, using (3.1)

m$i (.i (ti)) b (h$k)&1=m i (ti) b .&1(h$k)&1

=mi (ti) b (h$k b .)&1=mi (t i) b (hk)&1

and therefore

h$k+1
i (.i (ti))=(h$k

i (.i (t i)), m$i (.i (t i)) b (h$k)&1)

=(hi (ti), mi (ti) b (hk)&1)=hk+1
i (ti)

as required. K

The Universal Type Space. We define now the type space T* by setting
T 0*=S and T i* to be the set of all descriptions in H i , that is, all hierarchies
ti* # Hi for which ti*=h i (ti) for some ti # Ti in some type space T
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over S. The _-field of T i* is the one inherited from Hi . We define
mi*: T i* � 2(T*) by

mi*(t i*)=mi (ti) b h&1. (5.1)

Clearly m i* is thus a _-additive probability measure.

Proposition 5.2. ( (T i*) i # I0
, (mi*) i # I) is a type space on S.

Proof. In order to show that T* is a type space on S we have to prove
first that mi* is measurable for each i. For t i* # T i* let t i be the i-type
chosen to define mi*(ti*). Consider the probability measure induced by
mi*(t i*) on H k, namely, m i*(ti*) b (?k)&1. Using the identity hk=?k b h we
conclude:

mi*(t i*) b (?k)&1=mi (ti) b h&1 b (?k)&1

=mi (ti) b (hk)&1

=(hi (ti))k+1

=(ti*)k+1. (5.3)

Thus for each measurable E in H,

(mi*)&1 (; p((?k)&1 (E)))=[ti* | mi*(t i*)((?k)&1 (E))� p]

=[ti* | (t i*)k+1 ((?k)&1 (E))� p]. (5.4)

The last set is of course a measurable subset of Hi , as it is defined by an
event in H k+1

i . The field of events (?k)&1(E) generates the _-field on H and
hence, by Lemma 4.5, sets of the form ; p((?k)&1 (E)) generate 2(H). Thus,
by (5.4), mi* is measurable.

We have to show that the marginal of mi*(t i*) on T i* is $ti*
. Indeed,

suppose that ti* # E for some event E in T i*. Then

mi*(t i*)(E_T*&i)=mi (ti)(h&1(E_T*&i))=mi (ti)(h&1
i (E)_T&i)).

The last term is 1, since ti # h&1
i (E). K

Proposition 5.3. For every type space T, the description map h : T � T*
is a type morphism.

Proof. The functions hi , i # I0 are measurable as functions to H i . Since
the range of hi is T i* it is also measurable as a function to T i*. Next,
observe that by (5.3) the value of the measure mi*(t i*) on the field of events
(?k)&1 (E), that generates the _-field on H, is independent of the specific
type ti chosen to define mi*(ti*). That is, on that field mi*(t i*) coincides
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with mi (ti) h&1, for any t i such that hi (ti)=ti*. Since these two measures
coincide on a generating field they are equal. Thus (5.1) holds for any ti

such that hi (ti)=t i* , which guarantees that h is a type morphism. K

Lemma 5.4. The hierarchy description maps hi : T* � T* are the identity
maps.

Proof. It is enough to show that for each k and i # I, the function hk
i on

T* is the projection on H k
i . We prove this by induction on k. It is trivially

true for k=0. Suppose we proved it for all integers up to k. This implies
that hk=?k. By definition (hi (ti*))k+1=mi*(ti*)(hk)&1. By the induction
hypothesis, we can substitute in the last expression ?k for hk and conclude
that (hi (t i*))k+1=(t i*)k+1. K

Theorem 5.5. ( (T i*) i # I0
, (m i*) i # I) is a universal type space.

Proof. Using Propositions 5.1, 5.3 and Lemma 5.4, the proof is the
same as in Theorem 4.8 (with hi replacing di along the proof ). K

6. DISCUSSION

Belief Spaces. A type space as defined here is a product of the set of
states of nature, S, and i-type spaces Ti for each player i. Harsanyi [1] and
Mertens, Sorin, and Zamir [11] also define type spaces as products.
Mertens and Zamir [12] adopted a different kind of spaces which they
called belief spaces. A belief space is a triple, (T, 3, (mi) i # I) , where T is a
measurable state space, and 3 : T � S, and mi : T � 2(T) are all
measurable functions. Condition (3) in Definition 3.1 is replaced by the
requirement that the mass of the probability measure mi (t) is concentrated
on the set [t$ | mi (t$)=mi (t)]. It is obvious that the definition of belief
spaces is more comprehensive, since product type spaces can be viewed as
a special case of them. Belief morphisms on belief spaces are defined in the
obvious way as well as universal belief spaces. Despite the seeming more
generality of belief spaces, they do not give rise to a different definition of
types. Going through the proof of existence given here, it is easy to see how
the same proof, with necessary minor changes, proves the existence of the
universal belief space. Moreover, this space has the form of a product
space, and hence the universal belief space and the universal type space are
one and the same space.

Belief Modeled by Set Functions. Beliefs are modeled here as _-additive
probability measures. But the only properties of _-additivity that we used
in the proof are monotonicity (with respect to set inclusion) and continuity
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(with respect to increasing and decreasing sequences of events). Specifically
we used these properties in Lemma 4.5.

Redefine now the set 2(X) to be the set of all monotonic, continuous set
functions, + on the _-field on X with values in [0, 1], and such that
+(<)=0 and +(X)=1 (rather than the set of _-additive probability
measures). The previous sections can be read now, verbatim, as a proof of
the existence of a universal type space, when belief is represented by
monotonic, continuous set functions. Such functions, as representation of
belief, were studied by Shafer [15] and Schmeidler [14].

Knowledge Spaces. Call a set function # on the _-field of a space X a
carrier function, if there exists an event E in X, called the carrier of #, such
that for each event F, #(F )=1 when E�F and #(F )=0 otherwise. Suppose
we redefine again 2(X) to be the set of all carrier functions on X. The
definitions of type spaces (and belief spaces) can be applied now to beliefs
represented by carrier set functions. If we add also the requirement that
each i-type ti (or t for a belief space) is an element of the carrier of mi (t i)
(or mi (t) for a belief space) then type spaces and belief spaces are just the
well known partition spaces where the carriers are the elements of the
partition. Such spaces are used to model knowledge.

Carrier functions are monotonic and continuous with respect to decreas-
ing sequences of events, but not with respect to increasing sequences. This
lack of continuity is the property of knowledge by which one can fail to
know any of the statements in a sequence of statements which are less and
less informative, and yet know their infinite disjunction. Thus our proof of
the existence of a universal space cannot be applied to knowledge spaces.
In a set theoretic framework Heifetz and Samet [9] showed, that indeed
there is no universal knowledge space.

Coherence. The main feature of all the universal spaces studied up till
now in the literature is that of coherence. The notion of coherence is mostly
known in its hierarchical version. The space of coherent hierarchies of
beliefs is the maximal subset C of the set of all potential hierarchies H
(described in Section 5) each element of which satisfies the following three
requirements. (1) A player's higher order beliefs should agree with his
lower order beliefs. (2) Each player is certain about his beliefs. (3) Each
player is certain that C holds. This notion of coherence appears in
Armbruster and Bo� ge [1], Bo� ge and Eisele [3], and in Mertens and
Zamir [12]. In the latter work it was proved that C is indeed a universal
space under suitable topological assumptions. The notion of coherence
continued, in different equivalent forms, to be the main tool for the
construction of the universal type space in all the works that followed.

The notion of coherence can be applied to description by expressions as
well. Here we have to give conditions on subsets of E that make them
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coherent. These conditions belong to several categories. (1) Set theoretic
conditions. For example, the expressions e & f and ce cannot be part of
the same coherent description. (2) Conditions reflecting the structure of S.
Thus, if E and F are two disjoint 0-expressions, i.e., disjoint events in S,
then they cannot be elements in the same coherent description. (3) Condi-
tions concerning the probabilistic properties of the i-expressions B p

i (e). For
example, if p>q then a coherent description should not include both B p

i (e)
and cBq

i (e). (4) Conditions concerning the _-additivity of beliefs. For
instance, if B p

i (e) belong to a description for every p<q, then Bq
i (e) should

belong to the description as well. When such conditions are properly
defined, a coherent description is a maximal coherent subset of E. There is
a natural one-to-one correspondence of coherent descriptions by
hierarchies and coherent descriptions by expressions.

One way to define coherence of descriptions with expressions is by
considering expressions as formulas in a formal language. The previously
described conditions can be formulated as a deductive system for this
language, that is as a set of axioms and inference rules. A coherent set of
expressions is defined now as a (deductively) consistent set of formulas.
Such deductive systems were described by Fagin and Halpern [6] and
Auman [2]. The languages in these works are richer than needed for the
expressions we use here. Both include knowledge operators in addition to
the belief operators. In Fagin and Halpern [6] they allow also expressions
that describe linear combinations of probabilities. Aumann [2] is con-
structing explicitly the set of all coherent descriptions and shows how to
associate with each description and player a probability measure over this
space. It is doubtful, however, that his set of coherent descriptions is a
universal space for any class of type spaces since, as was shown in Heifetz
and Samet [9] there is no universal knowledge space. Furthermore, both
Fagin and Halpern and Aumann use finitary formulas, in which the
_-additivity conditions of category (4) above cannot be expressed.

The use of a finitary deductive system to define coherence, limits the kind
of spaces of states of nature S that can be handled. This is so because of
the compactness property of such deductive systems, by which a set of
formulas is consistent whenever any of its finite subsets is. By this property
the set [E] is a base for a topology on the space of coherent descriptions
with which it is compact. In particular it also implies that the set [E0] is
a base for a topology on the space of coherent descriptions S with which
S is compact. Defining coherence of descriptions by expressions, without
the use of a finitary deductive system, as well as defining coherence of
descriptions by hierarchies, avoid any such restrictions on the space of
nature states S.

Coherence plays no role in the current paper. It is easy to show that each
element of the universal space, presented either as a hierarchy of beliefs or
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as a set of expressions, is coherent. But the universal space does not consist
of all coherent descriptions. The failure of a coherent description to serve
as a description of a type is demonstrated in Heifetz and Samet [10]. Thus
the standard way of proving the existence of a universal space, namely by
showing that the space of all coherent description is the desired space,
could not possibly work in the general measure-theoretic framework.
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