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Bertrand competition with subcontracting 

Morton I. Kamien* 

Lode Li** 

and 

Dov Samet*** 

We investigate how the possibility of subsequently subcontracting production to each other 
influences rivals' initial competition for a contract or a market as a two-stage game. In its 
first stage, the two firms engage in price competition to supply a contract or a market. In the 
second stage, the firms may subcontract production to each other. It is supposed that the 
firms produce the identical product with the same strictly convex cost function. The incentive 
for subcontracting comesfrom the strictly convex production costs. A firm is obliged to supply 
the entire quantity demanded at its quoted price. Our analysis discloses that if the winner 
of the game's first stage determines the terms of the subcontract in its second stage, there 
exists a unique, subgame perfect Nash equilibrium (SPNE) in pure strategies in which the 
firms bid the same price in the first stage and both receive zero profits. On the other hand, 
if the loser of the game's first stage sets the terms of the subcontract in the second stage, 
there exists a unique SPNE in pure strategies in which the firms bid the same price in the 
first stage and both receive positive profits. The presence of the possibility of subcontracting 
supports a unique SPNE in pure strategies, even though no actual subcontracting may occur. 
The SPNE price is below the socially-optimal price in the first case and is above it in the 
second case. We also consider other modes of sharing the gains from subcontracting between 
the two firms, such as the Nash bargaining solution. 

1. Introduction 

* Subcontracting is a commonly used method of reducing production or service costs. 
Marine insurance companies compete for contracts to insure the hulls of fishing vessel fleets, 
and the winning bidder then sells off parts of the contract to the very rivals against whom 
he bid. Small architectural firms engage in a similar practice after competing for a major 
design contract. The same is true for securities underwriters. Subcontracting also occurs 
among suppliers to the government. Lockheed is now building wing components for C- 17 
Air Force transport planes under a $1.3 billion subcontract from the McDonnell-Douglas 
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Corporation. In a recent dispute, Hughes Electronics alleged that had it, instead of IBM, 
been awarded the contract to supply the FAA with a new computer system, it would have 
purchased IBM computers to fulfill the contract. In the manufacturing sectors, especially 
in the electronics and automobile industries, subcontracting for the supply of components 
is extensive. According to Ikeda (1989), General Motors and Daimler-Benz each have as 
many as 10,000 subcontractors. In the Japanese automobile industry, about 75% of the final 
product is produced by subcontractors; in the United States and Europe, the figure is about 
50%. Indeed, in Japan, subcontractors of the various automobile manufacturers are organized 
into tiers, with lower-tier subcontractors supplying higher-tier subcontractors. In the elec- 
tronics industry, Apple Computer subcontracts both for the components and the assembly 
of its final products, as do its competitors. 

Subcontracting serves to reduce the costs of supplying a product or a service. For a 
manufacturer, the opportunity to subcontract enables him to maintain a smaller productive 
capacity than he would have to otherwise. Expanding capacity to avoid subcontracting may 
involve increasing costs. For an insurance company, the opportunity to subcontract may 
lower its operating costs by enabling it to reduce its reserves against bad outcomes. The 
presence of subcontracting also implies that the purchaser of the final product is unconcerned 
about how the supplier produces the contracted quantity to be delivered, as long as the 
product meets the specifications. 

It should be noted that while we recognize that subcontracting is commonly for com- 
ponents rather than for the entire product, we assume for the sake of simplicity that it is 
for that latter in our subsequent analysis. The main point is that subcontracting serves to 
reduce costs. We also suppose that the winning bidder is required to supply the entire 
quantity demanded. This is a natural assumption in the case of competition for a contract, 
and in the case of competition for a market, it implies severely high costs for outages. 

In both the automobile and the electronics industries, subcontracts are awarded on the 
basis of competitive bids. However, rival subcontractors, in turn, subcontract production 
among each other after a subcontract has been awarded to one of them. Our focus here is 
on how the firms' initial bids for a contract or a market are influenced by their foresight of 
the possibility of subsequent subcontracting. Specifically, we are interested in the strategic 
relationship between the respective roles played by the winner and loser of the contract, or 
market, in setting the subcontracting terms (i.e., how much will be subcontracted and at 
what price) and his rivals' initial bids. We are also interested in the social welfare implications 
of subcontracting among rivals. Does this practice lead to higher or lower prices than are 
socially optimal? 

We address these issues in terms of a two-stage game that involves two firms producing 
the identical product according to an identical, increasing, strictly convex cost function. It 
is the strict convexity of the cost function that creates the incentive for subcontracting, as 
total costs are reduced when production is split between the two firms. In the game's first 
stage, each firm submits a price at which it is willing to supply the entire quantity demanded, 
which is given by the product's demand function. Bidding for a contract may be regarded 
as a special case in which the demand function is vertical at a positive quantity, with, a 
reservation price above which the quantity demanded is zero. In the event of a tied price, 
each firm supplies one-half of the quantity demanded at that price, or one firm is selected 
to supply the entire quantity demanded by the toss of a fair coin. The former tie-breaking 
rule may be more appropriate when the firms compete for a market, and the latter may be 
more appropriate if they compete for a contract. Thus, the firms are engaged in Bertrand 
competition in the game's first stage. 

In its second stage, the firms may subcontract production to each other. There are any 
number of ways that the amount to be subcontracted and the price to be paid can be 
determined. We focus on two polar cases. In the first case, the winner of the game's first 
stage acts as a Stackelberg leader in its second stage. That is, he determines the quantity to 
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be subcontracted and the price to be paid to the loser to maximize his own profit subject 
to the loser's opportunity cost, which is zero. In the second case, the loser of the game's 
first stage is the Stackelberg leader in its second stage. That is, he chooses the quantity to 
be subcontracted to the winner and its price to maximize his own profit subject to the 
winner's opportunity cost, which is the profit the winner can realize if he produces the 
entire quantity demanded. We also indicate what happens if the terms of the subcontract 
are determined by other means, such as the Nash bargaining solution. 

We employ the subgame perfect Nash equilibrium (SPNE) as our solution concept. 
Thus, we use our analysis of the game's second stage to analyze its first stage. Our analysis 
discloses that for a downward-sloping demand function, each version of the two-stage game 
exhibits a unique, pure-strategy SPNE in which both firms choose the identical price in the 
first stage. Whether or not subcontracting occurs depends upon which tie-breaking rule is 
used. Subcontracting can occur in bidding for a contract under either tie-breaking rule. 

The equilibrium price when the winner of the game's first stage is assumed to be the 
Stackelberg leader in its second stage equals the average cost of producing the first one-half 
of the quantity demanded, and both firms receive zero profits. On the other hand, if the 
loser of the game's first stage is the Stackelberg leader in its second stage, the equilibrium 
price equals the average cost of producing the second one-half of the entire quantity de- 
manded, and both firms receive positive profits. The intuitive reason for this difference is 
that in equilibrium, the winner's and the loser's profits must be equal. If the winner were 
to receive more than the loser, each firm would have an incentive to lower its bid to become 
the winner. Thus, if the loser of the first stage is to receive zero profits, the price in the first 
stage must be bid down to the level at which the winner's profit also equals zero. However, 
if the loser of the first stage gets to set the terms of the subcontract in the second stage, then 
he is assured a positive profit, and the price in the first stage must be bid down only to the 
level that assures both firms that profit level. The interesting result here is that it is advan- 
tageous to both firms to let the loser of the first stage have the power to determine the 
subcontracting terms in the second stage. Yet this arrangement does not, in general, yield 
the maximum profit that could be realized from complete cooperation-the monopoly 
profit of a single firm with two identical production facilities. The cooperative profit level 
is achievable if the monopoly price is between the SPNE prices that emerge in the two-polar 
case, in which either the first-stage winner or the first-stage loser sets the subcontracting 
terms, and its attainment requires the firms to share power in setting the subcontract terms. 
This is demonstrated by an example. Our analysis of mixed-strategy possibilities indicates 
that no SPNE other than the pure SPNE exists. 

For the duopoly case, a price equal to the marginal cost of producing one-half of the 
quantity demanded maximizes the consumer surplus plus the producer surplus. The SPNE 
price that occurs if the winner of the first stage sets the subcontract price is below the socially- 
optimal price; it is above the socially-optimal price if the loser of the first stage determines 
the terms of the subcontract. However, there does exist a means of sharing the gains from 
subcontracting such that the SPNE price is socially optimal. In particular, if the firms share 
the gains from subcontracting equally and if the cost function is quadratic, then the equi- 
librium price is socially optimal. 

Finally, our analysis of competing for a contract to produce a fixed quantity discloses 
that if the loser of the first stage is the leader in the second stage, there exists an SPNE in 
which there is a single winner in the first stage, and subcontracting occurs even if ties are 
resolved by equal sharing of the market. 

We are unaware of any previous work on Bertrand competition with subcontracting. 
The most closely related work appears to be that dealing with price competition in the 
presence of convex costs and/or capacity constraints, or Bertrand-Edgeworth competition; 
summaries of this work are provided by Allen and Hellwig (1986), Dixon (1984), and 
Maskin (1986). In this work, only the existence of a mixed-strategy Nash equilibrium is 
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established, whereas here the potential for subcontracting allows the existence of pure-strategy 
SPNE. This result is obtained even though there may be no actual subcontracting at the 
SPNE. Stahl (1988), in a paper dealing with price competition for inputs, also showed the 
existence of a pure-strategy Nash equilibria. 

In Section 2, we present the model for the case of competition for a market. In Sec- 
tion 3, the case of competition for a fixed quantity is presented. A brief summary follows 
in Section 4. 

2. Competition to supply a market 

* We posit two firms that produce an identical, divisible product, the demand function 
for which is Q(P), with the same cost function, C(Q). The assumed properties of Q(P) 
and C(Q) are given below. 

Assumption 1. The demand function, Q(P), is defined for P > 0 and is nonnegative, dif- 
ferentiable, and downward-sloping (Q'(P) < 0). Also, lim Q(P) = 0. 

P- oo 

Assumption 2. The cost function, C(Q), is defined for Q > 0 and is differentiable, strictly 
increasing (C'(Q) > 0), and strictly convex (C"(Q) > 0). Also, C(0) = 0. 

Assumption 3. Production is profitable; that is, Q(C'(O)) > O. 

The game involves two stages. In its first stage, the two firms choose prices and compete 
for the production of the total quantity demanded at that price. The firm with the lowest 
price wins and is obliged to provide the entire quantity demanded at that price. In the event 
of a tie, each firm produces one-half of the total quantity demanded at that price, or one 
firm is chosen at random to supply the entire market demand. In the second stage of the 
game, we allow subcontracting to take place. The cost reduction realizable through sub- 
contracting equals C(Q) - 2C(Q/2), the difference between the cost of producing the 
entire quantity in one facility and the social cost of splitting its production between two 
facilities. One of the firms is a Stackelberg leader, who offers the other a quantity to produce 
and the unit price to be paid. We begin by focusing on two extreme versions of the game. 
In the first, game rw, the leader is the firm that won in the first stage. In the second version, 
game r,, the loser of the first stage is the second-stage leader. We also assume the absence 
of uncertainty regarding the cost functions or the demand function and that all strategic 
aspects of the game are common knowledge. 

As we seek a SPNE in pure strategies, we begin with the second stage. In game rw, the 
leader chooses the quantity to subcontract to the loser, q, and the price to offer, p, to solve 

max PQ(P) -pq- C(Q(P) - q) (1) 
P,q 

subject to pq - C(q) > 0 (2a) 

and 

p, q 0 . (2b) 

P and Q(P) are fixed from the first stage, and Q(P) - q is the amount to be produced by 
the winner. Constraint (2a) represents the loser's profit from subcontracting and cannot be 
driven below zero, as that is his opportunity cost. For q > 0, Constraint (2a) can be rewritten 
as 

p >C(q)/q. (3) 

Since the objective function, (1), is strictly decreasing in p, this price is set equal to its 
lowest value, namely, p = C(q)/q. Thus, the maximum is attained by solving 
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max PQ(P) - C(q) - C(Q(P) - q) 
q 

subject to q > 0, (4) 

which, upon being differentiated with respect to q, yields 

C'(q) = C'(Q(P)- q). (5) 

Since the objective function in (4) is strictly concave in q, the first-order condition is 
a necessary and sufficient condition for a maximum. As the cost function is strictly convex, 
(5) implies that q = Q(P)/2. Thus, the winner subcontracts one-half of the total output at 
the unit price, p = C(Q(P)/2)/(Q(P)/2), the average cost of producing the first one-half 
of the total quantity. The payoffs to the winner and loser, respectively, as a function of the 
winning price, P, are 

W1(P) = PQ(P) - 2C(Q(P)/2) (6) 

and 

L1(P) = 0. (7) 

Thus, the winner realizes the entire benefit, C(Q(P)) - 2C(Q(P)/ 2), of subcontracting in 
this case. 

If the first stage ends with a tie and the tie-breaking rule is equal sharing of the total 
quantity to be supplied, then each player realizes PQ(P)/2 - C(Q(P)/2). If the tie is 
broken by a toss of a fair coin, then the payoff to each player is .5 W1 (P) + .5L1 (P). Since 
these two quantities are the same, we conclude that under either rule 

T(P) = .5 W (P) + .5L1(P). (8) 

Before proceeding to the analysis of the game's first stage, we present the following 
result. 

Lemma 1. There exists a unique price, P1, such that P1 = C(Q(P1)/2)/(Q(Pi)/2), 
W1(P) < 0 for each P < P1, W1(P) > 0 for each P > P1, and dW1(P)/dP > 0 for 
P < PI. 

Proof Let P be the lowest price for which Q(P) = 0. If Q is positive for all P, then P = oo. 
For P < P, Q(P) > 0, and (6) can be rewritten as 

W,(P) = Q[P - C(Q/2)/(Q/2)], (9) 

where we write Q for Q(P). 
Consider the function 

G(P) = P- C(Q/2)/(Q/2). (10) 

Differentiating with respect to P, we get 

G'(P) = 1 - Q'[C'(Q/2) - C(Q/2)/(Q/2)]/Q. (11) 

As C is strictly convex and Q'(P) < O, G'(P) > 0 for all P. Also, G(0) < 0, and 
lim G(P) = P - C'(O) > 0 by Assumptions 2 and 3. Thus, there exists a P1, 0 < P1 < P, 
P- P 
such that G(Pi) = 0, G(P) < 0 for each P < P1, and G(P) > 0 for P > P1. From (9), it 
follows that WI(PI) = 0 and W1(P) < 0 for each P < P1, while W (P) > 0 for P > P1. 
From (10), we have that P1 = C(Q(Pi)/2)/(Q(Pi)/2). Differentiating W1(P) gives 
dW,(P)/dP = Q + Q'[P - C'(Q/2)]. But, P - C'(Q/2) < G(P), and therefore for 
P < P1, P - C'(Q/2) < 0, which, together with Q'(P) < 0, shows that for such P, d WV (P)/ 
dP> O. Clearly the properties of P1 imply that there can be at most one such point. Q.E.D. 
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Proposition 1. In game r,, there exists a unique first-stage SPNE in pure strategies, in which 
both firms bid the price PI, where PI = C(Q(P )/2)/(Q(P1)/2), the average cost of pro- 
ducing the first one-half of the total quantity demanded, Q(P1). Each firm produces one- 
half of the total quantity demanded at that price, and they both receive zero profits. 

Proof. Note that T(P) = W1 (P)/2. Let P be the lowest price offered in the first stage. 
Suppose that P < PI; then, both T(P) and W(P) are negative, and therefore, a firm that 
offered that price would be better off bidding a higher price and being the loser. If P > P1, 
then either there is a losing firm which makes zero profits, or there is a tie, in which case 
both firms receive T(P). In the first case, the loser makes himself better off by choosing a 
price P such that PI < P < P, becoming the winner, and obtaining W (P) > 0, since 
d W( P1 )/ dP(Pi ) > 0. In the second case, one of the firms could bid a price P - e for small 
enough e > 0 that satisfies W1(P - ) > W1(P)/2 = T(P). Thus, P = PI. If there is a 
winner in the game, he can gain by choosing a winning price, P > PI, that is close enough 
to PI and getting WI (P) > WI (P). So, the only possible SPNE is one in which both firms 
offer the price PI. It is easy to see that this is indeed a SPNE. Q.E.D. 

We turn next to game rI in which the loser of the game's first stage is the Stackelberg 
leader in its second stage. The loser determines the subcontract terms in the second stage 
by solving the problem 

max pq - C(q) (12) 
P,q 

subject to PQ(P) - pq - C(Q(P) - q) > PQ(P) - C(Q(P)) (13a) 

and 

p, q >0. (13b) 

Constraint (13a) indicates that the winner's profit cannot be reduced below the level that 
he could realize by supplying the total quantity demanded alone. For q > 0, it can be 
rewritten as 

p < [C(Q(P)) - C(Q(P) - q)]/q. (14) 

As the objective function, (12), increases with p, the subcontract price is set at its upper 
limit. Thus, (12), (13a), and (13b) reduce to 

max C(Q(P))- C(Q(P)- q)- C(q) 
q 

subject to q 2 0, (15) 

upon substituting for p from (14). Taking the derivative of ( 15) with respect to q and setting 
it equal to zero yields the intuitive result that q = Q(P)/2. Thus, the payoffs to the winner 
and the loser, respectively, as a function of the winning price, P, are 

W2(P) = PQ(P) - C(Q(P)) (16) 

L2(P) = C(Q(P))- 2C(Q(P)/2). (17) 

The loser realizes the entire benefit of subcontracting in this case. If a tie occurs, the profit 
function, T(P), is given as before by (8) for either tie-breaking rule. The counterpart of 
Lemma 1, in this case, is given below. 

Lemma 2. There exists a unique price, P2, such that P2 = [C(Q) - C(Q/2)]/(Q/2), 
where Q = Q(P2), W2(P) < L2(P) for all P < P2, W2(P) > L2(P) for all P > P2, 
d W2(P)/dP > 0 for all P < P2, and dL2(P)/dP < 0 for all P. 
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Proof. Let P be the lowest price for which Q(P) = 0. (P = oo if there is no such price.) For 
each such P < P, we can write, for Q = Q(P), 

W2(P) - L(P) = PQ - 2[C(Q) - C(Q/2)] 

= Q{P- [C(Q)- C(Q/2)]/(Q/2)} = QH(P), (18) 

where 

H(P) = P- [C(Q) - C(Q/2)]/(Q/2). (19) 

Differentiating H(P) with respect to P, we get 

H'(P) = 1 - 2Q'{C'(Q) - C'(Q/2)/2 - [C(Q) - C(Q/2)]/Q}/Q. (20) 

Recall that by the strict convexity of C(Q), [C(Q) - C(Q/2)]/Q < C'(Q)/2, and thus, 
by substitution 

{C'(Q) - C'(Q/2)/2 - [C(Q) - C(Q/2)]/Q} > [C'(Q) - C'(Q/2)]/2 > 0. 

Since Q'(P) < 0, it follows that H'(P) > 0. But, H(0) < 0, and 

lim H(P) = P- C'(O)> 0. 
P-P 

Therefore, there exists a P2, 0 < P2 < P, such that H(P2) = 0, H(P) < 0 for P < P2, and 
H(P) > 0 for P > P2. Clearly, P2 = [C(Q) - C(Q/2)]/(Q/2), where Q = Q(P2). From 
(19), W2(P) < L2(P) for P < P2, and W2(P) > L2(P) for P > P2. Finally, to see that 
dW2(P)/dP > 0 for P < P2, observe that 

dW2(P)/dP = Q + Q'[P - C'(Q)] > 0, (21) 

since for each P < P2, P - C'(Q) < H(P) < 0 and Q' < 0. To see that dL2(P)/dP < 0, 
simply observe that 

dL2(P)/dP = Q'[C'(Q) - C'(Q/2)] < 0, (22) 

since C(Q) is strictly convex and Q'(P) < 0. Q.E.D. 

We can now state the counterpart to Proposition 1. 

Proposition 2. In game Ir, there exists a unique SPNE in pure strategies, in which both 
firms bid the price P2, where 

P2 = [C(Q(P2))- C(Q(P2)/2)]/(Q(P2)/2) (23) 

in the first stage. P2 equals the average cost of producing the second one-half of the total 
quantity sold. In equilibrium, each firm supplies one-half of the total quantity demanded 
at that price, and they both receive a positive profit, C(Q(P2)) - 2C(Q(P2)/2). 

Proof The proof is similar to the proof of Proposition 1. We observe first that 
T(P) = (W2(P) + L2(P))/2. The lowest price in the first stage, P, cannot, in equilibrium, 
be lower than P2, since if only one firm bids P, it can benefit by increasing its bid a little 
(as W2 is increasing below P2). If both firms bid P, then a firm can gain by increasing its 
bid, thereby becoming the loser as L2(P) > T(P). This lowest price, P, cannot exceed P2, 
since if there is a losing player, he can choose P close enough to P2, where P2 < P < P, 
become the winner, and gain (as W2(P) > W2(P2) = L2(P2) > L2(P) by Lemma 2). 

Next, consider a tie situation. Two cases are possible. In the first case, W2(P) = L2(P). 
By deviating to P > P2, where P is close enough to P2, a player can become the winner and 
obtain W2(P) > W2(P2) = L2(P2) > L2(P) = T(P). In the second, W2(P) > L2(P). By 
deviating to P < P, where P is close enough to P, a player can become the winner and 
obtain W2(P) > (W2(P) + L2(P))/2 = T(P). Therefore, the lowest price is P2. There 
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cannot be a winning player, since either player could still win by bidding P > P2, where P 
is close enough to P2, and obtain W2(P) > W2(P2). So, the game can only end in a tie, 
where they both bid P2. It is easy to show that this is indeed a SPNE. Q.E.D. 

In the Appendix, we analyze mixed-strategy equilibria in games FW and F,. We show 
that even in this wider set of strategies, there exists a unique SPNE in each game, which is 
the pure-strategy SPNE of Propositions 1 and 2. 

We now turn to the social welfare implications of subcontracting in terms of the max- 
imization of consumer plus producer surplus. 

Proposition 3. P1 &lt; P* = C'(Q(P* )/2) &lt; P2, where P* is the price that maximizes consumer 
plus producer surplus. 

Proof The price P* and the quantities to be produced in the two identical production 
facilities are determined from the problem 

Q* 
max P(Q)dQ - C(q) - C(Q* - q), (24) 
Q*,q 

where P(Q) is the inverse demand function, Q* is the total quantity to be produced, and 
q is the amount to be produced in one of the facilities. Partial differentiation with respect 
to Q* and q yields 

P(Q*) - C'(Q* - q) = 0 (25a) 
and 

-C'(q) + C'(Q* - q) = 0. (25b) 

Thus, 

P(Q*) = C'(Q*/2). (26) 

But, by the strict convexity of C( Q), it follows that 

P1 = C(Q(P1)/2)/(Q(P1)/2) &lt; C'(Q*/12) 

&lt; P2 = [C(Q(P2)) - C(Q(P2)/2)]/(Q(P2)/2). (27) 

Thus, from society's standpoint, P1 is too low and production is too high if the winner 
of the game's first stage gets to set the terms of the subcontract in the second stage, and P2 
is too high and production is too low if the loser in the first stage is the Stackelberg leader 
in the second stage. Q.E.D. 

Remark 1. Suppose that the terms of the subcontract are determined by a bargaining process 
in which the winning and the losing firms share the potential gains from subcontracting, 
C(Q(P)) - 2C(Q(P)/2), in the proportions s and 1 - s, respectively, where 0 &lt; s &lt; 1. 
(In game F1, s = 1, and in game F,, s = 0.) Then, it can be shown that 
(a) the quantity subcontracted is always Q(P)/2, 
(b) the SPNE price in pure strategies is 

p= sC(Q(Ps)/2) + (I - s)[C(Q(P,)) - C(Q(Ps)/2)] (28) 

Q(Ps)/2 2 

and (c) firm profits in the event of a tie are T(Ps) = .5 W( Ps) + .5L(Ps) for all s. The Nash 
bargaining solution occurs at s = 1/2and Ps = C( Q(Ps)) / Q(Ps), the average cost of producing 
the entire quantity demanded. Note that the average cost of producing the entire quantity, 
Q, is just the equally weighted convex combination of the average costs of producing the 
first one-half and the second one-half of the quantity demanded. It can be shown that there 
exists an s, say s*, such that Ps* = P*, the socially optimal price, and an s, say s* *, such 
that Ps** = Pm, the monopoly price, as long as Pm ' P2. 
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O Examples. If the cost function is linear quadratic, or C(Q) = bQ + cQ2 where b, 
c > 0, and s = 1/2, then the first-stage SPNE price is socially optimal, i.e., 

Ps = C(Q(Ps))/Q(P,)= C'(Q(Ps)/2), 

the marginal cost of producing one-half of the total quantity demanded, Q(Ps). This fol- 
lows from the fact that for the above cost function, the average cost is C(Q)/Q = b + cQ 
and the marginal cost evaluated at Q/2 (as, in equilibrium, each firm produces one-half of 
the total quantity demanded) is C'(Q/2) = b + cQ. 

We can also illustrate the circumstances under which the monopoly price that would 
be charged by a single firm with two production facilities operating with the identical, strictly 
convex cost function is below P2, the SPNE, when the loser sets the subcontracting terms. 
The sharing rule, s, that will enable the two independent firms to share equally in their 
monopoly profits can also be derived. We do this by positing, in addition to the linear 
quadratic cost function, an inverse linear demand function, P = a - Q where a > b. The 
last assumption ensures the profitability of production at a positive level. For the posited 
cost function, P2 = b + 3cQ(P2)/2, the average cost of producing the second one-half of 
Q(P2). But, Q(P2) = a - P2, from the posited inverse demand function. Thus, substituting 
and collecting terms gives 

P2 = (2b + 3ac)/(2 + 3c). (29) 

For the monopolist with two identical production facilities, the monopoly price is 
determined from the maximization problem 

max(a - Q)Q - 2C(Q/2). 
Q 

His total cost is 2C(Q/2) because he splits production evenly between the two facilities. As 
2C(Q/2) = bQ + cQ2/2, the first-order condition for a maximum yields that the monopoly 
output is 

Qm = (a - b)/(2 + c); (30) 

the corresponding monopoly price is 

Pm = (a + ac + b)/(2 + c). (31) 

(It is easy to show that PI = (ac + 2b)/(2 + c) and that, therefore, Pm > Pi.) To determine 
when Pm < P2, we consider Pm - P2 and find, after substituting from (29) and (31) and 
using some algebra, that 

sign (Pm - P2) = sign (a - b)(2 - c). (32) 

As a > b by assumption, it follows that Pm < P2 if and only if c > 2. This condition amounts 
to the requirement that 2C"(Q/2) = c 2 2, i.e., that the slope of the monopolist's marginal 
cost function be greater than or equal to two. To determine the sharing rule, s, that induces 
the two firms to choose Pm as the SPNE price in the first stage, we substitute Pm in the left- 
hand side of (28) and evaluate the terms on the right-hand side in accordance with the 
posited cost function. This yields 

s = [3cQm- 2(Pm- b)1/2cQm. 

But, from (30) and (31), Pm - b = (1 + c)Qm. Thus, upon substituting and collecting 
terms, we get 

s=1/2- 1/c, c22. (33) 

What this little exercise indicates is that if the joint monopoly profits are achievable 
within the range of the possible SPNE prices specified by (28), then the loser of the game's 
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first stage should, according to (33), realize at least one-half of the cost saving from sub- 
contracting. With the sharing rule specified by (33) for the winner and the loser in the 
game's second stage, each firm will bid the monopoly price, Pm, in the first stage, and they 
will share the monopoly profits equally because each produces exactly one-half of the mo- 
nopoly output, Qm. 

Thus, comparing Propositions 1 and 2, it is evident that were the firms able to choose 
the means of subcontracting, they would both prefer that the loser in the first stage be the 
one that sets the terms of the subcontract in the second stage. The intuitive reason for this 
is that if the winner of the first stage gets to set the subcontract in the second stage, the loser 
receives zero profits, and therefore, being the loser is very disadvantageous. Bidding in the 
first stage will be aggressive to the point that both firms receive zero profits in equilibrium. 
On the other hand, if the loser of the first stage gets to set the terms of the subcontract in 
the second stage, then being the loser is not disadvantageous, and both firms bid less ag- 
gressively in the first stage. While both firms are better off if the loser of the first stage is the 
leader in the second stage, these profits do not necessarily coincide with those that occur 
under full cooperation, i.e, the profits of a monopolist with two identical production facilities. 

The results of Propositions 1 and 2 and Equation (28) are illustrated in Figure 1. LI 
and WI refer to the respective profits of the loser and winner in game PF, while L2 and W2 
are their respective profits in game Fl. All the prices in the interval [Pi, P2] are potential 
SPNE in pure strategies, as the sharing rule, s, ranges between zero and one. Figure 1 also 
leads to the following remark. 

FIGURE 1: 

SYMMETRIC BERTRAND DUOPOLY WITH SUBCONTRACTING 

ss WP 

L 
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Remark 2. If the firms share the market equally in the event of a tied price and subcon- 
tracting is not allowed, then under the posited assumptions regarding the cost function and 
the requirement that the winning firm supply the entire quantity demanded, any price in 
the interval [P1, P2] is a Nash equilibrium price in pure strategies. This can be easily seen 
from Figure 1 by noting that in the absence of subcontracting, L1 represents the loser's 
profits and W2, the winner's profits. Recall that W2 is the profits the winner can realize by 
supplying the entire quantity demanded, and T represents the profits in the event of a tie. 
Now, any tied price, P, in the interval [P1, P2] is a Nash equilibrium at which each firm 
realizes a profit on the T curve. This is so because if a firm raises its price, it will become 
the loser and receive zero profits, and if it lowers its price, it will become the winner, and 
its profits will fall to a level along the W2 curve. Thus, in the absence of subcontracting, 
there exists a multiplicity of Nash equilibria. However, if ties are resolved by the toss of a 
fair coin, then there is a unique Nash equilibrium in the absence of subcontracting. This is 
because the tie curve drops down to the level at which it intersects W2 = L1 and is below 
the W2 curve to the right of this intersection. (Note that in the absence of subcontracting, 
the two tie-breaking rules do not yield the same T(P) function.) At any price to the right 
of this intersection, each firm has the incentive to lower its price and become the winner, 
while for any price to the left of the intersection, each has an incentive to raise its price and 
become the loser. At the intersection, neither firm has the incentive to raise or lower its 
price. At the intersection of the W2 and L1 curves, the price equals the average cost of 
supplying the entire quantity demanded, since at this price, the winner's profits are zero. 
Thus, in the absence of subcontracting and with the winner being chosen at random in the 
event of a tie, the unique Nash equilibrium price equals the average cost of producing the 
entire quantity demanded, and both firms receive zero profits. 

3. Competition to supply a fixed quantity 

* The description of games Pw and P, remain the same in this section, but we assume 
now that the demand function is of the form 

0O if P> PO 
Q(P) = Q (34) 

1 QO if P &lt; Po, 

for the positive price Po and quantity Qo. This is descriptive of the situation in which the 
first stage involves bidding for the production of a fixed quantity, as in a government contract. 
The analysis of the second stage of the game remains the same as before, since P is assumed 
to be fixed in this stage. Thus, the loser's and the winner's payoffs as a function of the 
winning price, P, are given by 

WI (P) = PQo - 2C(Qo/2), 

L1(P) = 0, 

W2(P) = PQO- -QO), 

and 

L2(P) = CQO)-2C(Q0/2) if P c PO, 

and 

W1 (P) = L1 (P) = W2(P) = L2(P) = O if P > PO. 

The payoff for each player in the case of a tie is 

fPQo/2 - C(Qo/2) if P P PO 
T(P)= l if P>P. 
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The prices 

Pa = C( Q/2)/( Qo/2), 

Pb = C(Qo)/Qo, 

and 

Pc = [C(Qo)- C(Qo/2)]/(Qo/2) 

play an important role in describing the equilibria in games rw and r,. Note that W1 is an 
increasing linear function that vanishes when P = Pa. W2 is an increasing linear function 
that vanishes when P = Pb and coincides with the constant function L2 where P = Pc. 

Note also that, as above, T = (W1 + L1)/2 = (W2 + L2)/2. 

Proposition 4. In game rw, the following hold. 
(i) If Po > Pa, there exists a unique SPNE in which both firms bid the price P1 = Pa and 
end up with a payoff of zero. 
(ii) If Po < Pa, then in any SPNE both firms bid prices that are higher than Po in the first 
stage. Moreover, any two bids higher than Po support an SPNE. In all these SPNEs, the 
firms produce zero and receive zero payoffs. 
(iii) If Po = Pa, then all SPNE's in (ii) are still SPNE, and there is an additional SPNE in 
which both firms bid the price Po, each produces Qo/2, and each receives a zero payoff. 

Proof 
(i) Conditions similar to those of Lemma 1 hold here for P1 = C( Qo/2)/( Qo/2), and the 
proof now follows that of Proposition 1. 
(ii) For any P < Po, W1 (P) < T(P) < 0. Thus, the lower price in the first stage in an SPNE 
cannot be lower than Po, since in this case at least, one of the firms receives a negative 
payoff, and it can always guarantee a zero payoff. So, in any SPNE, the two bids are above 
Po. Indeed, any such two prices constitute an SPNE, since the payoffs in this case are zero, 
and no one can improve upon them. 
(iii) Clearly, bidding Po is also an equilibrium. Q.E.D. 

Proposition 5. In game rl, i.e., if the loser of the first stage is the leader in the second stage, 
the following hold. 
(i) If Po 2 Pc, then there exists a unique SPNE in which the firms bid the same price, Pc, 
in the first stage, and each receives the positive payoff C(Qo) - 2C(Qo/2). 
(ii) If Pb < Po < Pc, then all the SPNE's are of the following type. One firm wins by bidding 
Po, while the other bids a higher price. This results in subcontracting in the second stage. 
Both firms enjoy a positive profit, the loser's being higher. 
(iii) If Po = Pb, then all SPNE's of (ii) are also SPNE here. In addition, any pair of prices 
higher than Po are also SPNE prices that result in zero payoffs for both firms. 
(iv) If Po < Pb, any pair of prices higher than Po is an SPNE. These are all the SPNEs. 

Proof: 
(i) Conditions similar to those of Lemma 2 hold here, and the proof is similar to that of 
Proposition 2. 
(ii) Similar to Proposition 2, the lowest bid, P, cannot be below Po. P cannot exceed Po, 
since in this case, both firms realize zero profits and a firm can gain by bidding Po, become 
the winner, and receive W2(Po) > 0. Thus, P = Po. It is impossible in equilibrium that both 
bid Po, since by increasing its bid and becoming the loser, a firm receives L2(Po) > T(Po). 
Therefore, one firm bids Po and receives W2(Po), while the other bids a price higher than 
Po and receives L2(Po). To see that this is indeed an equilibrium, we note that the loser 
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receives the highest payoff in the game and would not deviate, and the winning firm can 
only lower its payoff by bidding a lower price or receive zero by increasing its bid. 

The proofs of (iii) and (iv) are simpler and, therefore, are left to the reader. Q.E.D. 

The interesting feature of this analysis of competition for a contract is that in game Pl, 
subcontracting may occur in equilibrium (Part (ii) of Proposition 5), even if the tie-breaking 
rule entails equal sharing of the quantity to be supplied. Such an equilibrium does not arise 
in the case of competition for a market with the same tie-breaking rule. 

4. Summary 

* We have investigated a Bertrand duopoly with the potential for subcontracting production 
to the rival as a two-stage game. The presence of strictly convex production costs creates 
the incentive for subcontracting. Our analysis of the SPNE of the game discloses the sensitivity 
of the final product price and of the firms' profits to the subcontracting terms. If the terms 
of the subcontract favor the loser of the game's first stage, then both rivals are better off 
than if they favor the winner. (A result that should be of some comfort to all the losers in 
the world.) Indeed, if the winner of the first stage sets the terms of the subcontract in the 
second stage, then competition to be the winner dissipates away all of the profits. On the 
other hand, if the first-stage loser sets the terms of the subcontract, then both firms realize 
the full benefits of subcontracting. The presence of subcontracting possibilities does not, in 
general, assure that the SPNE price will be socially optimal. However, from the standpoint 
of the party seeking bids for a contract, or for consumers in the case of competition for a 
market, it is preferable that the winner set the subcontracting terms, for consumers then 
realize the lowest price. Indeed, were the party to ask for bids on the contract, or were the 
consumers able to specify the subcontracting arrangements, they would require that the 
winner set the subcontracting terms. 

There are a large number of possible extensions of our analysis. These include consid- 
eration of more than two firms and of firms with different cost functions. The analysis of 
these situations in Kamien and Li (1989) reveals that with three or more firms, SPNE in 
pure strategies exist if the losers set the subcontracting terms, but do not exist if the winners 
set them. The exact opposite is true in the case of two asymmetric firms, i.e., one with lower 
production costs than the other. Repeated play of these games, the presence of uncertainty, 
the possibility of sharing information, and the expansion of these games to include the 
choice of the mode of subcontracting as a strategic variable are all extensions that would 
lend more realism to our models. 

Appendix 

* We consider games rF and r, (in the case of competition to supply a market) when the firms use mixed 
strategies in the first stage. (Allowing mixed strategies in the second stage does not change the analysis, since in this 
stage, the leader has a dominant strategy.) We show that the results of Section 2 do not change. The pure-strategy 
equilibria in Propositions 1 and 2 remain the only equilibria in the bigger set of mixed strategies. We study a single 
game, r, which generalizes to both game rP, and game rF. 

Consider a two-person game, r, in which pure strategies for both players are prices in the interval [0, xo). 
We denote the players by 1 and 2, and when we use i and j to refer to the players, we always assume i # j. The 
payoff function to player i is vi(Pi, P%), where the price chosen by i always appears as the first argument. The payoff 
functions are given by three continuous functions on [0, xo), L, T, and W, as follows. 

r L(Pj) if Pi > Pi, 

vi(Pi, Pj) = T(P1) if Pi = Pi, 

W(PM) if P1<Pj. 

Clearly, vi is continuous at each point (Pi, Pj) when Pi # Pj. We assume that the functions L, T, and W 
satisfy the following conditions. 
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Assumption Al. There exists a P° > 0 such that 
(a) for P < PO, L(P) > T(P) > W(P); 
(b) for P > PO, W(P) > T(P) > L(P), where inequality holds strictly in a neighborhood of P, and both inequalities 
are strict whenever one of them is; 
(c) W( P) is not decreasing for P < PO; 
(d) L(P) is not increasing for P > PO; 
(e) W and L are differentiable at PO. 

Observe that by the continuity of L, T, and W, L(P°) = T(PO) = W( PO) by Assumptions A1 (a) and A (b). 
A mixed strategy is a measure It on [0, oo), which we represent by its cumulative distribution function, F. We 
identify each P E [0, oo) with the mixed strategy with all mass at P. The payoff functions, vi, are extended naturally 
to mixed strategies. For a pair of mixed strategies, F, and F2, 

v,(Fi, Fj) = v f ( P, Pj)dFi(Pi)dFj(Pj). 

The support of F, denoted supp (F), contains all points which do not have a neighborhood of measure zero (i.e., 
where F is constant). The set of atoms of F (i.e., where F has a jump) is denoted by J(F). For P E J(F), 1,(P) is 
the measure of P. A pair (F,, F2) is an equilibrium if for each player i, vi(Fi, Fj) = max vi(F, Fi). Note that since 

vi is continuous whenever Pi / Pj, it follows that vi(P, Fj) = fo vi(P, Pi)dFj(Pj) is continuous in P whenever 
P q J(Fi). This remark can be easily used to prove the following proposition. (Formal proofs of this proposition 
and the following corollary are available from the authors.) 

Proposition Al. Let (F1, F2) be an equilibrium. Then, for each price Pand player i, vi(P, Fj) < vi(Fi, Fj). Moreover, 
equality holds for each P E supp (Fi) whenever either P E J(Fi) or P f J(Fj). 

Corollary Al. Let (F1, F2) be an equilibrium. If Pi E supp (Fi) and either Pi E J(Fi) or Pi f J(Fj), then for each 
P, vi(Pi, Fj) > vi(P, Fj). 

Theorem Al. r has a unique equilibrium in mixed strategies, given by (P°, PO). 

We note that the functions W,, L1 and T, as well as the functions W2, L2, and T, satisfy all of Assumptions 
Al (a)-Al (e), and therefore by Theorem Al, game rw and game rF each have a unique SPNE in mixed strategies. 

Proof We prove Theorem Al using Lemmas Al and A2. We assume throughout the proof that (F,, F2) is an 
equilibrium of r. 

Lemma Al. min (supp (F ) U supp (F2)) > P°. 

Proof Let P = min (supp (F,) U supp (F2)), and assume P < PO. Now, either P E J(Fi) n J(F2), or for at 
least one j, P q J(Fj). In either case, by Corollary Al, vi(P, Fj) > vi(P°, Fj). We finish the proof by contradict- 
ing the last inequality. Indeed, for Pj > PO, vi(P, Pj) = W(P) < W(PO) = vi(PO, Pj) by Assumption Al(c). For 
P < Pj < PO, vi(P, Pj) < T(Pj) < L(Pj) = vi(P°, Pj) by (1). Thus, vi(P, Fj) = fp vi(P, Pj)dFj(Pj) < vi(P°, Pj). 
Q.E.D. 

Lemma A2. For at least one player i, Fi is the pure-strategy PO. 

Proof Let P = max (supp (F,) U supp (F2)), and suppose P > PO. Consider the following three cases. 
Case 1. P E supp (Fi), and P f J(Fj). 
By Corollary Al, vi(P° + E, Fj) - vi(P, Fj) < O. Evaluating this difference and assuming that PO + e q J(Fj) 

and that PO + e < P, we find, using Assumptions A1 (d) and A1 (b), that 
P P 

r [W(pO + )-L(Pj)]dFj(Pj) > [W(PO + )- L(p + e)]dFj(Pj) 

= [W(P° + E) - L(P + e)] dFj(Pj) > O. JP°+e 
Thus, we conclude that [W( PO + e) - L(P° + e)] fo+, dFj = 0. But, for small enough E, 

W(P° + E)- L(PO + ) > 0 

by (2), and therefore, fJo+, dFj = 0. Letting e -* 0 and using Lemma Al, we conclude that Fj is PO. 
Case 2. PE J(Fi) n J(F2), and W(P) = L(P). 
By (2), T(P) = L(P), and vi(P, P) = L(P). The computations of Case 1 remains exactly the same. 
Case 3. P E J(F,) n J(F2), but W(P) > L(P). 
We show that this case is impossible. By Assumption Al(b), W(P) > T(P) > L(P). By Corollary Al, 

vi(P - E, Fj) - vi(P, Fj) < O. But, this difference, when P - e f J(Fj), is 
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[w(P - ) L(Pj)] dFj(Pj) + j(P)[W(P+ ) - L(P)]. 

When e -- 0, the integral vanishes, and the other term converges to ,tj(P)[W(P) - L(P)] > 0 by the stipulation 
of the case, which is a contradiction. Q.E.D. 

We are now ready to prove Theorem 1. 

By Lemma A2, there exists a player i such that Fi is P°. By Lemma A 1, supp (Fj) c [PO, oo). Using Corollary 
Al, Assumption A1 (d), and Assumption Al (e) to get P° + e j J(Fj) gives 

0 - vi(P° + E, Fj)- vi(P°, Fj) 

= F L(Pj)dFj(Pj) + f W(PO + e)dFj(Pj) L(P°) 

> L(P° + e).t((P°, P° + e)) + W(P° + e)tj([P° + E, oo)) 

+ ij(P°)L(P°) - L(P°) 

= [L(P°) + eL'(PO) + o(e)],ji((P°, P0 + e)) 

+ [W(P°) + ,w'(Po) + o(,)],A([Po + ,, oo)) 

+ .j(P°))- L(P°)L(P°) 

= e[L'(P°).j((P°, P0 + e)) + W'(P°),ij([P0 + e, oo))] + o(e). 

Since lut((P°, PO + e)) -O 0 as e -- 0, it follows that 

0 2 lim inf [vi(P° + E, Fj) - vi(P°, Fj)]/e > W'(P°)j((P°, oo)). 
(-0 

But, W'(P°) > 0, and hence, /ij((P°, oo)) = 0; i.e., Fj is PO. Q.E.D. 
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