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The impossibility of agreeing to disagree in the non-probabilistic setup means that agents 
cannot commonly know their decisions unless they are all the same. We study the relation 
of this property to the sure thing principle when it is expressed in epistemic terms. We show 
that it can be presented in two equivalent ways: one is in terms of knowledge operators, 
which we call the principle of follow the knowledgeable, the other is in terms of kens—bodies 
of agents’ knowledge—which we call independence of irrelevant knowledge. The latter can 
be easily extended to a property which is equivalent to the impossibility of agreeing to 
disagree.
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1. Introduction

The impossibility of agreeing to disagree (IAD) for a group of agents was introduced by Aumann (1976) in a probabilistic 
setting. This property means that the agents cannot have common knowledge (agreeing) of their posteriors of a given event 
when these posteriors are not the same (disagree). Aumann showed that IAD holds when the agents have a common prior. 
Here we study IAD in a non-probabilistic setting where the probability ascribed by an agent to an event is replaced by a 
decision made by the agent. We formulate IAD for two agents, Adam and Eve, and discuss the obvious extension for any 
group of agents at the end of the introduction.

IAD: If Adam’s and Eve’s decisions are common knowledge between them, then these decisions are the same.

We will show that the non-probabilistic IAD is an extension of the sure-thing principle (STP) as described in epistemic 
terms in an example in Savage (1954). For this we define formally the STP in epistemic terms in two different ways — 
one as an embodiment of the maxim follow the knowledgeable (FTK), and the other as reflecting the idea of independence 
of irrelevant knowledge (IIK) for the purpose of making one’s decision. We show that the two definitions of the STP are 
equivalent. The STP concerns an agent in two periods, today and tomorrow, who can be formally considered as two distinct 
agents. Obviously, these two agents are not symmetric in the sense that the agent of tomorrow is more knowledgable than 
the agent of today. However, the second formulation of the STP, as IIK, can be easily extended to cover symmetric situations 
as well. This extension is equivalent to IAD.
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1.1. Savage’s example of the sure-thing principle

The sure-thing principle (STP) was introduced by Savage (1954) using the following story.

A businessman contemplates buying a certain piece of property. He considers the outcome of the next presidential 
election relevant. So, to clarify the matter to himself, he asks whether he would buy if he knew that the Democratic 
candidate were going to win, and decides that he would. Similarly, he considers whether he would buy if he knew
that the Republican candidate were going to win, and again finds that he would. Seeing that he would buy in either 
event, he decides that he should buy, even though he does not know which event obtains, or will obtain, as we would 
ordinarily say. It is all too seldom that a decision can be arrived at on the basis of this principle, but except possibly for 
the assumption of simple ordering, I know of no other extralogical principle governing decisions that finds such ready 
acceptance. (emphasis added)

This story is told in terms of knowledge and decisions. However, when it came to describing the STP formally, Savage 
explains why he had to give up the epistemic nature of the story:

The sure-thing principle cannot appropriately be accepted as a postulate in the sense that P1 is, because it would introduce 
new undefined technical terms referring to knowledge and possibility that would render it mathematically useless without still more 
postulates governing these terms. It will be preferable to regard the principle as a loose one that suggests certain formal 
postulates well articulated with P1. (emphasis added)

Thus, Savage did not consider his second postulate, P2, to be a formalization of the STP. Such formalization requires, as he 
says, a specification of the postulates governing the terms knowledge and possibility, that is, a formal model of knowledge 
which was not available at the time. Almost a decade after Savage’s The foundations of statistics, Hintikka (1962) introduced 
formal modeling of knowledge, syntactic and semantic, in his Knowledge and belief, while a semantic multi-agent model of 
knowledge was introduced more than a decade later in Aumann (1976).

Here, we use Aumann’s formal model of multi-agent knowledge, which became a standard, for the formulation of the 
sure-thing principle that reflects its original intended meaning. We first provide two formalizations of the STP and show 
their equivalence.

1.2. A temporal formulation

The simplest way to read Savage’s story concerns an agent in two periods. In the second, the agent will be more knowl-
edgeable, as he will know whether the Democrat candidate won the election (“D”) or the Republican (“R”). As Savage puts 
it, “he considers the outcome of the next presidential election relevant” to the question of buying a certain property. Since 
the agent knows in the first period that being more knowledgeable in the second he will buy the property in either case, 
he can buy it even in the first period at a time that he does not yet know who the winner is.1 The following is a rough 
draft of the STP that we call follow the knowledgeable (FTK):

FTK: If an agent knows today her decision of tomorrow, when she is more knowledgeable, then this should be her 
decision today.2

The following formulation of the STP reflects the idea that the agent’s decision is determined by her body of knowledge, 
that is, all the things the agent knows. At this stage we use these notions intuitively and do not specify formally what the 
‘things’ that the agent knows are. For the sake of brevity we call the body of knowledge of an agent ken. In the toy example 
used by Savage to describe STP, tomorrow the agent may have one of two kens. If the Democrat wins then the agent’s ken 
will include this fact, denoted “D” for short, and if the Republican wins tomorrow’s ken will include “R”. Both kens include 
the fact “D or R”, of course. The agent’s ken of today includes only the intersection of tomorrow’s two kens, namely, “D or R”. 
Now, the businessman in Savage’s story “considers the outcome of the next presidential election relevant” to his decision. 
But to be sure, the very essence of the STP demonstrated in this story is that neither “R” nor “D” are relevant to the agent’s 
decision to buy the property. What remains relevant is just the knowledge common to both kens, namely “D or R”, which 
is what the agent knows today.

This suggests the following version of the STP, which we call independence of irrelevant knowledge (IIK).

1 One should not confuse the STP with the good advice “never put off until tomorrow what you can do today”. The STP does not assume any gains or 
losses from the timing of the decision itself.

2 The principle of reflection, introduced by van Fraassen (1984), is a probabilistic version of FTK. It says that an agent’s present belief in a proposition 
p, given the proposition that in the future her belief in p is α, is α. An extreme case of this principle is when the future is the present. In this case the 
requirement is that an agent’s belief in a proposition p, given that her belief in p is α, is α. Samet (2000) called this principle the conditioning axiom, and 
showed that it is equivalent to requiring that the agent is certain that she is introspective.
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Fig. 1. Independence of irrelevant knowledge.

IIK: If the agent’s decision is the same for all of her tomorrow’s kens, then what is relevant for her decision is the 
intersection of all these kens, namely her ken today, and therefore this should be her decision today.3

In the temporal formulation the agent is split into two agents: the agent today and the agent tomorrow. The STP is 
based on two implicit, natural assumptions concerning the relation between these two agents. First, we assume that the 
two agents share the same interests. In other words, the agent’s preferences do not change over time. This assumption is 
essential because without it knowledge of the decision made tomorrow should not imply that this decision is appropriate 
today. Second, we assume that the agent tomorrow is more knowledgeable than the agent today, and, moreover, that the 
agent today knows that.4

1.3. A two-agent formulation

We now give FTK and IIK an atemporal formulation with two agents, Adam and Eve. The two assumptions made in the 
temporal formulation should be made in the atemporal formulation. First, it is essential to assume that Adam and Eve share 
the same interests in order to be able to infer from the decision of one agent what the other agent’s decision should be. 
This would be the case, for example, if they are doctors who are called to make a decision concerning a patient whose 
interest is also theirs. As for the second assumption, we spell out explicitly the requirement that Eve is more knowledgeable 
than Adam, and that Adam knows this.

The first formulation of the STP in the atemporal setup is:

FTK (two-agent version): If Adam knows that everything that he knows Eve knows, and he also knows Eve’s decision, 
then this must be his decision too.

The second atemporal formulation of STP is:

IIK (two-agent version): If Adam’s ken is the intersection of some of Eve’s kens, and Eve’s decision is the same for all 
these kens, then what is relevant for her decision is the intersection of all these kens of hers, namely, Adam’s ken, and 
therefore this should also be Adam’s decision.

An example of the application of IIK is graphically depicted in Fig. 1 by a Venn diagram.
Our first result states:

FTK and IIK are equivalent.

1.4. Extending the STP

Adam and Eve play asymmetric roles in IIK. While there is a single ken for Adam, there is a family of Eve’s kens. But 
the same reasoning can be applied to cases where the agents have a symmetric role and each of them is endowed with a 
family of kens. We assume that if within a family of kens of an agent the decision is the same for all kens, then what is 

3 IIK has features in common with various versions of the independence of irrelevant alternatives. It also resembles an ancient legal syllogism from 
the mishna called “binyan av” (prototype) or “hatsad hashaveh” (the common characteristic): If X and Y are two sets of circumstances, and in each the 
ruling is R , then the circumstances relevant to this ruling are those in X ∩ Y , and the ruling R also applies to any set of circumstances that includes this 
intersection. (See an instance of this syllogism in the Babylonian Talmud, Tractate Sanhedrin 64b.) IIK is more restricted. It applies only to a ken which is 
the intersection of other kens, and not to kens that contain this ken.

4 When we say that the agent is more knowledgeable in later periods, we are being a little bit sloppy for the sake of brevity. We mean that in later 
periods he is at least as knowledgable.
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Fig. 2. Extended IIK.

relevant for making this decision is the intersection of kens in the family even when this intersection is not itself a ken of 
any of the agents. This implies the following principle — extended independence of irrelevant knowledge (EIIK):

EIIK: If within a family of Adam’s kens Adam’s decision is the same for all kens, and within a family of Eve’s kens Eve’s 
decision is the same for all kens, and if moreover, the intersection of the kens in Adam’s family of kens is the same as 
the intersection of kens in Eve’s family of kens, then Adam and Eve make the same decision.

An example of the application of extended IIK is graphically depicted in Fig. 2 by a Ven diagram.
We note that despite the similarity between extended IIK and IIK, there is a crucial difference between them. The two 

agents in IIK can be viewed as the same agent in different periods. The asymmetry between the two agents in the IIK is 
essential for this interpretation and reflects the asymmetry of time with respect to knowledge. No such interpretation of 
the two agent is possible for EIIK.

Our second result states:

EIIK is equivalent to IAD.

1.5. Formalization

We now describe the choices we make in formalizing knowledge. We first choose the objects that are subject to the 
agents’ knowledge in the standard way knowledge is modeled in economic theory. These objects are subsets, to which we 
refer as events, of a given set of states.5 The knowledge of each agent varies with states. There are two ways to describe the 
knowledge of an agent:

• Kens: Specify for each state and agent the set of all the events that the agent knows at the state. Such a set of events is 
the formal rendering of the ken mentioned before.

• Knowledge operators: Define for each agent i, a knowledge operator Ki. For each event E , the event Ki E , which reads ‘i
knows E ’, consists of all the states at which i knows E .

In such a model we are able to present formally the four notions: IIK, extended IIK, FTK, and IAD. The first two notions 
are described in terms of kens which are now defined rigourously. The last two notions are described in terms of knowledge 
operators which are analogous to the words “Adam knows” and “Eve knows” in the informal description of these notions.

To prove the equivalences stated above it is required that kens and knowledge operators have certain properties and 
are not arbitrarily defined. For this we adopt the most familiar and most commonly used model, the partition model of 
multi-agent knowledge of Aumann (1976).6 In this model each agent i is equipped with a partition �i of the state space. A 
possibility function πi assigns to each state ω an event πi(ω) which is the element of �i that contains ω. The ken of i at a 
state ω consists of all the supersets of πi(ω). Thus, the event Ki E consists of the all the states ω such that πi(ω) ⊆ E .

Note that the informal, intuitive discussion of FTK and IIK in subsections 1.2–1.4 is presented in a way that makes it 
accessible to an audience, like Savage himself, not acquainted with formal theories of knowledge. That is why this discussion 

5 Alternatively, we could choose the objects that are known to be sentences in a formal language (Aumann, 1999). Such a formalization is closer to the 
informal reasoning about knowledge, but would require longer exposition and proofs. Students of economic theory are also less familiar with it. In other 
formalizations the objects that are known are elements of a Boolean algebra (Blackburn et al., 2001; Halpern et al., 2009), or the elements of a set of 
proposition on which one operation, called negation, is defined (Samet, 1990).

6 The results also hold for non-partitional models of knowledge that are discussed in subsection 5.3.
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kens operators

STP: IIK ⇐⇒ FTK

�� ��

extended STP: extended IIK ⇐⇒ IAD

Fig. 3. Four versions of STP and their relations.

does not involve states, partitions, or possibility functions. They are used, though, in our formal model to define kens and 
knowledge operators. But, once these are defined we can formally express all four versions of STP in a way that resembles 
the informal description of these conditions without mentioning states and partitions. Nevertheless, we formulate the STP 
also in terms of states and possibility functions and show that this version of the STP is also equivalent to FTK and IIK. We 
also formulate an extension of STP in terms of states and possibility functions, and it is equivalent to EIIK and IAD.

The diagram in Fig. 3 summarizes the relations between the four versions of the STP. The asymmetric role of the agents 
in IIK, which is expressed in terms of kens, is easily and naturally symmetrized and generalized by extended IIK. In contrast, 
FTK, which is expressed in terms of knowledge operators, is not easily symmetrized. It turns out that the symmetric version 
of FTK, in terms of knowledge operators, is IAD. The partitional versions of the STP are equivalent to the notions defined in 
terms of kens and knowledge operators.

1.6. The multi-agent case

Extended IIK is formulated for two agents, but it can be formulated for a group of agents of any size. Suppose a family 
of kens is given for each agent in the group and within each such family the decision is the same for all the kens in the 
family. We can require in this case, in the spirit of IIK, that if the intersection of the kens in each family is the same for 
all agents, then the same decision is made in each family. However, if we require that extended IIK holds for each pair of 
agents in the group, then it must hold for the whole group, as any pair must make the same decision in their family of 
kens.

Similarly, IAD is formulated for a pair of agents, but can be formulated for any group of agents by requiring that if their 
decisions are common knowledge between them, then the decisions must be the same. Again, if we require IAD for any 
pair in the group, then it holds for the whole group. Indeed, if the decisions of the agents are common knowledge between 
them, then the decisions of any pair of agents are common knowledge between this pair of agents, and hence are the same. 
For these reasons, we formulate our results in a model of two agents only.

2. Models of knowledge and decisions

Since the various definitions of the STP and their extensions involve only two agents we consider models of knowledge 
for two agents denoted 1 and 2. A knowledge model (�, �1, �2) consists of a set of states �, and for each agent i ∈ {1, 2}, a 
partition �i of �. We define for each i a function, called a possibility function, πi : � → 2� such that πi(ω) is the element of 
the partition �i that contains ω. The name “possibility function” expresses the interpretation of πi(ω) as the set of states 
that i considers possible at ω.

Subsets of � are called events. We say that i knows event E at ω if πi(ω) ⊆ E . The event that i knows E , denoted Ki E is 
the set of all states in which i knows E , that is, Ki E = {ω | πi(ω) ⊆ E}. Thus, Ki E is the union of all the elements of �i that 
are contained in E . The function Ki : 2� → 2� , thus defined, is called i’s knowledge operator.

Denote for each E , KE = K1 E ∩ K2 E , that is, KE is the event that both agents know E . The event that all know E
and all know that all know E and so on is denoted by CE , that is, CE = ∩∞

m=1Km E . The operator C is called the common 
knowledge operator. The knowledge operators enable us to describe formally the property FTK without direct reference to 
states, partitions, or possibility functions, exactly as in the informal discussion of FTK in the introduction.

We can now describe formally the notion of body of knowledge, or in its short name ken, which was introduced in-
formally in the introduction and was used to describe IIK. Since the knowledge of an agent varies with the state, so does 
the agent’s ken. The ken of agent i at ω is the set of all the events that i knows at ω, that is, keni(ω) = {E | πi(ω) ⊆ E}. 
Alternatively, keni(ω) = {E | ω ∈ Ki(E)}.7 We denote by Keni the family of all of i’s kens, that is, Keni = {keni(ω) | ω ∈ �}.

There is a one-to-one correspondence between the set of i’s kens and the elements of the partition �i , as each element 
of �i defines a ken. Moreover, any relation between, or operation on, kens can be easily translated into a relation between, 
or operation on, the elements of the partition that define these kens. For example, consider the intersection of two kens of 

7 Kens were introduced in Samet (1990) for more abstract models of knowledge. Using formal epistemic language, a ken of agent i is defined as a 
maximal set of sentences, �, such that the set of sentences {i knows f | f ∈ �} is consistent.
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i, K1
i ∩K2

i , where πi(ω1) and πi(ω2) are the elements of �i that define K1
i and K2

i respectively. Now, E ∈K1
i ∩K2

i if and 
only if E is a superset of both πi(ω1) and πi(ω2). This is the case if and only if E is a superset of πi(ω1) ∪πi(ω2). Thus, the 
operation of intersection of kens is translated into the union of the corresponding elements of the partition. This is stated 
in Claim 1 in Section 6.

Let D be a nonempty set of decisions. A decision function di for agent i associates a decision with each of i’s kens. That 
is, di is a function di : Keni → D . A pair of decision functions for the two agents d = (d1, d2) is called a decision function 
profile. With some abuse of notation we write di(ω) for di(keni(ω)). We denote by [di = d] the event that i’s decision is d, 
namely [di = d] = {ω | di(ω) = d}.

3. The equivalence of FTK and IIK

The principle of “follow the knowledgeable”, which we now formally define, spells out in precise terms the verbal 
description of this principle as given in subsection 1.3. We note that ¬Ki E ∪ KiKj E is the event that if i knows E then i
knows that j knows E . Thus, 

⋂
E⊆� ¬Ki E ∪ KiKj E is the event that i knows that j is at least as knowledgeable. Our first 

formulation of the STP requires that if i knows that j is at least as knowledgable, and happens to know j’s decision, then 
this should also be i’s decision.

Follow the knowledgeable (FTK):
FTK holds for the knowledge model and the decision function profile d if for all agents i, j, and decision d,

⋂

E⊆�

(¬Ki E ∪ KiKj E
) ∩ Ki[d j = d] ⊆ [di = d]. (1)

The independence of irrelevant knowledge below, IIK, is a formal rendering of the description given to it in subsection 
1.3. Like the informal description the formal definition does not make direct use of partitions or states. IIK says that if j’s 
decision is d at each ken in a family of her kens K j , and if i’s ken is the intersection of j’s kens in K j , then i’s decision is 
d. More formally,

Independence of irrelevant knowledge (IIK):
IIK holds for the knowledge model and the decision function profile d when, for all agents i, j, decisions di , d j , Ki ∈ Keni , and K j ⊆
Ken j ,

if
(1) Ki = ∩K j∈K j

K j , and
(2) for each K j ∈K j , d j(K j) = d j , and
(3) di(Ki) = di

then di = d j .

The STP has been formulated so far in terms of knowledge operators (FTK) and kens (IIK) without mentioning explicitly 
states, partitions, or possibility functions. We now introduce another version of STP purely in terms of states and possibility 
functions.

Possibility STP (PSTP):
PSTP holds for the knowledge model and the decision function profile d when for all agents i, j, decisions di, d j , and state ω,

if
(1) for each ω′ ∈ πi(ω), π j(ω

′) ⊆ πi(ω) and
(2) d j(ω

′) = d j , and
(3) di(ω) = di

then di = d j .

We can now state the equivalence of all forms of the STP.

Theorem 1. For a knowledge model with a decision function profile, the three conditions, follow the knowledgeable (FTK), indepen-
dence of irrelevant knowledge (IIK), and the possibility sure thing principle (PSTP)) are equivalent.

4. Extensions of the STP

The IIK version of the STP is extended below based on the following observation. Although the whole body of knowledge 
of an agent, namely her ken, determines her decision, it may be determined, and most probably is determined by only part 
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of her ken which is relevant to her decision. Thus, if the same decision is made by i in all of her kens in some family of 
kens Ki ⊆ Keni we may assume that it is the intersection of the kens in Ki that determines this decision.

In the following extension of IIK 1 and 2 play a symmetric role. Both are endowed with a family of kens: K1 ⊆ Ken1
and K2 ⊆ Ken2. If in each family the same decision is associated with each ken, then the relevant knowledge for making 
this decision is the intersection of the kens in each family. Thus, if the intersection of the kens in K1 coincides with the 
intersection of kens in K2 the same decision should be made by both agents.

Extended independence of irrelevant knowledge (EIIK):
EIIK holds for the knowledge model and the decision function profile d when for all decisions d1 , d1 , and non-empty sets of kens, 
K1 ⊆ Ken1 , and K2 ⊆ Ken2,

if
(1) ∩K1∈K1K1 = ∩K2∈K2K2, and
(2) for each K1 ∈K1 , d1(K1) = d1 , and
(3) for each K2 ∈K2, d2(K2) = d2,

then, d1 = d2.

Obviously, IIK is a special case of EIIK, where one of the families of kens K1, K2 is a singleton.
We next formulate the condition of impossibility of agreeing to disagree (IAD), which is equivalent to EIIK, but is expressed, 

like FTK, in terms of knowledge operators rather than kens. The condition requires that the agents cannot have common 
knowledge of their decisions when the decisions are not the same. It is analogous to a condition for models of knowledge 
and probabilistic beliefs, that agents cannot have common knowledge of their posterior probability of a given event when 
the two posterior probabilities differ. Here we show that IAD is equivalent to EIIK, which is an extended version of the STP.

Impossibility of agreeing to disagree (IAD):
IAD holds for the knowledge model and the decision function profile d if for all d1 and d2,

C
([d1 = d1] ∩ [d2 = d2]

) ⊆ [d1 = d2].
Equivalently, IAD holds if when C

([d1 = d1] ∩ [d2 = d2]
)

is not empty, then d1 = d2.

Extended IIK is formulated in terms of kens, and IAD in terms of knowledge operators, both without explicitly mentioning 
states, partitions or possibility functions. The next condition is formulated in terms of states and possibility functions.

Extended possibility STP (EPSTP):
EPSTP holds for the knowledge model and the decision function profile d when for all decisions d1, d2 , and event E ,

if
(1) for each ω ∈ E, π1(ω) ⊆ E, and
(2) d1(ω) = d1 , and
(3) for each ω ∈ E, π2(ω) ⊆ E and
(4) d2(ω) = d2,

then d1 = d2.

Obviously, PSTP is a special case of EPSTP where E is either π1(ω) or π2(ω).

Theorem 2. For a knowledge model with a decision function profile the three conditions, extended independence of irrelevant knowl-
edge (EIIK), the impossibility of agreeing to disagree (IAD), and the extended possibility sure thing principle (EPSTP) are equivalent.

5. Discussion

5.1. Early attempts

The first attempt to use the sure-thing principle in an epistemic setup was made, independently, by Cave (1983) and 
Bacharach (1985), although it was the latter who used the term STP in this context. Both papers proposed a sufficient 
condition for IAD, generalizing the probabilistic agreement theorem of Aumann (1976) to the non-probabilistic cases, where 
at each state of the world a decision of each agent is specified, rather than a posterior probability.

Both papers use a partition model with a virtual decision function δ (a term suggested in Samet (2008)) from which 
individual decisions are derived. Such a function assigns a decision to each event. The interpretation is that the decision 
δ(E) associated with an event E is the decision made when knowledge is given by E . This is very much in the spirit of 
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Savage’s example and the approach adopted here. The sure-thing principle in this setup says that for two disjoint events E
and F for which δ(E) = δ(F ), it is the case that δ(E ∪ F ) = δ(E).

Virtual decision functions are hard to interpret properly. Considering events which are not elements of the partition as 
describing knowledge is incongruent with the knowledge structure given by the partition. Moreover, by its very essence the 
STP cannot be applied to a single knower. The union E ∪ F purports to represent a body of knowledge—a ken—which is the 
intersection of the kens given by E and by F . But this idea is inconsistent with partition models: it is impossible for an 
agent in a partition model to have kens with an intersection that is also a ken of the same agent, except for the trivial case 
that the intersecting kens are identical. The only way to express the STP is through either the knowledge of an agent in two
periods, or alternatively, as is the case here, the knowledge of different agents. Moses and Nachum (1990) were the first to 
study conceptual difficulties regarding virtual decision functions. In contrast, here, the decision function di of an agent i is 
defined only on the kens of i, or equivalently, on elements of i’s partition. It is not defined on other events not even unions 
of the partition’s elements.

5.2. A sufficient condition for IAD

Samet (2008) found a sufficient condition for IAD in terms of the STP, avoiding the conceptual pitfalls in Cave (1983)
and Bacharach (1985). For this purpose, Samet (2008) formulated the STP in terms of knowledge operators under the name 
interpersonal sure-thing principle (ISTP). This condition requires that

⋂

E⊆�

Ki
(¬Ki E ∪ Kj E

) ∩ Ki[d j = d] ⊆ [di = d].

The description in FTK of the event that i knows that j is more knowledgeable is a little bit simpler than it is in ISTP, but 
the two events are the same.8 Thus, FTK and ISTP are equivalent. However, FTK (or equivalently, ISTP) does not imply IAD, as 
is shown here, because FTK is equivalent to IIK, which is weaker than extended IIK, and hence weaker than IAD. In order to 
find a sufficient condition for IAD in terms of FTK, Samet (2008) had to fortify ISTP. The condition that implies IAD is ISTP-
expandability, which requires that FTK also holds when another agent is added to the model who is less knowledgeable than 
all the other agents. ISTP-expandability is a strong condition that implies IAD but is not implied by it. In contrast, extended 
IIK is equivalent to IAD. Thus, IAD is not only an implication of some condition that involves the sure-thing principle, but 
rather a generalized version of the sure-thing principle itself.

5.3. Non-partitional models of knowledge

In the partition model we adopted here, knowledge has the following properties9:

(1) Truth: Whatever is known is true: for each E , Ki E ⊆ E .
(2) Positive introspection: If the agent knows an event she knows that she knows it: for each E , Ki E ⊆ KiKi E .
(3) Negative introspection: If the agent does not know an event, then she knows that she does not know it: for each E , 

¬Ki E ⊆ Ki¬Ki E .

We now address the question which of these properties are needed to establish the equivalences in Theorems 1 and 2. For 
this we need to consider non-partitional models of knowledge.

Kens and knowledge operators were defined in Section 2 in terms of the possibility functions πi which in turn were 
defined in terms of the partitions �i . In order to construct non-partition models of knowledge we start with possibility 
functions as primitive.10 The three properties of knowledge listed above are equivalent to the following requirement from 
the possibility functions.11

(1) Truth: For each ω, ω ∈ πi(ω).12

(2) Positive introspection: For each ω, if ω′ ∈ πi(ω) then πi(ω
′) ⊆ πi(ω).13

8 In ISTP the requirement is that for each E , “i knows that if she knows E then j knows E”, while in FTK the requirement is that for each E , “if i knows 
E then she knows that j knows E .” For partition models these two events are the same. Indeed, Ki

(¬Ki E ∪ Kj E
)

is the union of all the elements of �i

contained in ¬Ki E ∪ Kj E . But ¬Ki E is a union of elements of �i , and the union of element of �i in Kj E is KiKj E . Thus, Ki
(¬Ki E ∪ Kj E

) = ¬Ki E ∪ KiKj E . 
In non-partitional models the two events are not necessarily the same, and Ki

(¬Ki E ∪ Kj E
) ⊆ ¬Ki E ∪ KiKj E .

9 See, for example, Aumann (1999).
10 Another, equivalent way to define the model is by using a binary relation on � for each i, called accessibility. When ω′ is accessible from ω for 

i, then i considers ω′ a possible state at state ω. The accessibility relation can be equivalently described by the possibility function πi(ω) = {ω′ |
ω′ is accessible from ω for i}.
11 See, for example, (Halpern, 2003, p. 190).
12 In terms of the accessibility relation of i this is equivalent to requiring that the relation is reflexive.
13 In terms of the accessibility relation of i this is equivalent to requiring that the relation is transitive.
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(3) Negative introspection: For each ω, if ω′ ∈ πi(ω), then πi(ω) ⊆ πi(ω
′).14

It turns out that Theorems 1 and 2 hold true also for models that satisfy only truth and positive introspection. Indeed, 
the proof of Theorem 1 makes use only of the first two properties of the possibility functions. The proof of Theorem 2
makes use of the partition structure in describing the common knowledge operator C as the knowledge operator defined 
by the meet partition. However, even in models that satisfy only truth and positive introspection, C can be shown to be a 
knowledge operator. We say that an event E is evident if for each ω ∈ E , πi(ω) ⊆ E for each i. We now define π(ω) to be 
the intersection of all evident events that contain ω. This possibility function satisfies truth and positive introspection and 
it defines the operator C. With this definition Theorem 2 can be proved for knowledge models that satisfy just truth and 
positive introspection.

6. Proofs

A ken K j of j is the set of all supersets of some element in π j . Denote this element by π j(K j).

Claim 1. For any j and K j ⊆ Ken j , ∩K j∈K j
K j consists of all the supersets of ∪K j∈K j

π j(K j).

Proof. By the definition of a ken, E ∈ ∩K j∈K j
K j if and only if π j(K j) ⊆ E for each K j ∈ K j . This holds if and only if 

∪K j∈K j
π j(K j) ⊆ E . �

Corollary 1. For each ω, i, j and K j ⊆ Ken j , keni(ω) = ∩K j∈K j
K j if and only if πi(ω) = ∪K j∈K j

π j(K j).

Proof. The second equality holds if and only if the events in the two sides of the equation have the same family of supersets. 
By the definition of ken and Claim 1 this is the first equality. �
Claim 2. For each i, j, and E, E = ∪ω∈E π j(ω) if and only if for each ω ∈ E, π j(ω) ⊆ E.

Proof. Obviously if the equality holds, then for each ω ∈ E , π j(ω) ⊆ E . Conversely, if this condition holds, then ∪ω∈Eπ j(ω) ⊆
E , and for the opposite inclusion we note that for each ω ∈ E , ω ∈ π j(ω) ⊆ ∪ω∈E π j(ω).15 �
Lemma 1. For each i, j, and ω, the following conditions are equivalent.

(a) ω ∈ ∩E⊆�¬Ki E ∪ KiKj E.
(b) For each ω′ ∈ πi(ω), π j(ω

′) ⊆ πi(ω).
(c) πi(ω) = ∪ω′∈πi(ω) π j(ω

′).
(d) For some K j ⊆ Keni , keni(ω) = ∩K j∈K j

K j .

Proof. To see that (a) implies (b), note that for E = πi(ω), (a) implies ω ∈ ¬Kiπi(ω) ∪ KiKjπi(ω). But ω ∈ πi(ω) = Kiπi(ω), 
and therefore ω ∈ KiKjπi(ω) Thus, πi(ω) ⊆ Kjπi(ω). Hence for each ω′ ∈ πi(ω), ω′ ∈ Kjπi(ω), which means that π j(ω

′) ⊆
πi(ω).

Now, (b) implies (c) by Claim 2, for E = πi(ω).
Define K j = {ken j(ω

′) | ω′ ∈ πi(ω)}. If (c) holds, then πi(ω) = ∪K j∈K j
π j(K j). Thus (d) holds by Corollary 1.

When (d) holds then by Corollary 1,

πi(ω) = ∪K j∈K j
π j(K j). (2)

To show that (d) implies (a) we need to show that if equation (2) holds and ω ∈ Ki E , then ω ∈ KiKj E . Indeed, if ω ∈ Ki E , 
then πi(ω) ⊆ E . Now, by equation (2), for each ω′ ∈ πi(ω), ω′ ∈ π j(K j) for some K j ∈ K j and thus, π j(ω

′) ⊆ π j(K j).16

But π j(K j) ⊆ πi(ω) ⊆ E , and hence, π j(ω
′) ⊆ E . This means that ω′ ∈ Kj E . This is true for all ω′ ∈ πi(ω), and therefore 

πi(ω) ⊆ Kj E . Thus ω ∈ KiKj E . �

14 In terms of the accessibility relation of i this is equivalent to requiring that the relation is Euclidean, namely if ω′ and ω′′ are accessible from ω, then 
ω′′ is accessible from ω′ .
15 Here we used the truth property of πi mentioned in subsection 5.3.
16 In the partition model π j(ω

′) = π j(K j). But all we need for the proof is just the inclusion, which is satisfied when positive introspection holds, as 
discussed in subsection 5.3.
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Proof of Theorem 1.

FTK ⇒ IIK: Suppose that the knowledge space with (d1, d2) satisfies FTK, and that the antecedents (1)-(3) in the definition 
of IIK hold. Let ω be the state for which Ki in (1) is keni(ω). As (d) implies (a), in Lemma 1, ω ∈ ∩E⊆�¬Ki E ∪ KiKj E . By 
Corollary 1, (1) implies πi(ω) = ∪K j∈K j

π j(K j). By (2) it follows that for each ω′ ∈ πi(ω), d j(ω
′) = d j . Thus, π(ω) ⊆ [d j =

d j] and therefore ω ∈ Ki([d j = d j]). By FTK, ω ∈ [di = d j], which implies together with (3) that di = di(keni(ω)) = di(ω) =
d j .

IIK ⇒ PSTP: Suppose that IIK holds, and the antecedents (1)-(3) in the definition of PSTP are satisfied. Let Ki be the ken 
defined by πi(ω) and K j = {ken j(ω

′) | ω′ ∈ πi(ω)}. By (1) in the definition of PSTP and Claim 2, πi(Ki) = ∪K j∈K j
π j(K j), 

and thus by Corollary 1, Ki = ∩K j∈K j
K j . Items (2) and (3) in the definition of PSTP follow immediately from (2)and (3) in 

the definition of IIK. Thus, we conclude, by IIK, that di = d j .

PSTP ⇒ FTK: Suppose that PSTP holds. We need to show that if ω is in the left hand side of equation (1) then it is in 
the right hand side of this equation. If ω is in the left hand side, then since (a) implies (b), in Lemma 1, (1) holds. Since 
ω ∈ Ki[d j = d], πi(ω) ⊆ [d j = d], and (2) holds for d = d j . By PSTP, d j = di = di(ω). Therefore, ω ∈ [di = d j] = [di = d], which 
is the right hand side of equation (1).

This completes the proof of Theorem 1. �
Proof of Theorem 2. We recall that the meet of the partitions �1 and �2 is the finest partition which is coarser than �1
and �1. An event E is the union of elements of �1 and of elements of �2, if and only if it is the union of elements of the 
meet. The knowledge operator defined by the meet is the common knowledge operator C . Hence, CE = E if and only if E is 
the union of elements of the meet, or equivalently, if and only if it is the union of elements of �i for i = 1, 2.

IAD ⇒ EIIK: Suppose that IAD holds and also the antecedents (1)-(3) in the definition of EIIK are satisfied. By (1) and 
Claim 1, ∪K1∈K1π1(K1) = ∪K2∈K2π2(K2). Denote this set by F . If ω ∈ F , then, for i = 1, 2, ω ∈ πi(Ki) for some Ki ∈ Ki , 
and thus, πi(ω) = πi(Ki). Hence, πi(ω) ⊆ F and by Claim 2, F = ∪ω′∈F πi(ω

′), for i = 1, 2. We conclude that F is a union 
of elements of the meet and therefore, CF = F . By (2) and (3) F ⊆ [d1 = d1] ∩ [d2 = d2]. Since C is a knowledge operator it 
is monotonic with respect to inclusion, and with IAD we conclude, F = CF ⊆ C([d1 = d1] ∩ [d2 = d2]) ⊆ [d1 = d2]. Therefore, 
d1 = d2.

EIIK ⇒ EPSTP: Suppose that EIIK holds and the antecedents (1)-(4) in the definition of EPSTP are satisfied. By (1), (3), 
and Claim 2, E is a union of elements of the meet. Let Ki = {keni(ω) | ω ∈ E}, for i = 1, 2. Then, E = ∪K1∈K1π1(K1) =
∪K2∈K2π2(K2). By Claim 1, ∩K1∈K1K1 = ∩K2∈K2K2, which is (1) in the definition of EIIK. Also, (3) and (4) in the defini-
tion of EPSTP imply (2) and (3) in the definition of EIIK. Thus, by EIIK, d1 = d2.

EPSTP ⇒ IAD: Suppose that EPSTP holds. Let E = C([d1 = d1] ∩ [d2 = d2]). Then E is a union of elements of the meet and 
therefore (1) and (3) hold. Also, since C is a knowledge operator, then for each event X , CX ⊆ X . Thus E ⊆ [d1 = d1] ∩ [d2 =
d2]. This implies (2) and (4) and hence, by EPSTP, d1 = d2. Therefore, C([d1 = d1] ∩ [d2 = d2]) = E ⊆ [d1 = d2]. �
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