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A Note on Reactive Equilibria in the Discounted 
Prisoner's Dilemma and Associated Games 

By E. Kalai 1 , D. Samet 2, and W. Stanford 3 

Abstract: Necessary and sufficient conditions are derived under which the Tit-for-Tat strategy 
pair is a subgame perfect equilibrium in the standard discounted prisoner's dilemma. The sensi- 
tivity of the equilibrium to changes in the discount parameters is shown to be a common feature 
of all such nontrivial "reactive" equilibria. This appears to rule them out as reasonable solutions 
to the discounted prisoner's dilemma. In remarks, we indicate how these results can be extended 
to a fairly general class of games. 

1 Introduction 

The purpose of this note is to investigate the subgame perfection (see Selten [7]) 

properties of certain pure strategy equilibria in infinitely repeated versions of the 
classic prisoner's dilemma and related classes of games. Concentrating on the prisoner's 
dilemma for the moment, the equilibria we consider consist of strategy pairs in which 
at least one of the players bases current period action only on the prior actions of his 
opponent, ignoring the history of his own actions in the supergame. A strategy of this 
type is called reactive for obvious reasons. The corresponding equilibria will also be 
called reactive. In the example below, we demonstrate the existence of a perfect 
reactive equilibrium in which the collusive outcome obtains along the equilibrium 
path. This equilibrium is seen to be quite special, however; being extremely sensitive 
to variations in the discount rates of the players. We show that this is a feature com- 
mon to all such nontrivial reactive equilibria. In particular, the class of perfect reactive 
equilibria which are robust to changes in the discount rates consists of the single 
trivial equilibrium in which both players choose their noncooperative action in every 
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period, independent of prior history. This result is demonstrated in the Proposition. 
The inherent sensitivity of nontrivial reactive equilibria to changes in basic parameters 

of the model would thus appear to rule them out as reasonable solutions to the dis- 
counted prisoner's dilemma. In remarks at the end, we indicate how these results can 

be extended to a fairly general class of games. 
Our interest in these results has two main sources. First, we would like to under- 

stand better the structural characteristics of collusive pure strategy perfect equilibria 
in repeated games under discounting. We would contrast this with the question of the 

possible nature of outcome paths to perfect equilibria with discounting. This issue 
was recently settled in an important paper by Abreu [1 ]. In contrast, our understand- 

ing of the equilibria themselves remains incomplete, largely due to the fact that they 
may be extremely complex. By singling out reactive strategies and equilibria, we ac- 
complish a reduction in the complexity which strategies are allowed to assume. In 

the presence of the "robust perfection" requirement alluded to above, this reduction 

in complexity is, perhaps surprisingly, essentially complete. 
Second, reactive strategies and equilibria have appeared in the literature in various 

repeated games contexts, and so it seems worthwhile to point out their characteristics 

in complete information games with discounting. For example, the Tit-for-Tat strategy 
(which is clearly reactive) has received much attention in connection with its suc- 
cess in Axelrod's [3] prisoner's dilemma tournament. It has also found its way into 
the economics literature. See, for example, Kreps, Milgrom, Roberts and Wilson [4], 
in which a finite horizon, incomplete information framework is adopted. Also Rubin- 
stein [6], in an infinite horizon game of imperfect information with no discounting, 
examines strategies in which "society" imposes penalties on individuals based on the 
"reasonableness" of their records. This is also a reactive strategy. Finally Aumann [2], 
in a discussion of cooperative behavior in the repeated prisoner's dilemma, considers 
strategies which are defined in terms of "finite memory." Precisely, each player's 
mind is assumed to have a finite number of  "states." Before each stage, each player 
may change the state of his mind in a manner which depends only on the prior state 

and the prior period action of his opponent. Current period action is then allowed 
to depend only on the (new) state. In the "memory zero" case, the new state may 
not depend on the old one, but only on the prior period action of the other player. 
An analysis o f  this case (with no discounting) distinguishes the Tit-for-Tat equilibrium, 

and hence the cooperative outcome in every period. Since any "memory zero" strategy 
is clearly reactive, this result will be seen in contrast to our findings. 
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2 F o r m a l  Def in i t ions  and  a L e m m a  

The notation and definitions given below are adapted from Rubinstein [5]. 

Definition 1: The basic game we consider consists of the following two player, bi- 

matrix game: 

Player Two 

N 2 C 2 

Player One 
N I 0,0 al,b 2 

C I a2,b I i , I  

To make this a prisoner's dilemma, we require al > 1, bl > 1, az < 0 ,  b2 < 0 .  Q is 
associated with "cooperation" and N i with "noncooperation." G = (S1, $2,7r1, rr2) 
denotes the one-shot simultaneous game, where Si = {Ci, Ni} is the pure strategy set 
of player i and ~ri: S 1 x S 2 ~ R  is the payoff to player /as  given in the above matrix. 
Elements of  Si are generally denoted by s i and are referred to as actions, s - (sl ,  Sz) 

andS=-Sa xS2. 

Definition 2: G~(a, 3) denotes the supergame with discounting obtained by repeating 
G countably many times, where the discount parameter associated with player one is 

represented by a and for player two by 3. f i  denotes a pure strategy for player i. It 

is a set of functions f / =  {f i ( t )} t=l ,  where fi(1) E S  i and for t ~> 2 , f / ( t )  : S t -1  -->S i. 
The set of  supergame strategies of i will be denoted by Fi. F is the set of  strategy 

pairs: F = F l x  F2. 
Given f =  ( f l , f 2 ) E F ,  the outcome at time t will be denoted by s(f)( t) ,  and 

defined inductively below: 

s(f)(1) =f(1)  = (f l  (1), f2(1)) 

s( f)( t )  = f ( t ) ( s ( f ) (1 )  . . . . .  s ( f ) ( t -  1)). 

The set (s(f)(t)}t= 1 will be referred to as the outcome path induced by f .  
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Definition 3: f E  F is a Nash equilibrium if for all f~ E F I  

at-17rl(S(f~,f2)(t)) ~ ~, o~t-17rl(s(f)(t)) 
t = l  t = l  

and for all f~ E F2, 

oa oo 

~*-~2(s(fl, f;)(t)) ~< 2 ~-l~2(s(f)(t)). 
t = l  t = l  

Note that our convention is to discount to the beginning of  period one and we assume 
that period t payoffs are received at the beginning of  period t. 

Definition 4: Given f E F  and r(1) . . . . .  r(T) ES, the pair of  strategies induced by f 
after a "history" h(T) = (r(1) . . . . .  r(T)) ~ S  T is denoted f ib(T)  E F a n d  is defined by 

( f lh ( r ) ) ( t ) ( s (1)  . . . . .  s(t - 1)) = f ( r  + t )(r(1) . . . .  , r(T), s(1), ..., s(t - 1)). 

where s(z) ES,  r = 1,2 . . . .  , t - 1. Denote by si(z ) the projection of s(~-) onto its i-th 
coordinate. 

f E  F is a subgame perfect equilibrium if f is a Nash equilibrium and for all T = 1, 

2, . . .  and all histories h(T) E St ,  f ib ( r )  is a Nash equilibrium. We will henceforth refer 

to subgame perfect equilibria as perfect equilibria. 
Before proceeding, we state a lemma which is central to the results which follow. 

It seems worth pointing out that appropriate versions of  this lemma also apply in 

general n-person repeated games where the evaluation relation is other than discount- 
ing, say the limit o f  long run average payoffs or the overtaking criterion for example. 

We will refer to the result of  this lemma as the principle of  subgame parity. 

Lemma (Subgame Parity): Suppose f E F  is a perfect equilibrium and two histories 

h(T) and/~(T) induce f2 Ih(r)  = f21~(r). Then 

~t-17rl(S(flh(T))(t))= ~, 
t = l  t = l  

~t-lzq(s(f[h(T))(t)). 

The lemma states that if two histories h(T) and /~(T) induce the same strategy for 
player two, then player one must receive equal payoffs along the two induced out- 
come paths. This is simply because, by perfection, the two induced strategies of  
player one (which may differ) must both  be best responses to the single induced 
strategy of  player two under these conditions. Of course, a symmetric statement 
can be made with the roles of  the players reversed. As we will see, subgame parity 
seems tailor made for addressing questions concerning reactive equilibria. 
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3 Example :  The  Ti t - for -Tat  Equi l ib r ium 

This example motivates the formulation and proof of the main result of this note, 
which is contained in the Proposition below. 

The Tit-for-Tat strategy requires that the player using it play cooperatively in 
period one and then to cooperate in period t if and only if his opponent cooperated 
in period t - 1 .  Suppose both players adopt the Tit-for-Tat strategy. Note that in 
this case, both are playing reactive strategies. We derive necessary and sufficient con- 
ditions on the payoff matrix entries for this to compose a perfect equilibrium. 

With regard to necessary conditions, consider two histories h ( T )  and/~(T) such 
that r ( T )  = (C1, C2) and i (T)  = (C1, N2). Note that: 

(f2[h(T))(1) = (f2ifi(T))(1) = C2 

and 

( f z [h (T ) ) ( t ) ( s (1 )  . . . .  , s(t  -- 1)) = ( fZl f i (T)) ( t ) (S(1) ,  . . . ,  S(t - 1)) = C 2 

if and only if s l ( t -  1) -- C 1 for t = 2, 3 . . . . .  In other words, the two histories h ( T )  

and /~(T) induce the same strategy for player two; namely, to cooperate in period 
T + 1, and then play in accordance with Tit-for-Tat in all subsequent periods.. By 
subgame parity, the payoff player one receives along the induced outcome path is 
the same in both cases. In case r ( T )  = (C1, C2)  , this payoff is 1/(1 - a ) ,  while i ( T )  = 

(CI, N2) yields an induced payoff of ax/(1 - a  2) + aa2/(1 - ~ 2 ) ,  as is easily checked. 

Thus we have 

1 / ( 1  - a )  = a 1 / ( 1  - a 2 )  + o~a2 / (1  - o l 2 ) .  (1) 

Similarly, if r ( T )  = (N1, C2) and ~(T) = (N1, N2) the equation 

0 = a2/(1 - a 2) + aa l / (1  - a 2) (2) 

results. Solving the system (1) and (2) yields a I = 1/(1 - a ) ,  a2 = - a / ( 1  - a ) .  A sym- 
metric argument gives b a = 1/(1 -/3), b2 = -/3/(1 -/3). Thus if Tit-for-Tat vs Tit-for-Tat 
is a perfect equilibrium (with discount parameters a and /3 fixed) then the payoff 
matrix must take the form: 
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Player One 

Player Two 

N 2 C 2 

l 
0,0 1/(1-a), -B/(1-B) 

- a / ( 1 - : ) ,  1/(1-B) 1,1 

N 1 

C 1 

Conversely, it is straightforward to check that Tit-for-Tat vs Tit-for-Tat is a perfect 
equilibrium if the payoff  matrix is of  this form and the discount parameters of  the 
players are a and 13 respectively. As it turns out, this is because any sequence of  ac- 
tions is a best response to Tit-for-Tat following any history, under these conditions. 

Thus we have a perfect collusive equilibrium which is, in a sense, accidental: The 

equilibrium relies on a coincidental relationship between the payoff  matrix entries 
and the discount parameters of  the players. That all nontrivial perfect reactive equi- 
libria share this sensitivity to discount parameter changes (for fixed payoff  entries) 
is demonstrated in the next section. 

4 On Reactive Equilibria 

We consider strategy pairs f =  ( f l ,  f z )  which satisfy the following assumptions: 

A1. Hayer  one employs a completely arbitrary supergame strategy: f l  E E l - P l a y e r  

two employs a reactive strategy: f2 E F 2 .  Thus f z ( 1 ) E S z  and for all t~>2,  

f2(t)(s(1) .. . . .  s ( t -  1))=fz(t)(w ..., w 1)) if s l ( r )  = Sl(7-) for 7" = 1 . . . .  , t - 1. 

A2. There exists a set 11 C (0, 1) with a limit point a in (0, 1) such that  for all a I E I  1 , 

f= ( f l , f 2 )  is a perfect equilibrium in G~176 fl). 

A1 is self explanatory. A2 states that the perfectness of  f is reasonably robust to 

changes in player one's discount rate. The fact that I1 has a limit point a E (0, 1) 
means that every neighborhood of  ~ contains an ~1 E l i ,  where a 1 4 = a .  In particular, 
11 must be infinite, but could consist of  an arbitrarily small subinterval of  (0, 1), for 
example. 

The following Proposition shows that, taken together A1 and A2 are strong as- 
sumptions indeed. 
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Proposition." A strategy pair f E  F satisfies A1 and A2 if and only if 

fi(t) ~Ni  for i = 1, 2 and t = 1,2 . . . .  

Proof: Regarding sufficiency, it is clear that the trivial equilibrium satisfies A1 and A2. 

To prove necessity, consider two histories h(T) and/7t(T) such that rl (~') = I=1(~') 

for ~- = 1 . . . . .  T. By the definition of  induced strategy and A1, the two histories h(T) 
and kt(T) induce the same strategy for player two. By A2 and subgame parity applied 

to al ia1 E l  1: 

~tl--lrrl(S(flh(T))(t)): P. 
t = l  t = l  

at-11rl (s(fl~( r))(t)). 

In essence, we have two power series which converge to the same function on the 

set 11 . A well known result from real analysis then yields: 

zh(s(fln(r))(t))= rq(s(f lA(r))( t ))  for t ~> 1. (3) 

But 7/ 1 is one-to-one on S, so that: 

s(flh(T))(t) = S(fbi(T)) for t ~> 1. 

Thus 

oo 

~, [3t-17r2(s(flh(r))(t)) = ~ ~t-lzr2(s(flf~(r))(t)). (4) 
t = 1 t = l  

This says that the discounted payoffs to player two along the induced outcome paths 

are equal, and so are independent of  player two's actions in periods 1,2 . . . . .  T. Thus 

in no period can the current or past actions of  player two have any effect on his 

future discounted payoffs along (induced) equilibrium paths. Using perfectness again, 

this means that player two must choose a stage game best response to the prescribed 

action of  player one in every period. Since N 2 is strongly dominant for player two, 

f2(t)  -= N 2 for all t. This easily implies f l ( t )  = N 1 for all t. Q.E.D. 
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5 R e m a r k s  

There are two key features to the proof  of  the Proposition. The first consists of  show- 
ing that player two's  future discounted payoffs are independent of  his own current 

and past actions (Eq. (4) in the proof), and thus that player two must play myopic 
best response in each period. Beyond A1 and A2, this fact was seen to depend on 

the structure of  the payoff  matrix to player one: rq is one-to-one on S = S 1 x S 2 
in the prisoner's dilemma. (As, of  course, is Tr2-all statements in this discussion have 
their symmetric counterparts.) 

In the definitions below, we single out two fairly general classes of  stage games 

for which Eq. (4) continues to hold given A1 and A2. In what follows, we assume 
that S is non-empty and compact,  and ~r i : S ~ R is continuous in the product topolo- 
gy for i = 1, 2. 

Definition 5: Let im (hi) = {gi(s)ls ES} for i = 1, 2. The stage game G will be called 
a game with completely dependent payoffs if there exists a one-to-one and onto map 
g : i m  (rq)  ~ im (rr2), satisfying g0r l (s ) )  = 7r2(s ) for all s ES. 

As is easily verified, the prisoner's dilemma is a game with completely dependent 
payoffs as is, for example, the game derived from the prisoner's dilemma by  replicat- 
ing a row in the payoff  matrix, giving player one an extra strategy. Thus 

Player Two 

0,0 al,b 2 

Player One a2,b I I , I  

0,0 al,b 2 

also represents a game with completely dependent payoffs. Under A1 and A2, and 
thus given Eq. (3) in the proof  of  the Proposition, if G has completely dependent 
payoffs we conclude directly that Eq. (4) holds. 

Definition 6: The stage game G will be called a game with individually responsive 
payoffs if for all s2 ES2 ,  7r 1 is one-to-one on S 1 x (s2} and for all sl ES1 ,  rr2 is 
one-to-one on {s 1 } x S 2. 
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Again, the prisoners dilemma is a game with individually responsive payoffs, but  
the augmented prisoner's dilemma defined as above falls outside this class. Converse- 

ly, for a game with individually responsive but not completely dependent payoffs, 
consider a battle o f  the sexes game: 

Player One 

Player Two 

1,1 0,0 

0,0 1,2 

In this case, given h(T) and/~(T) as in the proof,  Eq. (3) continuous to hold. But we 

also know (since player two has a reactive strategy) that (f2i h(T))(1) = (f2i ~(T))(1), 
and thus the fact that payoffs are individually responsive and Eq. (3) force 

( f l  [ h (T) )( 1 ) = ( f l  I ~ (7")) (1). An inductive argument now yields Eq. (4). 
The second important feature of  the proof  is its reliance on the existence of 

strongly dominant strategies for the players. We can relax this to the assumption that 

G has Nash equilibria, but at a cost. If  we strengthen A1 to the assumption that both 
players adopt reactive strategies and strengthen A2 to a symmetric statement, a sym- 

metric argument allows us to conclude that both  must play myopic best response in 
each period. Thus, some stage game Nash equilibrium must be picked out (generally 
as a function of  history) in each period by the strategy pair f ,  and so collusive out- 
come paths are ruled out. 

Obviously, in some cases it will be possible to leave A1 unchanged and stillprove 

a relevant result. An example of  this is given by the augmented prisoners' dilemma 
in which player one has two undominated strategies and player two retains a strongly 
dominant strategy in the stage game. 
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