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Beliefs about quantities are expressed by estimations. Beliefs are quantified by
ascribing to them probability numbers. It is, shown that beliefs about quantities
and quantified beliefs give rise to the same model, that of a type space. We study
the axiom that an agent's estimation coincides with the estimation of that estima-
tion, showing it to be weaker than the introspection axiom, according to which an
agent is certain of his own probabilistic beliefs. It implies, however, that the agent
is certain that he is introspective, and it is equivalent to the axioms of averaging
and conditioning, which are expressed in terms of probabilistic beliefs. Journal of
Economic Literature Classification Number: D80. � 2000 Academic Press

1. INTRODUCTION

1.1. Two kinds of beliefs. There are two different ways in which
numbers are involved in expressing beliefs. Jane demonstrates the first one.
She says that the probability of putting a human being on Mars in her
lifetime is eighty percent. The numerical value is usually understood to be a
quantification of the degree of her belief that a human being will be put on
Mars in her lifetime. Jane is, of course, a literary figure; flesh and blood human
beings do not usually make such statements, unless they are subjects in the
laboratories of social scientists. Even literary figures did not speak this way
until recently. One does not find statements of such form in Shakespeare,
let alone older texts, for the simple reason that before the development of
probability theory in recent centuries beliefs were not quantified.

The other way in which numbers are involved in expressing beliefs is
much older and simpler. When we ask John how old his neighbor is, he
answers ``About seventy five years old.'' And Mary says ``There were
approximately one hundred and twenty guests,'' when asked about yester-
day's party. Kim says that it feels like the temperature in the room is 18
centigrade. In all these cases people are expressing their opinion, or belief,
about a quantity, although they are not necessarily certain what it is
precisely. Their belief is given as a numerical estimation of the quantity.
The numerical value involved is the content of the belief, rather than a
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degree of the belief. Unlike probabilistic statements, sentences expressing
estimations are not the result of any modern theory, and therefore it is no
surprise that texts from time immemorial attest their use. The following is
an example from the Bible. ``So there went up thither of the people about
three thousand men: And the men of Ai smote of them about thirty and
six1 men.'' (Josh. 7:4�5)

We examine here the relationship between these two apparently different
kinds of beliefs by studying them in the framework of the same model. We
show that each kind can be reduced to or explained in terms of the other.
In particular, probabilistic beliefs can be viewed as an equivalent descrip-
tion of the observable phenomenon of estimation, analogously to the way
that probabilistic beliefs and utility functions are viewed as describing
preferences. We delineate, first, the considerations that lead to the model in
which both kinds of beliefs are studied.

1.2. Modeling beliefs about quantities. Any belief about quantity has
two major components. First, there is some quantity described; John's
neighbor's age, or the size of Albania's population, or the distance between
two cities. Then, there is the belief of the agent concerning this quantity.

Consider first the modeling of the quantity in question. Suppose John's
neighbor is really 82 years old. Should we identify ``John's neighbor's age''
with 82? As far as John is concerned, the answer is no. He does not equate
his neighbor's age with 82, as he does not know his neighbor's age. In
John's mind this quantity is associated with many possible values, Thus, a
quantity is more like a set of values, or a variable. Put differently, John
cannot describe the state of affairs in the world by specifying all the true
facts, because he does not know his neighbor's age. Instead, John can come
up with a list of several descriptions of the world (which differ, at least in
his neighbor's age) that he considers as possible ones.

This leads to a standard set theoretic model of state space, the elements
of which, the states, or states of the world, are interpreted as possible states
of affairs. The quantity ``John's neighbor's age'' may then have different
values in different states. In other words, we can think of it as a function
that attaches to each state a number, which is John's neighbor's age at the
state. In general, quantities about which we have beliefs are simply func-
tions on a state space.

What then is a belief about such a quantity? Here the answer seems to
be straightforward. John estimates his neighbor's age to be 75. It seems that
we can plausibly identify this estimation, or belief, with the number 75. But
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some caution is called for. Suppose we ask Mary what she thinks John's
estimation of his neighbor's age is. For Mary, John's estimation is a quan-
tity in the sense that we have already used this term: she does not know
for sure what John's estimation is. In other words, John's estimation itself
may vary with states; it is a function on the state space. But suppose that
only John's estimation is of interest to us. Since John has no doubt concer-
ning his estimation, would it not be simpler to assume that his estimation
is just a single number? Even if we answer this question in the affirmative,
it is better to consider John's estimation as a quantity that depends on the
state of the world, and then find the required assumptions concerning
estimations that make them known to him. In summary, a quantity is
modeled as a function on a state space, and a belief concerning this quan-
tity is itself a quantity, that is, a function on the state space.

1.3. Modeling quantified beliefs. Looking at the difference between
beliefs about quantities and quantified beliefs from a grammatical point of
view, we may say that estimations are about quantities which are nouns,
while quantified beliefs are about whole sentences, or statements. One
believes to some degree that in ten years human beings will inhabit the
moon. This belief is about the statement ``In ten years human beings will
inhabit the moon.'' In probability theory, in logic, and in economics,
statements are modeled set theoretically by events, that is, subsets of a
given set. Like statements, events are true or false; an event is true in all
the points it contains and false in the others. The events to which a point
in this set belongs correspond to the statements that hold true in this point.
Thus, a point in the set specifies the state of the world, and the set itself
is just the state space that we have considered in the previous subsection.
Claiming that one believes to some degree in a statement could be
modeled, in principle, as this degree. But if we want to make beliefs the
subject of beliefs��of others' or of the same agent��then the beliefs them-
selves should be considered as events. Thus, that Jane believes that the
probability of putting a human being on Mars in her lifetime is eighty per-
cent, is itself an event, that is, it is true in some states and false in others.
Therefore, quantified beliefs transform statements into other statements.
We conclude that both quantified beliefs and beliefs about quantities can
be modeled by the same basic model, that of a state space.

1.4. High-order beliefs. Both kinds of beliefs give rise to high-order
beliefs. That is, estimation and belief operators can be applied iteratively.
Thus, it is possible to estimate estimations, or more generally, quantities
that are formed algebraically from estimations. Likewise, belief operators
can be applied to events that are defined in terms of these operators. The
iterative application of belief operators of different agents gives rise to the
notion of common belief which serves as an approximation to common
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knowledge (Monderer and Samet [13]). Iteration of estimation operators
of several agents was studied in Samet [12], in order to give a necessary
and sufficient condition for the existence of a common prior.

Here we study iterations of operators of the same agent. We focus on
two axioms of this type. One, which we call the consistent estimation axiom,
says that an agent's estimation coincides with the agent's estimation of that
estimation. The other, called the introspection axiom, says that an agent is
certain of his own beliefs. Models of information in economics and game
theory almost invariably make the assumption that agents are introspec-
tive. It turns out that consistent estimation does not imply introspection. It
only implies that the agent is certain that he is introspective; it allows for
the possibility that the agent is erroneously certain he is introspective. The
consistent estimation axiom is also equivalent to the averaging and condi-
tioning axioms, which are expressed in terms of belief operators. The
averaging axiom says that the belief of an agent, concerning some event A,
is the average of all his believed beliefs concerning A. The conditioning
axiom says that the belief of the agent, concerning an event A, is the same
as his conditional belief concerning A, when the condition is his belief in
A itself.

In the next section we give formal definitions of state spaces, and estima-
tion and belief operators. In Sections 3 and 4 we list and discuss non-
iterative axioms for the estimation and belief operators. In Section 5 we
define type functions, and show that an operator of either kind satisfies the
axioms, if and only if it is derived from a type function on the state space.
In Section 6 we discuss the introspection axiom. The axioms of consistent
estimation, averaging and conditioning, are presented and shown to be
equivalent in Section 7. In Section 8 we discuss the related literature. The
proofs are in Section 9.

2. THE MODEL

Our primitive building block is a state space, which is a measurable
space (0, 7), where 7 is a _-field on 0. Each point | in 0 is called a state
and is interpreted as a full specification of the state of affairs. We call the
measurable sets��the elements of 7��events. Events are interpreted as set
theoretic representations of statements. An event is said to be true in all the
states it contains. Conversely, the events to which a state | belongs
correspond to the statements that are true in that state of the world which
| represents.

A quantity is a bounded measurable function on (0, 7). Thus, a quantity
f defines at each state | a specific numeric value f (|). The set of all such
functions is denoted by B(0, 7).
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Definition 1. An estimation operator is a function S: B(0, 7) �
B(0, 7).

For given quantity f and state |, Sf (|) is the agent's estimation of the
quantity f at |.

Definition 2. A family of belief operators is a family of functions

B p: 7 � 7,

for all real numbers p�0.

For a given event A, B p (A) is itself an event which we interpret as the
statement that the degree of the agent's belief in A is at least p.

Estimation and quantified belief operators are as yet arbitrary functions.
In the next two sections we consider desired properties of, or axioms on,
these operators.

3. BELIEFS ABOUT QUANTITIES

Consider the following four assumptions on the way people estimate
quantities. The assumptions are quite reasonable, although we do not claim
that they are universally true, or that they fully capture the complex logical
and psychological mechanism of estimation.

v When the value of a quantity is certain, then it is estimated to have
this value.

v If a quantity is certain to be non-negative, then its estimation is
also certain to be so. (e.g., distances are always estimated by non-negative
numbers).

v The estimation of the sum of two quantities is the sum of the
estimations of each of them (e.g., the estimated number of guests in yester-
day's party is the sum of the estimations of the number of men and
women).

v The smaller a quantity is certain to be, the smaller its estimation is
certain to be.

The notion certainty in this list of properties is used in its everyday sense
and not in the probabilistic sense. Agents are certain of a fact if they think
it is true. In terms of our model, a fact which is true in all states is certain.
Thus, when a quantity has a fixed value c in all states, then it is certain to
have this value. The first property says that in such a case, the agent's
estimation would be c in all the states. The next two properties are likewise
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translated into the formal model. We interpret the last axiom as expressing
continuity of the estimation operator, where the topology on B(0, 7) is
defined by uniform convergence.

We thus introduce the following four axioms on estimation operators.

Sc=c (S1)

f �0 O Sf�0 (S2)

S( f +g)=Sf +Sg (S3)

fn � 0 O Sfn � 0. (S4)

4. PROBABILISTIC BELIEFS

We list below seven axioms on the family of belief operators B p that
render the beliefs probabilistic. For an event A, we denote by cA the com-
plement of A. Thinking of events as representing statements, the set
theoretic operations c, & , and _ represent the logical connectors ``not'',
``and'' and ``or'', respectively.

B0 (A)=0 (B1)

B1 (0)=0 (B2)

p>1 O B p (A)=< (B3)

pn A p O B pn (A) a B p (A) (B4)

B p (A & F ) & Bq (A & cF )�B p+q (A) (B5)

cB p (A & F ) & cBq (A & cF )�cB p+q (A) (B6)

An a A O B p (An) a B p (A) (B7)

By the first axiom the degree of belief is always non-negative. In par-
ticular, this axiom ensures that the agent always holds some belief. The
second axiom says that the degree of belief in the sure event is at least one,
while the third axiom guarantees that the degree of belief never exceeds
one. Axiom (B4) guarantees that degrees of belief enjoy the supremum
property of real numbers. That is, if the degree of belief in some event is
greater than or equal to each number in a given set of numbers, then it is
also greater than or equal to the supremum of the numbers in this set. In
particular, applying (B4) to the sequence p, q, q, ..., for p<q, implies that
B p is monotonic in p. By (B5), the degree of belief is superadditive. Note
that cB p (A) is the event that the degree of belief in A is less than p.
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Thus, (B6) states that the degree of belief is subadditive. Finally, (B7)
states that beliefs are continuous, and implies in particular, that B p (A) is
monotonic in A.

5. TYPE FUNCTIONS

5.1. Defining type functions. In this section we present a third descrip-
tion of an agent's beliefs in a state space. We show that it is equivalent to
either of the descriptions in terms of the operators previously introduced,
provided that the operators satisfy the corresponding list of axioms.

If a state is interpreted as a full description of the state of the world, then
in particular it specifies the agent's beliefs, which are part of this state of
affairs. A type function is such a specification. It associates with each state
a full description of the agent's beliefs at the state, in the form of a prob-
ability measure over the state space. The formal definition follows.

Definition 3. A type function on a state space (0, 7) is a real valued
function T: 0_7 � R, which satisfies:

T(|, } ) is a probability measure on (0, 7) for each state |. (1)

T( } , A) is a measurable function for each event A, (2)

Thus, T(|, A) is the probability of, or the degree of belief in A, at |. The
measure T(|, } ) is called the type of the agent at |; it fully specifies the
agent's beliefs at |. A state space endowed with a type function is called
a type space.

5.2. Types and estimation operators. Using a type function T, we define
for each function f in B(0, 7) a function Tf on 0 by

Tf (|)=| T(|, d!) f (!). (3)

That is, the value of Tf at | is the expected value of f with respect to the
agent's type at |.2 The following theorem shows that type functions and
estimation operators that satisfy axioms (S1)�(S4) are two equivalent ways
to describe believed quantities.
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Theorem 1. There is a one-to-one correspondence, T W S, between type
functions T on (0, 7), and those estimation operators S on B(0, 7) that
satisfy axioms (S1)�(S4), such that Tf =Sf for each f.

5.3. Types and belief operators. The type function T can also be used to
define belief operators on 7 by

B p (A)=T &1 ( } , A)([ p, 1])

=[| | T(|, A)�p]. (4)

By (2), B p (A) is an event.
The next theorem shows that type functions and belief operators that

satisfy axioms (B1)�(B7) are two equivalent ways to describe quantified
beliefs.

Theorem 2. A family of belief operators B p on 7 satisfies axioms
(B1)�(B7), if and only if there exists a type function T on (0, 7) such that
for each p, B p is given by (4).

5.4. Type functions as Markovian kernels.3 The mathematical object
which we defined as a type function has been well studied in probability
theory under the name Markovian kernel. It describes the transition prob-
ability of a Markov process, where T(|, A) is the probability that the state
will be in event A in the next period when it is now in state |.

We have seen that T can be associated with a linear operator on
B(0, 7). It can also can be associated with a linear operator on M(0, 7),
the space of all bounded measures on (0, 7). For each bounded measure
+ define a bounded measure +T by

+T(A)=| +(d!) T(!, A). (5)

A measure + is invariant for T, if +T=+.
Using (5) we can define the product of two Markovian kernels, S and T,

to be the Markovian kernel given by

(ST )(|, } )=S(|, } ) T (6)

or equivalently by (5),

(ST )(|, A)=| S(|, d!) T(!, A). (7)
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It can be easily shown that for each f # B(0, 7), (ST ) f=S(Tf ), and thus
we can write STf with no risk of confusion.

An event A is an invariant set of T, if T1A=1A , or equivalently, if for
each | # A, T(|, A)=1, and for each | # cA, T(|, A)=0. The set of all
invariant sets is obviously a _-field.

For a finite state space, a Markovian kernel can be described by a
stochastic (Markovian) matrix the rows and columns of which are
designated by states, and the row associated with a state | is the probabil-
ity vector T(|, } ). The operators defined by the Markovian kernels on
functions and measures are given by the product of the matrix with vectors
from the right and from the left correspondingly.

6. INTROSPECTION

If | # B p (A) & cB1 (B p (A)), then our agent's degree of belief in A, at |,
is at least p, but the agent is not certain at this state that this is indeed the
case. In this state the agent, probing his own beliefs, is unable to tell them
for sure. We say that the agent is introspective at | when this does not
happen, that is, when | belongs to the complement of this event.

Definition 4. The agent is introspective in state | if for each p and A,

| # cB p (A) _ B1 (B p (A)).

The introspection axiom requires that the agent is always (i.e., in all
states) introspective.

The introspection axiom.

cB p (A) _ B1 (B p (A))=0. (B8)

Equivalently, this axiom can be stated as

B p (A)�B1 (B p (A)). (B8$)

Introspection has a simple form when the state space is separable, that
is, when there exists a countable set of events that generate 7. This form
is the one most frequently used in economics and game theory and is
known as the partition model. Let us denote [|]=[|$ | T(|$, } )
=T(|, } )].

Theorem 3. Let T be a type function on a separable state space (0, 7).
Then, for each state |, [|] is a measurable set. Moreover, if B p are the
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belief operators defined by T, then the introspection axiom holds for these
belief operators, if and only if for each |,

T(|, [|])=1. (8)

Thus, under the separability assumption, the case that the agent is of a
given type T(|, } ) is a well defined event, [|]. The partition of the space
according to the agent's type is measurable. Introspection is equivalent, in
this case, to the requirement that at each state the agent is certain of his
type.

The next theorem characterizes introspection in terms of the Markovian
properties of T.

Theorem 4. Suppose that the belief operators are defined by the type
function T. Then, the introspection axiom holds, if and only if the events
B p (A) generate the _-field of the invariant sets of T.

7. BELIEFS ABOUT BELIEFS

7.1. Three axioms. In this section we discuss three axioms that, like the
introspection axiom, involve repeated application of operators. The
axioms, which are weaker than the introspection axiom, are shown to be
equivalent, and to imply the property that the agent is certain that he is
introspective.

Suppose we ask John to estimate his estimation of his neighbor's age. If
John's beliefs are transparent to him, if he is certain of his estimations, then
we would expect that his estimation of his estimation would be the same
as his estimation. This requirement is formulated in the following axiom.

The consistent estimation axiom.

S(Sf )=Sf. (S5)

Observe that (S5) does not imply that John is certain of his estimation.
It only says that summing up, in one number, his uncertainty concerning
his own estimation Sf, John comes up with an estimation that coincides
with the estimation of f.

The next two axioms are expressed in terms of belief operators B p, but
we first discuss them in terms of operators which we denote B p

0 . For an
event A, B p

0(A) is the event that the degree of belief in A is exactly p. When
the operators B p satisfy axiom (B1)�(B7), then B p

0(A) can be expressed in
terms of these operators: B p

0(A)=B p (A) & B1& p (cA).
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Suppose that in state | each of the events B pi
0 (B ri

0(A)) is true, where the
events Bri

0(A) are disjoint in pairs, and � p i=1. Thus the agent is uncertain,
at |, of his degree of belief concerning A. Our first axiom requires that in
this case, his degree of beliefs in A is the average of the ri 's, namely, it is
r=� pi ri . Thus the axiom says that

,
i

B pi
0 (Bri

0(A))�Br
0(A). (9)

However, this axiom has very little bite, as in general there may be, for a
given A, a continuum of non-empty disjoint events Br

0(A), and for any
pi>0 and ri , B pi

0 (Bri
0(A))=<. To overcome this difficulty we need only

replace the events that describe precise degree of belief by events that
describe degree of belief in an interval. For this purpose we denote by
B p, q (A), for p<q, the event that the degree of belief in A is in the interval
[ p, q), i.e., B p, q (A)=B p (A) & cBq (A).

The averaging axiom. For numbers r0<r1< } } } <rn , such that r0=0
and rn>1, pairs p

�
i<p� i , for i=1, ..., n, and r

�
=�n

i=1 p
�

iri&1 , and
r� =�n

i=1 p� iri :

,
n

i=1

B p
�

i , p� i (Bri&1 , ri (A))�Br
�
, r� (A), (B9)

Thus, the events Bri&1, ri (A), which are pairwise disjoint, correspond to
the events Bri

0(A) in (9), B p
�

i , p� i correspond to B pi
0 , and r

�
and r� , which are

the bounds for the degree of belief in A, correspond to r.
Next consider the axiom,

B p
0(Br

0(A))�B pr
0 (A & Br

0(A)). (10)

It can be read as follows. If the degree of belief in Br
0(A) is p, then the

degree of belief in A & Br
0(A) divided by p is r. This simply means that the

degree of the conditional belief in A is r, when the condition is the event
that the degree of the belief in A is r. Here again, the axiom cannot be
stated in this form for the reason given before. To state it correctly we sub-
stitute intervals for the precise degrees of beliefs.

The conditioning axiom. For r1<r2 and p
�
< p� :

Bp
�
, p� (Br1, r2 (A))�B p

�
r1, p� r2 (A & Br1, r2 (A)). (B10)

7.2. The equivalence theorem.

Theorem 5. Let S be an estimation operator and [B p] a family of belief
operators, which are defined by the same type function on (0, 7). Then, the
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consistent estimation, averaging, and conditioning axioms are equivalent, and
they imply

B1(cB p (A) _ B1 (B p (A)))=0. (11)

Thus, although the axioms in Theorem 5 do not imply introspection,
they do imply by (11) and by Definition (4), that the agent is always certain
that he is introspective.

The proof that conditioning implies averaging, and that the latter implies
consistent estimation require elementary probability theory. The converse
implications, as well as the implication of (11), make use of the ergodic
theory of Markov kernels.

Property (11) is weaker than the three equivalent conditions in
Theorem 5, as the following example demonstrates. Let 0=[1, 2, 3] and
T(i, [ j])=1�2 for i and j in [1, 2], and T(3, [1])=1. While (11) holds,
T 2{T.

The following theorem describes the simple structure of separable belief
spaces that satisfy (11).

Theorem 6. Let (0, 7) be a separable state space with a type function
T, and let B p be the belief operators defined by T. Then, (11) is satisfied, if
and only if all the states in which the agent is introspective form a nonempty
event I, and in each state the agent is certain that he is introspective, i.e.,
B1 (I )=0.

Note that although the event that the agent is introspective, I, is not
empty it can be very small. Indeed, if [|0] is measurable, then,
T(|, [|0])=1, for each |, defines a type function for which I=[|0].

8. RELATED LITERATURE

Harsanyi [4] introduced the idea of type spaces, in order to model the
interaction of beliefs in games with incomplete information. A simpler
description of type spaces, and a construction of a universal type space,
were given by Mertens and Zamir [11] for topological type spaces. Heifetz
and Samet [8] constructed a universal type space for general measure
theoretic type spaces. In all these models introspection of agents was
assumed.

The relation between type spaces and belief operators has been studied
by several authors. Our characterization of type spaces in terms of these
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operators is similar to the one in Gaifman [3]. Fagin et al. [2], Aumann
[1], and Heifetz and Mongin [7] studied belief operators in a framework
of formal logic.

Computing the expected value of functions over type spaces, that is, the
use of type functions as estimation operators, is well known. In fact, it is
the main reason for using these spaces in economics and game theory.

Various forms of the consistent estimation, averaging and conditioning
axioms, which are shown to be equivalent in Theorem 5, have been dis-
cussed in the literature. Several axioms have been proposed, in the spirit of
the conditioning axiom. They require that the conditional probability of
an event A, given event B which describes some probabilistic statements
about A, is compatible with the description in B (for a short survey and
references, see Halpern [5]). The various versions differ in the kind of the
conditioning event, as well as in whose beliefs are described in B, and
whose in the conditional belief. Halpern [5] studied, for the finite case, an
axiom similar to our conditioning axiom. Correcting a claim made in this
paper, Halpern [6] showed that finite spaces in which this axiom is
satisfied have a structure analogous to that in Theorem 6.

Several authors consider the axioms of averaging and conditioning as a
significant departure from introspection (see, e.g., Skyrms [14] and Jeffrey
[9]). Skyrms [14] also showed that the conditioning axiom implies the
averaging axiom, although not in a model of type spaces. As shown here,
the escape from introspection is not that dramatic, since each of these
equivalent axioms implies (11), which expresses certainty of introspection.
Gaifman [3] studied axioms concerning the relation between a type func-
tion and a given measure +, over the state space. In particular, he con-
sidered the condition T 2=T where the equality holds +-almost everywhere.

The ergodic nature of type functions was first recognized by Gaifman
[3], but he omitted that part of the proof relating to ergodic theory. In
[12], Samet used results for discrete Markov chains to give a necessary
and sufficient condition for the existence of a common prior.

9. PROOFS

Proof of Theorem 1. It is straightforward to see that T satisfies axioms
(S1)�(S4). We need to show that Tf is in B(0, 7). Obviously it is bounded.
For any characteristic function 1A , T1A (|)=T(|, A), and thus by (2), Tf
is measurable for characteristic functions. By linearity of the integral Tf is
measurable for step functions. Finally, for a given f let fn be a sequence of
step functions that converges to f. Then, by (S4), Tfn converges to Tf and
is therefore measurable.
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For a given estimation operator S define T(|, A)=S1A (|). The
measurability of S1A implies (2), and axioms (S1)�(S3) imply (1). For any
fixed |, Sf (|) and Tf (|) are linear functionals on B(0, 7) which agree on
characteristic functions, and therefore they coincide. Hence, Sf =Tf. K

Proof of Theorem 2. It is easy to verify that belief operators that are
defined by (4) satisfy all the axioms.

Conversely, suppose that the operators B p satisfy (B1)�(B7). Consider
the set P(|, A)=[ p | | # B p (A)]. By (B1) it is non-empty, and by (B4) it
is a closed subset of [0, 1]. Moreover, as (B4) implies monotonicity, this
closed set is of the form [0, p]. Define T(|, A)=max P(|, A). The
additivity and continuity of T(|, } ) follow from (B5)�(B7). By (B3) it is a
probability measure. The equality in (4) follows easily from the fact that
P(|, A) is an interval. The measurability condition (2) follows from (4). K

Proof of Theorem 3. Let 70 be a countable set that generates 7. Then,

[|]= ,
p, A: | # B p(A)

B p (A),

where the intersection is over A in 70 and rational p, since T(|$, } ) is the
same as T(|, } ), iff they coincide on 70 . Thus, [|] is an event. When the
agent is introspective at |, then T(|, B p (A))=1 whenever | # B p (A), and
thus (8) holds. Conversely, since [|]�B p (A) for any A and p such that
| # B p (A), (8) implies T(|, B p (A))=1, i.e., | # B1 (B p (A)). K

Proof of Theorem 4. If B p (A) is invariant then for each | # B p (A),
T(|, B p (A))=1 and therefore (B8$) holds. Conversely, if (B8$) holds, then
T(|, B p (A))=1 for all | # B p (A). Also, if pn<p and pn converges to p,
then

cB p (A)=.
n

B1& pn (cA)�.
n

B1 (B1& pn (cA))

=B1 \.
n

B1& pn (cA)+
=B1 (cB p (A)).

Hence, for each | # cB p (A), T(|, cB p (A))=1, which proves that B p (A)
is invariant. If A is an invariant set, then T(|, A)=1 for each | # A, and
T(|, A)=0 for each | # cA. Thus, A=B1 (A), and A belongs to the said
_-field. K

Proof of Theorem 5. We need for the proof some preliminaries from the
ergodic theory of Markov kernels. Let + be a finite measure on (0, 7). We
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say that T is null preserving with respect to +, if +(A)=0 implies that
T(|, A)=0, +-almost everywhere. The ergodic theory studies the Kernel T
as an operator on the space of measures that are absolutely continuous
with respect to + (a space that can be identified with L1 (+), by the iden-
tification & � d&�d+) and on its dual space L� (+). Note, however, that the
results in Theorem 5 hold at all the points in 0 and not almost everywhere
with respect to some measure.

Given a measure +, the state space 0 can be decomposed, in a unique
way, up to +-null sets, into two measurable parts: the conservative part C,
and the dissipative part D=cC. In the case of a discrete space these parts
consist of the recurrent and transient states respectively. For our purposes
we need only the following properties of the two parts.

Proposition 1. 1. There exists f�0 in L� (+) such that [| | f (|)>
0]=D, and �n

k=0 T kf<1 for all n.

2. T(|, C)=1, for +-almost all | # C.

The two parts of this proposition are Theorem 1.5 and Corollary 1.4 in
Krengel ([10], Chapter 3).

An event B is +-invariant if T1B=1B , as functions in L� (+), or equiv-
alently, if T(|, B)=1 +-almost surely on B and T(|, cB)=0 +-almost
surely on cB. It is easy to see that the family of all invariant sets is a
_-field. The following proposition is from Krengel ([10], Chapter 3,
Lemma 3.3).

Proposition 2. Suppose that 0=C. Then, for f # L� (+), Tf =f, if and
only if f is measurable with respect to the _-field of +-invariant sets.

We show first that (S5) implies (11). As Tf =Sf for each f, it follows that
T 2f =S 2f, and by (S5), T 2=T.

Fix a state |0 and let +=T(|0 , } ). By the definition of the product of
kernels, (6),

+T=T 2 (|0 , } )=T(|0 , } )=+, (12)

and therefore, + is an invariant measure of T. Thus, +(A)=� +(d|) T(|,
A). In particular, if +(A)=0, then T(|, A)=0 +-almost surely, that is, T
is null preserving with respect to +, which justifies the use of Propositions 1
and 2.

From T 2=T we conclude that for the function f in Proposition 1,
f +nTf<1 for each n, which shows that for +-almost all | # D, Tf (|)=0,
or equivalently, T(|, C)=1. With the second part of this proposition,
we conclude that T(|, C)=1 for +-almost all |. Therefore +(C)=
� +(d|) T(|, C)=1, and 0=C up to +-null sets.
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Suppose that A is a +-invariant set. Then for +-almost all | in A,
| # B1 (A). Thus, +(cA _ B1 (A))=1. Remembering that +=T(|0 , } ), we
see that |0 # B1(cA _ B1 (A)). Since |0 was arbitrary, we conclude that

B1cA _ B1 (A)=0. (13)

To prove (11) it is enough, by (13), to show that for any p and A, B p (A)
is +-invariant. This follows from Proposition 2, for f =T1A , as B p (A)=
[| | f (|)�p] and Tf =T 21A= f.

We show, now, that (S5) implies (B10). Suppose |0 # B p
�
, p� (Br1 , r2 (A))

and let +=T(|0 , } ). Then, +(Br1 , r2 (A)) # [ p
�
, p� ). As we have shown, + is

invariant, and therefore +(A & Br1 , r2 (A))=� +(d|) T(|, A & Br1 , r2 (A)). We
have also proved that Br1 , r2 (A) is a +-invariant set, and thus for +-almost
all | in Br1 , r2 (A), T(|, Br1 , r2 (A))=1 and for +-almost all | in cBr1 , r2 (A),
T(|, Br1 , r2 (A))=0. Thus, the last integral is �B r1 , r2(A) +(d|) T(|, A). But
the integrand takes values in [r1 , r2) over Br1 , r2 (A), and hence the integral
is in [p

�
r1 , p� r2). Thus, +(A & Br1 , r2 (A)) # [p

�
r1 , p� r2), or equivalently,

|0 # Bp
�
r1 , p� r2 (A & Br1 , r2 (A)), which shows that (B10) holds.

To see that (B10) implies (B9) note that by (B10)

,
n

i=1

B p
�

i, p� i (Bri&1 , ri (A))� ,
n

i=1

B p
�

i ri&1 , p� i ri (A & Bri&1 , ri (A)).

Since the sets Bri&1 , ri (A) form a partition of the space, it follows that

,
n

i=1

B p
�

i ri&1 (A & Bri&1, ri (A))�B� p
�

i ri&1 (A),

and similarly

,
n

i=1

cB p� i ri (A & Bri&1 , ri (A))�cB� p� i ri (A),

which proves (B9).
Finally, to see that (B9) implies (S5), let +=T(|0 , } ). Choose a sequence

r0<r1< } } } <rn , such that r0=0, rn>1 and ri&ri&1<=. Let
+(Bri&1 , ri (A)) # [ p

�
i , p� i), where p� i&p

�
i<=�� ri . Then, by (B9), +(A) is in

[r
�
, r� ). Also,

| +(d|) T(|, A)=� |
B ri&1 , ri (A)

+(d|) T(|, A).
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The i term in this sum is in [p
�

i ri&1 , p� i ri), and therefore the integral is in
[r

�
, r� ). As r� &r

�
<2=, it follows that +(A)=� +(d|) T(|, A). By (7), this

means that T(|0 , A)=T 2 (|0 , A), and therefore, T 2=T. K

Proof of Theorem 6. Suppose that (11) holds, and let I=� cB p (A) _
B1 (B p (A)), where the intersection, here and in the rest of the proof, is over
events A in a countable generating family of events 70 , and rational p.
Then, by (11), B1 (I )=0, and in particular, I is not empty. Moreover,
| # I, iff

| # ,
p, A: | # Bp(A)

B1 (B p (A)).

This holds, iff

| # B1 \ ,
p, A: | # B p(A)

B p (A)+ ,

that is, iff T(|, [|])=1. We conclude, by Theorem 3, that the agent is
introspective at | iff | # I. The converse is obvious. K
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