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P e r s i s t e n t  E q u i l i b r i a  in S t r a t e g i c  G a m e s  1 ) 

By E. Kalai, and D. Samet, Evanston 2) 

Abstract: A perfect equilibrium [Selten] can be viewed as a Nash equilibrium with certain properties 
of local stability. Simple examples show that a stronger notion of local stability is needed to elimina- 
te unreasonable Nash equilibria. The persistent equilibrium is such a notion. Properties of this solu- 
tion are studied. In particular, it is shown that in each strategic game there exists a pesistent equili- 
brium which is perfect and proper. 

1. Introduction 

The notion of  Nash equilibrium is used to predict or prescribe the strategies that 
will be used by  the players of  a noncooperative game. Nash's rational is to impose 
necessary conditions on such strategies and to show that  the imposition of  these 
conditions on the potential strategy combinations rules out many  of  them and leaves 
a significantly smaller set to consider. At the same time Nash's conditions are not  too 
restrictive in the sense that  noncooperative games in which each o f  the players has 
finitely many  (pure) strategies, have always at least one Nash equilibrium. 

Selten [ 1975], as well as others [see Harsanyi; Myerson; Kreps/Wilson; Kohlberg 
for additional references], pointed out that  Nash's conditions are not restrictive 
enough and that in some cases not all the Nash equilibria of  a game are reasonable as 
outcomes of  the game. 

To deal with this difficulty Selten introduced the notion of  perfect equilibrium. In 
order for a strategy combination of the players to be perfect equilibrium it has to 
satisfy some properties of  local stability in addition to Nash's pointwise stability. In- 
yoking his conditions Selten restricts the set of  outcomes of  the game further than 
Nash but still without losing existence. 

Myerson [1978] pushes Selten's idea further and defines a set of  proper equilibria, 
which is contained in the set of  perfect equilibria, and shows existence for his solution 
concept. 
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A typical example to demonstrate Selten's idea of perfectness is the following two- 
person game. 

I~1 : Player 2 

L H 

L 1,1 0,0 
Player 1 

H. 0,0 0,0. 

In this game if both players play their low strategies (1,, L) they each receive a payoff 
of one. If  they play any other combination of strategies both receive zero. 

There are two Nash equilibria in this game. These are the strategy combinations 
(L, L) and (H, H). To check whether a strategy combination is a Nash equilibrium we 
have to check whether every player is maximizing his payoff assuming that his 
opponent, or opponents, behave as prescribed by the given strategy combination. This 
is certainly the case for the pair of combinations (L, L) and (H, H). However while we 
feel that the combination (L, L) is a good one, we are sceptical of the combination 
(H, H). It is true that if player 2 plays H, player 1 cannot improve by defecting to his 
L strategy. However he cannot lose by defecting to L and if moreover there is even an 
infinitesimally small probability that player 2 will play L then he is strictly better off 
playing L. The strategy combination (L, L) is much more stable. Each player loses by 
shifting frorn L and moreover, even if player i expects his opponent to use with some 
probability his strategy H, player i is still willing to play L. 

A generalization of these ideas leads to the definition of Selten's perfect equilibrium. 
A Nash equilibrium is perfect if there exist certain infinitesimal trembles away from 
the equilibrium strategies (by using all the strategies of all the players), such that each 
player still wishes to play his strategy, even though the others tremble. The proper 
equilibrium of Myerson narrows down the set of perfect equilibrium by imposing 
rationality restrictions on the permissible trembles. Both the perfect and the proper 
equilibrium have certain properties of stability in the neighborhood of the equilibrium. 

Motivated by some examples of games in which perfect and proper equilibrium 
yield unsatisfactory results, we study in this paper a notion of neighborhood stability. 

Consider first the following 3-person game. 

P2 : Player 3: L 

Player 2 

L H 

L 1,1,1 0,0,0 
Player 1 

Player 3: H 

H ~ e r  2 

L H 

L 0,0,0 0,0,0 

H 0,0,0 0,0,0 H 0,0,0 1,1,0 

In this game if all three players play their low strategies they are paid each one unit. 
If all three players play their high strategy then player 1 and 2 are paid 1 and player 
3 is paid 0. Any other strategy combination yields a payoff 0 to all three players. 
Player 3 only chance of being paid is if he plays his low strategy. The strategy combi- 
nation (L,L,L) is a perfect and proper equilibrium of this game. Not only that there 
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exist certain trembles under which each player still plays this combination, but for 
every possible tremble each player will still do it. [Kohlberg, calls such an equilibrium, 
truly perfect]. 

But somewhat surprisingly the strategy combination (H,H,L) is also a Nash equili- 
brium which is perfect and proper. The reason is, that if players 1 and 2 except that 
player 3 trembles into his H strategy much more then they tremble into their L 
strategy, they will be paid by the combination (H,H~tI) (with payoffs (1,1,0)) more 
than they are paid by the combination (L,L,L). 

But a very specific set of trembles is needed to justify the perfectness of (H, H,L). 
What happens if the players tremble in another way, one that might be considered 
even more logical? If for example player 3 trembles much less into his H strategy 
(which does not yield him any payoff), than player 1 and 2 tremble into their L 
strategy then they will all end up in the combination (L,L,L). From there, as we 
have said, no further trembles will get them out. It seems that the weak stability of 
(H~I,L) is stressed and amplified by the strong stability of (L,L,L). 

Our next example deals with the neighborhood stability of strategy combinations 
in which all the players use all their strategies. We call such strategy combination, 
inner strategy combination. By the definition of perfect and proper equilibrium, 
trembles are applied only to those players who do not use all their strategies. As a 
result, inner equilibria are always perfect and proper. But trembles can be applied 
also to inner strategies. Consider for example the following game. 

Vs : The Battle of the Sexes 

Player 2 

L H 

Player 1 
L 1,1 0,0 

H 0,0 1,1 

In this game there are three Nash equilibria, (L,L), (H,H) and the mixed strategy 
((1/2, 1/2), (1/2, 1/2)) which yields the expected payoff (1/2, 1/2). The equilibria 
(L,L) and (H,H) have strong neigborhood stability; they are immune against any 
tremble. The equilibrium ((1/2, 1/2)), (1/2, 1/2)) is not. If the trembles ((1/2 + e, 
1/2 -- e), (1/2 + e, 1/2 - e)) are considered, then the players will shift to (L,L) which 
is immune against trembles. 

Although neighborhood instability is inherent to inner strategy combinations in 
general, one cannot rule them out as a solution. Consider for example the next game. 

V4: 

Player 1 

The Matching Pennies 

Player 2 

L H 

L 1,-1 -1,1 

H -1,1 1,-1 
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There is a unique Nash equilibrium in this game, namely ((1/2, 1/2) (1/2, 1/2)), but 
any tremble from this inner equilibrium will lead,the players out of it. The point in 
favor of this equilibrium is the fact that there is no strategy combination that threatens 
it as do the strongly stable equilibria in the games F2 and F3 with respect to the 
weaker ones. Trembling out of the inner equilibrium in F4 leads nowhere. 

In this paper we develop a notion of neighborhood stability. This notion helps us to 
choose in each game a neighborhood-stable equilibria set which we eaU persistent. In 
particular the only persistent equilibrium in the game F2 is (L ,L,L) .  The inner equili- 
brium in F3 (The Battle of the Sexes) is not persistent while the other two are persis- 
tent. In F4 (Matching Pennies) the inner equilibrium is persistent. 

We start by defining the notion of absorbing subsets of strategies. We restrict our 
attention to subsets of mixed strategies which are products of compact and convex 
subsets of individual mixed strategies. We refer to such products as retracts. A retract 
is self absorbing, or Nash, if every strategy r in it has another strategy ~r in it which is 
a best reply to r. Thus this is a generalization of the notion of Nash equilibria to sets. 
Indeed we show that the set of minimal Nash retracts coincides with the set of Nash 
equilibria. 

To strengthen the notion of stability to a neighborhood stability we consider absor- 
bing Nash retracts which we define to be retracts that absorb some neighborhood of 
themselves in addition to absorbing themselves. We then look at minimal absorbing 
Nash retracts which we call persistent retracts. We call a strategy persistent if it belongs 
to some persistent retract. 

It turns out that there may exist persistent strategies which are not Nash equili- 
brium. We show however that every game has at least one strategy which is persistent, 
Nash, perfect, and proper equilibrium. We study the structure of persistent retracts 
and persistent strategies. We show for example that every persistent strategy does not 
use any dominated pure strategy. We give the basic structure of persistent retracts 
which make their computations easier. We finally show how by applying the notion of 
persistency, the difficulties described by the previous examples disappear. 

2. Def'mitions and Notations 

An n-person strategic game P consists of: 

1. A setN ofn players; denoteN = {1, 2 . . . . .  n}, 

2. for each i E N  a finite set S i (the pure  strategies of i), 

3. for each i E N  a real valued function u i defined 
n 

on S = • S i (the ut i l i ty  p a y o f f  to i). 
i=1 

An element s = (sl . . . . .  S n)  in S is called a pure  strategy combinat ion .  

For every finite set Fwe  let A (F) denote the set of probability distributions on F. 
Thus o E/x (F) if and only if for every x E F a (X) ~> 0 and N d (x) = 1. 

x ~ F  
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n 
We call A (Si) the set o f  (mixed) strategies o f  player i and we let M = • A (Si) 

i=1 

denote the set of  (mixed) strategy combinations. We will often denote by s i the 
mixed strategy that  puts its entire mass on the pure strategy s i. 

The functions U i are naturally extended to M by: 
n 

U i (o) = U i (o l ,  02 . . . .  , an) = s~sUi (s)iX1 ~ (si), for each o EM.  

The set of  mixed strategies of  player i, A(Si) can be viewed as a simplex in 
ISil E , the Euclidian space for dimension t S i I. Our topological notions with respect 

ISA 
to/x  (Si) refer to the topology induced on A (Si) as a subset of  E ' .  The topology on 

M is the one induced on M as a subset of  >~ E ISil. The interior of  a set A C_ M will be 
i=l 

denoted by ~ .  
For tr E M and ~i E A (Si) we define (cr ] ri) by  (a  I ri) ] = ~ if]  =/: i and (a I r/) i = r i. Thus 

(o 1 r i) is the same as a except for player i who replaces ~. by  ~i" 

For player i and a strategy combination a E M we define the set o f  maximizers o f i  
at a by 

M i (a) = {s i E Si: U i (a I s i) >1 U i (~ I T i) for each r i E A (Si)}. 

The set of  best replies o f  player i at o is defined by 

BR i (a) = (M e 

We define the set of best replies at a by 

n 

BR ( , , ) =  X BR i (c,). 
i--1 

The following conditions are well known easy consequences of  the definitions above. 

1. ~) E BR i (o) if and only if U i (cli ~)  >~ U i (o [ fi) for every ~'i E A (Si). 

2. BR i is an upper semi-continuous correspondence, with BR i (o) being nonempty  

and convex for every o E M. 

3. BR is an upper semi-continuous correspondence with BR (tr) being nonempty  
and convex for every o EM.  

A strategy combination o E M is a Nash equilibrium if  and only if o E BR (o). 

3. Persistent Equilibria 

A retract of  the game F is a restriction of  each of  the sets of  mixed strategies of  the 
n 

players. Formally a subset R of  M, is a retract i f R  = • R i, with eachRi  being a non- 
i=1 

empty  dosed convex subset o f  A (Si). 

For a retract R and a set of  mixed strategies A C_ M, we say that R absorbs A if for 
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every tr CA, BR (o) NR :/: 0. That is, for every cr CA and for every player i there 
is a r i E R  i such that ~. is a best reply of player i to a. 

A retract R will be called a Nash retract ifR,absorbs itself. The notion of a Nash 
retract is a generalization of the notion of Nash equilibrum. Once it is proposed that 
the players play strategies of R no player i has individual incentive to use strategies 
outside of his Ri; in other words this proposal is self enforcing. 

Notice that the entire set of strategy combinations M is trivially a Nash retract. 
Also for a strategy combination o, ~cr) is a Nash retract if and only if a is a Nash 
equilibrium. 

Nash retracts may be viewed as a set valued solution concept. They capture Nash's 
idea of being self enforcing. But in general, a Nash retract may be very large (e.g. the 
entire game). To make theory more useful we are interested in narrowing Nash retracts 
down as much as possible to minimal ones. A Nash retract is minimal if it does not 
properly contain another Nash retract. This approach leads us again to the Nash 
equilibrium concept. 

Proposition 1: A Nash retract R is minimal if and only i fR = (g) where o is a Nash 
equilibrium. 

Proof: It is trivial that every Nash equilibrium constitutes a minimal Nash retract. 
The other direction of the proposition follows immediately from: 

Lemma 1: Every Nash retract R contains a Nash equilibrium. 

Proof: This lemma is proved by the standard method of demonstrating the existence 
of a Nash equilibrium using Kakutani Fixed Point theorem. 

We define the restriction (domain and range) of the best reply corresponence to 
R by 

BRR: R -~ R, BR R (o) = BR (a) N R .  

For every a E R, BR R (o) is nonempty (R is Nash) and convex. Also the upper semi- 
continuity of BR implies that BR R is upper semi-continuous. Since R is compact and 
convex Kakutani's theorem applies and we have a o E R with a E BR t~ (o). Hence 
o E B R  (a) and it is a Nash equilibrium. Q.E.D. 

Our goal is to strengthen Nash's notion of stability which is pointwise stability to 
a notion of neighborhood stability. To that end we follow the same analysis as before 
but instead of starting with Nash retracts which are self absorbing we start with 
retracts which absorb a neighborhood of themselves. We call such retracts absorbing. 
Formally, a retract R is called an absorbing retract if for some neighborhood T of R, 
R absorbs T, i.e., for every a E T there is a r /ER i with ~'i being a best reply of player i to a. 

Using our previous notations the last condition is just: BR (a) N R --/: r for every 
a E T. Notice that every absorbing retract is in particular a Nash retract. A somewhat 
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weaker notion of neighborhood stability is the following one. A rectract R is called 
sequentially absorbing Retract if there exists a nonlncreasing sequence of Nash retracts 

k ,- ~ R k. (R)k=  1 such that R is contained in the interior of each R k and R = Instead 
k=l 

of requiting that R absorbs a neighborhood of itself, sequential absorbing requires that 
close enough neighborhoods of R absorb themselves. For strategic games with finitely 
many strategies, which are the subject of this paper, we can state the following equi- 
valence. 

Lemma 2: A retract R is an absorbing retract if and only if it is a sequentially absorbing 
retract. 

P ro@ Assuming that R is an absorbing retract let T be a neighborhood of R which is 
absorbed by R. Since R absorbs T, R absorbs any retract A satisfying R C A c T. Thus 
any such retract A is Nash. So it suffices to construct any nonincreasing sequence 

k ** ~ R k. of retracts ( R ) k = l  with R being in the interior of each R k and R = Since R 
k=l 

is a compact set contained in the interior of T this is obviously possible. 

Conversely, assume that R = ~ R k with (R ka"* satisfying the conditions required Jk= 1 k=l 
for sequential absorbing. It suffices to show that for some k, R absorbs R k. If this is 
not the case we can construct a sequence (Ok)k=l, a k E R  k such that BR (a k) A R r  q}. 

For every a k and every player i consider the maximizers of i at o k, M i (ok). Recall that 

M i (o k) is a subset of the finite set S i and therefore there are finitely many sets of the 

form M i ( ').  Since BR i ( ' )  = A (M/(.)) there are also finitely many sets of the form 

BR i ( ').  Since there are finitely many players we may assume without loss of generality, 

that for each player i the sets BR i (o k) are the same for all k. Let B i denote this 

common set for player i. For every k and every i we have B i A Rki r f). By the closed- 

ness of B i and Rki is must be that B i N R i --/= ~ which is a contradiction. Q.E.D. 

Following the same philosophy as in the Nash retracts development, it is desirable 
to reduce the absorbing retracts as much as possible. We call a retract R persistent if 
it is a minimal absorbing retract, i.e., if it does not properly contain an absorbing 
retract. 

Theorem 1: Every game has a persistent retract. 

Proof: The set of absorbing retracts of the game is partially ordered by the contain- 
ment relation. By Zorn's lemma it suffices to show that each set of absorbing retracts 

{R )~ /1  which is completely ordered has a lower bound. We will show that 

R = C~ R ~ is such a lower bound; by showing that R is an absorbing retract. We first 
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t 0. R t observe that there is a countable nonincreasing sequence (R) t= l  with E (Ra}a~A 

for which R = ~ R t. The fact thatR is an absorbing retract follows now by applying 
t=l 

the characterization given by Lemma 2 to each of the Rt's  and then to R ( for each 

R t we choose a Nash retract containing R t in its interior in a way that these choices 
converge down to R). Q.E.D. 

Remark: Zom's lemma is a too heavy tool to prove Theorem 1, and indeed a more 
constructive proof is given in the next section. The reasons for using Zom's lemma are 
as follows. Consider strategic games in which for each player the set of strategies is a 
nonempty convex and compact set H i in some separable metric space. The payoff 

/ /  

functions U i are assumed to be continuous on M = • H i. The notions of absorbing 
i=1 

retract and sequentially absorbing retract are applied to these games without change. 
But for this class of games the two concepts are not equivalent. (It is stiil true that 
absorbing implies sequential absorbing). Moreover, the existence of a minimal 
absorbing retract is not guaranteed for every game. Yet the arguments of Theorem 1 
are applicable to these games and they prove the existence of sequentially absorbing 
retract in every game. 

With the above existence theorem in mind we define a strategy combination 
a EM to be persistent if it belongs to some persistent retract. 

A strategy combination a E M will be eaUed a persistent equilibrium if o is a Nash 
equilibrium and it is persistent. The existence of a persistent equilibrium is now 
settled because Lemma 1 directly implies the correctness of: 

Theorem 2: Every game has a persistent equilibrium. 
We will shortly see that unlike in the Nash development the minimal absorbing 

retracts contain also strategies which are not equilibrium strategies. In other words 
there are persistent strategies which are not equilibrium strategies. However by 
replacing 'Nash retracts' by 'absorbing retracts' in Lemma 1, we can significantly 
strengthen this lemma. 

Absorbability guarantees not only the existence of a Nash equilibrium but also 
the existence of a perfect and even a proper equilibrium. Thus in every game we will 
be able to select a persistent proper equilibrium. We leave these issues to section 6 
after we study some additional properties of persistent retracts. 

4. The Structure of Persistent Retracts 

We call two strategies of player i, r/i and r/equivalent for player i if for every 

a ~M,  U i (a i~i) = U i (a I ri). Obviously the equivalence of two strategies o f /can  

be checked only against pure strategies of the others. 

Lemma 3: Two strategies~ri and ~. of player i are equivalent for i if and only if for 

every s ~ S, U/(s I r/i) = U/(s I ri). 
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The next  lemma gives another test for the equivalence of  strategies. 

Lernma 4: Let O be a nonempty  open subset o f  M. Then two strategies of  player i, 
r/i and r i are equivalent if  and only if for every a E O 

U i (o l r/i) = U i (a I ri). 

Proof: We need to prove only the " i f"  direction of  the lemma. Let 6 E M b e  any 
strategy combination. We will that U i (6 I r/i) - Ui (6 I r i) = '0. Chooseany a E O 
and let 

f (X)  = U i (Xa + (1 - X) ~ I r/i) - Ui (Xa + (1 - X) 8 [ ri). 

Now we want to show that f , (0 )  = 0  while we know that f (X) = 0 for all 
X E [1 - t, 1] for some t > 0. But observe that  f (X) is a polynomial function in X. 
Therefore, since it is zero on an open interval, it must be zero for every X. Q.E.D. 

For every p l aye r / l e t  Q~, Q~ . . . . .  Qk(i) denote the partition o r S  i into the equi- 

valence classes generated by equivalence of  strategies. We let 2x (Q/)  denote the convex 
hull of  Q/.  

Our goal is to show that every presistent retract consists of  a small selection of  
strategies for every player. We will show that  in a persistent retract R each R i is the 

convex hull of  a finite selection of  strategies with no more than one strategy being 

selected from each Q/.  

We show first that in every neighborhood in M one can find a point at which best 
replies are unique up to equivalence of  strategies, i.e., all the best replies of  player i 
at this point belong to the same A (Q/) .  

L e m m a  5: Let O be any nonempty  open subset of  M. For every i there exists a 
cr E O such that i f  s i E M  i (a) and r i E M  i (a) then s i and r / a re  equivalent. 

Proof: Since i M / ( ' )  [ is a function with positive integer values we can choose a 

o E O with minimal i M i (o) i among all the strategies in O. By the continuity of  the 

Ui's we can find a neighborhood W of a, such that W _C O and for every r E W, 

M i (r)  C_ M i (a). By the minimality of  [ M / ( a )  [ it follows that M i (r) = M i (a) 

for every r ~ W. Now Lemma 5 follows as an immediate consequence of  Lemma 4. 
Q.E.D. 

A strategy selection of  player i is a finite selection of  strategies containing at most 
one strategy from the convex hull of  every nonempty  equivalence class of  strategies 
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Q{. Formally, F i is a strategy selection of player i if: 

2. if a / E F i  then or/E A (Qr for some 1 ---</~<K (i), and 

3. if a i E F i and "c i E F i then a/is not equivalent to r i. 

Observe that if player i has no equivalent pure strategies then F i is just a subset of the 
pure strategies of playeri. 

A retract R is a selection retract if for every player i, R i = A (Fi) = convex hull 
(Fi), for some strategy selection F i of player i. 

Lemma 6: Every absorbing retract R contains an absorbing selection retract. 

Proof: For each player i let Ji = {]: Ri N z~ (Q{) --/= r By Lemma 5 and the fact that 

R is an absorbing retract it follows that for each i, Ji r 0. For every] E J / le t  a{ be a 

choice of one strategy from R i r3/x (Q]i) and let F /be  the set of these @ Clearly 
n 

F i is a nonempty selection of player i. We will show now that/~ = • A (Fi) absorbs 
i=i 

a neighborhood T of itself. 

Let T be a neighborhood of R which is absorbed by R. We will show that it is 

absorbed by R. Let i be fixed. It suffices to show that for every ~7 E T there is a 

.Q E ~ (Fi) N B R  i 07). By Lemma 5 we can find a sequence (r?l)~= 1 with 77 t ~ r/as 

l ~ ~,  ~l E T, and such that for some ], 1 ~<] ~< K (i), M/(r/l) = Q / fo r  every t. It 

follows thatR i N 2x (Q{) v~ 0 and hence there exists a ~ E F  i with ~ E B R  i (rl l) for 

every l. By the upper semi-continuity o fBR i it follows that 4 EBRi  07). 

Lemma 6 gives us immediately the structure of persistent retracts. Q.E.D. 

Theorem 3: Every persistent retract is a selection retract. 
We also re-obtain the existence of persistent retracts very easily and this time 

without the use of Zorn's lemma. For a selection retract R let (F1, F 2 , . . . ,  F n) be 
n 

the players' selections in R. Let the cardinality of R be defined by I R [ = ~ 1F i I 
i=1 

then we have a new easy proof of: 

Theorem 1 : Every game has a persistent retract. 

Proof: By theorem 3 it is enough to demonstrate the existence of a minimal absorbing 
selection retract. Lemma 6 guarantees the existence of an absorbing selection retract, 
the cardinality of every such retract is a positive integer (~> n). Therefore there exists 
one with minimal cardinality which must be persistent. 
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5. Persistent Retracts of Games with Dominated Strategies 

Our next goal is to show that persistent strategies do not use pure dominated 
strategies. 

A pure strategy of player i, s i, is dominated by o i E A (Si) if for every r EM 

U i (r I si) ~ U i (~ I ai), 

with the inequality being strict for some r EM. A pure strategy s i is dominated if 
it is dominated by some a i E A (Si). 

The following two lemmas are immediate consequences of I_emma 3. 

Lemma 7: "c i dominates s i if and only if for every pure strategy combination 

r ~ S, U i (r [ ri) >~ U i (r [ si) with a strict inequality for some r E S. 

Lemma 8: ~) dominates s i if and only if for every a E I~, U i (a I r i) > U i (a I si). 

Theorem 4: If a is a persistent strategy and s i E S i is dominated then a i (si) = O. 

Proof: Let R be an absorbing retract containing a. Let/~ be the retract def'med by 

~] = Rj for] r i and k i = R i n {r/~ A (Si): ~/(si) = 0}. It suffices to show that 

R i is an absorbing retract. Let T be a neighborhood of R which is absorbed by R. 
]** 

We will show that/~ absorbs T. For every r/E T there exists a sequence of {7 }}=1 

with r71 ~ r/, and 77 ] E ~ / A  T for every ]. For every 6{ E BR  i (,1 ]) n R i we have by 

I_emma 8, 6{ (si) = 0. By the upper semi-continuity o f B R  i we have 

6 i E B R  i (rl) N R  i with ~i (si) = 0. Q.E.D. 

Theorems 3 and 4 can be used to find persistent retracts in the following way. 

Corollary l : I n  every game there exists a persistent retractR of the form ~)~1"= A (Si) where 

Siis a subset of undominated pure strategies of i, which contains no equivalent 

strategies. 

Proof: Let F/be a strategy selection for player i which contains one pure strategy from 
n 

each of the equivalence classes in S i . The retract X A (Fi) absorbs all of M and there- 
i=1 

fore is absorbing. Clearly it contains a persistent retract which by theorems 3 and 4 
should be of the form described in the corollary. Q.E.D. 

By Corollary 1 there exists a f'mite family of retracts of very simple form, from 
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which one can pick up a persistent retract. Under the conditions specified in the 
following corollary, all persistent retracts are of that simple form and therefore 
there are only finitely many persistent retracts. 

Corollary 2: If no player has equivalent strategies among his undominated strategies 
n 

then every persistent retract is of the form/__)< 1 A (Si)where S i i sa  subset of an- 

dominated pure strategies of i. 
We can further simplify the problem of finding all the persistent retracts by 

observing that under the condition of the last corollary every two persistent retracts 
must be disjoint. 

Corollary 3: Suppose no player has equivalent strategies among his pure undominated 
strategies and R ~ and R 2 are two distinct persistent retracts then R 1 N R 9- = 0. 

Proof: For q = 1, 2 let F q = (F1 q, F2q , . . . ,  Fqn) be the selection describing R q. 

Then F/q _C S i and F q does not contain dominated strategies. Suppose contrary to 

the statement of the corollary that o E R  1 n R ~ . It follows that for every player 
], Fj 1 f~ Fj 2 :/: 0. Consider the retract R def'med by the selection 

F=(F~ OF?,F~ nF~ ..... Fin nF2n). 

For q = 1, 2 let T q be a neighborhood absorbed b y R  q and let T = T ~ N T ~. Tis 
a neighborhood ofR.  

Since R is a proper subset of the retracts R ~ andR 2 there is a r E R  which is not 
absorbed by R. Hence there is a player i with BR i (r) fq R i = 0. On the other hand for 

q = 1, 2, BR i (r) n R q ~ 0- So M i ( 0  n F/~ n F 7 = 0 whereas for q = i, 2, M/( r )  

A F q 4: 0. Using arguments similar to those in Lemma 5, we can find an open set 

0 _C T such that for some s] E F/1 and some s~ E F/2 with s~ ~ s~ we have and 

M i (3) r F 7 = (s~) and M i (3) n F~ = (s~) for every 3 E 0. But then s] and s~ 

must be equivalent on the open set O and hence by Lemma 4 they are equivalent. This 
contradicts the assumption of the corollary. Q.E.D. 

6. Perfect, Proper and Persistent Equilibria 

We show in this section that every game has a proper equilibrium which is persistent. 
Since every proper equilibrium is perfect, every game has also a perfect persistent equili- 
brium. We follow the definitions given in Myerson [1978]. 

For a given e > 0 we say that a strategy a EM  is an e.proper equilibrium if  the 
following two conditions hold for every player i: 
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1. 0 i (Si) > 0 for every s i E S i ,  and 

2. for every pair o f  pure strategies s i, si E S i  if  

U i (o I si) > U i (a I si) then e u i (si) >i oi (si)" 

A strategy a E M  is aproper  equil ibrium if there exists a sequences e k and o k with 

e k ~ 0, o k being an e k proper equilibrium and a k ~ o. 

Lemrna 9: Let  R be an absorbing retract. Then for sufficiently small e > 0 there 
exists an e-proper equilibrium o such that for some r ~ R  ~1 a i ~(s i) --  r i (s i) 1 <~ e, 
for each i and s i E S i. 

Proof:  For e > 0 we denote 

ISil+l ISil . 
8 = m i n e  / Z e 1, 

i~_N i=1 

and 

B i = B i ( 8 ) = { o e A ( S i ) :  min a(s )~>8},  
s i~S  i 

and 
n 

B =B (8)= XlB (8). 

We define a retract Ir by  

~ .  = (o i E A (Si): for some r i e R i , Max i a i (si) - r i (si) i <~ e}. 
s i~S  i 

We have R _C W and if e is sufficiently small then R absorbs W. 
We define a correspondence F i : Ir ~ W/by 

F i (a) = {a* e W/: for every si, st" e S i if U i (a I s i) > U i (a I s/) I then e a* (si) >i 

n 

The correspondence F :  W --> W is defined by  F (a) = X F i (a). It  is clear that a 
i=l 

fixed point of  F which also belongs to B would constitute the desired e-proper 
equilibrium. 

It  is easy to see that F (a) :~ B is convex for every b E W. Also F ( ' )  (1B is upper 
semi-continuous. We need only to show that F (a) n B r 0 for each cr E W. 

Given a E W we let r E B R  (o) (3 R .  We will perturb r to generate a point r~ in 
F (a) n B. 

For every player i we order his pure strategies by a function O: S i 
{1, 2 . . . .  , I S  i t} satisfying 
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1. O is one to one, and 

2. for every s i , ~. E S i if U i (o I si) > U i (o I ~.! then 

o (s;) < o 

It is clear that if  s i E M  i (o) and si qf Mi (o) then O (si) < 0 (~.). 
We define 17 i by 

eO(si) ISil 
~ i ( s , ' ) = ( 1 - e ) r  i ( s i ) + e  / ~ e/. 

/=i 

Clearly 77 i E B  i. Also by the construction of r/i it must satisfy the inequalities of 

F (o). Finally I ~i (si) -- ~ (si) I ~< e for every i and s i E S i so r~ E W. Q.E.D. 

Theorem 5: Every game contains a proper (hence perfect) Nash equilibrium which is 
also persistent. 

Proof: By the previous lemma every persistent retract R has a sequence a k of ek-proper 
equilibrium which converges to R as e k -~ O. We can find a subsequence of a k which 
converges to a point in R which must be a proper equilibrium. Q.E.D. 

It is not the case however that every persistent equilibrium is proper or even perfect. 
Consider the following 3-person game. 

Player 3: L Player 3: H 

Player 2 Player 2 

L H L H 

L 0,0,0 0,0,1 L 0,1,0 1,0,0 
Player 1 

H 0,1,0 1,0,1 H 1,0,1 0,1,0 

We claim that every strategy in this game is persistent. Yet the strategy (L,L,L) 
constitutes a Nash equilibrium which is not perfect. 

To see that every strategy is persistent observe that this game has no equivalent 
strategies for any one of the players. Therefore by Corollary 2 every persistent retract 
consists of a finite number of pure strategies (and their convex combinations) for any 
one of the players. LetR be such a retract and consider first the case t h a t H E R 3 .  It 
follows immediately by inspection of the right hand side table of the game (the one 
corresponding to player 3 playing/-/) that forR1 and R2 to be Nash closed we must 
have R1 = R2 = (L, H). But then (since Player 3 prefers (H,H,L) to (H,H,H)) 
L E R3 and R3 = (L,H). So every persistent retract R with H E R3 coincides with 
the entire game, and every strategy must be persistent. 

So we are left to consider the case w h e n H ~ R 3 .  It follows by the fact thatR is a 
Nash retract that (H,L,L) ~ R ,  and therefore (H,H,L) ~ R  and therefore (L,H,L) (~R. 
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It must be then that R = {(L,L,L)}. Now consider a mixed strategy o described by 

ol ( L ) =  1 - e l  ol (H)=  el 
o2 (L)=  1 -  e2 o2 (H)=  e2 

o3 ( L ) =  1 - e 3  o3 (H)=  e3. 

Where each e i satisfy 0 < e i < 1/3. Clearly R must absorb such strategies for some 
sufficiently small el ,  ez and e3. 

But consider player l 's payoff at cr 

U1 (o) = e l  e2 (1 - e 3 ) +  el (1 - e 2 )  e3 + (1  - - e l ) e  2 e 3 

= el (e2 + e3 - 3e2 e3) + c Where c is independent of e l ,  

= e l  [e2 ( 1 - - 3 e 3 ) + e 3 ] + c .  

The term inside the brackets is positive when e3 < 1/3. So every best reply in a neigh- 
borhood of (L,L,L) must contain the strategy H for player 1 and (H,L,L) ER,  a con- 
tradiction. So we have seen that the only persistent retract is the entire game and every 
strategy is persistent. 

The arithemtic done in the previous paragraph also shows that (L,L,L) could not 
be a perfect equilibrium and this completes the analysis of this example. 

7. Unanimity Games 

All of the examples discussed in the introduction are of the family of unanimity 
games (or diagonal games). These game were discussed by Harsanyi [1981]. A game is 
a unanimity game if it has the following special structure. All the players have the same 
set of strategies which we denote by C, (i.e. for each i, S i = C). A combination of pure 

strategies in C n is called diagonal if it is of the form (e, c . . . . .  e) for some c E C. We 
denote such a strategy by & For each combination of pure strategies s which is not 
diagonal and for each player i, U/(s) = 0. (Our analysis would apply in the same 
manner if U i (s) = ~i ~ 0 without this utility normalization.) We call a combination 

of pure strategies s, positive if U/(s) > 0 for each player i. Clearly if s is positive than 
s is diagonal. 

Theorem 6: If a unanimity game has a positive combination of pure strategies then a 
strategy combination is persistent if and only if it is positive. 

Proof: Suppose ~ = (c . . . . .  c) is a positive combination of pure strategies. We will 
show that the retract {~} absorbs a neighborhood of itself, for a given 1 > e > 0 
consider the set T = {o E A n (C) I ~  (c) > t -- e for i = 1 , . . . ,  n}. For every 
o E T, U i (o I c) = U i (e) /X i o/(c) ~> U i (e) (1 -- e) n ' l  . 

- r  ~ - t  �9 For every c' :~c, U/(a  I c') = U i (d) X o i (e') .~. U i ( c )  e n ' l  I fe  is small enough then 

c is the unique maximizer for each player at each point of T, which shows that {~} 
absorbs T. It follows then that {~} is a persistent retract. 
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Conversely, suppose that  R is a persistent retract and cr E R.  Observe that since there 
is a positive combination of  strategies no player has equivalent strategies among his un- 
dominated strategies. Thus we can evoke Corollary 2 to conclude that 

n' 
R = • ~ (C i) where C i C_ C is a set o f  undominated strategies for the player i. Notice 

i=1 
n 

also, that if  • C i contains a diagonal combination of  strategies ~o, then necessarily 
i=1 

e0 is positive. We will show that R contains a diagonal combination of  strategies c0 
and therefore by the "if"  direction of  the theorem and because of  the minimality of  
R, R = (co }. Let co be a positive combination of  strategies and assume that 

n 
s = (sl . . . . .  Sn) is a combination of  strategies in • C i which is not diagonal. For 

i=1 
0 < e < 1 consider the strategy o r defined by o/e = e Co + (1 - e) s i Clearly 

U i (o r ICe) = U i (Co) • ~e (Co) > 0. We assume first.that n > 2. Suppose now that 
/~ i  

there are no n - 1 coordinates in s which are identical. Then for each i and for each 
c' :~Co, U/(cr e I c') = U i (~')/X=i 07 (c') = 0. It  follows then that the only maximizer, for 

each i, at o r is co, i.e. co E R .  Assume now that there are exactly n -- 1 coordinates 
which are identical. Without loss of  generality we may assume s2 = s3 . . . .  �9 = s n = c' 
and sl :~ c'. The same argument as above shows that Co E C / f o r i  i> 2. As for the first 
player, UI (o r I c) = 0 for each c for which c ~ c o and c ~ c'. Therefore either 

n n 
Co E C~ in which case c0 E • C., or c' E C1 in which case ~' E • C i. The argument for 

i=1 t i=1 

n = 2 is similar. Q.E.D. 

Applying theorem 6 to the games F1, F2, and F4 discussed in the introduction we 
see that the persistent strategies coincide exactly with the solutions suggested there. In 
the matching pennies game, F3, it is easy to see that the set of  persistent strategies 
coincide with the entire set of  mixed strategies of  the game. 

However, ruling out bad strategies will occur also in non-unanimity game. For ex- 
ample we could perturb the battle o f  the sexes game to make it nondiagonal while 
keeping the same best reply functions and the mixed strategy would still not  be 
persistent. 
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