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Econometrica, Vol. 53, No. 2 (March, 1985)

MONOTONIC SOLUTIONS TO GENERAL
COOPERATIVE GAMES

By Enup Karar AND Dov SAMET

A family of monotonic solutions to general cooperative games (coalitional form games
where utility is not assumed to be transferable) is introduced under the name of egalitarian
solutions. These solutions generalize the notion that cooperating players within a coalition
should have equal compensation for this cooperation where equal compensation is done
in interpersonally compared utilities. The egalitarian solutions generalize the weighted
Shapley values defined on the subclass of cooperative games with transferable utility and
Kalai’s proportional solutions defined on the subclass of bargaining games. It is shown
that in the presence of other weak axioms the egalitarian solutions are the only monotonic
ones. The monotonicity condition is shown to be necessary and sufficient to bring about
full cooperation if we assume that the players are individual utility maximizers and can
control their levels of cooperation.

1. INTRODUCTION

THE COOPERATIVE GAMES that are discussed here are multiperson games in
coalitional form where utility is not assumed to be transferable. These games are
also often referred to as characteristic function games without sidepayments and
as nontransferable utility games. In such games a set of feasible utility allocations
(vectors) is described for every coalition of players. The main question is to
determine the final utility allocation that the players will agree to or that an
arbitrator will recommend.

We follow an established tradition of game theory by seeking an axiomatic
solution to the questions above (see, for example, Nash [17] and Shapley [25]).
That is, we postulate conditions, or axioms, which we feel are desirable for a
solution to satisfy and investigate the logical and mathematical consequences of
these axioms. As it turns out, the axioms discussed in this paper are strong enough
to determine essentially a unique solution.

Two subclasses of this general class of games have been studied extensively.
The first is the class of games with transferable utility. In this class the feasible
sets of the coalitions are such that if a utility allocation is feasible then every
other allocation which yields the same total utility (summed over all the players
in the coalition) is also feasible. Thus, it is implicitly assumed that it is feasible
for players to transfer utility from one to another. The most prominent and
established axiomatic solution for this subclass is the Shapley [25] value.

The second subclass of games that has been studied extensively consists of the
bargaining games. In this subclass utility is not assumed to be transferable but
there is a restriction that only the coalition of all players, the grand coalition,
has profitable feasible utility allocations. Here the most prominent axiomatic
solution is the one proposed by Nash [17].

! The authors wish to thank the referees for their valuable suggestions. Financial support for this
research was granted by N.S.F. Economics Grant No. SOC-7907542.
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Until recently there were no axiomatic solutions to the general class of coali-
tional form games. What researchers tried to do was to define solutions for the
general class that coincide with the prominent solutions on the two subclasses
mentioned above. Solutions of this type were proposed by Shapley [26], Harsanyi
[4, 5], Owen [20], and others. Recently Aumann [1] succeeded in axiomatizing,
for the first time, a value of this type, the one proposed by Shapley, which is
called the NTU (nontransferable utility) value. With a similar set of axioms Hart
[6] characterized the Harsanyi solution.

One of the appealing properties that the Shapley value exhibits on the subclass
of transferable utility games is one of monotonicity. This condition states that if
the feasible set of one of the coalitions increases, and the feasible sets of all other
coalitions remain the same, then none of the members of this coalition should
become worse off because of this change. This condition is appealing as a
fundamental principle for cooperation but it must also hold for many cooperative
games from noncooperative principles of individual utility maximization. In many
such games an alternative is feasible for a given coalition if and only if every
member of the given coalition supports it. In other words, every player can veto
every feasible alternative of a coalition to which he belongs. In such situations,
if contrary to the monotonicity condition, a player of a given coalition stands to
lose because of the availability of new alternatives, he would veto these new
alternatives, reduce the situation back to the old one, and lose nothing. With this
veto option available to the players, and under a utility maximization assumption,
it follows from the above argument that a solution must be monotonic. Conversely,
if a solution is monotonic, then none of the players has incentives to veto any
alternative, destroy or misrepresent his resources, and in this sense a maximal
level of cooperation should result (see Section 10 for a formal discussion of these
ideas).

Turning to the subclass of bargaining games, we know that the Nash solution
does not satisfy the monotonicity condition (for references see Roth [22] and
Kalai [8]). The only solutions which are monotonic (in the presence of other
standard conditions) are the egalitarian solutions introduced by Kalai [7] (under
the name of proportional solutions). A solution is of this type if for every
bargaining problem it selects a Pareto optimal point with the property that the
utility gains of the different bargainers are at given fixed proportions to each
other. These proportions are fixed and do not vary as we change bargaining
problems. Thus, each solution of this type may be thought of as giving all the n
bargainers equal gains, provided that the utility scales of the bargainers have
been appropriately rescaled before being incorporated into the family of bargain-
ing problems under consideration.

In this paper we introduce and characterize a family of axiomatic solutions to
the general class of coalitional form games. This family generalizes the weighted
Shapley values (symmetric as well as nonsymmetric) on the subclass of transfer-
able utility games and the family of egalitarian solutions on the subclass of
bargaining games. We call each solution in this family an egalitarian solution.
Each egalitarian solution is monotonic and we show that in the presence of other
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weak and standard conditions the egalitarian solutions are the only monotonic
ones.

Studies of the monotonicity axiom and related conditions have been numerous.
For some of these studies and further references we refer the reader to Luce-Raiffa
[11], Owen [19], Megiddo [13], Kalai-Smorodinsky [10], Roth [22], Thomson-
Myerson [28], Thomson [27], and Young [29].

Egalitarian solutions differ essentially from the Harsanyi solution and the
Shapley NTU value in their invariance properties. While the latter two solutions
are invariant under rescaling of the utility function of a single player, egalitarian
solutions are invariant only under simultaneous rescaling of the utility functions
of all the players with the same rescaling factor. Thus, in order to apply an
egalitarian solution to a game, the utilities of the players should be in the “right”
scale. As such, egalitarian solutions make interpersonal comparison of utility.
Such comparison is not required or assumed in the axioms which we use to
characterize the egalitarian solution; rather, it is implied by the axioms. Therefore
we may consider this work as a contribution to the study of the foundation and
justification of interpersonal utility comparison.

Interpersonal utility comparisons have an interesting history in economic
theory. As pointed out to us by a referee of this journal, about fifty years ago it
was a respectable topic. Then the pendulum swung away and twenty to thirty
years ago it became a scandalous notion and even cardinal (or intrapersonal
utility comparisons) utility became somewhat indecent. Cardinal utility has
become respectable again and interpersonal utility comparisons are cropping up
more and more frequently. For a sample of this literature we refer the reader to
Harsanyi [3], Rawls [21], Hammond [2], Sen [23], Kalai [7], Myerson [14], Roth
[22], and Myerson [16].

We defer further discussion of the egalitarian solution, its relationship to other
solutions, and its properties, for the later sections in the paper after presenting
the above ideas formally.

2. AN EXAMPLE

We consider three players, called 1, 2 and 3, faced with the following situation.
Every player.acting alone can secure a payoff of zero utility for himself. Cooper-
ation of any two players does not change outcomes and thus when any two-player
coalition cooperates the result will still be a payoff of zero to every one of its
members. However, the cooperation of all three players is potentially profitable.
When all three players cooperate they can bring about any one of the following
three utility payoff vectors:

(4,4,4) (7,0,0) (0,12, 0).
We assume also that every convex combination of these three payoffs is feasible
for the players. We refer to this situation as game A.

When we apply the Harsanyi solution or the Shapley NTU solution to the

game A it follows that

the outcome of A= (4, 4,4).
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Assume now that players 1 and 2 found a new vehicle with which they can
cooperate. Under cooperation the two of them can now bring about for themselves
any of the two payoffs

(7,0) (0,12)

and any convex combination of them. We now face a new cooperative game,
which we call B. B is the same as A except for the coalition of players 1 and 2.
If we apply the same solutions as before to the game B, we observe that

the outcome of B=(3.5, 6, 0).

(More precisely, this is the only outcome if we allow only positive weights for
the players. There are other, less plausible, outcomes in which either player 1 or
2 have 0 when we allow zero weights.)

This example illustrates the lack of monotonicity discussed in the introduction.
The new ability of players 1 and 2 to cooperate improved the outcome of player
2 by 2 units but brought about a loss: —0.5 units to player 1. If the underlying
situation that gave rise to the games A and B is such that player 1 has control
over his own cooperation, then the outcome of game B should be at least as
good for him as the outcome of game A because player 1 can reduce the game
B back to the game A by refusing to cooperate in the coalition {1, 2}.

The symmetric egalitarian solution presented in this paper will choose the

outcome of A= (4, 4, 4), and the
outcome of B =(4.421, 4421, 0),

and will satisfy the monotonicity condition.

3. NOTATIONS AND DEFINITIONS

We let N={1,..., n} denote the set of players (n=1). A coalition is a subset
of N. The n-dimensional Euclidean space is denoted by R™. For x, yeR" and
a coalition S, x=gy means x;=y; for each i€ S, x=g5y means x=gy, and for
some i€ S, x;>y,, and x >gy means x;> y; for each i€ S. For S = N we omit the
subscript N. For each coalition S, we denote R ={xeR"|x;=0, ig S}, R=
{xeR5%|x=0}, and R, ={xeR5|x>0}. For a vector xeR" we denote by xg
the projection of x on R® i.e., (x5);=x; for ie S and (xs); =0 for i ¢ S. We use
the notation A< B to denote that A is a proper subset of B and A< B to denote
that A is a subset of B. For A, B< R", and ce R we write A+ B={a+blacA
and b e B} and cA={calac A}.

An n-person characteristic function game v (a game for short) is a function from
the set of all coalitions to subsets of R™ such that for every S< N the following
conditions are satisfied.

ConpiTioN 1: v(&) ={0}.

CoNDITION 2: v(S) is a closed, nonempty subset of R,



MONOTONIC SOLUTIONS 311

ConbITION 3: v(S) is comprehensive, i.e., if x, yeRS, xe v(S), and y<gx,
then yev(S).

ConpiTioN 4: v(S) is bounded above in the sense that there exists no
monotonically increasing unbounded sequence of points in v(S), i.e., if {x}},
is a sequence of points in v(S) with x'*'=x" for t=1,2,..., then there is a
point y € R® such that x' <y for each .

We let I" denote the set of games satisfying the conditions stated above. Note
that we do not assume that the feasible sets have to be convex. We do it purposely
in order to allow for utility functions which are not necessarily of the von
Neumann-Morgenstern type. This may be important because for games of this
type, cardinalization of utility, by quantities other than probabilities, may be
desirable. This point is discussed later where we state that our main theorems
can also be obtained with this convexity assumption.

For every player i we let 6, =max {x;|x € v({i})} and we denote by 6 the vector
(6,)icn- A point x eR" is individually rational for the coalition S in the game v
if x =5 6. An individually rational point for N is said to be individually rational.
A point x e R" is (weakly) Pareto optimal for a coalition S (or in v(S)) in a game
v if xe v(S) and there is no ye v(S) with y>gx. The point xeR" is strongly
Pareto optimal for S if x € v(S) and there is no y € v(S) with y=¢x.

Operations on games are defined like the corresponding operations on sets,
for each coalition separately. Thus, (v+w)(S) = v(S)+ w(S) and (cv)(S) = cv(S).

4. THE AXIOMS

A solution for I' is a function ¢:I'>R". Next we discuss five axioms that we
impose on solutions for I

We first introduce a condition on games under which a solution should be
individually rational. The condition requires that in such games an individual
player joining a coalition S does not hurt it or himself by eliminating individually
rational alternatives that were available for them separately. More specifically,
we say that a game v is monotonic if for each coalition S and j¢ S, if x € v(S) is
individually rational for S, then there exists an x’ in v(S U {j}) such that x'=gx
and x;= ;. (Note that because of the comprehensiveness the last two inequalities
can be replaced by equalities.)

Axiom 1—Individual Rationality: If a game v is monotonic, then ¢(v) is
individually rational.

Observe that this axiom resembles an analogous condition which guarantees
individual rationality of the Shapley value for games with sidepayments in which
the contribution of each player to each coalition is nonnegative.

The next axiom is analogous to the carrier axiom which is used in axiomatic
characterizations of the Shapley value. A coalition S is called a carrier of the
game v if for each coalition T, v(T)=v(TnS)—R].
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AxioM 2— Pareto Optimality: If S is a carrier of the game v, then ¢(v) is Pareto
optimal for S.

For a vector a € R™ we denote by dg, the game in which the coalition S bargains
over the vector as. Formally, for every coalition T, d4s(T)=0—RY if T2 S and
ds(T)=as— RTif T2 S. Avector a is called acceptable to S under ¢ if ¢(ds) = as.

The next axiom required additivity of the solution with respect to coalitional
endowments. A coalition S is endowed a vector a if the payoff of each player i
in S is changed by q; in each coalition that contains S. Formally, when the game
v is played, if the coalition S is endowed additionally the vector a, the game v
changes into game v+ ds. We require that by adding endowments to S the solution
will change just by the addition of these endowments—i.e., ¢ (v+ ds) = ¢(v) + as.
But since the endowments depend on the cooperation of all members of S we
restrict the requirement only to those cases in which the players of S consider
the vector ag as a “fair” allocation—i.e., when ds is acceptable to S under ¢.

Axi1om 3—Additivity of Endowments: If the vector a is acceptable to S under ¢,
then ¢(v+ds) = ¢(v)+ as for each game v.

Notice that this axiom by itself does not imply either the existence or non-
existence of vectors which are acceptable to S.

Ax10m 4—Monotonicity: If for the games v and w, v(T) = w(T) for each T # S
and v(S) 2 w(S), then ¢(v)= 5 d(w).

This axiom is an obvious extension of the monotonicity axiom used in Kalai
[8] to characterize the egalitarian solution for bargaining problems. It is also a
property of the Shapley value.

We define a topology on I as follows. A sequence of games {v,};~, converges
to v iff for each coalition S, {v,(S)}=, converges to v(S) in the Hausdorff topology.
Given this topology on I we require:

AxioM 5—Continuity: ¢ is continuous on I

We observe that within the context of bargaining problems the axioms of
continuity, monotonicity, and Pareto optimality imply the Nash [17] condition
of independence of irrelevant alternatives.

5. EGALITARIAN SOLUTIONS

We define the symmetric egalitarian solution for a given game v, E(v), by
inductively constructing two functions Z and D from coalitions to R™. (See also
Owen [19] for a description of this procedure as it arises in the definition of the
Harsanyi value.)
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We first define
D(v, 3)=0 and Z(v, J)=0.
Then for each coalition S,
Z(v,S)= Y D(v,T)
TcS
and
D(v, S) = es max {t|(Z (v, S) + tes) € v(S)}
where e is the vector in R™ with ¢, =1 for each i N. Finally, define

E(v)= Y D(v,S).
SN
Observe that the existence of ¢ for which (Z(v, S)+tes) € v(S) is due to the
comprehensiveness of v(S) and that the finiteness of the maximum is guaranteed
by the boundedness condition on v(S). D(v, S) can be described as a vector of
dividends allocated by S to its members. All the members of S receive from S
the same dividend, and the total amount of the dividend vectors allocated by all
subcoalitions of S (as well as S) is a Pareto optimal point in v(S).

Nonsymmetric egalitarian solutions are obtained when dividends are allocated
not equally but according to some prescribed positive weights. For A e RY,, the
egalitarian solution E* is defined by D* (v, @) =0, Z*(v, &) =0, for each coali-
tion Z*(v, ) =Y ;s D*(v, T), D*(v, S) = As max {t|(Z* (v, S)+ tAs) € v(S)} and
E*(v)=Y 4o n D*(v, S). Observe that the strict positivity of A is required and
sufficient in order that the set over which the max is taken is not empty.

An equivalent way of computing E* is by rescaling the utilities of the players
and then applying to the rescaled game the symmetric egalitarian solution. In
other words, each egalitarian solution is determined uniquely up to individual
rescaling of utilities. This is done as follows.

For every vector A e RY, define

- X; X3 Xn
Axx=(AX;, AsXs, ..., AX,) and A '*x=<—,—,...,-—>.
( 141 242 ) A] /\2 A"

For a game ve I' define the game A ~'*v by
(A7'*0)(S)=A""(v(8))={A"*x|x e v(S)}.
It is easy to verify that E*(v)=A*E(A"'xv).

6. A CHARACTERIZATION OF THE FAMILY OF EGALITARIAN SOLUTIONS
THEOREM 1: A solution ¢ defined on I satisfies Axioms 1-5 if and only if it is
egalitarian.

We first prove that the symmetric egalitarian solution E satisfies the axioms.
It is easy to check that this implies that E* satisfies the axioms for each A e RY,.
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We leave it to the reader to verify that the Pareto optimality and the additivity
of endowments are satisfied by E and prove that the remaining three axioms are
satisfied too. We denote E(v, S)=Y ;_s D(v, T) and we omit the argument v
when it is not necessary.

The following equality will be used in the sequel:

(*) For every coalition S and every i,j€ S:
Zi(v, S)-—Z](va S)= Z D,-(U, T)- Z Dj(va T)
ieT<S jeT<cS
= Z Dl"(v’ T)_ Z l)j(v9 T)
ieT< S\{j} jeT=S\{i}

=E(v, S\{j}) - Ej(va S\{i}).
LeEMMA 1: E satisfies the individual rationality axiom.

Proor: Let v be a monotonic game. We prove by induction on the coalition
size, k, that E(S)=¢6 for each S. This is clearly true for S of size 1. Assume
that this inequality holds for all coalitions of size k and let S be a fixed
coalition of size k+1. Let Z(S)—6;=min;.s(Z(S)—0;), and define F=
Z(5)—(Z,(S)-6))es. Obviously, F=56, F=6, and by (x) F=E(S\{j})-
E;(S\{i})+ 6; for each i€ S. By the induction hypothesis F;=< E;(S\{j}) for all
i # j, and therefore by comprehensiveness Fg\;; € v(S\{j}). Since F; = 6; it follows
by the monotonicity of v that Fse v(S). By the definition of E(S) and D(S),
E(S)=sF=46. Q.E.D.

LEMMA 2: The egalitarian solution E satisfies the monotonicity axiom.

Proor: Let v and v’ be two games and S a coalition such that v(S)< v'(S)
and v'(T)=ov(T) for each T# S. Observe first that for each T2 S, Z(v', T)=
Z(v, T)andforeach T2 S, D(v, T)= D(v', T)and E(v, T) = E(v', T). We prove
now by induction on the size of T that E;(v', T)= E;(v, T) for each T2 S and
ieS. Since Z(v', S)=Z(v, S) and v'(S) 2 v(S), clearly E,(v', S)= E;(v, S) for
each i€ S. Suppose now that the inequality is proved for all T2 S of size k, and
let T2 S be of size k+ 1. We show that

() Z(v, T)=-Z(v, T)=Z(v', T)-Z(v, T)
for each i€ S and je T. Indeed, by equality (*) and since T\{i}2 S
Z(v', T) - Z(v', T) = Ei(v', T\{j}) - E;(v', T\{i})
= E (v, T\{j}) - Ei(v, T\{i})
and
Zi(v, T)= Zi(v, T) = Ei(v, T\{j}) — Ej(v, T\{i}).

Therefore, subtracting the left-hand side of the last two equalities and using the
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induction hypothesis,
[Z(v, T) = Z(v', T)]-[Zi(v, T) - Zi(v, T)]
=Ei(v', T\{j}) - Ei(v, T\{j}) =0

and (*#) follows readily. Next we show that from (#x) follows E;(v', T)= Ei(v, T)
for each ieS. Let E(v, T)=Z(v, T)+aer. Let i€S and denote B=
a+Z(v, T)—Z;(v', T) (by (*+) the difference in the right hand side is the same
for all i€ S), and let F=Z(v', T)+ Ber. By (*x) for each je T and i€ S,

B+Zj(v,’ T)_[a+Z](v9 T)]$B+Zi(v" T)_[a+Zi(v’ T)]=0

and thus F =1 Er(v, T) and by the comprehensiveness of v(T), Fe v(T), so also
F e v'(T). By the definition of E(v', T), E(v', T) = F; moreover F, = E;(v, T) for
each i€ S, and therefore E(v', T) =g E(v, T). Q.E.D.

LEMMA 3: E* is continuous for every A e RY,.

ProoF: Since the operations of individual utility rescaling are continuous it
suffices to show that the symmetric egalitarian solution is continuous. Recall that
since E(v) =Y s_n D(v, S) it suffices to show that for every coalition S, D(v, S)
is continuous in v. This can easily be shown by induction on the size of S. Recall
that D(v, S) = es max {t|(Z(v, S)+ tes) € v(S)}. Z(v, S) is continuous by the
induction hypothesis since Z(v, S) is a finite sum of dividends of coalitions of
strictly smaller size. The max is then seen to be continuous by the comprehensive-
ness of v. Q.E.D.

We turn now to prove that each solution that satisfies Axioms 1-5 is an
egalitarian solution. .
A game v is said to be inessential if 0 is Pareto optimal for each coalition.

LEMMA 4: If v is an inessential game and ¢ satisfies Axioms 1 and 5, then

¢ (v)=0.

ProOF: Assume first that 0 is strongly Pareto optimal for each S. In this case
the game is monotonic. By individual rationality ¢ (v) =0, and therefore ¢(v) =0.
An inessential game in which 0 is weakly Pareto optimal for some S can be
approximated as follows. For a real number £>0 define A, ={xeR"|x;>—¢
foreachie N, Y, 5 x;> 0}, and B, =R"\A,. Define a game v° by v°(S) = v(S) n
B, for each coalition S. Clearly in v® zero is strongly Pareto optimal for each S
since v°(S) NRY ={0}, and therefore ¢(v°)=0. But v, -, v and therefore by
the continuity of ¢, ¢(v) =0. Q.E.D.

We call a game v a bargaining game for the coalition S if for each coalition T,
v(T)=0—RJ whenever T2 S and v(T) = v(S)—RT whenever T2 S. We let B®
be the set of all bargaining games for the coalition S.
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LeMMA 5: If ¢ satisfies Axioms 1-5, then for each coalition S there exists a
positive vector \° e RS, unique up to multiplication by a positive constant, such
that for each ve B®, ¢(v) = A" max {t|[tA° € v(S)}.

PrOOF: Let S be a fixed coalition and define for each number ¢ a game ug by
us(T)=0-RT for T2S and us(T)={xeR’|¥;cs x;<t}-R] for T=2S. Let
A= d)(u s). By the Pareto optimality and the individual rationality axioms,
YiecsAi=1tA"eR® and for t=0,A'=50. Let ¢ be fixed. For a real number &> 0
define u° = A"+ ees and consider the game £ § and the game v° which is defined
by v°(T)=us(T) N 2 5(T) for each T. By the Pareto optimality of ¢(v°) in v°(S)
either Y, s ¢:(v°) =1 or ¢;(v°)=A;+e for some i€ S. On the other hand, by
monotonicity A’ = q&(u‘s)%sd)(ve) and therefore ¢(v°)=A". Since v° >, A% it
follows that ¢(A5)= A", i.e., A" is acceptable to S under ¢. By the additivity of
endowments axiom for each t and s, A" =p(us*)=p(us+A5) =A"+A"5 ie
A'is additive in t. By monotonicity, if £=s, A* = A*. Therefore, A is homogeneous
of degree one in ¢ and with the notation A° =" we conclude that t)ts( L") is
acceptable to S. To see that A5>50 observe that if for some i€ S, AT =0, then
A3 is Smessentlal and thus by Lemma 4 AS=¢(15)=0 which contradicts
ZIES AV =1

Now let ve B® and let t,=max {t|tA° € v(S)}. The max is well defined since
v(S) is comprehensive and A°>50. By the boundedness condition on
v(8S), to< 0. Consider now the game w defined by w(T)=0— R for T2 S and
w(T)=v(T)—t,AS for T2S. The game is inessential and w+fhs= 1.
Therefore, ¢(v)=d(w)+ d(toA3) = t,A5 as required. Q.E.D.

The next lemma relates the A 5’s of different coalitions to each other. The vector
A§ in the following is the projection of A™ on RS

LEMMA 6: Let ¢ be a solution which satisfies Axioms 1-5 and for each coalition
S let A® be the vector described in Lemma 5. Then for every coalition S there exists
k>0 such that A§ = kA S.

ProoF: Since A® is determined up to multiplication by a positive constant we
may assume that min;.sA; /A; = 1. In particular, AN = gA% Consider now the
game v defined by v(T)=A5(T) for each T# N and v(N)=A"~ —RY. Observe
that the game v is obtained from the game AN by successively increasing v(T)
for coalitions T containing S and therefore by monotonicity ¢(v)=sd(AN) =AY
which implies ¢;(v) =A] for each i€ S. On the other hand, consider the game
w defined by w(T)=0—R] for T2 S and w(T)=0v(T)—A® for T2 S. Clearly,
by the choice of A%, w is inessential and w+A$ = v and therefore ¢(v) =15 ie.,
AN =A% for each i€ S. Q.E.D.

LEMMA 7: Let ¢ and ¢ be two solutions which satisfy Axioms 1-5. If ¢ (v) = ¢(v)
for each ve BY, then ¢ = .
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Proor: By Lemmas 5 and 6 there exists a vector A € RY, such that for each
ve BS, ¢(v) = y(v) = As max {t|tAs € v(S)}. Moreover, for any constant k and
each coalition S, kA is acceptable to S under either ¢ or .

We denote by I, (k=0,..., n) the set of all games in V for which 0 is Pareto
optimal for all coalitions of size not greater than k. Clearly I'y=I". We will show
by backwards induction on k that ¢ and ¢ coincide on each I',. For I', this was
proved in Lemma 4. Suppose ¢ and ¢ coincide on I', for some 1<k=<n, and
let ve I,_,. For each S of size k define m® = Ag max {t|tAs € v(S)}. Consider the
game w defined by w(T)=v(T) if T is of size less than k and

w(T)=ov(T)- ¥ m®
ST
IS|=k
for T of size greater than or equal.to k. Observe that v=w+}5—« g, we Ty,
and that m® is acceptable for S under both ¢ and . Therefore ¢(v)=
¢(W)+Z|s|=k ms=‘/f(w)+2|s|=k ms=l//(v)- Q.E.D.

To finish the proof of Theorem 1 we observe that if ¢ satisfies Axioms 1-5,
then by Lemma 5 for some A eRY,, ¢ and E* coincide on B™. By Lemma 7 it
follows that ¢ = E*.

In defining the set of games I' no convexity assumption was made about the
games. Consider now the set I', of all games v in I" for which v(S) is convex
for each coalition S.

THEOREM 2: A solution ¢ defined on I, satisfies Axioms 1-5 if and only if it is
egalitarian.

There is only one change in the proof of Theorem 1 needed to prove Theorem
2. In Lemma 4 we approximate an inessential game v in I" by a game v° in which
0 is strongly Pareto optimal for each coalition. The game v° is not convex. If v
is in I', there is no difficulty to choose the game v° also in I

7. RELATIONSHIPS BETWEEN THE EGALITARIAN AND OTHER SOLUTIONS

The Harsanyi Solution: Harsanyi [4] introduced the procedure of dividend
allocation as part of his solution for general cooperative games. Harsanyi’s
solution tries to capture two notions of “‘fairness;” one requires equality of utility,
and the other that the total welfare is maximized. Formally a vector u in v(N)
is Harsanyi’s solution® to v if there exists A € RY, such that u= E*(v) and
ZieN Ai_lui =MmaXyey(N) ZieN Ai-lxi-

We observe that although the Harsanyi solution of a game v is of the form
E*(v) it is different from the egalitarian solution. In the Harsanyi solution the

2 We note that in Harsanyi’s notation the weights of the players are the reciprocal of the weights
as they are defined here.
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A depends on the game under consideration and it changes as we vary the game.
In the egalitarian solution A is fixed over all the games which is essential in order
to obtain the monotonicity property. For any given A € R}, there would be very
few games v (basically a set of measure zero) for which the Harsanyi solution
would coincide with E*(v).

Mpyerson’s Fair Allocation Rule: Another solution which is related to the
egalitarian solutions is the fair allocation rule of Myerson [15] which is defined
as follows. Consider a fixed game v. A set Q of coalitions is called a conference
structure. For a given conference structure Q, define the equivalence relation ~
as follows. For i, je N, i ~jif i =j or if there are players i = i}, i, ..., i, =j such
that for each k (k=1,...,m—1) there exists S€ Q such that i, ;€ S. We
denote by N/Q the set of all equivalence classes defined on N by ~,. A fair
allocation rule for a game v is a function X which assigns to each conference
structure Q a vector X(Q) €R" such that: (i) For each Q and Se N/Q, Xs(Q)
is Pareto optimal for S. (ii) For each Q, Se€ Q and i, j€ S,

Xi(Q) = X;(Q\{S}) = X;(Q) — X;(Q\{S}).

Myerson proved the existence and uniqueness of a fair allocation rule for each
game v. In the following theorem, we identify this rule with an extension of the
symmetric egalitarian solution, and provide as a byproduct a shorter proof for
the existence of the fair allocation rule. For a conference structure Q denote
o=U oo (N/Q'). The conference structure O can alternatively be described
as the set consisting of all individual players (N/{<}) and all the unions of
coalitions in Q which are Q-connected coalitions (a coalition is Q-connected if
all its players are ~ o equivalent). Clearly QO 2(N/Q),each Se N/Q is a maximal
element in Q and for any Te é either TnS= or Tc S. We define now
inductively two functions Z and D from é to R™.

Z(J)=D(D)=0
and for each Se é,

S>TeQ
D(S) = es max {t|Z(S) + tes) € v(S)},
and finally define
X(Q)= ¥_D(S).
SeQ

Obviously for the conference structure Q which contains all the subcoalitions of
N, X(Q) is the symmetric egalitarian solution for v.

THEOREM 3: X as defined above is the unique fair allocation rule for v.

ProoF: Since by Theorem | in Myerson [15] a fair allocation rule for v is
unique it is enough to show that X satisfies the two requirements (i) and (ii).
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Observe that for each coalition Se é
2 Ds(T)

S=2Ted
is Pareto optimal for S. Moreover, for S€ N/Q all the coalitions in é are either
disjoint to S or contained in S, and therefore dividends are allocated to players
of S only by coalitions which were contained in S. Thus

Xs(Q)= Z ,D(T)

which is Pareto optlmal for S and (i) is satisfied. Next, for Se Q_denote Q'=
Q\{S} Observe that Q 2 Q and that the coalitions which are in Q and are not
in Q are exactly those coalitions in Q) which contain S. Therefore

Xs(Q)—Xs(Q" =s ; 5 Ds(T).

But the right-hand side is a multiple of es by a constant and thus all members
of S lose or gain the same by eliminating S from Q. Q.E.D.

Weighted Shapley Values: Next we consider the restriction of the solutions E*
to the family of games with sidepayments. A game v in I' is said to be with
sidepayments if there exists a coalitional real function # which assigns to each
coalition S the real number #(S) such that v(S) ={x e R5|¥;cs x; < 5(S)}. (When
only games with sidepayments are considered the function & rather than v is
considered as the game.) We denote by I the set of all games with sidepayments.

THEOREM 4: For each A eRY, the restriction of E* to the set of games with
sidepayments I, is the weighted Shapley value (Shapley [24]) with weight vector A.

Proor: For each coalition S we define a coalitional real function #g by
us(T)=1if T2 S and #s(T) =0 otherwise. We call the game with sidepayments
us defined by s a unanimity game. It is well known that I', is a finite dimensional
linear space and that the set of all unanimity games is a basis to I, We show
now that E* is linear on I',. Let v € I'y; then there exists for each S a real number
as such that v =) asus. It can be easily shown that

-1
v=0+ Z Cls( Z A,> ‘}‘\s
D#S< N ieS
where 0 is the game with sidepayments defined by the coalition real function 0
which vanishes for all coalitions. By the additivity of endowments and since 0
is an inessential game it follows that E*(v) =Y as(Y, s A:)"'As. The linearity of
E* on I, follows readily. Clearly, for each unanimity game ug, E* (us) = As so that
E* coincides with the weighted Shapley value with weight vector A on a basis of I',.
Since both solutions are linear on I, they coincide on I, Q.E.D.

Proportional Solutions: For any bargaining game v for the coalition N we have
E*(v)=pA for the real number p which makes it Pareto optimal. Hence the
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restriction E* to B™, the family of all bargaining games for N, coincides with
the proportional solution that was axiomatized by Kalai [8]. The family of
egalitarian solutions generalizes therefore the family of weighted Shapley values
for games with sidepayments and the family of proportional solutions for bargain-
ing problems.

Maschler’s Procedure: Although the justification for the egalitarian solutions
lies in the axioms defining them, one would like to have an intuitive explanation
of the dividend allocation procedure which is used to compute the solutions. We
refer the reader to the elaborate explanation of this procedure in Harsanyi [5].
Even if one agrees with the intuitive appeal of the dividend allocation one may
still be puzzled by the order of the allocation—from small coalition to larger
ones. We show now that while this order is computationally convenient it is not
essential. The following procedure is a generalization of a procedure proposed
by Maschler [12] for the computation of the Shapley value of games with
sidepayments. It generalizes Maschler’s procedure in both the use of weights and
the larger domain of games to which it applies.

A Procedure for Computing E*(v): We construct a sequence of coalitions
So, S1, Ss, - - -, S; and a sequence of dividend vectors allocated by those coalitions
D(S,), D(S,), D(S,), ..., D(S)) as follows. We start by choosing for S, any
coalition for which 0 is not Pareto optimal. We define D(S,) =
As, max {t|t/\soe v(S,)}. After the kth stage when S,,...,S., and
D(Sy), ..., D(Si_,) are defined we compute for each coalition S, Z(S) =3 D(T)
where the sum ranges over all the coalitions T from the sequence S, ..., Sk-
which are contained in S. Z(S) is the vector of dividends that have been
allocated to members of S by subcoalitions of S. We choose for S, any coalition
S for which Z(S) is not Pareto optimal and define D(S,)=
As, max {t|z (S)+As, €v(Sy)}. The process terminates when Z(S) is Pareto
optimal for each coalition S. E*(v) is the sum of all the dividend vectors generated
in the process.

We note first that this process terminates always in a finite number of steps.
The proof is similar to that given in Maschler [12]. To see that this procedure
computes E*(v), we denote u* = D(S,) and observe that v=w+Y, 1§ where
w is an inessential game. Since E*(i1%,)=pu" it follows by additivity of endow-
ments and Lemma 4 that E*(v) =Y, D(S,). The method of computing E*(v) in
Section 5 of this paper is a special case of this procedure, in which the coalitions
So, S1, ..., S; are ordered according to their size (where in the same size coalitions
are chosen arbitrarily). The method of Section 5 requires the smallest number of
steps possible.

8. FURTHER PROPERTIES OF EGALITARIAN SOLUTIONS

Consider the restriction of the game v to a coalition S and its subsets. By
ignoring the coordinates of players outside S (which are anyway zero), this
restriction is a game for which S is the grand coalition. We denote the restriction
of v to S by vs. The symmetric egalitarian solution for vs is a byproduct of the
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inductive construction of the solution for v—i.e.,

E(vs)=E(v,S)= Y D(v, T).

The first property we discuss is strong independence of irrelevant alternatives
(SIIA). This is a generalization of Nash’s independence of irrelevant alternatives
axiom (ITA) which is used to characterize Nash’s solution to bargaining problems.
SIIA requires that the solution for v depends on the alternatives available for S
and its subcoalitions only through the solution for the game played by S, vs. In
other words, changing vs while keeping the solution of vs does not change the
solution for v.

ProposITION 1: The symmetric egalitarian solution has the SIIA property—i.e.,
for games v and w and a coalition S, if w(T)=v(T) for each T # S, w(S) < v(S),
and E(vs) € w(S), then E(v)= E(w).

Proor: This is an immediate consequence of the inductive definition of E.

ProposiTION 2: Ifv(N)=w(N) and for each i€ N E (v, N\{i}) = E(w, N\{i}),
then E(v) = E(w).

Proor: From property (*) of Section 6 we observe that
Ei(v) - E;(v) = Ei(v, N\{(j}) = E;(v, N\{i}) foreveryijeN.

Thus, we obtain n — 1 independent conditions on the vector E(v) from the values
of the n—1 players’ coalitions. The fact that E(v) is Pareto optimal yields an
additional independent condition which shows that E(v) is determined by v(N)
and the E (v, N\{i})’s. Q.E.D.

We observe that Proposition 2 makes the inductive computation of E(v) much
easier since the computation of E(v, S) depends on the values E(v, T) for S’s
subcoalitions T, consisting of |S|— 1 members only. Thus we avoid the repetitive
addition of dividends and remembering dividends for all the subcoalitions of S
(as given in the definition of E).

Another interesting property of the symmetric egalitarian solution is what we
may describe as equality among partners. We call a coalition S a coalition of
partners if for every T< S and for every M < N\T, v(Mu T)=v(M)-RY*T.
In other words, a coalition of partners is one in which no subset of the partners
can contribute anything to any of the coalitions unless all the partners are present.

ProrosITION 3: If S is a coalition of partners in the game v, then for every two
partners i and j in S, E;(v) = E;(v).

Clearly the properties discussed in Propositions 1, 2, and 3 can be formulated
and proved mutatis mutandis for the general egalitarian solution E*.
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An axiomatization of the family of weighted Shapley values using the equality
of partners property (generalized to E*) is discussed by the authors elsewhere
(see Kalai-Samet [9]). A special meaning of A in the context of games with
sidepayments is discussed in the following section.

9. DISCUSSION OF THE WEIGHTS

The usefulness of the egalitarian solution depends crucially on the choice of
the vector A. If we consider an arbitrator arbitrating a game then A is a parameter
left to the arbitrator’s discretion. However, the egalitarian solution does supply
him with a substantial simplification. The arbitrator may decide on the A’s for
an imaginary simple game (maybe the simplest bargaining game) and then use
these A’s to compute the dividends and to determine the egalitarian solution for
the game being considered.

A similar simplification is possible when we try to predict the outcome of a
game. If the players have played some games in the past then the A’s are available
from these past games. If no previous games have been played in the past then
we need to predict the outcome of a simple imaginary game and again use these
resulting A’s to predict the outcome for the more complicated game.

For a fixed A, the egalitarian solution, E*, does depend (in the Nash [17] sense)
on the scale of the utilities chosen to represent individual preferences. More
specifically, given A, a game v and its solution E*(v), let us consider a different
game ¥ which is obtained when, say, player 1 multiplies his scale of utility by a
factor of, say 2,

2(S) ={(2xy, X5, ..., X,,): x€ v(S)}.
For the solution to be invariant under multiplicative scale changes we should have
E*(9)=(2E1(v), E3(v), . .., Ea(v)).

This can easily be shown not to be the case for E* by almost every nondegenerate
example of a game v. However this difficulty disappears if we observe that with
a change of scale for player !’s utility we should carry a corresponding change
of scale in his A. Thus if player 1’s scale was changed by a multiplicative factor
of 2 then we should use A=(2A,, A, ..., A,) and indeed

EN$)=(2E}(v), E5(v), ..., Ex(v)).

Thus, we do obtain invariance of scale for the general process which includes
the choice of A (to depend on the utility scales) in addition to the application E*.

To illustrate how the A’s may be chosen to be in accordance with the discussion
above we present the following example. We emphasize that this is an example
of how the mechanics of the procedure may work and not an endorsement of
the particular choices of the parameters.

The arbitrator decides that a unit of leisure time is a fair unit to compare the
utility gains of the players. (Observe that a choice of what constitutes a unit is
crucial in the sense that different choices would lead to different outcomes unless
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the players’ utilities were cardinalized by leisure time equivalence.) Faced with
a game v he chooses A with A; being player i’s utility for a unit of leisure time
at the present status quo. With this vector A he then applies E* to the game v.
We observe that if a player’s utility scale is changed by some multiplicative factor,
then so does his utility for leisure time and therefore his A is changed by the
same multiplicative factor as discussed above. Thus the real outcome chosen by
the arbitrator is not affected by the individual choices of scales.

An equivalent way of describing this procedure is the following. The arbitrator
rescales the utility of the players in such a way that in the rescaled version every
player’s utility for a unit of leisure time is 1. He then applies the symmetric
egalitarian solution to the rescaled game in order to determine the final choice.
It is obvious that whatever initial choice of scales were done by players, their
effect is washed away when the arbitrator does the rescaling.

From the above discussion it is apparent that a good interpretation of the A;’s
is as interpersonal weights to compare the utility of the individuals for fixed
scales used by them. Before we proceed with other possible interpretations we
discuss two examples of simple games and their egalitarian solutions.

The first game is the simplest 3-person bargaining game, sometimes referred
to as divide-the-dollar game. Formally, we define it by

d(s)=0-RY if S#{1,2,3} and
3
d({1,2,3})={xeR3: xisl},
i=1

The second game we consider is the 3-person majority game with sidepayments.
It is defined by

m({i})=0—-RYY for i=1,2,3,
m({i,j}) ={xeR"": x;+x;<1} for i#j, and
m({1,2,3}) ={xeR® x,+x,+x;<1}.

In the first game, d, the consent of all three players is required in order to “receive
the dollar” while in the second game, m, any majority can receive the dollar.
The symmetric egalitarian solution, coinciding with the Shapley value for the
game with transferable utility, allocates (1/3, 1/3, 1/3) in both games. We are
interested in the allocation of the nonsymmetric egalitarian solution for these
two games.

Consider A =(1, 1, M) where we think of M as a large positive number. It is
obvious that

1
EMd)=—— 0
(d) =5 (1,1, M)>(0,0,1) as M~
and the player with the large A receives most of the dollar. To understand this
with the illustration given above in mind we observe that in the present scale of
utility of player 3, a unit of leisure time is comparable to many utiles. Since the
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arbitrator uses a unit of leisure time as a fair comparison it follows that in his
present scale the third player should receive a relatively large payoff. On the
other hand, computing the egalitarian solution for the majority game reveals that

E*(m)~>(5,.5,0) as M.

Thus what we observe is that while in the bargaining game the player with the
big A receives a high payoff—in the majority game he receives a small payoff.
We find this outcome to be quite intuitive. In the bargaining game his participation
is necessary and given his A he must be highly paid. In the majority game on
the other hand, the other two players can do without him and including him is
very costly. Therefore in such a game the high A person is likely to be left out
yielding him a low payofi.

It was suggested to us that the different A’s may also indicate nonsymmetric
bargaining ability on the part of the players. This, however, does not seem to be
consistent with the examples above. We feel that if a big A indicated a high level
of bargaining ability then such a player would be wise enough to lessen his
demands in the majority game and improve his outcome.

As was discussed earlier, when we restrict our attention to games with transfer-
able utility, the (possibly nonsymmetric) egalitarian solution, E*, coincides with
Shapley’s [24] generalization of his value to weighted value. For this generalization
Owen [18] exhibited an interesting interpretation to the weights A; as rates of
slowness to arrive to the bargaining. Quoting from Owen’s [18] paper (with some
change in symbols to be consistent with ours) we read:

“Let us consider the following model: Suppose the n players agree to meet some place at a given
time. Their individual times of arrival will be random variables; assume that player i’s arrival time
is a random variable X; with distribution

pAX, <x}=x"

for x€[0, 1]. If player i is preceded by the members of S, he receives the payoff v(Su {i})—v(S)
[these are the real numbers v(T) from the transferable utility representation of the game]. Then, we
shall see that E} is the expectation of this payoff.”

10. THE NECESSITY AND SUFFICIENCY OF MONOTONICITY

It was argued in the previous sections that monotonicity of a solution is a
necessary and sufficient condition in order to bring about full cooperation. In
this section we present one model of a noncooperative prebargaining game to
illustrate this point.

The analysis of this noncooperative prebargaining game is necessary in situ-
ations under which players can control their level of cooperation with different
coalitions. In other words, if we have a given cooperative game, v, the players
can choose to alter the feasible sets v(.S)’s by manipulating parts of the environ-
ment that they individually control, changing the game v to a game ¢ in which
their individual payoffs may be better. These types of manipulations can be
observed when players choose to destroy some initial resources at their disposal,
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breaking lines of communications with other players, or vetoing some of the
alternatives available to a coalition by threatening to break cooperation.

When such manipulations are available a game © would be played rather than
the original game v. Of course, the game ¥ that the players individually choose
to play depends on the cooperative solution that an arbitrator, or the group of
players, chooses to impose. Thus we must analyze the combination of the nonco-
operative prebargaining choices simultaneously with the cooperative solution
that we apply.

To make the analysis possible we take this ability to manipulate to an extreme.
We assume that every player can veto any feasible alternative of a coalition to
which he belongs.

We start with a given cooperative solution ¢ and a cooperative game v. A
strategy for player i in the prebargaini g zame is a list (5°(S))s..cs Where each
5'(S) <= v(S) and 5°(S) is required to satisfy the conditions in the definition of
a game. Our interpretation is that for a given i and S, 7°(S) contains precisely
the alternatives in v(S) that i is willing to support if he bargains with S.
Equivalently, we could think that player i chooses to veto all the alternatives in
v(S)\5'(S) when he bargains with the coalition S. Given n strategies of this type
we define a resulting remaining game 9 by

o(S) = ﬂs 5'(S).
7(S) contains precisely all the alternatives that have a unanimous support by all
the members of S.
We define the outcome of the prebargaining game by ¢ (7).

PROPOSITION 4: If ¢ is a monotonic solution then for every player i
(5i(5))s:ies=(l’(s))s;ies

is a dominant strategy in the prebargaining game.

The proof of this proposition is immediate and it shows that if we use a
monotonic solution ¢, then in the prebargaining game all the players have a
strong incentive to cooperate and not to veto any feasible alternative.

A stronger version of the converse to this proposition also holds.

PROPOSITION 5: Let ¢ be a solution such that for every game v the strategies
(9°(S)) s:ics = (v(8S)) s.ics are a Nash equilibrium of the prebargaining game. Then
& is monotonic.

The proof of this proposition is also obvious. It shows that if we want our
players to fully cooperate and keep the game v as it is, without reducing feasible
alternatives by vetoing then we must use monotonic solutions.

It follows from the above two propositions that when we apply monotonic
solutions to cooperative games then prebargaining manipulations will not take
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place. Also, for no manipulation to take place, and assuming a noncooperative
Nash equilibrium behavior, we must use monotonic solutions. If we apply
nonmonotonic solutions to cooperative games and assume noncooperative Nash
behavior in the prebargaining game it is hard to predict what properties the
outcome will have. One very plausible guess is that Pareto optimality will be
violated.

Northwestern University

Manuscript received September, 1983; revision received April, 1984.
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