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Abstract

Game theoretic models of learning which are based on the strategic form of the game cannot explain
learning in games with large extensive form. We study learning in such games by using valuation of
moves. A valuation for a player is a numeric assessment of her moves that purports to reflect their
desirability. We consider a myopic player, who chooses moves with the highest valuation. Each time
the game is played, the player revises her valuation by assigning the payoff obtained in the play to
each of the moves she has made. We show for a repeated win–lose game that if the player has a
winning strategy in the stage game, there is almost surely a time after which she always wins. When
a player has more than two payoffs, a more elaborate learning procedure is required. We consider one
that associates with each move the average payoff in the rounds in which this move was made. When
all players adopt this learning procedure, with some perturbations, then, with probability 1 there is a
time after which strategies that are close to subgame perfect equilibrium are played. A single player
who adopts this procedure can guarantee only her individually rational payoff.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Moves vs. strategies

Game theory has developed scores of models which describe how players learn to play
games. But invariably, these models describe learning in terms of the strategic form of the
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game.1 Implementing these learning models, say by computer programs, requires that the
strategic form of the game is used as an input. This is, of course, practically impossible for
games in extensive form, the strategic form of which is too big to be effectively described.
Thus, game theory has not yet provided an explanation of learning in such games.

This explains why game theory has ignored the developing of learning programs in
artificial intelligence, starting with the first such program by Samuel[18]—the checkers-
playing learning program, and ending with the chess-playing program “deep-blue”. We do
not know a single game theoretic study that proposes a rigorous theoretic explanation of the
success of these programs or indicates the way to such theory. Here, we are still far from
being able to provide such an explanation, but we hope that we are providing a first step in
the right direction.

In contrast to the existing learning models in game theory, we base our model not on the
strategic form, but rather on themovesin the games. As a result the models employed here
can beeffectivelyimplemented for games of any size.2

1.2. Reinforcement vs. response

The other way in which this paper differs from most of the learning models in game
theory is the data used by the player for learning.

Models of learning in games fall roughly into two categories. In the first, the learning
player forms beliefs about the future behavior of other players and nature, and directs her
behavior according to these beliefs. We refer to these as response models. In the second, the
player is attuned only to her own performance in the game, and uses it to improve future
performance. These are called models of reinforcement learning.

Reinforcement learning has been used extensively in artificial intelligence (AI). Samuel’s
[18] checkers-playing learning program marks the beginning of reinforcement learning algo-
rithms. Since then many other sophisticated algorithms, heuristics, and computer programs,
have been developed, based on reinforcement learning (see[20]). Such playing programs
try neither to learn the behavior of a specific opponent, nor to find the distribution of the
opponents’ behavior in the population. Instead, they learn how to improve their play from
the achievements of past behavior.

Until recently, game theorists studied mostly response models. Reinforcement learning
has only attracted the attention of game theorists in the last decade in theoretical works like
Gilboa and Schmeidler[10], Börgers and Sarin[1], Sarin and Vahid[19] or Karandikar
et al.[15] and Cho and Matsui[3], and in experimental works like Erev and Roth[5] and

1 This is true even for the few studies of learning in games that are given in extensive form. See Fudenberg
and Levine[9] for a survey of these studies. In the context of evolutionary models, Hart[11] may be viewed as
exception, as he provides an analysis of extensive form games based on the agent-normal form (one different
player per node), and thus uses moves rather than strategies as the basic building block. See Cressman[4] for a
recent account of evolutionary approaches in game theory.

2 The concentration of the AI literature on moves rather than strategies is the main reason why there seems to
be almost no overlap between two major books on learning, each in its field:The Theory of Learning in Games,
Fudenberg and Levine[6] andReinforcement Learning: An Introduction, Sutton and Barto[20].
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Camerer and Ho[2]. 3 In all these studies the basic model is given in a strategic form, and
the learning player reinforces those of her strategies that perform better. This approach, as
we argued before, is inadequate where learning of games in extensive form is concerned.
Here, as opposed to all the game theoretic models of reinforcement it is the moves of the
game that are reinforced and not the strategies.

Reinforcement learning, and concentrating on moves rather than strategies is typical not
only of the AI learning models. Consider the very different context of a 2 year old toddler
learning how to operate a DVD player, with his efforts being frustrated by two highly rational
and strategic players, mom and dad, and perhaps also by nature in the form of the family cat.
Our toddler is oblivious of the strategic aspects of the situation. She concentrates mostly
on the possible moves available to her, exhibiting reinforcement learning by remembering
the button pushes that terminated in a successful operation of the device, and learning how
to use them in the right sequence in order to reach the desired goal: watching “A Beautiful
Mind”.

1.3. Valuation

One of the most common building blocks of AI heuristics for reinforcement learning is the
valuation, which is a real valued function on the possible moves of the learning player. The
valuation of a move reflects, very roughly, the desirability of the move. Given a valuation,
a learning process can be defined by specifying two rules:

• A strategy rule, which specifies how the game is played for any given valuation function
of the player.

• A revision rule, which specifies how the valuation is revised after playing the game.

Our purpose here is to study learning-by-valuation processes, based on simple strategy
and revision rules. In particular, we want to demonstrate the convergence properties of
these processes in repeated games, where the stage game is given in an extensive form with
perfect information and any number of players. Converging results of the type we prove
here are very common in the literature of game theory. But as noted before, convergence of
reinforcement is limited in this literature to strategies rather than moves. Since there is no
obvious way to define a valuation of a strategy from a system of move valuations, a simple
translation of our learning model in terms of strategies is not straightforward.4

3 While Gilboa Schmeidler[10] study an axiomatization motivated by reinforcement learning, Börgers and Sarin
[1] establish some connections between certain stochastic versions of reinforcement learning and the replicator
dynamics. Karandikar et al.[15] study a learning model based on evolving aspirations (see also Cho and Matsui
[3]: As in all reinforcement learning models, the learning player bases her strategy solely on her past performance,
but in addition she keeps playing the same strategy (up to perturbations) as long as the strategy gives more than
the current level aspiration level (assumed to evolve according to some averaging of past payoffs).

4 To illustrate the difficulties, consider first the case in which a player must move at several nodes, and consider
a path that crosses a movem of this player. In our setting, after this path has been played the valuation of move
m is revised. Thus, the assessments of all the strategies that specify the movem are affected. In contrast, when
strategies are reinforced, only the valuation of the strategy chosen is revised. Consider next the case where there
is a different player at every node. In our setting, when a node is not reached the valuations of the corresponding
moves are not revised. In the strategic form approach, all strategies are revised according to their performance no
matter what the outcome is.
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1.4. The main results

The strategy rule we adopt here is theexploratory myopic strategy rule. By this rule, the
learning player chooses in each of her decision nodes, with high probability, a move which
has the highest valuation among the moves available to her at this node. In case there are
several moves with the highest valuation, she chooses one of them at random. But the player
chooses also, with small probability, all other moves.5

As a revision rule we adopt theaveraging revision. After each round the player revises
only the valuation of the moves made in the round. The valuation of such a move is the
average of the payoffs in all previous rounds in which this move was made.

Equipped with these rules, and an initial valuation, the player can play a repeated game. In
each round she plays according to the exploratory myopic strategy, defined by the current
valuation. At the end of the round she revises her valuation according to the averaging
revision.
When one player learns: This learning process, together with the strategies of the other

players in the repeated game, induce a probability distribution over the infinite histories of
the repeated game. We show the following, with respect to this probability.

If the learning player obeys the exploratory myopic strategy and the averaging revision
rules, then starting with any valuation, there exists, with probability 1, a time after which
the player’s payoff exceeds her individually rational payoff (the minmax payoff) in the
stage game, minusε.

Thus, the learning process described yields the player approximately the payoff that
she can guarantee even when the other players are disregarded. This result indicates that
reinforcement learning achieves learning of playing the stage game itself, rather than playing
against certain opponents.6

When all players learn: Our next result concerns the case where all the players learn
how to play the stage game. By the previous result we know that each can guarantee his
individually rational payoff. But, it turns out that the synergy of the learning processes
yields a stronger convergence result. Indeed, players learn in this case each other’s behavior
and act rationally on this information.

Suppose the stage game has a unique perfect equilibrium. If all the players employ
the exploratory myopic strategy and the averaging revision rules, then starting with
any valuation, with probability 1, there is a time after which their strategy in the stage
game is close to the subgame perfect Nash equilibrium (SPNE).7

5 The importance of trembles for learning in extensive form games was first noted by Fudenberg and Kreps[6]
and Fudenberg and Levine[7]. Without trembles learning convergences to self-confirming equilibria rather than
subgame perfect Nash Equilibria.

6 The idea of deriving results for the behavior of a player irrespective of other players’ strategies is in the spirit
of universal consistency as defined in Fudenberg and Levine[8].

7 It should be noted that convergence to the SPNE would also hold if we were to place in each node an agent
of the player. This is so, because the stochastic process of valuations would be the same in both cases.
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Learning and evolutionary models have had a mixed success in providing support for
the SPNE. One main difficulty is that starting from the SPNE strategy profile, a strategy
that differs only off the equilibrium path performs as well as the SPNE strategy. Thus, such
strategies tend to increase in size through the mutation force, up to a point where the SPNE
strategy profile gets unstable (see Noldeke and Samuelson[17] for an illustration). A recent
paper by Hart[11] gives support to the SPNE for the case of large populations. As he shows
in the large population case the evolutionary pressure dominates the mutation force and the
SPNE obtains. Our learning model is different in nature from the evolutionary model both
in that it does not require populations of agents8 (representing each player) and in that the
state of the learning system is unaffected at those nodes which are unreached in a given
round (that is, there is no analog of the mutation force in our context).

1.5. Win–lose games

The class of win–lose game is of special interest because much effort has been invested
in studying learning algorithm for such games. Also, learning to perform simple tasks, like
operating a DVD player discussed in Section 1.2, can be modelled as win–lose game.

We study a somewhat larger class of stage games in which the learning player has only
two payoffs, 1 (win) and 0 (lose). But no assumption is made on the number of the other
players or their payoff functions.

By our main result we know that using the rules described above, the learning player can
guarantee approximately her individually rational payoff. Obviously, this result has a bite
only when this payoff is 1, that is, when the learning player can guarantee a win.

It turns out, though, that to achieve this result much simpler rules suffice. For a strategy
rule we adopt the simplemyopic strategy rule. This rule differs from the exploratory myopic
strategy rule in that moves that do not have the highest valuation among the moves available
to her at this node, are played with probability zero.

For a revision rule we use here the simplememoryless revision. Like in the averaging
revision, after each round the player revises only the valuation of the moves made in the
round. But here no averaging is done, and only the last round matters. The valuation of a
move made in the last round becomes the player’s payoff (0 or 1) in that round, regardless
of previous valuations of the move:

Suppose that the learning player can guarantee a win in the stage game. If she plays
according to the myopic strategy and the memoryless revision rules, then starting with
any nonnegative valuation, there exists, with probability 1, a time after which the player
always wins.

Note, that no assumption is made on how the players, other than the learning player,
play the game. In particular, the stochastic process generated in the repeated game is not
necessarily a Markov process, and simple techniques of such processes cannot be used.

8 While Hendon et al.[13] consider a fictitious play model leading to the SPNE, their model as acknowledged
by the authors cannot be viewed as a learning model, since players keep updating the strategy of their opponent at
nodes which are not reached in a given round. The authors provide a mental process interpretation of their model.
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A simpler learning method we might consider for a win–lose game is one in which the
learning player deletes her last move in each round when her payoff is 0. This method is
not equivalent to the revision method we adopt here: when valuation is used, moves with
valuation 0 my have valuation 1 in later rounds, while deleted moves do not reappear. Thus,
assigning 0 valuation to a move is not the same as deleting it. But unlike the valuation
method, the method of deleting moves does not lend itself to generalizations and seem to
be a dead end. Obviously, it cannot be extended to games in which the learning player has
more than two payoffs. Second, it cannot be extended to efficient learning models, even in
games with 0–1 payoffs. In contrast, valuation can be used in many ways to form strategy
and revision rules.

1.6. Information requirements

Although valuation is defined for all moves, the learning player needs no information
concerning the game when she starts playing it. Indeed, the initial valuation can be constant,
which does not require knowledge of the game. Starting with this valuation, the player needs
to be informed of the moves that are possible to her only when it is her turn to play. During the
repeated game, the player should be able to record the moves she made and their valuations.
Still, the learning procedure does not require that the player knows how many players there
are, let alone the moves they can make and their payoffs.

1.7. Efficiency

Unlike strategy-based learning models, the model studied here, which is move-based, can
beeffectivelyimplemented by a computer program. Although the number of moves can be
very large, there is no need to record them in advance. Instead, each can be recorded after
being first encountered. However, this learning model will not be efficient for large games,
because the time required to see a given move again is too long for practical purposes. In
chess, for example, almost any state of the board, except for the first few, has been seen in
recorded history only once.

In order to make the model more efficient, similarity of moves should be introduced. Thus,
moves (or states of the board) should be considered similar if they share certain properties.
In chess these can be the number of pieces on the board, for example, or more subtle features
of the array. Now, when the valuation of a move is revised, so are the valuations of all the
moves similar to it. Similarity of moves can be given exogenously, or preferably, change
endogenously during the learning process. The strategic implication of similarity grouping
as well as the properties of this similarity that can guarantee convergence of the learning
process to a reasonable outcome should be the subject of further research. In a companion
paper, Jehiel and Samet[14], we make a first step toward this.

2. Preliminaries

2.1. Games and super games

Consider a finite gameGwith complete information and a finite set of playersI. The game
is described by a tree(Z,N, r, A), whereZ andN are the sets of terminal and non-terminal
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nodes, correspondingly, the root of the tree isr, and the set of arcs isA. Elements ofA are
ordered pairs(n,m), wherem is the immediate successor ofn.

The setNi , for i ∈ I , is the set of nodes in which it isi’s turn to play. The setsNi form a
partition ofN. Themovesof playeri at noden ∈ Ni are the nodes inMi(n) = {m|(n,m) ∈
A}. DenoteMi = ∪n∈Ni

Mi(n). For eachi the functionfi : Z → R is i’s payoff function.
The depth of the game is the length of the longest path in the tree. A game with depth 0 is
one in which{r} = Z andN = ∅.

A behavioral strategy, (strategy for short) for playeri is a function�i defined onNi such
that for eachn ∈ Ni , �i (n) is a probability distribution onMi(n).

The super game� is the infinitely repeated game, with stage gameG. An infinite history
in � is an element ofZ�. A finite history oft rounds, fort �0, is an element ofZt . A super
strategyfor player i in � is a function�i on finite histories, such that forh ∈ Zt , �i (h)

is a strategy ofi in G, played in roundt + 1. The super strategy� = (�i )i∈I induces a
probability distribution on histories in the usual way.

2.2. Valuations

We fix one playeri (the learning player) and omit subscripts of this player when the
context allows it. We first introduce the basic notions of playing by valuation. Avaluation
for playeri is a functionv: Mi → R.

Playing the repeated game� by valuation requires two rules that describe how the stage
gameG is played for a given valuation, and how a valuation is revised after playingG.

• A strategy ruleis a functionv → �v. When playeri’s valuation isv, i’s strategy inG
is �v.

• A revision ruleis a function(v, h) → vh, such that for the empty history�, v� = v.
When playeri’s initial valuation isv, then after a history of playsh, i’s valuation isvh.

Definition 1. Thevaluation super strategyfor playeri, induced by a strategy rulev → �v,
a revision rule(v, h) → vh, and an initial valuationv, is the super strategy�v

i , which is

defined by�v
i (h) = �vh

for each finite historyh.

3. Main results

Our main results concern a learning procedure based on the�-exploratory myopic strategy
rule and the averaging revision rule to be defined in Section3.2below. Theorem3claims that
a learning player can guarantee approximately her individually rational payoff. Theorem
4 claims that when all players learn using this procedure, then they play approximately a
perfect equilibrium strategy.

For the special case of a win–lose game, Theorem3 means that if the learning player
can guarantee a win in the stage game, then she learns how to win with high probability.
But for such games a much simpler learning procedure can guarantee that such a player
learns to win for sure, namely, the procedure which involves the myopic strategy rule and
the memoryless revision rule.
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Because of the simplicity of the rules required for win–lose games, we present first the
case of these games, and explain why they cannot be used for general payoff-structure
games.

3.1. Win–lose games

We consider first the case where playeri has two possible payoffs inG, which are, without
loss of generality, 1 (win) and 0 (lose). A two-person win–lose game is a special case, but
here we place no restrictions on the number of players or their payoffs.

We assume that learning by valuation is induced by a strategy rule and a revision rule of
a simple form.

The myopic strategy rule. This rule associates with each valuationv the strategy�v,
where for each noden ∈ Ni , �v(n) is the uniform distribution over the maximizers ofv on
Mi(n).That is, in each node of player i, the player selects at random one of the moves with
the highest valuation. 9

The memoryless revision rule.For a history of length 1, h = (z), the valuationv is
revised tovz which is defined for each nodem ∈ Mi(n) by

vz(m) =
{

fi(z) m is on the path leading fromr to z,

v(m) otherwise.

For a historyh = (z1, . . . , zt ), the current valuation is revised in each round according to
the terminal node observed in this round. Thus, vh = (

v
(z1,...,zt−1)

i

)zt .
The temporal horizons, future and past, required for these two rules are very narrow.

Playing the gameG, the player takes into consideration just her next move. The revision of
the valuation after playingG depends only on the current valuation, and the result of this
play, and not on the history of past valuations and plays. In addition, the revision is confined
only to those moves that were made in the last round.

Theorem 1. Let G be a game in which player i either wins or loses. Assume that player i
has a strategy in G that guarantees him a win. Then for any nonnegative initial valuationv

of i, and super strategies� in �, if �i is the valuation super strategy induced by the myopic
strategy and the memoryless revision rules, then with probability 1, there is a time after
which i is winning forever.

The following example demonstrates learning by valuation.

Example 1. Consider the game in Fig.1, where the payoffs are player 1’s.

9 The requirement that� uniformly selects one of the moves atn is not essential for our results. It is enough
that� assigns positive weight to every move available atn.
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Fig. 1. Two payoffs.

Suppose that 1’s initial valuation of each of the movesL andR is 0. The valuations that
will follow can be one of(0,0), (1,0), and(0,1), where the first number in each pair is the
valuation ofL and the second ofR. (As we shall see, the valuation(1,1) cannot be reached
from any of these valuations.)

We can think of these possible valuations as states in a stochastic process. The state(0,1)
is absorbing. Once it is reached, player 1 is choosingR and being paid 1 forever. When
the valuation is(1,0), player 1 goesL. She will keep playingL, and winning 1, as long as
player 2 is choosinga. Once player 2 choosesb, the valuation goes back to(0,0). Thus, the
only way player 1 can fail to be paid 1 from a certain time on is when(0,0) recurs infinitely
many times. But the probability of this is 0, as the probability of reaching the absorbing
state(0,1) from state(0,0) is 1/2.

Note that the theorem does not state that with probability 1 there is a time after which
player 1’s strategy is the one that guarantees him payoff 1. Indeed, in this example, if player
2’s strategy is alwaysa, then there is a probability 1/2 that player 1 will playL for ever,
which is not the strategy that guarantees player 1 the payoff 1.

3.2. The case of payoff functions with more than two values

We now turn to the case in which payoff functions take more than two values. The next
example shows that in this case the myopic strategy and the memoryless revision rules may
lead the player astray.

Example 2. Player 1 is the only player in the game in Fig.2.
The player can guarantee a payoff of 10, and therefore we expect a learning process to

yield eventually this payoff. But, in order to guarantee that the learning process induced by
the myopic strategy and the memoryless revision results in the payoff 10 in the long run, the
initial valuation should reflect the structure of the payoff.10 If the initial valuation does not
reflect it, for example, if it is constant, then there is a positive probability that the valuation
(−10,2) for (L,R) is obtained, which is absorbing.

10 The valuation ofL should be greater than that ofR, and the valuation ofa should be greater than that ofb.
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Fig. 2. More than two payoffs.

We cannot state for general payoff functions any theorem analogous to Theorem1or even
a weaker version of this theorem. But something meaningful can be stated whenall players
play the repeated game according to the myopic strategy and the memoryless revision rules.

We say that gameG is genericif for every playeri and for every pair of distinct terminal
nodeszandz′, we havefi(z) �= fi(z

′).

Theorem 2. Let G be a generic game. Assume that each player i plays� according to the
myopic strategy rule and uses the memoryless revision rule. Then for any initial valuation
profile, with probability 1, there is a time after which the same terminal node is reached in
each round.

The limit plays guaranteed by this theorem depend on the initial valuations and have no
special structure in general.11 Moreover, it is obvious that for any terminal node there are
initial valuations that guarantee that this terminal node is reached in all rounds.

We return, now, to the case where only one player learns by reinforcement. In order to
prevent a player from being paid an inferior payoff forever, like in Example2, we change
the strategy rule. We allow for exploratory moves that remind her of all possible payoffs in
the game, so that she is not stuck permanently in a bad valuation. Assume, then, that having
a certain valuation, the player opts for the highest valued nodes, but still allows for other
nodes with a small probability�. Such a rule guarantees that the player in Example2 will
never be stuck permanently in the valuation(−10,2). We introduce formally this new rule.

The �-exploratory myopic strategy rule. This rule associates with each valuationv the
strategy�v

�, where for each noden ∈ Ni , �v
�(n) = (1 − �)�v(n) + ��(n). Here, �v is the

strategy associated withv by the myopic strategy rule, and� is the strategy that uniformly
selects one of the moves at n. 12

11 The emergence of any possible pure outcome is reminiscent of Proposition 1 in Karandikar et al.[15] which
was obtained in an evolving aspiration learning model (applied to the prisoner’s dilemma). Observe though that
unlike the evolving aspiration model in[15] our revision rule has nothing to do with inertia.

12 Like in the definition of the myopic strategy rule, it is enough to require that� assigns positive weight to every
move available atn.
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Unfortunately, adding exploratory moves alone does not help the player to achieve 10
in the long run, as we show now. Assume that the initial valuation ofa andb is 10 and
−10 correspondingly, and the valuation of the first two moves is also favorable:(10,2).
We assume now that in each of the two nodes player 1 chooses the higher valued node
with probability 1− � and the other with probability�. The valuation ofa andb cannot
change over time. The valuation of(L,R) forms an ergodic Markov chain with the two
states{(10,2), (−10,2)}. Thus, for example, the probability of transition from(10,2) to
itself occurs when the player chooses eitherL anda, with probability(1 − �)2, or Rwith
probability�, which sum to 1− � + �2.

The following is the transition matrix of this Markov chain.

( (10,2) (−10,2)

(10,2) 1 − � + �2 � − �2

(−10,2) � − �2 1 − � + �2

)

The two states(10,2) and(−10,2) are symmetric and therefore the stationary probability
of each is 1/2. Thus, the player is paid 10 and 2, half of the time each.

Note that the exploratory moves are required because the payoff function has more than
two values. However, we have shown that a learning player who adopts such a rule fails
to achieve the payoff 10. Indeed, even in a win–lose game, a player who has a winning
strategy may fail to guarantee a win in the long run by playing according to the rules of
�-exploratory myopic strategy and memoryless revision. To fix this problem we consider
the following revision rule:

The averaging revision rule. For a nodem ∈ Mi , and a historyh = (z1, . . . , zt ), if the
node m was never reached in h, thenvh(m) = v(m). Else, let t1, . . . , tk be the times at
which m was reached in h, then

vh(m) = 1

k

k∑
l=1

f (ztl ).

We state, now, that by using a little exploration and averaging revision, playeri can
guarantee a payoff which is above his individually rational (minmax) payoff inGminusε.

Theorem 3. Let� be a super strategy such that�i is the valuation super strategy induced
by the�-exploratory myopic strategy and the averaging revision rules. Denote byP� the
distribution over histories in� induced by�.
Let � be i’s individually rational payoff in G. Then for everyε > 0 there exists�0 > 0

such that for every0 < � < �0, for P�-almost all infinite historiesh = (z1, z2, . . .),

lim
t→∞

1

t

t∑
l=1

f (zl) > � − ε.

We consider now the case where all players learn to playG, using the�-exploratory
myopic strategy and the averaging revision rules. We show that in such a case, in the long
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run, the players’ strategy in the stage game is close to a perfect equilibrium. We assume for
simplicity that the gameG has a unique perfect equilibrium (which is true generically).

Theorem 4. Assume that G has a unique perfect equilibrium	 = (	i )i∈I . Let �� be
the super strategy such that for each i, ��

i is the valuation super strategy induced by the
�-exploratory myopic strategy, and the averaging revision rules.
LetP� be the distribution over histories induced by��. Then there exists�0, such that

for all 0 < � < �0, for P�-almost all infinite historiesh = (z1, . . . , zt , . . .), there exists T,
such that for allt > T , �v(z1,...,zt )

i (m) = (1− �)	i (m) + ��(m), for each player i and node
m ∈ Mi .

4. Proofs

4.1. A sketch of the proof of Theorem 1

All the theorems are proved by induction on the depth of the game tree. We first sketch
the main idea in the proof of Theorem1.

Suppose that playeri can guarantee a win in the gameG, and she has the first move in this
game (the other case is simpler). Then, at least one of her moves at the root ofGguarantees
her a win. Denote byG′ a subgame that follows such a move. By the induction hypothesis,
the theorem holds for the infinitely repeated game ofG′.

Consider the vector of valuations ofi’s moves at the root. Assume that it is not the 0
vector. At each round in�, i chooses one of the moves that has positive valuation. If she
wins, it remains positive (indeed, it is 1). If she loses the valuation of the move is reduced
to zero. Thus, the set of moves with positive valuation can only shrink. Suppose that in a
given history there is a time after which the vector does not become the zero vector. Then,
at some later time the set of moves with positive valuation must be fixed, and from that time
on i always wins.

Now suppose that in a given history this vector of valuations is 0 infinitely many times.
At these times a move is chosen at random, and therefore with probability 1,G′ is reached
infinitely many times. We now apply the induction hypothesis.

There is a small flaw in the proof just described. The induction hypothesis is about the
infinitely repeated game ofG′ and we need to apply it to histories in�. In these histories
there are “gaps” between the consecutive times in whichG′ is played.

To overcome this problem we prove our theorems for a larger family of super games which
we call stochastic repeated games. In such a super game, before each round of playing the
stage game all the players observe some random signal. This solves the problem mentioned
before, because the “gaps” between playingG′ can be considered as signals rather than a
play.

4.2. Stochastic repeated games

LetSbe a countable set of states which also includes anend state e. A stochastic repeated
gameis a game�S in which the gameG is played repeatedly. Before each round a state
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from S is selected according to a probability distribution which depends on the history of
the previous terminal nodes and states. When the statee is realized the game ends. The
selected state is known to all the players. The strategy played in each round depends on the
history of the terminal nodes and states. We now describe�S formally.

Histories. The set of infinite histories in�S , isH∞ = (S × Z)�. For t �0 the set of finite
histories oft rounds, isHt = (S × Z)t , and the set of preplay histories oft rounds is
H

p
t = (S × Z)t × S. DenoteH = ∪∞

t=0Ht andHp = ∪∞
t=0 Ht × S. The subset ofHp of

histories that terminate withe is denoted byF. Forh ∈ H∞ andt �0 we denote byht the
history inHt which consists of the firstt rounds inh. For finite and infinite historiesh we
denote byh̄ the sequence of terminal nodes inh.

Transition probabilities. For eachh ∈ H , 
(h) is a probability distribution onS. For
s ∈ S, 
(h)(s) is the probability of transition to statesafter historyh. The probability that
the game ends afterh is 
(h)(e).

Super strategies.After t rounds the player observes the history oft pairs of a state and
a terminal node, and the state that follows them, and then playsG. Thus, a super strategy
for playeri is a function�i from Hp \ F to i’s strategies inG. We denote by�(h)(z) the
probability of reaching terminal nodezwhen�(h) is played.

The super play distribution. The super strategy� induces thesuper play distribution
which is a probability distributionPoverH∞∪F . It is the unique extension of the distribution
over finite histories which satisfies

P(h, s) = P(h)
(h)(s) (1)

for h ∈ H , and

P(hp, z) = P(hp)�(hp)(z) (2)

for hp ∈ Hp.

The valuation super strategy.Playeri’s valuation super strategy in�S , starting with val-

uationv, is the super strategy�i which satisfies�i (h) = �vh̄
.

4.3. Subgames

We show now how a stochastic repeated game of a subgame ofG can be imbedded
in �S .

For a noden in G, denote byGn the subgame starting atn. Fix a super strategy profile
� in �S and the induced super play distributionP on H∞. In what follows we describe
a stochastic super game�S′

n , in which the stage game isGn. For this we need to define
the state spaceS′. We denote with primes histories and states in the game�S′

n , as well as
terminal nodes inGn. Our purpose in this construction is to imbedH ′∞ in H∞. The idea is
to regard the rounds in a historyh in H∞ in which noden is not reached as states inS′.
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Let S′ be defined as the set of allhp ∈ Hp, such that noden is never reached inhp.
Obviously,S′ subsumesS, and in particular includes the end statee. Note that the infinite
histories in�S′

n , that is, the elements ofH ′∞, can be naturally viewed as the histories inH∞
in which the noden is repeated infinitely many times. Similarly, the finite histories inH ′
andH ′p can be identified with those inH anHp correspondingly. We use this fact to define
the transition probability distribution
′(h) in �S′

n as follows.
For anys′ �= e in S′ andh′ ∈ H ′ with P(h′) > 0,


′(h′)(s′) = P(h′, s′ | h′)�(h′, s′)(n), (3)

where�(h′, s′)(n) is the probability that noden is reached under the strategy profile
�(h′, s′). For e, 
′(h′)(e) = P(E|h′), whereE consists of all historiesh ∈ H∞ ∪ F

with initial segmenth′ such thatn is never reached after this initial segment.
Note that
′(h′)(s′) is the probability of all histories inH∞ ∪F that start with(h′, s′) and

are followed by a terminal node of the gameGn. These events and the eventE described
above, form a partition ofH∞ ∪ F , and therefore
′ is a probability distribution.

Claim 1. Define a super strategy profile�′ in �S′
n , by

�′(h′p) = �n(h
′p) (4)

for eachh′p ∈ H ′p, where the right-hand side is the restriction of�(h′p) toGn. Then, the
restriction of P toH ′∞ coincides with the super play probability distributionP ′, induced
by�′.

Proof. It is enough to show thatP andP ′ coincide onH ′. The proof is by induction on the
length ofh′ ∈ H ′. SupposeP ′(h′) = P(h′) > 0 and consider the history(h, s′, z′). Then,
by the definition of the super play distribution (1) and (2),

P ′(h′, s′, z′) = P ′(h′)
′(h′)(s′)�′(h′, s′)(z′).

By the induction hypothesis and the definitions of
′ in (3), the right-hand side isP(h′, s′ |
h)�(h′, s′)(n)�′(h′, s′)(z′). By the definition of�′ in (4), this is justP(h′, s′)�(h′, s′)(n)
�n(h

′, s′)(z′). The right-hand side, in turn, is justP(h′, s′)�(h′, s′)(z′) = P(h′, s′, z′). �

Next, we note that playing by valuation is inherited by subgames.

Claim 2. Suppose that i’s strategy in�S , �i , is the valuation super strategy starting withv,
and using either themyopic strategy and thememoryless revision rules,or the�-exploratory
myopic strategy and the averaging revision rules. Then the induced strategy in�S′

n , �′
i , is

the valuation super strategy starting withvn—the restriction ofv to the subgameGn—and
following the corresponding rules.

Proof. The valuation super strategy in�S′
n , starting withvn, requires that after history

h′ ∈ H ′, strategy�vh̄′
n is played. Here,̄h′ is the sequence of all terminal nodes inh′, which

consists of terminal nodes inGn. These are also all the terminal nodes ofGn, in h′, when
the latter is viewed as a history inH.
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When h′ is considered as a history inH, then the strategy�i (h
′) is �vh̄′

, where h̄′

is the sequence of all terminal nodes inh′. �′
i (h

′) is the restriction of�vh̄′
to Gn. But

along the historyh′, the valuation of nodes in the gameGn does not change in rounds in

which terminal nodes which arenot in Gn are reached. Therefore,�′
i (h

′) and�vh̄′
are the

same. �

4.4. Theorems 1 and 2

The game� is in particular a stochastic repeated game, where there is only one state,
besidese, and transition toe (that is, termination of the game) has null probability. We
prove all three theorems for the wider class of stochastic repeated games. The theorems
can be stated verbatim for this wider class of games, with one obvious change: any claim
about almost all histories should be replaced by a corresponding claim for almost allinfinite
histories.

All the theorems are proved by induction on the depth of the gameG. The proofs for
games of depth 0 (that is, games in which payoffs are determined in the root, with no moves)
are straightforward and are omitted. In all the proofs,R = {n1, . . . , nk} is the set of all the
immediate successors of the rootr.

Proof of Theorem 1. Assume that the claim of the theorem holds for all the subgames of
G. We examine first the case that the first player is noti. By the stipulation of the theorem,
playeri can guarantee payoff 1 in each of the gamesGnj

for j = 1, . . . , k.

Consider now the game�S′
nj

, the super strategy profile�′, and the induced super play
distributionP ′. By the induction hypothesis, and Claim 2, for eachj, for P ′-almost all
infinite histories there is a time after which playeri is paid 1. In view of Claim 1, forP-
almost all histories in�S in which nj is reached infinitely many times, there exist a time
after which playeri is paid 1, whenevernj is reached. Consider now a nonempty subset
Q of R. Let EQ be the set of infinite histories in�S in which nodenj is reached infinitely
many times iffnj ∈ Q. Then, forP-almost all histories inEQ there is a time after which
player i is paid 1. The eventsEQ whenQ ranges over all nonempty subsets ofR, form a
partition of the set of all infinite histories, which completes the proof in this case.

Consider now the case thati is the first player in the game. In this case there is at least
one subgameGnj

in which i can guarantee the payoff 1. Assume without loss of generality
that this holds forj = 1.

For a historyh denote byR+
t the random variable that takes as values the subset of the

nodes inRthat have a positive valuation aftert rounds. WhenR+
t is not empty, theni chooses

at r, with probability 1, one of the nodes inR+
t . As a result the valuation of this node after

the next round is 0 or 1, while the valuation of all other nodes does not change. Therefore
we conclude thatR+

t is weakly decreasing whenR+
t �= ∅. That is,P(R+

t+1 ⊆ R+
t |R+

t �= ∅)
= 1.

Let E+ be the event thatR+
t = ∅ for only finitely many t’s. Then, forP-almost all

histories inE+ there exists timeT such thatR+
t is decreasing fort �T . Hence, forP-

almost all histories inE+ there is a nonempty subsetR′ of R, and timeT, such thatR+
t =

R′ for t �T . But in order for the set of nodes inR with positive valuation not to change
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afterT, player i must be paid 1 in each round afterT. Thus we only need to show that
P(Ē+) = 0.

Consider the eventE1 thatn1 is reached in infinitely many rounds. As proved before
by the induction hypothesis, forP-almost all histories inE1, there existsT, such that the
valuation ofn1 is 1, for each roundt �T in whichn1 is reached. The valuation of this node
does not change in rounds in which it is not reached. Thus,E1 ⊆ E+ P-almost surely.

We conclude that forP-almost all histories inĒ+ there is a timeT, such thatn1 is not
reached after timeT. ButP-almost surely for such histories there are infinitely manyt’s in
which the valuation of all nodes inR is 0. In each such history, the probability thatn1 is not
reached is 1− 1/k, which establishesP(Ē+) = 0. �

Proof of Theorem 2. Let i be the player at the root ofG. By the induction hypothesis and
Claim 1, for each of the supergames�S′

nj
, j = 1, . . . , k, for P ′-almost infinite histories in

this super game, there is a time after which the same terminal node is reached. By Claim 2,
for P-almost all histories of� in whichnj recurs infinitely many times there is a time after
which i’s valuation of this node is constantly the payoff of the same terminal node ofGnj

.
It is enough that we show that forP-almost all infinite histories in�S , there is a time after

which the same node fromR is selected with probability 1 at the root. Suppose that this
is not the case. Then there must be a set of historiesE with P(E) > 0, two nodesnj and
nl , and two terminal nodeszj andzl in Gnj

andGnl
correspondingly, that recur infinitely

many times in this set. Therefore, forP-almost all histories inE, i’s valuation ofnj and
nl is fi(zj ) andfi(zl). SinceG is generic, we may assume thatfi(zj ) > fi(zl). Thus, for
P-almost all histories inE, there is a time after which the conditional probability ofnl given
the history is 0. Which is a contradiction.�

4.5. Theorems 3 and 4

We prove Theorem3 for stochastic repeated games, where the conclusion of the theorem
holds forP�-almost allinfinitehistories. We first consider a nodenj that follows the root,
and histories in which this node recurs infinitely many times. Let�j be i’s individually
rational payoff atnj . We prove that for such histories, in the long run,i’s average payoff at
the times in whichnj was reached, denoted̄f t

j , is not lower than�j − ε. Now, if i is not the
player at the root, theni’s individually rational payoff� is the minimum of the�j ’s. Since
i’s average payofff̄ t is an average overj of the averages̄f t

j , it follows that in the long run

f̄ t is not lower than�j − ε. If i is the player at the root, then� is the maximum overj of
�j . We show that conditional on any history the probability that playeri expected payoff in
that round is not lower than� − ε is high. To conclude that this holds unconditionally on
histories, we use a version of the strong law of large numbers for dependent variables.

Proof of Theorem 3. Assume that the claim holds for all the subgames ofG. We denote
by �j , i’s individually rational (maxmin) payoff inGnj

.
We denote byf̄ t (h), i’s average payoff at timet in historyh. Fix a subgameGnj

. Histories

in the game�S′
nj

are denoted with primes. Thus,̄f t (h′) is i’s average payoff at timet in

historyh′ in �S′
nj

.
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Let h be a history in� in which nj recurs infinitely many times att1, t2, . . .. Let h̄ =
(z1, z2, . . .). Denote byf̄ t

j (h) i’s average payoff untilt at the timesnj was reached, that is,

f̄ t
j (h) = 1

|{l : tl < t}|
∑
l:tl<t

f (ztl ).

The historyhcan be viewed as an infinite historyh′ in �S′
nj

. Moreover, for eachl, f̄ l(h′) =
f̄

tl
j (h). By the definition off̄ t

j (h), it follows that if there existsL such that for eachl > L,

f̄ l(h′) > �j − ε, then there exitsT such that for eacht > T , f̄ t
j (h) > �j − ε. By the

induction hypothesis there is�0, such that for all 0< � < �0, for P ′
�-almost all histories

h′ there exists such anL. Thus, by Claims1 and2, there exists�0, such that for allj and
0 < � < �0, for P�-almost all historiesh in �S in which nj recurs infinitely many times,
there exists a timeT such that for eacht > T , f̄ t

j (h) > �j − ε.
We examine first the case that the first player is noti. Obviously, in this case,� = minj �j .
Let Q be a nonempty subset ofR, and letEQ be the set of all infinite histories in which

the set of nodes that recurs infinitely many times isQ. Consider a historyh in EQ, with
h̄ = (z1, z2, . . .). Let �tj (h) be the number of timesnj is reached inh until time t. Then,

f̄ t (h) = 1

t

k∑
j=1

�tj (h)f̄
t
j (h)� min

j : nj∈Q
f̄ t
j (h),

where the inequality holds, because
∑

j �tj (h) = t , and forj /∈ Q, �tj (h) = 0. Thus for
P�-almost all historiesh in EQ,

lim
t→∞

f̄ t (h) � lim
t→∞

min
j : nj∈Q

f̄ t
j (h)

� min
j : nj∈Q

lim
t→∞

f̄ t
j (h)

> min
j : nj∈Q

�j − ε

� � − ε.

Since this is true for allQ, the conclusion of the theorem follows for all infinite histories.
Next, we examine the case thati is the first player. Note that in this case, for each node

nj , f̄ t
j (h) = vht (nj ). Observe, also, that forP�-almost all infinite historiesh in �S , each of

the subgamesGnj
recurs infinitely many times inh. Indeed, after each finite history, each

of the gamesGnj
is selected byi with probability� at least. Thus, the event that one of

these games is played only finitely many times has probability 0.
Let Xt be a binary random variable over histories such thatXt(h) = 1 for historiesh in

which the nodenj0 selected by playeri at timet satisfies,

vht (nj0) > � − ε/2, (5)

andXt = 0 otherwise.
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Claim 3. There exists�0 such that for allj = 1 . . . k and any0 < � < �0, for P�-almost
all infinite histories h in�S there is time T such that for allt > T ,

vht (nj ) > �j − ε/4, (6)

|vht (nj ) − vh′
t+1(nj )| < ε/4, (7)

for each historyh′ such thath′
t = ht , and

E�(Xt+1|ht )�1 − �, (8)

whereE� is the expectation with respect toP�.

Inequality (6) follows from the induction hypothesis. For (7), note that ifnj is not reached

in round t + 1 then the difference in (7) is 0. If nj is reached thenvh′
t+1 = (

�vht (nj ) +
f (zt+1)

)
/(� + 1), where� is the number of timesnj was reached inht andf (zt+1) is the

payoff in roundt + 1. But,� goes to infinity witht, and thus (7) holds for large enought.
For (8), observe that (6) implies maxj vht (nj ) > � − ε/4, as� = maxj�j . Then, by (7),

maxj vh′
t+1(nj ) > � − ε/2 for each historyh′ such thath′

t = ht . Therefore, afterht , player
i chooses, with probability at least�, a nodenj0 that satisfies (5), which shows (8).

The information about the conditional expectations in (8) has a simple implication for
the averages ofXt . To see it we use the following convergence theorem from Loève
[16] p. 387.

Stability Theorem. LetXt be a sequence of random variables with variance�2
t . If

∞∑
t=1

�2
t /t

2 < ∞, (9)

then

X̄t − 1

t

t∑
l=1

E(Xl |X1, . . . , Xl−1)) → 0, (10)

almost surely, whereX̄t = (1/t)
∑t

l=1 Xl . 13

Consider now the restriction of the random variablesXt to the set of infinite histo-
ries with P� conditioned on this space. From (8) it follows that on this space, almost
surely limt→∞ 1

t

∑k
l=1 E(Xl |hl))�1 − �. Therefore, almost surely limt→∞ 1

t

∑k
l=1

E(Xl |X1, . . . , Xl−1))�1 − �. This is so, because the field generated by the random vari-
ables(X1, . . . , Xl−1) is coarser than the field generated by historiesht . Since condition (9)
holds forXt , it follows by the Stability Theorem that forP�-almost all infinite historiesh,

lim
t→∞

X̄t �1 − �. (11)

13 The name stability theorem was give by Loève. Hart and Mas-Colell[12], who also use this theorem in the
context of a learning model, refer to it as the strong law of large numbers for dependent random variables.
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By the definition ofXt ,

f̄ t (h) = 1

t

k∑
j=1

�tj (h)v
ht (nj )�X̄t (h)(� − ε/2) + (1 − X̄t (h))M,

where Mis the minimal payoff inG. If we choose�0 such that(1− �0)(�− ε/2)+ �0M >

� − ε, then by (11), for each� < �0, limt→∞ f t (h) > � − ε for P�-almost all infinite
histories. �

The proof of Theorem4 is also extended to stochastic repeated games. We show that the
conclusion of the theorem holds forP�-almost all infinite histories.

Proof of Theorem 4. Assume that the claim of the theorem holds for all the subgames
of G. We denote byvj the restriction of the valuationv to Gnj

, and by	i,j , i’s perfect
equilibrium strategy there, which is also the restriction of	i to this game.

Claim 4. Let i0 be the player at the root, �j be i0’s payoff in the perfect equilibrium of
Gnj

, andε > 0.
Then there exists�0 > 0 such that for all0 < � < �0, nodesnj , and players i, forP ′

�
almost all infinite historiesh′ of�S′

nj
there exists T such that for allt > T ,

�
v
h′
t

j

i (m) = (1 − �)	i,j (m) + ��(m) (12)

for each nodem ∈ Mi in Gnj
, and

|E�(f
t+1
j |h′

t ) − �j | < ε (13)

whereE� is the expectation with respect toP ′
�, andf

t+1
j is i’s payoff in roundt + 1.

Equality (12) is the induction hypothesis. Consider a historyh′
t for which (12) holds. In

the round that followsh′
t , the perfect equilibrium path inGnj

is played with probability
(1− �)d−1 at least, whered is the depth ofG. Playeri0’s payoff in this path is�j . Thus for
small enough�0, (13) holds.

By Claims1 and2 it follows from (12) that for 0< � < �0, for P�-almost all histories
h in �, there existsT such that for allt > T the strategies played in each of the games�S′

nj

is the perfect equilibrium ofGnj
. Thus, to complete the proof it is enough to show that in

addition, at the root,i0 chooses in these rounds, with probability 1− �, the nodenj0 for
which 	i0

(r) = nj0. For this we need to show thati0’s valuation ofnj0 is higher than the
valuation of all other nodesnj .

To show it, let 3ε be the difference between�j0 and the second highest payoffs�j .
By the assumption of the uniqueness of the perfect equilibrium,ε > 0. Note that as all
players’ strategies are fixed fort > T , limt→∞ 1

t

∑t
l=1 E�(f

t+1
i0

|h′
t ) exists. Using the

stability Theorem, as in Theorem3, we conclude that limt→∞ f̄ t
j (h

′) exists, and by (13)

the inequality| lim t→∞ f̄ t
j (h

′) − �j | < ε holds, wheref̄ t
j (h

′) is i0’s average payoff until

roundt of historyh′, in the game�S′
nj

.
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As in the proof of Theorem3, it follows that forP�-almost all infinite historiesh in �,
| lim t→∞ vht (nj ) − �j | < ε. But then, forP�-almost all infinite historiesh there existsT
such that for allt > T , vht (nj0) is the highest valuation of all the nodesnj . �
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