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Abstract

Game theoretic models of learning which are based on the strategic form of the game cannot explain
learning in games with large extensive form. We study learning in such games by using valuation of
moves. A valuation for a player is a numeric assessment of her moves that purports to reflect their
desirability. We consider a myopic player, who chooses moves with the highest valuation. Each time
the game is played, the player revises her valuation by assigning the payoff obtained in the play to
each of the moves she has made. We show for a repeated win-lose game that if the player has a
winning strategy in the stage game, there is almost surely a time after which she always wins. When
a player has more than two payoffs, a more elaborate learning procedure is required. We consider one
that associates with each move the average payoff in the rounds in which this move was made. When
all players adopt this learning procedure, with some perturbations, then, with probability 1 there is a
time after which strategies that are close to subgame perfect equilibrium are played. A single player
who adopts this procedure can guarantee only her individually rational payoff.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction
1.1. Moves vs. strategies

Game theory has developed scores of models which describe how players learn to play
games. But invariably, these models describe learning in terms of the strategic form of the
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gamel Implementing these learning models, say by computer programs, requires that the
strategic form of the game is used as an input. This is, of course, practically impossible for
games in extensive form, the strategic form of which is too big to be effectively described.
Thus, game theory has not yet provided an explanation of learning in such games.

This explains why game theory has ignored the developing of learning programs in
artificial intelligence, starting with the first such program by SanjL&]—the checkers-
playing learning program, and ending with the chess-playing program “deep-blue”. We do
not know a single game theoretic study that proposes a rigorous theoretic explanation of the
success of these programs or indicates the way to such theory. Here, we are still far from
being able to provide such an explanation, but we hope that we are providing a first step in
the right direction.

In contrast to the existing learning models in game theory, we base our model not on the
strategic form, but rather on tmeovedn the games. As a result the models employed here
can beeffectivelyimplemented for games of any siZe.

1.2. Reinforcement vs. response

The other way in which this paper differs from most of the learning models in game
theory is the data used by the player for learning.

Models of learning in games fall roughly into two categories. In the first, the learning
player forms beliefs about the future behavior of other players and nature, and directs her
behavior according to these beliefs. We refer to these as response models. In the second, the
player is attuned only to her own performance in the game, and uses it to improve future
performance. These are called models of reinforcement learning.

Reinforcement learning has been used extensively in artificial intelligence (Al). Samuel’'s
[18] checkers-playing learning program marks the beginning of reinforcement learning algo-
rithms. Since then many other sophisticated algorithms, heuristics, and computer programs,
have been developed, based on reinforcement learning28peSuch playing programs
try neither to learn the behavior of a specific opponent, nor to find the distribution of the
opponents’ behavior in the population. Instead, they learn how to improve their play from
the achievements of past behavior.

Until recently, game theorists studied mostly response models. Reinforcement learning
has only attracted the attention of game theorists in the last decade in theoretical works like
Gilboa and Schmeidlgil0], Boérgers and Sarifil], Sarin and Vahid19] or Karandikar
et al.[15] and Cho and MatsyB], and in experimental works like Erev and R¢#} and

1 This is true even for the few studies of learning in games that are given in extensive form. See Fudenberg
and Leving[9] for a survey of these studies. In the context of evolutionary models,[HErmay be viewed as
exception, as he provides an analysis of extensive form games based on the agent-normal form (one different
player per node), and thus uses moves rather than strategies as the basic building block. See {Zijefssraan
recent account of evolutionary approaches in game theory.

2The concentration of the Al literature on moves rather than strategies is the main reason why there seems to
be almost no overlap between two major books on learning, each in itsTieédTheory of Learning in Games
Fudenberg and Levin®] andReinforcement Learning: An Introductip8utton and Bart¢20].
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Camerer and H{2]. 3 In all these studies the basic model is given in a strategic form, and
the learning player reinforces those of her strategies that perform better. This approach, as
we argued before, is inadequate where learning of games in extensive form is concerned.
Here, as opposed to all the game theoretic models of reinforcement it is the moves of the
game that are reinforced and not the strategies.

Reinforcement learning, and concentrating on moves rather than strategies is typical not
only of the Al learning models. Consider the very different contéx 2 year old toddler
learning how to operate a DVD player, with his efforts being frustrated by two highly rational
and strategic players, mom and dad, and perhaps also by nature in the form of the family cat.
Our toddler is oblivious of the strategic aspects of the situation. She concentrates mostly
on the possible moves available to her, exhibiting reinforcement learning by remembering
the button pushes that terminated in a successful operation of the device, and learning how
to use them in the right sequence in order to reach the desired goal: watching “A Beautiful
Mind".

1.3. Valuation

One of the most common building blocks of Al heuristics for reinforcement learning is the
valuation which is a real valued function on the possible moves of the learning player. The
valuation of a move reflects, very roughly, the desirability of the move. Given a valuation,
a learning process can be defined by specifying two rules:

e A strategy rule which specifies how the game is played for any given valuation function
of the player.
e A revision rule which specifies how the valuation is revised after playing the game.

Our purpose here is to study learning-by-valuation processes, based on simple strategy
and revision rules. In particular, we want to demonstrate the convergence properties of
these processes in repeated games, where the stage game is given in an extensive form with
perfect information and any number of players. Converging results of the type we prove
here are very common in the literature of game theory. But as noted before, convergence of
reinforcement is limited in this literature to strategies rather than moves. Since there is no
obvious way to define a valuation of a strategy from a system of move valuations, a simple
translation of our learning model in terms of strategies is not straightforvard.

3 While Gilboa Schmeidl€f10] study an axiomatization motivated by reinforcement learning, Bérgers and Sarin
[1] establish some connections between certain stochastic versions of reinforcement learning and the replicator
dynamics. Karandikar et g15] study a learning model based on evolving aspirations (see also Cho and Matsui
[3]: Asin all reinforcement learning models, the learning player bases her strategy solely on her past performance,
but in addition she keeps playing the same strategy (up to perturbations) as long as the strategy gives more than
the current level aspiration level (assumed to evolve according to some averaging of past payoffs).

4Toillustrate the difficulties, consider first the case in which a player must move at several nodes, and consider
a path that crosses a moweof this player. In our setting, after this path has been played the valuation of move
mis revised. Thus, the assessments of all the strategies that specify themaoeeffected. In contrast, when
strategies are reinforced, only the valuation of the strategy chosen is revised. Consider next the case where there
is a different player at every node. In our setting, when a node is not reached the valuations of the corresponding
moves are not revised. In the strategic form approach, all strategies are revised according to their performance no
matter what the outcome is.
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1.4. The main results

The strategy rule we adopt here is #loratory myopic strategy rul®y this rule, the
learning player chooses in each of her decision nodes, with high probability, a move which
has the highest valuation among the moves available to her at this node. In case there are
several moves with the highest valuation, she chooses one of them at random. But the player
chooses also, with small probability, all other moves.

As a revision rule we adopt threveraging revisionAfter each round the player revises
only the valuation of the moves made in the round. The valuation of such a move is the
average of the payoffs in all previous rounds in which this move was made.

Equipped with these rules, and an initial valuation, the player can play arepeated game. In
each round she plays according to the exploratory myopic strategy, defined by the current
valuation. At the end of the round she revises her valuation according to the averaging
revision.

When one player learn3 his learning process, together with the strategies of the other
players in the repeated game, induce a probability distribution over the infinite histories of
the repeated game. We show the following, with respect to this probability.

If the learning player obeys the exploratory myopic strategy and the averaging revision
rules, then starting with any valuation, there exists, with probability 1, atime after which
the player’s payoff exceeds her individually rational payoff (the minmax payoff) in the
stage game, minus

Thus, the learning process described yields the player approximately the payoff that
she can guarantee even when the other players are disregarded. This result indicates that
reinforcement learning achieves learning of playing the stage game itself, rather than playing
against certain opponen€s.

When all players leamOur next result concerns the case where all the players learn
how to play the stage game. By the previous result we know that each can guarantee his
individually rational payoff. But, it turns out that the synergy of the learning processes
yields a stronger convergence result. Indeed, players learn in this case each other’s behavior
and act rationally on this information.

Suppose the stage game has a unique perfect equilibrium. If all the players employ
the exploratory myopic strategy and the averaging revision rules, then starting with
any valuation, with probability 1, there is a time after which their strategy in the stage
game is close to the subgame perfect Nash equilibrium (SPNE).

5The importance of trembles for learning in extensive form games was first noted by Fudenberg ar{6]Kreps
and Fudenberg and Leviiié]. Without trembles learning convergences to self-confirming equilibria rather than
subgame perfect Nash Equilibria.

6 The idea of deriving results for the behavior of a player irrespective of other players’ strategies is in the spirit
of universal consistency as defined in Fudenberg and L¢8ine

71t should be noted that convergence to the SPNE would also hold if we were to place in each node an agent
of the player. This is so, because the stochastic process of valuations would be the same in both cases.
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Learning and evolutionary models have had a mixed success in providing support for
the SPNE. One main difficulty is that starting from the SPNE strategy profile, a strategy
that differs only off the equilibrium path performs as well as the SPNE strategy. Thus, such
strategies tend to increase in size through the mutation force, up to a point where the SPNE
strategy profile gets unstable (see Noldeke and Samuflgpfor an illustration). A recent
paper by Harf11] gives support to the SPNE for the case of large populations. As he shows
in the large population case the evolutionary pressure dominates the mutation force and the
SPNE obtains. Our learning model is different in nature from the evolutionary model both
in that it does not require populations of agéhtsepresenting each player) and in that the
state of the learning system is unaffected at those nodes which are unreached in a given
round (that is, there is no analog of the mutation force in our context).

1.5. Win-lose games

The class of win—lose game is of special interest because much effort has been invested
in studying learning algorithm for such games. Also, learning to perform simple tasks, like
operating a DVD player discussed in Section 1.2, can be modelled as win—-lose game.

We study a somewhat larger class of stage games in which the learning player has only
two payoffs, 1 (win) and O (lose). But no assumption is made on the number of the other
players or their payoff functions.

By our main result we know that using the rules described above, the learning player can
guarantee approximately her individually rational payoff. Obviously, this result has a bite
only when this payoff is 1, that is, when the learning player can guarantee a win.

It turns out, though, that to achieve this result much simpler rules suffice. For a strategy
rule we adopt the simplayopic strategy ruleThis rule differs from the exploratory myopic
strategy rule in that moves that do not have the highest valuation among the moves available
to her at this node, are played with probability zero.

For a revision rule we use here the simpiemoryless revisiorLike in the averaging
revision, after each round the player revises only the valuation of the moves made in the
round. But here no averaging is done, and only the last round matters. The valuation of a
move made in the last round becomes the player’s payoff (0 or 1) in that round, regardless
of previous valuations of the move:

Suppose that the learning player can guarantee a win in the stage game. If she plays
according to the myopic strategy and the memoryless revision rules, then starting with
any nonnegative valuation, there exists, with probability 1, a time after which the player
always wins.

Note, that no assumption is made on how the players, other than the learning player,
play the game. In particular, the stochastic process generated in the repeated game is not
necessarily a Markov process, and simple techniques of such processes cannot be used.

8 While Hendon et al[13] consider a fictitious play model leading to the SPNE, their model as acknowledged
by the authors cannot be viewed as a learning model, since players keep updating the strategy of their opponent at
nodes which are not reached in a given round. The authors provide a mental process interpretation of their model.
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A simpler learning method we might consider for a win—lose game is one in which the
learning player deletes her last move in each round when her payoff is 0. This method is
not equivalent to the revision method we adopt here: when valuation is used, moves with
valuation 0 my have valuation 1 in later rounds, while deleted moves do not reappear. Thus,
assigning 0 valuation to a move is not the same as deleting it. But unlike the valuation
method, the method of deleting moves does not lend itself to generalizations and seem to
be a dead end. Obviously, it cannot be extended to games in which the learning player has
more than two payoffs. Second, it cannot be extended to efficient learning models, even in
games with 0-1 payoffs. In contrast, valuation can be used in many ways to form strategy
and revision rules.

1.6. Information requirements

Although valuation is defined for all moves, the learning player needs no information
concerning the game when she starts playing it. Indeed, the initial valuation can be constant,
which does not require knowledge of the game. Starting with this valuation, the player needs
to be informed of the moves that are possible to her only whenitis her turn to play. During the
repeated game, the player should be able to record the moves she made and their valuations.
Still, the learning procedure does not require that the player knows how many players there
are, let alone the moves they can make and their payoffs.

1.7. Efficiency

Unlike strategy-based learning models, the model studied here, which is move-based, can
beeffectivelyimplemented by a computer program. Although the number of moves can be
very large, there is no need to record them in advance. Instead, each can be recorded after
being first encountered. However, this learning model will not be efficient for large games,
because the time required to see a given move again is too long for practical purposes. In
chess, for example, almost any state of the board, except for the first few, has been seen in
recorded history only once.

In order to make the model more efficient, similarity of moves should be introduced. Thus,
moves (or states of the board) should be considered similar if they share certain properties.
In chess these can be the number of pieces on the board, for example, or more subtle features
of the array. Now, when the valuation of a move is revised, so are the valuations of all the
moves similar to it. Similarity of moves can be given exogenously, or preferably, change
endogenously during the learning process. The strategic implication of similarity grouping
as well as the properties of this similarity that can guarantee convergence of the learning
process to a reasonable outcome should be the subject of further research. In a companion
paper, Jehiel and Sané#], we make a first step toward this.

2. Preliminaries
2.1. Games and super games

Consider a finite gam@ with complete information and a finite set of player§he game
is described by atregZ, N, r, A), whereZ andN are the sets of terminal and non-terminal
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nodes, correspondingly, the root of the tree,iand the set of arcs &. Elements ofA are
ordered pairgn, m), wheremis the immediate successorf

The setv;, fori € I, is the set of nodes in which it i% turn to play. The set&; form a
partition ofN. Themovef playeri at noden € N; are the nodes iM; (n) = {m|(n, m) €
A}. DenoteM; = U,cn, M;(n). For eachi the functionf;: Z — R isi’s payoff function.
The depth of the game is the length of the longest path in the tree. A game with depth O is
one in which{r} = Z andN = ¢.

A behavioral strategy, (strategy for short) for playera functions; defined onV; such
that for each: € Ny, o;(n) is a probability distribution o/; (n).

The super game is the infinitely repeated game, with stage ga@dn infinite history
in I' is an element oZ®. A finite history oft rounds, forr >0, is an element of’. A super
strategyfor playeri in I' is a functionZ; on finite histories, such that fdr € Z?, 2;(h)
is a strategy of in G, played in round + 1. The super strateg§ = (X;);<; induces a
probability distribution on histories in the usual way.

2.2. Valuations

We fix one playei (the learning player) and omit subscripts of this player when the
context allows it. We first introduce the basic notions of playing by valuatioval&ation
for playeri is a functionv: M; — R.

Playing the repeated ganieby valuation requires two rules that describe how the stage
gameG is played for a given valuation, and how a valuation is revised after playing

e A strategy ruleis a functionv — ¢”. When playeii’s valuation isv, i's strategy inG
isav.

e A revision ruleis a function(v, h) — v", such that for the empty history, v4 = v.
When playeii’s initial valuation isv, then after a history of plays i’s valuation isv”.

Definition 1. Thevaluation super strategfpr playeri, induced by a strategy rule— ¢?,
a revision rule(v, 1) — v", and an initial valuation, is the super strategy;, which is

defined byX? (h) = V" for each finite histonh.

3. Main results

Ourmain results concern alearning procedure based @rekploratory myopic strategy
rule and the averaging revision rule to be defined in Se&i?2below. Theoren3 claims that
a learning player can guarantee approximately her individually rational payoff. Theorem
4 claims that when all players learn using this procedure, then they play approximately a
perfect equilibrium strategy.

For the special case of a win—-lose game, TheoBemeans that if the learning player
can guarantee a win in the stage game, then she learns how to win with high probability.
But for such games a much simpler learning procedure can guarantee that such a player
learns to win for sure, namely, the procedure which involves the myopic strategy rule and
the memoryless revision rule.
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Because of the simplicity of the rules required for win—lose games, we present first the
case of these games, and explain why they cannot be used for general payoff-structure
games.

3.1. Win-lose games

We consider first the case where playeas two possible payoffs i@, which are, without
loss of generality, 1 (win) and O (lose). A two-person win—lose game is a special case, but
here we place no restrictions on the number of players or their payoffs.

We assume that learning by valuation is induced by a strategy rule and a revision rule of
a simple form.

The myopic strategy rule. This rule associates with each valuationthe strategys?,
where for each node € N;, ¢?(n) is the uniform distribution over the maximizersuwobn
M;(n). That is in each node of player the player selects at random one of the moves with
the highest valuatior?

The memoryless revision rule.For a history of length 14# = (z), the valuationv is
revised tov® which is defined for each node € M;(n) by

Z fi(z) misonthe path leading fromto z,
vi(m) = .
v(m) otherwise
For a historyh = (z1, ..., z¢), the current valuation is revised in each round according to

the terminal node observed in this round. Thufs= (vi(Zl """ Z”1))1’.

The temporal horizons, future and past, required for these two rules are very narrow.
Playing the gamé&, the player takes into consideration just her next move. The revision of
the valuation after playin@ depends only on the current valuation, and the result of this
play, and not on the history of past valuations and plays. In addition, the revision is confined
only to those moves that were made in the last round.

Theorem 1. Let G be a game in which player i either wins or loses. Assume that player i
has a strategy in G that guarantees him a win. Then for any nonnegative initial valuation
of i, and super strategies in I, if X; is the valuation super strategy induced by the myopic
strategy and the memoryless revision rulggen with probability 1there is a time after
which i is winning forever

The following example demonstrates learning by valuation.

Example 1. Consider the game in Fid, where the payoffs are player 1’s.

9The requirement that uniformly selects one of the movesrats not essential for our results. It is enough
thato assigns positive weight to every move available.at
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Fig. 1. Two payoffs.

Suppose that 1's initial valuation of each of the mokemndR is 0. The valuations that
will follow can be one of(0, 0), (1, 0), and(0, 1), where the first number in each pair is the
valuation ofL and the second d&®. (As we shall see, the valuatigh, 1) cannot be reached
from any of these valuations.)

We can think of these possible valuations as states in a stochastic process. Tide btate
is absorbing. Once it is reached, player 1 is choostrand being paid 1 forever. When
the valuation i1, 0), player 1 goes.. She will keep playind., and winning 1, as long as
player 2 is choosing. Once player 2 choosésthe valuation goes back {0, 0). Thus, the
only way player 1 can fail to be paid 1 from a certain time on is Wte0) recurs infinitely
many times. But the probability of this is 0, as the probability of reaching the absorbing
state(0, 1) from state(0, 0) is 1/2.

Note that the theorem does not state that with probability 1 there is a time after which
player 1's strategy is the one that guarantees him payoff 1. Indeed, in this example, if player
2's strategy is always, then there is a probability 1/2 that player 1 will playfor ever,
which is not the strategy that guarantees player 1 the payoff 1.

3.2. The case of payoff functions with more than two values

We now turn to the case in which payoff functions take more than two values. The next
example shows that in this case the myopic strategy and the memoryless revision rules may
lead the player astray.

Example 2. Player 1 is the only player in the game in Fiy.

The player can guarantee a payoff of 10, and therefore we expect a learning process to
yield eventually this payoff. But, in order to guarantee that the learning process induced by
the myopic strategy and the memaoryless revision results in the payoff 10 in the long run, the
initial valuation should reflect the structure of the payHif the initial valuation does not
reflect it, for example, if it is constant, then there is a positive probability that the valuation
(—10, 2) for (L, R) is obtained, which is absorbing.

10The valuation oL should be greater than that®f and the valuation od should be greater than that nf
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10 —10

Fig. 2. More than two payoffs.

We cannot state for general payoff functions any theorem analogous to Thtorewven
a weaker version of this theorem. But something meaningful can be statecalWp&yers
play the repeated game according to the myopic strategy and the memoryless revision rules.
We say that gam& is genericif for every playeri and for every pair of distinct terminal
nodesz andz’, we havef; (z) # fi(z).

Theorem 2. Let G be a generic game. Assume that each player i plagscording to the
myopic strategy rule and uses the memoryless revision rule. Then for any initial valuation
profile, with probability 1 there is a time after which the same terminal node is reached in
each round

The limit plays guaranteed by this theorem depend on the initial valuations and have no
special structure in general. Moreover, it is obvious that for any terminal node there are
initial valuations that guarantee that this terminal node is reached in all rounds.

We return, now, to the case where only one player learns by reinforcement. In order to
prevent a player from being paid an inferior payoff forever, like in ExanZplee change
the strategy rule. We allow for exploratory moves that remind her of all possible payoffs in
the game, so that she is not stuck permanently in a bad valuation. Assume, then, that having
a certain valuation, the player opts for the highest valued nodes, but still allows for other
nodes with a small probability. Such a rule guarantees that the player in Exar@pidl
never be stuck permanently in the valuati{efl0, 2). We introduce formally this new rule.

The J-exploratory myopic strategy rule. This rule associates with each valuatiothe
strategyay, where for each node € N;, os(n) = (1 —0)a"(n) + ou(n). Hereg o” is the
strategy associated with by the myopic strategy ruland u is the strategy that uniformly
selects one of the moves atf

11The emergence of any possible pure outcome is reminiscent of Proposition 1 in Karandik§tSjtvahich
was obtained in an evolving aspiration learning model (applied to the prisoner’s dilemma). Observe though that
unlike the evolving aspiration model 5] our revision rule has nothing to do with inertia.

12| ike in the definition of the myopic strategy rule, itis enough to requiregresigns positive weight to every
move available an.
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Unfortunately, adding exploratory moves alone does not help the player to achieve 10
in the long run, as we show now. Assume that the initial valuatioa afdb is 10 and
—10 correspondingly, and the valuation of the first two moves is also favorélile?).
We assume now that in each of the two nodes player 1 chooses the higher valued node
with probability 1— 6 and the other with probability. The valuation ofa andb cannot
change over time. The valuation @f, R) forms an ergodic Markov chain with the two
states{(10, 2), (—10, 2)}. Thus, for example, the probability of transition frait0, 2) to
itself occurs when the player chooses eith@nda, with probability (1 — §)2, or R with
probability 6, which sum to 1- 6 + 6.

The following is the transition matrix of this Markov chain.

(10,2) [(1-6+86%> &6-06°
(=10, 2) 5—0% 1-6+6°

The two state$10, 2) and(—10, 2) are symmetric and therefore the stationary probability
of each is 1/2. Thus, the player is paid 10 and 2, half of the time each.

Note that the exploratory moves are required because the payoff function has more than
two values. However, we have shown that a learning player who adopts such a rule fails
to achieve the payoff 10. Indeed, even in a win—lose game, a player who has a winning
strategy may fail to guarantee a win in the long run by playing according to the rules of
o-exploratory myopic strategy and memoryless revision. To fix this problem we consider
the following revision rule:

The averaging revision rule. For a nodem € M;, and a historyh = (z1, ..., z;), if the
node m was never reached inthenv”(m) = v(m). Else let, ..., # be the times at
which m was reached in, then

1 k
o) =2 Y fla).
=1

We state, now, that by using a little exploration and averaging revision, plagam
guarantee a payoff which is above his individually rational (minmax) paydH minuse.

Theorem 3. LetX be a super strategy such that is the valuation super strategy induced
by thed-exploratory myopic strategy and the averaging revision rules. DenotBskipe
distribution over histories i induced byX.

Let p be i's individually rational payoff in G. Then for eveey> 0 there exists)p > 0
such that for ever® < § < 0o, for Ps-almost all infinite historieq = (z1, z2, ...),

~1k

t
Zf(zz)>;0—€~

=1

lim

1—00

We consider now the case where all players learn to @ausing thedé-exploratory
myopic strategy and the averaging revision rules. We show that in such a case, in the long
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run, the players’ strategy in the stage game is close to a perfect equilibrium. We assume for
simplicity that the gam& has a unique perfect equilibrium (which is true generically).

Theorem 4. Assume that G has a unique perfect equilibrifm= (f,);e;r. Let 2% be
the super strategy such that for eachE;s is the valuation super strategy induced by the
o-exploratory myopic strategynd the averaging revision rules

Let Ps be the distribution over histories induced BbY. Then there existso, such that
forall 0 < 6 < do, for Ps-almost all infinite historie® = (z1, ..., 2, ...), there exists T,
such that for alt > T, 6" (m) = (1 — 6)B; (m) + du(m), for each player i and node
m € M;.

4. Proofs
4.1. A sketch of the proof of Theorem 1

All the theorems are proved by induction on the depth of the game tree. We first sketch
the main idea in the proof of Theoren

Suppose that playécan guarantee a win in the gaBeand she has the first move in this
game (the other case is simpler). Then, at least one of her moves at the Ggtafantees
her a win. Denote by’ a subgame that follows such a move. By the induction hypothesis,
the theorem holds for the infinitely repeated gamé&tf

Consider the vector of valuations § moves at the root. Assume that it is not the 0
vector. At each round i, i chooses one of the moves that has positive valuation. If she
wins, it remains positive (indeed, itis 1). If she loses the valuation of the move is reduced
to zero. Thus, the set of moves with positive valuation can only shrink. Suppose that in a
given history there is a time after which the vector does not become the zero vector. Then,
at some later time the set of moves with positive valuation must be fixed, and from that time
oni always wins.

Now suppose that in a given history this vector of valuations is 0 infinitely many times.
At these times a move is chosen at random, and therefore with probabiityid reached
infinitely many times. We now apply the induction hypothesis.

There is a small flaw in the proof just described. The induction hypothesis is about the
infinitely repeated game ¥’ and we need to apply it to histories Ih In these histories
there are “gaps” between the consecutive times in whicls played.

To overcome this problem we prove our theorems for a larger family of super games which
we call stochastic repeated games. In such a super game, before each round of playing the
stage game all the players observe some random signal. This solves the problem mentioned
before, because the “gaps” between playirigcan be considered as signals rather than a

play.
4.2. Stochastic repeated games

Let Sbe a countable set of states which also includesralstate eA stochastic repeated
gameis a gamel™® in which the games is played repeatedly. Before each round a state
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from Sis selected according to a probability distribution which depends on the history of
the previous terminal nodes and states. When the stasteealized the game ends. The
selected state is known to all the players. The strategy played in each round depends on the
history of the terminal nodes and states. We now desdhbermally.

Histories. The set of infinite histories ifi’, is Hs = (S x Z)®. Fort >0 the set of finite
histories oft rounds, isH, = (S x Z)', and the set of preplay histories bfounds is
H = (8§ x Z)" x S. DenoteH = U H; andH” = U H; x S. The subset of{? of

histories that terminate withis denoted byr. Fork € Hy, and: >0 we denote by, the

history in H; which consists of the firdtrounds inh. For finite and infinite historiel we

denote by: the sequence of terminal nodeshin

Transition probabilities. For eachh € H, t(h) is a probability distribution ors. For
s € S, 1(h)(s) is the probability of transition to stateafter historyh. The probability that
the game ends aftéris t(h)(e).

Super strategies. After t rounds the player observes the historyt giirs of a state and
a terminal node, and the state that follows them, and then @ayi$us, a super strategy
for playeri is a functionX; from H? \ F toi’s strategies irG. We denote by (h)(z) the
probability of reaching terminal nodewhenX(h) is played.

The super play distribution. The super strategy induces thesuper play distribution
whichis a probability distributioR? over H,UF'. Itis the unique extension of the distribution
over finite histories which satisfies

P(h,s) = P(h)t(h)(s) 1)
forh € H, and

P(h?,2) = P(h")2(h")(2) (2)
for h? € HP.

The valuation super strategy. Playeri’s valuation super strategy ii®, starting with val-
uationv, is the super strategy; which satisfies; (h) = .

4.3. Subgames

We show now how a stochastic repeated game of a subgar@ecah be imbedded
in IS,

For a noden in G, denote byG, the subgame starting at Fix a super strategy profile
Y in I'S and the induced super play distributi®non Hy,. In what follows we describe
a stochastic super garﬂef’, in which the stage game §,,. For this we need to define
the state spac&’. We denote with primes histories and states in the gﬁﬁﬁeas well as
terminal nodes irG,,. Our purpose in this construction is to imb#&d, in Hy,. The idea is
to regard the rounds in a histolyin H,, in which noden is not reached as statesS$h
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Let S’ be defined as the set of dP € H?, such that node is never reached ih”.
Obviously, S’ subsumes, and in particular includes the end statéNote that the infinite
histories inI"$’, that is, the elements @1/, can be naturally viewed as the historiesHg,
in which the noden is repeated infinitely many times. Similarly, the finite historieg#h
andH’? can be identified with those iH an H? correspondingly. We use this fact to define
the transition probability distributiotf (%) in F,SZ' as follows.

For anys’ # ein 8’ andh’ € H' with P(h’) > 0O,
7 (W) (s") = P(h',s" | KHZM, s )(n), 3

where X (1, s")(n) is the probability that node is reached under the strategy profile
X(W,s"). Fore v (h)(e) = P(E|h’), whereE consists of all historied € Hy U F
with initial segment:’ such than is never reached after this initial segment.

Note thatt’(h")(s") is the probability of all histories i, U F that start with(%’, s”) and
are followed by a terminal node of the garig. These events and the evéhtescribed
above, form a partition off,, U F, and therefore’ is a probability distribution.

Claim 1. Define a super strategy profil in F;f’, by
WPy =2, ') (4)

for eachh’” € H'?, where the right-hand side is the restrictionXf2’?) to G,,. Then the
restriction of P toH/, coincides with the super play probability distributigtf, induced
by 2.

Proof. Itis enough to show thd& and P’ coincide onH’. The proof is by induction on the
length ofh’ € H'. SupposeP’(h') = P(k’) > 0 and consider the histoiy:, s’, z’). Then,
by the definition of the super play distributiot) @nd @),

P/(h/, S/, Z/) — P/(h/)f/(h/)(s/)z/(h/, S/)(Z/).

By the induction hypothesis and the definitiongoifh (3), the right-hand side i® (4', s’ |
mEM, sH()2' (W, s")(z'). By the definition of2” in (4), this is justP (h', s 2 (1, s")(n)
2. (W', s")(Z). Theright-hand side, inturn, is just(h’, s 2 (W', s")(z') = P(W',s’, 7). O

Next, we note that playing by valuation is inherited by subgames.

Claim 2. Suppose thati’s strategy ift’, 2;, is the valuation super strategy starting with
and using either the myopic strategy and the memaoryless revisionoutbg s-exploratory
myopic strategy and the averaging revision rules. Then the induced stratef(ﬁ/, i, is
the valuation super strategy starting with—the restriction ofv to the subgamé&,,—and
following the corresponding rules

Proof. The valuation super strategy iﬁj/, starting withv,, requires that after history

h e H, strategyg”»}f/ is played. Herel’ is the sequence of all terminal nodegiinwhich
consists of terminal nodes @,,. These are also all the terminal nodesxyf, in 4’, when
the latter is viewed as a history kh
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When /' is considered as a history id, then the strategy; (k') is o Whereﬁ’

is the sequence of all terminal nodes/ih X’ (k") is the restriction ofe?" to G,. But
along the history:’, the valuation of nodes in the ganmig, does not change in rounds in

which terminal nodes which aretin G, are reached. Thereforg; (k') anda”f' are the
same. [

4.4, Theorems 1 and 2

The gamel is in particular a stochastic repeated game, where there is only one state,
besidese, and transition tee (that is, termination of the game) has null probability. We
prove all three theorems for the wider class of stochastic repeated games. The theorems
can be stated verbatim for this wider class of games, with one obvious change: any claim
about almost all histories should be replaced by a corresponding claim for alnmio8nétk
histories.

All the theorems are proved by induction on the depth of the g&@&meghe proofs for
games of depth O (thatis, games in which payoffs are determined in the root, with no moves)
are straightforward and are omitted. In all the prod&ss {n1, ..., nt} is the set of all the
immediate successors of the root

Proof of Theorem 1. Assume that the claim of the theorem holds for all the subgames of
G. We examine first the case that the first player isinBy the stipulation of the theorem,
playeri can guarantee payoff 1 in each of the garGgsfor j = 1,... k.

Consider now the gamE;f;, the super strategy profilE’, and the induced super play
distribution P’. By the induction hypothesis, and Claim 2, for egclior P’-almost all
infinite histories there is a time after which playés paid 1. In view of Claim 1, foP-
almost all histories il in which nj is reached infinitely many times, there exist a time
after which playei is paid 1, whenevet ; is reached. Consider now a nonempty subset
Qof R Let E¢ be the set of infinite histories iiS in which nodex is reached infinitely
many times iffn; € Q. Then, forP-almost all histories irt o there is a time after which
playeri is paid 1. The event&, whenQ ranges over all nonempty subsetsRyfform a
partition of the set of all infinite histories, which completes the proof in this case.

Consider now the case thiais the first player in the game. In this case there is at least
one subgameé,; in whichi can guarantee the payoff 1. Assume without loss of generality
that this holds forj = 1.

For a historyh denote byR;" the random variable that takes as values the subset of the
nodes irRthat have a positive valuation afteounds. WherR;" is not empty, thenchooses
atr, with probability 1, one of the nodes iR;". As a result the valuation of this node after
the next round is 0 or 1, while the valuation of all other nodes does not change. Therefore
we conclude thaR;" is weakly decreasing wheky" # . Thatis,P(R , € R|R" # 0)
=1

Let E* be the event thar;” = ¢ for only finitely manyt's. Then, forP-almost all
histories inE* there exists timd such thatR;" is decreasing for > T. Hence, forP-
almost all histories irE+ there is a nonempty subsgt of R, and timeT, such thaiR,” =
R’ for t >T. But in order for the set of nodes R with positive valuation not to change

t+1 =
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after T, playeri must be paid 1 in each round affér Thus we only need to show that
P(E+) =0.

Consider the evenk? thatny is reached in infinitely many rounds. As proved before
by the induction hypothesis, fé-almost all histories irEl, there existd, such that the
valuation ofnq is 1, for each round> T in whichnq is reached. The valuation of this node
does not change in rounds in which it is not reached. Thdsz E+ P-almost surely.

We conclude that foP-almost all histories irE+ there is a timéTl, such thati1 is not
reached after time&. But P-almost surely for such histories there are infinitely mésyn
which the valuation of all nodes Ris 0. In each such history, the probability thatis not
reached is - 1/k, which establishe® (E+) = 0. O

Proof of Theorem 2. Leti be the player at the root @&. By the induction hypothesis and
Claim 1, for each of the supergamé,%, j=1,...,k, for P’-almost infinite histories in
this super game, there is a time after which the same terminal node is reached. By Claim 2,
for P-almost all histories of" in which# ; recurs infinitely many times there is a time after
whichi’s valuation of this node is constantly the payoff of the same terminal nodk of
Itis enough that we show that fBralmost all infinite histories ifi”S, there is a time after
which the same node frof is selected with probability 1 at the root. Suppose that this
is not the case. Then there must be a set of hist&ietth P(E) > 0, two nodes:; and
n;, and two terminal nodes; andz; in Gy, andG,, correspondingly, that recur infinitely
many times in this set. Therefore, fBralmost all histories irE, i’s valuation ofr; and
nyis fi(z;) and fi(z;). SinceG is generic, we may assume thatz;) > fi(z;). Thus, for
P-almost all histories iiE, there is a time after which the conditional probability:pfjiven
the history is 0. Which is a contradiction]

4.5. Theorems 3 and 4

We prove Theorerf for stochastic repeated games, where the conclusion of the theorem
holds for Ps-almost allinfinite histories. We first consider a node that follows the root,
and histories in which this node recurs infinitely many times. gebei’s individually
rational payoff ai ;. We prove that for such histories, in the long riimaverage payoff at
the times in which:; was reached, denotefd, is not lower thamp ; — e. Now, ifi is not the
player at the root, thers individually rational payoffp is the minimum of the;'s. Since
i’s average payofff’ is an average ovgrof the averageg?}, it follows that in the long run

£ is not lower tharp; — e. If i is the player at the root, thenis the maximum ovey of

p;- We show that conditional on any history the probability that playspected payoff in
that round is not lower thap — ¢ is high. To conclude that this holds unconditionally on
histories, we use a version of the strong law of large numbers for dependent variables.

Proof of Theorem 3. Assume that the claim holds for all the subgame&o¥We denote
by p;, I's individually rational (maxmin) payoff irG,, ;.

We denote by’ (h), i's average payoff at timin historyh. Fix a subgamé , ;. Histories
in the gameF,S,_; are denoted with primes. Thug! (#') is i's average payoff at timein
historyh' in I'§ .
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Let h be a history inl" in which n; recurs infinitely many times ai, 2, .. .. Leth =
(z1, 22, ...). Denote byf; (h) i's average payoff untilat the times:; was reachegthat is,

1
f() me(Zn

Ly <t

The historyh can be viewed as an infinite histdryin F;f/ Moreover, for each f!(h') =
f;l (h). By the definition off; (h), it follows that if there exist& such that for each> L,
f'(h") > p; — &, then there exitT such that for each > T, f/(h) > p; — &. By the
induction hypothesis there &, such that for all 0< 6 < do, for P§-almost all histories
1’ there exists such an Thus, by Claimsl and2, there exists)g, such that for alj and
0 < & < o, for Ps-almost all historie$ in I'S in which n;j recurs infinitely many times,
there exists a tim& such that for each> T, f (h) > p;—e.

We examine firstthe case that the first player is nobviously, inthis casg, = min; p;.

Let Q be a nonempty subset Bf and letE be the set of all infinite histories in which
the set of nodes that recurs infinitely many timeQisConsider a historyr in Eg, with
h=(z1,22,...). Let v’j (h) be the number of times; is reached irh until timet. Then,

i} 1 k& _ o
Fiy =73 i fim= min fim.

j=1

where the inequality holds, becau@ v (h) = t,and forj ¢ Q, v (h) = 0. Thus for
Ps-almost all historieh in Eg,

lim f'(h) > lim min f(h)

t—00 t—oo0Jjin;j€Q

> min lim f(h)
]”]GQt—>OO

> min —¢
Jjinj EQpJ

>p—e.

Since this is true for al, the conclusion of the theorem follows for all infinite histories.

Next, we examine the case thas the first player. Note that in this case, for each node
nj, f (h) = v" (n ;). Observe, also, that fabs-almost all infinite historiet in I'%, each of
the subgame@n recurs infinitely many times ih. Indeed, after each finite history, each
of the gamei},,j is selected by with probability 6 at least. Thus, the event that one of
these games is played only finitely many times has probability O.

Let X, be a binary random variable over histories such tat) = 1 for historiesh in
which the node: ;, selected by playarat timet satisfies,

oM (nj,) >p—¢e/2, (%)

andX; = 0 otherwise.
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Claim 3. There exist®g such thatforallj = 1...k and any0 < ¢ < Jo, for Ps-almost
all infinite histories h inl™S there is time T such that for all> T,

V" (nj) > p; — /4, (6)

0" (n) — v"41(n )] < £/4, (7)
for each history’ such thath, = h,, and

E5(Xi41lhi) 21— 0, (8)

whereE; is the expectation with respect Ry.

Inequality @) follows from the induction hypothesis. Faf)( note thatif: ; is not reached

in roundt 4 1 then the difference in7j is 0. If n; is reached them’i+1 = (vl (n;) +
f(z,+1))/(v + 1), wherev is the number of times; was reached i, and f(z;41) is the
payoff in roundr + 1. But, v goes to infinity witht, and thus 7) holds for large enough

For (8), observe that@) implies max vl (nj) > p—e/4,asp = max;p;. Then, by ),
max; Uh;+1(nj) > p —e/2 for each historyy’ such that; = k,. Therefore, afteh,, player
i chooses, with probability at lea$ta noden j, that satisfiesH), which shows §).

The information about the conditional expectations8hlas a simple implication for
the averages oK,. To see it we use the following convergence theorem from Loéve
[16] p. 387.

Stability Theorem. Let X, be a sequence of random variables with varianﬁelf

oo

Z ()'tz/t2 < 00, (9)
=1
then
1
X -2 > EXi|X1.....X;-1) > O, (10)

=1

almost surelywhereX, = (1/1) >/_; X;. 13

Consider now the restriction of the random variablgsto the set of infinite histo-
ries with Ps conditioned on this space. FrorB)(it follows that on this space, almost
surely lim,_, ?1 Zf‘zl E(X;lh;))>1 — 6. Therefore, almost surely lim % Zj‘zl
E(X;|X1,...,X;-1))>1— 0. Thisis so, because the field generated by the random vari-
ables(X, ..., X;_1) is coarser than the field generated by histatieSince conditiong)
holds forX,, it follows by the Stability Theorem that faPs-almost all infinite historie$,

lim X,>1-0. (11)

—00

13The name stability theorem was give by Loéve. Hart and Mas-Cd2]] who also use this theorem in the
context of a learning model, refer to it as the strong law of large numbers for dependent random variables.
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By the definition ofX,,

k

_ 1 — -
Ty =2 3 ) > X () (p — /2) + (1= Ke(h)M,
j=1

where Mis the minimal payoff irG. If we choosejg such tha{l — dg) (p — &/2) + oM >
p — &, then by (1), for eachd < do, lim,_, ., f'(h) > p — & for Ps-almost all infinite
histories. O

The proof of Theorem is also extended to stochastic repeated games. We show that the
conclusion of the theorem holds f&g-almost all infinite histories.

Proof of Theorem 4. Assume that the claim of the theorem holds for all the subgames
of G. We denote by, the restriction of the valuation to G,,;, and by, ;, i's perfect
equilibrium strategy there, which is also the restrictiorgpfo this game.

Claim 4. Letig be the player at the roptr; beip’s payoff in the perfect equilibrium of
G, ande > 0.
Then there existdy > 0 such that for all0 < 6 < do, nodest;, and players i, forP;

almost all infinite histories’ of F,Sl/, there exists T such that for all> 7,

hi
o) (m) = (L= &)f; ;(m) + Su(m) (12)
for each noden € M; in G, and

\Es(fi MR —mjl <& (13)

1+1

whereE; is the expectation with respecttg, and f i

is i's payoff in roundr + 1.

Equality (12) is the induction hypothesis. Consider a histbfyfor which (12) holds. In
the round that follows:;, the perfect equilibrium path i, is played with probability
(1—9)4-1 at least, wherd is the depth ofs. Playerig’s payoff in this path ist;. Thus for
small enougldo, (13) holds.

By Claims1 and2 it follows from (12) that for 0< 6 < d9, for Ps-almost all histories
hin I', there existd such that for alt > T the strategies played in each of the gamé;s
is the perfect equilibrium of;,,;. Thus, to complete the proof it is enough to show that in
addition, at the rootjg chooses in these rounds, with probability-15, the noden ;, for
which B (r) = n ,. For this we need to show thafs valuation ofn j, is higher than the
valuation of all other nodes;.

To show it, let 3 be the difference between;, and the second highest payofts.
By the assumption of the uniqueness of the perfect equilibrium, 0. Note that as all
players’ strategies are fixed for> T, lim, o ¥ Y j_y Es(f |k} exists. Using the
stability Theorem, as in TheoreB) we conclude that lim, o f;(h’) exists, and by13)
the inequality} lim;_, f}(h’) —m;| < ¢ holds, wheref;(h/) is ig's average payoff until
roundt of history#’, in the gamel",f;.
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As in the proof of Theoren3, it follows that for Ps-almost all infinite histories in I,
iMoo v (nj) — mj| < e. But then, forPgs-almost all infinite histories there exists
such that for alt > 7', v/ (nj,) is the highest valuation of all the nodes. [0
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