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A necessary and sufficient condition for the existence of a common prior for
several players is given in terms of the players’ present beliefs only. A common
prior exists iff for each random variable it is common knowledge that all its
iterated expectations converge to the same value; this value is its expectation with
respect to the common prior. The proof is based on the presentation of type
functions as Markov matrices. Journal of Economic Literature Classification Num-
bers: C70, D82. Q 1998 Academic Press

1. INTRODUCTION

Ž .Ever since Harsanyi’s 1967]1968 work on games with incomplete
information, type spaces have been the most important tool for the study
of such games. In most applications of type spaces to economics, it is
assumed that players’ beliefs can be derived from a common prior. Such a
prior can be interpreted simply as the beliefs in a previous period.
However, as we are interested in the players at the present time, it is
desirable to express the assumption of a common prior in present time
terms only. Thus, two question naturally arise:

1. How can we tell, by players’ beliefs, that they have a common
prior?

2. Can a common prior be expressed in terms of, or constructed from,
the players’ beliefs in a meaningful way?

Ž .Aumann 1976 , in his agreement theorem, gave a necessary condition
for the existence of a common prior in terms of present beliefs: if there is
a common prior, then it is impossible to agree to disagree, i.e., to have
common knowledge of differences in the beliefs of any given event. By
extending the notion of disagreement to differences in the expectation of a

Žgeneral random variable, several authors Morris, 1995; Feinberg, 1995;
.Bonanno and Nehring, 1996 were able to show that the impossibility of

there being common knowledge of disagreement is not only a necessary,
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but also a sufficient condition for the existence of a common prior. The
different proofs for the sufficiency of this condition use various derivatives

Ž .of the separation theorem for convex sets. Samet 1998 showed how the
condition follows directly from the simple observation that the set of priors
of a player is the convex hull of his types.

The first question mentioned above was solved satisfactorily by this
necessary and sufficient condition, but it gave no clue as to the second
question: the fact that a disagreement cannot be common knowledge,
which guarantees the existence of a common prior, tells us nothing about
this common prior.

In this work a new necessary and sufficient condition for the existence of
a common prior on a finite type space is given, in terms of present beliefs
only. Unlike the previously known condition, this one also answers our
second question: it provides a meaningful way to express the common
prior in terms of present beliefs.

To understand the new condition, consider the following story. Suppose
we ask Eve what return she expects on IBM stock. Being an expert
economist, Eve has no problem providing us with an answer. Adam, when
asked the same question, will also come up with an answer. Even if Eve
and Adam attended the same school of economics, we should not be
surprised to hear different answers, because since then they have been
exposed to different sources of information.

Now, let us ask Eve what she thinks Adam’s answer was. Eve scratches
her head, and for good reason. She can think of many answers that Adam
might have given. Being a Bayesian economist, she can compute, though,
the expectation of the various answers and come up with Adam’s expected
answer. Likewise, Adam, will provide us with what he expects Eve’s answer
to be. Again, we do not anticipate that the answers at this stage will be the
same.

We continue the process, moving back and forth between Eve and
Adam, asking each to compute the expected value of the other’s previous
answer. Here is the good news: the two sequences of alternating expecta-
tions, the one that starts with Adam and the one that starts with Eve,
converge. Moreover, the limits of these sequences are common knowledge
to Adam and Eve.

The first question posed above is now answered by proving that there
exists a common prior for Adam and E¨e, if and only if , starting with any
possible stock, the sequences thus generated con¨erge to the same limit.

The second question is answered by showing that if there is a common
prior, then the common ¨alue of the limit of the sequences is the expected
¨alue of the stock with respect to the common prior. Thus, the expected
values of all possible stocks, with respect to the common prior, which fully
describe the common prior, are given in terms of the limits of sequences,
which are computed by the present beliefs of Eve and Adam.
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Now we give a somewhat more formal description of our results, and
show how they generalize to more than two players. Let i , i , . . . be an1 2
infinite sequence of names of players, such that each player’s name is

Žrepeated infinitely many times. Let f be a random variable i.e., a function
.on the state space . Player i evaluates, in each state, the expected value of1

f. Denote this by E f. This evaluation itself is a random variable, andi1

E E f is its evaluated expected value for i , and so on. We call thei i 22 1

sequence of the random variables thus obtained an iterated expectation of
the random variable f. Different sequences give rise to different iterated
expectations, but we prove:

MAIN RESULTS. Each iterated expectation of a random ¨ariable con¨erges
and the ¨alue of its limit is common knowledge. Moreo¨er, there exists a
common prior if and only if for each random ¨ariable it is common knowledge
that all its iterated expectations con¨erge to the same ¨alue.

The characterization of a common prior in this work is based on the
stochastic nature of types and priors, rather than their convex structure,
which, as we mentioned before, was used in the previous characterization.
The following simple observation is the starting point.

ŽObservation. The type function of a player in a type space namely, the
function that associates with each state the player ’s probability measure o¨er

.the type space at the state is by definition the transition function of a Markö
chain. The set of priors of a player is the set of in¨ariant probability measures
of this transition function.

Consider, then, the Markov matrix M , the rows and columns of whichi
are indexed by states, and each row of which is the type of player i in the
state corresponding to the row. This matrix can be used in two ways. For
any function f on the state space, written as a column vector, M f is thei
vector of the expected values of f in each state. Another use, which is in a
sense dual to the first, primal one, is to consider for any probability
measure p on the state space, the probability measure pM , obtained fromi
p after one transition of the Markov chain.

The primal use is of economic significance and importance. Players and
traders choose their actions by comparing the expectation of certain
functions, and this is what state spaces are used to describe. The dual use
is not as natural for state spaces, since no stochastic process is going on
and since we are not interested in general probability measures on the
state space.

Nevertheless, the dual use of M is of importance, because the invarianti
probability measures of M are exactly the priors of player i. Thus, ai
common prior is a probability measure which is invariant for the matrices
M for all players i.i
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The relation between the primal and dual aspects of the matrices M isi
what enables us to translate the question of existence of a common prior
to a question concerning the primal use of these matrices, namely, the
computation of expected values. Moreover, it also makes it possible to
express a common prior in terms of expectations.

The stochastic analysis of type spaces is finer than the convex analysis
used for the nonagreement condition. Thus, while both analyses can be
used to characterize the existence of a common prior, it is only the
stochastic approach that makes it possible to express the prior in terms of
players’ present belief, and also accounts for the uniqueness of a common
prior, on elements of the meet, as we prove here. For further applications

Ž .of stochastic analysis of type spaces, see Gaifman 1986 , and Samet
Ž .1997 .

We present type spaces, and state the main results in the next section.
The interpretation of type functions as transition functions of Markov
chains and all the proofs are given in Section 3.

2. TYPE SPACES, PRIORS, AND COMMON PRIORS

� 4Let I s 1, . . . , n be a set of players and let V be a finite set of size m,
the elements of which are called states. Subset of V are called e¨ents. For

Ž .each i g I, P is a partition of V. For v g V we denote by P v thei i
Ž .element of P containing v. For each i g I and v g V, let t v be ai i

probability measure on V, such that:

Ž . Ž .Ž Ž ..a t v P v s 1;i i

Ž . Ž . Ž . Ž .b for each v9 g P v , t v9 s t v .i i i

Ž .The function t is i’s type function, and t v is i’s type at v. The tuplei i

² :I , V , P , tŽ .i i igI

is called a type space.
Ž .The meet of P is the partition P of V which is the finest amongi ig I

all partitions that are coarser than P for each i g I. For an event A, thei
event that A is common knowledge is the union of all the elements of P
contained in A. We observe that any element P in the meet P forms a
type space when the partitions P and the types t are restricted to it, andi i

� 4the meet of this space is P . We identify any probability measure on P
with its natural extension to a probability measure over all of V.

We consider probability measures on V as row vectors in the m-dimen-
sional space RV. A random ¨ariable is a real-valued function on V, which
we consider as a column vector in RV. For a probability measure p and a
random variable f on V, the expectation of f with respect to p is the
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Ž . Ž .product pf s Ý p v f v . For each player i and random variable f onw
Ž .Ž .V, i’s expectation of f , denoted E f , is the random variable E f v si i

Ž .t v f.i
A prior for player i is a probability measure p on V, such that for each

Ž Ž ..state v, if p P v ) 0, then i’s type at v is the conditional probabilityi
Ž .measure defined by p on P v . That is, p is a prior for i if for each eventi

Ž < Ž .. Ž .Ž .A and state v, p A P v s t v A whenever the conditional probabil-i i
ity measure is defined. The probability measure p is a common prior if it is
a prior for each player i.

Ž .Ž� 4.In the sequel we assume that for each i and v, t v v ) 0. Ouri
results do not hold without this positivity assumption, but similar results
can be proved for the general case. To formulate such results, the notion
of common knowledge, which plays a central role here, should be replaced

Ž Ž ..by common 1-belief as defined in Monderer and Samet 1989 . In
particular, the role played by the elements of the meet is played, in the
general case, by events E which are minimal nonempty events for which E
is the common 1-belief in E. Under the positivity assumption, the ele-
ments of the meet are those minimal events. We make the positivity
assumption in order to simplify the formulation and the proofs of the main
results.

We present here necessary and sufficient conditions for the existence of
a common prior which result from the stochastic nature of type spaces
explored in the next section.

First, we show in the following proposition that the question of existence
of a common prior on V can be reduced to the question of the existence
of common priors on the elements of the meet.

PROPOSITION 1. For each P g P there exists at most one common prior
on P. The set of common priors on V is the con¨ex hull of the common priors
on the elements P in P.

Ž .We need the following definitions. We call a sequence s s i , i , . . . , of1 2
elements of I, an I-sequence if for each player i, i s i for infinitely manyk
ks. The iterated expectation of a random variable f with respect to the

Ž .`I-sequence s is the sequence of random variables E ??? E f .i i ks1k 1

PROPOSITION 2. For each random ¨ariable f on V and I-sequence s, the
limit of the iterated expectation of f with respect to s exists and its ¨alue is
common knowledge in each state; that is, it is constant on each element P
in P.

In view of Proposition 1, there exists a common prior on V iff there
exists a common prior on at least one of the elements of the meet. Thus it
is enough to characterize the existence of a common prior for the case that
the meet consists of only one element.
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� 4THEOREM 1. Suppose P s V . Then there exists a common prior iff for
each random ¨ariable f it is common knowledge in each state that the iterated
expectations of f , with respect to all I-sequences s, con¨erge to the same limit.
Moreo¨er, if p is the common prior, then this limit is pf.

Two remarks are in order. First, note that each random variable is a
linear combination of the random variables x }the characteristic func-�v 4
tions of single states. Whereas the expectation operators E are also linear,i
Theorem 1 holds true if the random variables f , in this theorem, are
restricted to the functions x , or more generally to characteristic func-�v 4
tions of events, x .E

Second, we observe that Theorem 1 generalizes Aumann’s agreement
Ž . Ž .theorem as follows. Suppose the event E x s a l E x s b is1 E 2 E

common knowledge, i.e., E x and E x have fixed values a and b ,1 E 2 E
correspondingly, on V. Then, obviously, all iterated expectations of x forE
I-sequences that start with 1 are constantly a , while for those sequences
that start with 2, they are constantly b. If there is common prior, then, by
Theorem 1, a s b.

3. TYPES AS THE TRANSITION FUNCTIONS OF
MARKOV CHAINS

² Ž . :For a given type space I, V, P , t define for each player i ai i ig I
V 2 Ž . Ž .Ž� 4.matrix M in R , by M v, v9 s t v v9 . Then M is a Markovi i i i

matrix representing the transition function t . The following propositioni
follows directly from the definitions of type spaces and of transition
functions of Markov chains.

PROPOSITION 3.

Ž .a Each element of the partition P is an irreducible class of M .i i

Ž .b A probability measure p on V is a prior for i iff it is a in¨ariant
probability measure for M ; that is, pM s p.i i

Ž .c For each random ¨ariable f , M f s E f.i i

For any permutation s of I, we write,

M s M ??? M .s s Ž1. s Žn.

PROPOSITION 4. For any permutation s of I, the meet, P, is a partition of
V into irreducible, aperiodic, classes of M . Thus, the restriction of M to anys s

P g P is ergodic and therefore has a unique in¨ariant probability measure p P
s

on P.
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Proof. Let v, v9 g P g P . Thens Ž i.

M v , v9 G M v , v ??? M v , v M v , v9Ž . Ž . Ž . Ž .s s Ž1. s Ž iy1. s Ž i.

=M v9, v9 M v9, v9 )0.Ž . Ž .s Ž iq1. s Žn.

Therefore, any two states in the same element of a partition of a player
Ž .communicate. Hence, if v is in an equivalence class of states, then P v ,i

for each i, is a subset of this class. This means that each class is a union of
elements of P. Also, for each P g P, the probability of v g P staying in
P under M is 1, and therefore P is an irreducible equivalence class. Thes

Ž .Markovian matrix M is irreducible aperiodic since for each s , M v, vs s

) 0. B

PROPOSITION 5. The following conditions are equï alent.

Ž .1 p is a common prior on V.
Ž .2 p is an in¨ariant probability measure of the Markö matrix M fori

each i g I.
Ž .3 p is an in¨ariant probability measure of the Markö matrix M fors

each permutation s .

Ž . Ž . Ž . Ž .Proof. Clearly 1 and 2 are equivalent by Proposition 3 b , and 2
Ž . Ž .implies 3 . Suppose 3 is true and let p be the invariant probability

Ž .measure in 3 . Thus,

pM M ??? M s p.1 2 n

Multiplying this equality from the right by M yields1

pM M ??? M M s pM .1 2 n 1 1

Therefore, pM is an invariant probability measure of M ??? M M .1 2 n 1
Ž .However, by 3 , p is an invariant probability measure of this Markov

matrix, and by Proposition 4, M ??? M M has a unique invariant proba-2 n 1
bility measure on each element P g P. Thus, pM s p and, similarly,1
pM s p for each i g I. Bi

Proof of Proposition 1. By Proposition 5, if p is a common prior on P,
then it is an invariant probability measure of the restriction of M to P,s

which is unique by Proposition 4. Let p be a common prior and denote by
p P the conditional probability measure of p to P g P, when it exists.
Then, clearly, p is a convex combination of the measures p P. It is enough,
now, to show that each p P is an invariant probability measure on P.

Ž .Indeed, by Proposition 3 b , p is an invariant probability measure of Mi
Ž . Pfor each i and, therefore, by Proposition 3 a , p is an invariant probabil-

ity measure of the restriction of M to P, for each i. Hence, by Propositioni
5, p P is a common prior on P. B
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To prove Proposition 2 and Theorem 1, we first prove a variant of these
claims. Let s be a permutation of I. Denote by E the operator, which iss

defined for each f by

E f s E ??? E f .s s Ž1. s Žn.

The iterated expectation of a random variable f with respect to s in the
Ž k .`sequence E f .s ks1

Proposition 29 and Theorem 19, which follow, correspond to Proposi-
tion 2 and Theorem 1, but they are formulated in terms of iterated
expectation with respect to permutation rather than I-sequences.

PROPOSITION 29. For each random ¨ariable f on V and permutation s ,
the limit of the iterated expectation of f with respect to s exists and is
measurable with respect to P, i.e., it is constant on each element P in P.

� 4THEOREM 19. Suppose P s V . Then there exists a common prior iff for
each random ¨ariable f , the iterated expectations of f , with respect to all
permutations s , con¨erge to the same limit. Moreo¨er, if p is the common
prior, then this limit is pf.

Note that the iterated expectation of f with respect to a permutation s
is a subsequence of the iterated expectation of f with respect to the
I-sequence,

s 1 , . . . , s n , s 1 , . . . , s n , . . . ,Ž . Ž . Ž . Ž .

and, therefore, the claim of Proposition 29 is weaker than that of Proposi-
tion 2. In Theorem 19, the claim concerning the sufficiency of the condition
for the existence of a common prior is stronger than the corresponding
claim in Theorem 1, while the claim concerning its necessity is weaker.

Ž . k kProof of Proposition 29. By Proposition 3 c , E f s M f for each f ands s

k. Whereas, by Proposition 4, M is ergodic on P, lim M k f iss k ª` s

constantly p P f over P. Bs

Proof of Theorem 19. As in the proof of Proposition 29,

lim Ek f s lim M k fs s
kª` kª`

and the limit is constantly p f on V, where p is the unique invariants s

probability measure of M on V. Thus, for each f , the limits for all s ares

the same iff for each f , p f are the same for all s , which is true iff theres

is a probability measure p such p s p for all s . This amounts, by thes

Ž . Ž .equivalence of 1 and 3 in Proposition 5, to saying that p is a common
prior. B
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We turn now to prove Proposition 2 and Theorem 1. We first prove
Proposition 6, which generalizes a theorem concerning the convergence of
the powers of an ergodic stochastic matrix to the case in which different
matrices are multiplied. We then prove Lemma 1, which shows that the
conditions of Proposition 6 hold in our case.

We say that a Markov matrix A is bounded by « if all its positive entries
are bounded from below by « ; that is, if for each row r and column c,

Ž . Ž .either A r, c s 0 or A r, c ) « . We say that A is positï e if all its
entries are positive.

PROPOSITION 6. Let A , A , . . . , A , . . . be a sequence of Markö matri-1 2 k
ces of the same dimension. Denote AŽk . s A A ??? A . Let 1 sk ky1 1
k - k - ??? - k - ??? be an increasing sequence of indices and denote by1 2 l
B , for l s 1, . . . , `, the block B s A ??? A . If there exists « ) 0 suchl l k y1 klq 1 l

that B is positï e and bounded by « , for each l, then there exists a matrix A,l
all the rows of which are identical, such that lim AŽk . ª A. Moreo¨er, ifk ª`

there exists a probability measure p which is in¨ariant for A for all k, then allk
the rows of A are p.

Proof. It is enough to show that for each column vector x, AŽk .x
converges to a vector all the components of which are identical. Indeed, if
we prove this, then substituting unit vectors for x shows the existence of
the limit matrix A with the desired property.

For a vector x write max x for the maximal coordinate x and min x fori
the minimal one. If A is a Markov matrix and y s Ax, then max y F max x
and min y G min x. Moreover, if A is positive and bounded by « ) 0, then

Ž . Ž .max y F « min x q 1 y « max x and min y G « max x q 1 y « min x,
Ž .Ž .and, therefore, max y y min y F 1 y 2« max x y min x .

Thus, if y Žk . s AŽk .x, then max y Žk . is a decreasing sequence and min y Žk .

is an increasing one. We need to show that max y Žk . y min y Žk . ª 0. This
is indeed true, as for each l, y Žk lq 1y1 . s B ??? B x, and, therefore,l 1

Žk lq 1y1 . Žk lq 1y1 . Ž . lŽ .max y y min y F 1 y 2« max x y min x .
If p is an invariant probability measure of each A , then pAŽk . s p fori

each k and therefore pA s p. Whereas all the rows of A are identical, pA
is a row of A. B

For two nonnegative matrices of the same order, A and B, we write
A % B, if each entry which is positive in B is positive also in A.]

LEMMA 1. Let B s A ??? A , where A , for i s 1, . . . , r, is one of ther 1 i
matrices M , . . . , M , and let 1 F j - ??? - j F r. Then, B % A A ???1 n 1 k j j] k ky1

A .j1
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Proof. Let B9 be a matrix obtained from B by substituting A9 for A ,i
where A9 is a nonnegative matrix such that A % A9. Then obviously,i ]
B % B9. Whereas for l s 1, . . . , n, M % I, where I is the unit matrix, wel] ]

� 4can substitute I for all the matrices A , in B, with i f j , . . . , j , toi 1 k
obtain the desired relation. B

Ž .Define « s min M v, v . Then « ) 0 and all the matrices M are0 i, v i 0 i
bounded by « .0

LEMMA 2. Let B s M ??? M and C s M B, and suppose B is boundedi i i1 1

by « . Then:

Ž .a C G B;
Ž .b if C has no positï e entries other than those of B, then C is also

bounded by « ;
Ž .c in any case, C is bounded by « « .0

Ž . Ž .Proof. Part a follows from Lemma 1. To prove b , suppose the
Ž . Ž . Ž .assumption of b holds and C v, v9 ) 0. Then B v, v9 ) 0. However,
Ž . Ž . Ž .for any v g P v , the row M v, ? is the same as the row M v, ? .i i i

Ž . Ž .Therefore, for each such v, C v, v9 s C v, v9 ) 0 and hence, by the
Ž . Ž .assumption in b , B v, v9 ) 0. Now, by the definition of C and M ,i

C v , v9 s M v , v B v , v9 ,Ž . Ž . Ž .Ý i
Ž .v : vgP vi

Ž .but because B v, v9 is positive, it is bounded from below by « , and hence

C v , v9 G M v , v « s « .Ž . Ž .Ý i
Ž .v : vgP vi

Ž .Obviously, c is true because each positive entry of C is the sum of
products of positive entries from M and B, where each of these productsi
is bounded from below by « « . B0

Ž .Proof of Proposition 2. Let s s i , i , . . . be an I-sequence. Fix P g P.1 2
For each k, define A to be the restriction of M to P. We show that thek ikŽk . Ž .sequence A in the notation of Proposition 6 converges. For each
permutation s of I, M is ergodic on P and therefore there is a wholes

number n such that for all m G n , the restriction of M m to P is positive.s s s

Let n s max n . Whereas there are finitely many permutations of I,s s

there must be a permutation s and blocks B s A ??? A such thatl k y1 klq 1 l

for each block B , there are indices j , . . . , j which satisfy k F j - j -l 1 nn l 1 2
??? - j F k y 1 and such thatnn lq1

j , j , . . . , j s s 1 , . . . , s n , s 1 , . . . , s n , . . . , s 1 , . . . , s n .Ž . Ž . Ž . Ž . Ž . Ž .nn nny1 1
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By Lemma 1, B % A . . . A . But A . . . A is the restriction of Mn
l j j j j s] nn 1 nn 1

to P, and therefore B is positive on P. Now, for k F r F k y 1, letl l lq1
Ž r . Ž . Ž r . Ž ry1.B s A ??? A . By Lemma 2 a , B % B , for each r ) k . If thel r k l l l]l Ž r . Ž ry1. Ž .positive entries in B are the same as in B , then by Lemma 2 b bothl l

matrices have the same bound. If there are more positive entries in BŽ r .,l
Ž . Ž ry1.then by Lemma 2 c its bound is « times the bound of B . But the set0 l

of positive entries can be enlarged for at most m2 indices r. Thus, all
blocks B are uniformly bounded by « m2

.l 0

Thus, by Proposition 6, AŽk . converges to a matrix A, the rows of which
are identical. Obviously, for each f and v, E ??? E f s AŽk . f on P andi ik 1

the latter converges to the constant function pf, where p is a row in A.
B

Proof of Theorem 1. That the convergence in the theorem implies the
existence of a common prior follows from Theorem 19. If there is a
common prior p, then convergence holds by Proposition 2. B
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