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A model of information structure and common knowledge is presented which 
does not take states of the world as primitive. Rather, these states are constructed 
as sets of propositions, including propositions which describe knowledge. In this 
model information structure and measurability structure are endogenously defined 
in terms of the relation between the propositions. In particular, when agents are 
ignorant of their own ignorance, the information structure is not a partition of the 
state space. We show that Aumann’s (Ann. Statist. 4 (1976), 1236-1239) famous 
result on the impossibility of agreeing to disagree, which was proved for partitions, 
can be extended to such information structures. Journal of Economic Literature 
Classification Numbers: 021, 026. 0 1990 Academic press, hc. 

1. INTRODUCTION 

In his seminal paper, “Agreeing to Disagree,” Aumann [l] has shown 
that agents who have the same prior distribution over the states of the 
world cannot agree to disagree. More precisely, if their posteriors for a 
certain event are common knowledge then these posteriors must coincide 
even though they are based on different information. The information that 
agents have in Aumann’ model is given by partitions of the state space, one 
for each agent. With each state o and agent i there is associated a set of 
states P,(o) that are indistinguishable by i from o at o. The family of sets 
Pi(o) (where o ranges over all states of the world) is assumed to be a 
partition. 

One of the two main purposes of this paper is to show the Aumann’s “no 
agreement” result can be extended to information structures (given by the 
family of sets P,(w)) which are not partitions. The other purpose is more 
general. We present a refined model of knowlege and common knowledge 
that allows us to derive endogenously various information structures, 
measurability conditions, and some constraints on the information 

*The author acknowledges helpful comments from Robert Aumann, Itzhak Gilboa, 
Ehud Kalai, Ehud Lehrer, Jean Franqois Mertens, David Schmeidler, and Shmuel Zamir. 

t Present address: Faculty of Management, The Leon Recanati Graduate School of 
Business Administration, Tel-Aviv University, Tel-Aviv, Israel. 

190 
OO22-0531/90 $3.00 
Copyright 0 1990 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



IGNORING IGNORANCE 191 

structure that are required for the “no agreement” theorem. TO do so we 
introduce the knowledge of the agents as a formal component in the model. 
The objects that are known in our model are propositions, and for e 
proposition (b we assume the existence of a proposition Ki4 which is in 
meted as “agent i knows that 4.” We then define a state to be a full 
description of the world (where “world” can be narrowly interpreted as a 
game or a market environment) in terms of the propositions, including 
those which describe knowledge. Information structure and measurability 
structure of the space of states, as well as common knowledge, are 
naturally defined in terms of the relation between propositions. 

There are three properties of knowledge in our model that together 
imply a partition of the states of the world into classes of indistiuguis 
states: (Kl) when an agent knows a proposition he knows he 
(K2) any proposition known by an agent is true; (K3) when an agen 
not know a proposition he knows he does not. 

In our main theorem we show that the more general information 
structure which is implied by (Kl) and (K2) is enough to guara 
A~man~‘s result. In other words, it is impossible to agree to disagree even 
when agents ignore their own ignorance. Moreover (KI) alone is enough 
if we make the following plausible assumption on the prior distri~~ti~~. 
When we give up (K2) we allow for false pro itions to be ~‘k~~w~.~’ 
“We” of course are external observers; the agent s a proposition 
considers that proposition to be true, and his prior tribution wou%d 
assign probability zero to states in which this proposition is false. If this is 
indeed the case then (Kl) alone suffices to prevent agreeing to disagree. 

The basic features of this model-the construction of states as full, con- 
sistent descriptions of the world, and the relation between k~ow~~~ 
properties (like (Kl )-( K3)) and information structure-are well known 
modal and epistemic logic and constitute the backbone of these theories 

intikka [S], Kripke [Ill). It was Bacharach [3] who first introduc 
the appartus of epistemic logic in the context of A~~an~~s model. IJnli 
the modal logic model, his knowledge operators are applied to events in a 
o-field rather than to propositions. He was able then to show 
partition assumed in Aumann [ 11 is derived from assumptions si 
(Kl)-(K3). Bacharach also pointed out, following modal logic syst 
more general information structures that are generated when ( 
omitted. Shin [13] pursued this line of research more vigorous 
model, like the one used in modal logic, begins with propositi 
knowledge operators on them, which are used to construct states. Althou 
he does not introduce measurable structure, he studies extensi 
topology of various information structures and of common k~ow~e~~e~ 
starting with the natural topology, which is much the same we use in 
Section 3. 
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Two recent papers by Gilboa [6] and Kaneko [lo] also make use of 
knowledge operators on propositions to study the ability to include a 
description of the “whole world” within a state, in the spirit of the informal 
discussion in Aumann [2]. 

Models, analogous to modal logic systems, have also been developed in 
computer science to study distributed systems, Halpern [7] is a survey of 
these works. 

The structure of this paper is as follows. In Section 2 we define the states 
of the world as “lists” of true proposition. We then examine the implication 
of (Kl)-(K3) on the information structure of the state space. In Section 3 
we introduce the natural topology on state spaces starting with the simplest 
events “proposition 4 is true” as a subbase. The results of this section are 
used later in Section 6 to show that all the events required for the study of 
common knowledge are measurable. In Section 4 we define what it is for a 
proposition to be common knowledge in a state. We show that if a 
proposition is common knowledge in a state then it is automatically true 
and common knowledge in a whole group of states. This provides a link 
between the delintions of common knowledge in terms of propositions and 
in terms of events. In Section 5 the notion of finitely generated knowledge 
is introduced. Informally it reflects the assumption that our (possibly 
infinite) knowledge is derived from finitely many propositions (a posteriori 
knowledge which may differ from state to state) by (a priori) deduction 
rules. This property of knowledge implies some restrictions on the informa- 
tion structure which are essential to derive the results of Section 6. For the 
special case of partitions, the required restriction is the countability of the 
partition, which is assumed in Aumann [l]. In Section 6 we prove that 
(Kl) and (K2) are enough to guarantee the impossibility of agreeing to 
disagree, and show under what conditions (Kl) alone suffices. In Section 7 
we discuss various aspects of the model. 

2. PROPOSITIONS AND STATES 

Let @ and I be two countable sets. We interpret elements of Cp as 
propositions describing a certain environment of interest. Alternatively one 
may think of @ as a set of well formed formulas in some language. But 
since the structure of such a language plays no role in our study we prefer 
the less technical notion of propositions to describe the primitives of our 
theory. Elements of I are interpreted as agents. For each agent i E I there 
exists a mapping Ki: @ -+ @, where for each 4 E Sp the proposition KiQ is 
interpreted as saying “i knows 4.” There exists also a mapping - : @ -+ @ 
where N q5 is interpreted as “not 6’ and such that for each 4, -4 # 4, and 
- -$4=#. 

Consider the set Z = (0, 1 > @. Each element of C can be thought of as an 
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assignment of truth values to the propositions; 1 for “true” and 0 for 
“false”. An element o of Z is called a state of the world (or a state)) if for 
each f# E w, 

w(q5)+0(-~)= 1: 

i.e., if for each 4, CO assigns the value “true” to one an 
propositions q5 and its negation -$. The set of states is den 
properties of the negation, -, guarantee that 9, is not empty. (Even a 
weaker property of the negation suffices, namely: for each n >O and 4, 
t-1 2n+ r 4 # 4.) We identify the state CO with the set of propositions 
(9!4)= 11. Th us we write CJ~EW instead of o(d) = 1 and d # w for 
CO(#) = 0. We write !P 52 0 for a set of proposition !P if for each q4 E lu, 4 E w. 
The phrase “4 is true in state 0” is also used instead of CO($) = I. 

The km of agent i in state o (or the info~~~tio~ai content of w for i) Is 
the set X; (0) of all propositions known by i in 0. That is, 

Icy(o)= {qs[K&w). 

We fix now a subset 52 of Q,,. Define for each ie I a binary relation pi 
on Sz by: dpiw whenever K;(o) ho’. We say in this case that cc;’ is 
possible in w for i. This relation expresses the com~at~b~~ity of the state o’ 
with the knowledge i has in w; each proposition known by i in w is true 
in OJ’ and thus the information i has in CJ does not distingujsb ~~tw~e~ CO 
and CO’. For each i and LO E D let P, (CO) be the set of all the states which are 
possible in 0 for i, i.e., 

P,(o) = (0’) o’piw>. 

For a set of states X, P,(X) is the set (a,(~)[ COEX). 
Consider now the following three properties of knowledge in state CO. 

1) For each q5 E @ and i E I, if Kid E w then K,K,I# E o. 
2) For each QjE@ and iEI, if KiqSEW then qJEW. 

(I(3) For each q5E@ and icI, if -Kj$EO then 

Condition (Kl) says that in state o, if i knows q5 he k 
says that every proposition known by i in CO is true in 
if i does not know 4 in CO then he knows he does not. 

We denote by 

52, the set of all states which satisfy (Kl), 
Q, the set of all states which satisfy (Kt) a 
$2, the set of all states which satisfy (KI), 

Clearly, a23 c Q2, c Q, E Sz,. 
The following theorem describes the relation pi between states in ter 

of relation between the ken of i in different states. 
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THEOREM 1. For each i E I: 

(a) For QcO,, o’pjo $fKJo’)~Kz~(w) 
(b) For QEQ,, o’pio iffKz:(o’)=Kz:(o). 

Proof (a) Suppose Kz:(w’)?Kz:(w). By (K2), o’z&:(w’) and 
therefore o’p,o. Conversely, assume w’piw, If 4 E&-(W) then by (Kl), 
Kid E Kz: (0). Thus K& E CO’ and 4 E Kz7 (0’). 

(b) If &:(o’) =&y(o) then W’JJ+O by (a). Suppose u’pio then by 
(a) K; (0’) 2 Ki (0). Let 4 E Kz: (o’), i.e., K& E CO’. Suppose 4 # K; (CO). 
Thus, Kid 40 and -Kid~m which by (K3) implies Ki- Ki#e@ and 
therefore - Ki4 E w’, a contradiction. Q.E.D. 

THEOREM 2. For each i E I, 

(a) If Sz E Q, , pi is transitive. 
(b) If 52 c O,, pi is transitive and rejlexive. 
(c) rf ~2 c 52,) pi is transitive, rejlexive, and symmetric. 

ProoJ (b) and (c) follow from parts (a) and (b) of Theorem 1, corre- 
spondingly. We omit the simple proof of (a). Q.E.D. 

A proof of Theorem 2 in a slightly different setup is found in Hughes and 
Creswell [9]. 

Consider now the following three properties of 0 in terms of Pi. 

(Pl) For each ieland OE@ ifw’EP,(o) then P,(w’)_cP,(o). 
(P2) For each iel and COED, OE P,(o). 
(P3) For each iEIand o~9, ifw’EP,(o) then P,(o’)=P,(o). 

The following is an immediate corollary of Theorem 2. 

COROLLARY 1: 

(a) Ifs2~L2~ then Q satisfies (Pl). 
(b) $0 EJ~~ then L2 satisfies (PI) and (P2). 
(c) rf 52~!2, then D satisf;es (PI), (P2), and (P3). In particular, 

(P,(o) (oEO) is a partition of Q into equivalent classes with respect to 
equality of informational content. 

3. TOPOLOGY ON STATE SPACES 

The family of sets IT+, F41~~ @}, where T4 = (o~CJcr(b) = l> and 
F,= (c~L:)o(~)=0}, is a subbase for the product topology on 
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C = (0, ¶ 1”. T4 and F@ can be interpreted as the events “d, is true” an 
is false” correspondingly. Convergence in this topology is pointwise; 
iff for each 4, ~~~(4) + ~(4). The topology on C induces to 
of the spaces Qi, i=O, . . . . 3. Moreover, as subsets of 2’: 

LEMMA 1. Each space Qi, i= 0, . . . . 3, is closed in .,!I and therefore 
compact. 

rooj For a given 4 the set {CT / o(Q) + a( -.+ 4) = I > is closed. But 

Qo= f-j ddd)+44)=~) 
O=@ 

and thus 52, is closed. Also 

and therefore QI is closed. The proofs for Q2 and Q, are similar. 

We assume from now on that the space Q is close 

LEMMA 2. If A is a closed subset of L? then P,(A) is closed for each i E 1. 
in particular, for each w E 0, Pi(w) is closed. 

ProoS. Suppose {w,} cPi(A) and w, -+ w. There exists a sequence 
{On} cA such th at f or each n, o,, E Pi(o,). Since D is compact we may 
assume without loss of generality that 0, -+ 6, and since A is closed, CT, E A. 

It is enough to show that w UP,, i.e., that ; (G) c 0. Indeed, 
suppose Kid E 0. Then for some N, Kid E ~5~ for all rz > h? Thus I$ 
n > N and therefore 4 E o. 

4. COMMON KNOWLEDGE 

A proposition 4 is common knowledge in w if for each IZ > 1 and eat 
sequence of agents, i,, . . . . i,, K,, . . . K,c# E w. 

The state co’ is commonly possible in o if there exists n 3 4 and a 
sequence of agents i 1, . . . . i, such that w’ E (P,,(P,(. . P,,(U) . ’ .)). The set of 
all states which are commonly possible in w is denoted by P(w), i.e., 

P(w) = iJ (P,,(P,,(. . . Pi,(W) . .)I, 

where the union ranges over all finite sequences of agents. 
Common knowledge and common possibility are related as follows. 
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THEOREM 3. If C#J is common knowledge in wO then 4 is true in every state 
which is commonly possible in wO. Moreover, CJ is common knowledge in each 
such state. 

ProoJ Let w’ be commonly possible in wO. Then there exists n 3 1, a 
sequence il, . . . . i, and states wl, . . . . w, such that wjpi,wj-l for j= 1, . . . . n 
and w, = WI. If 4 is common knowledge in w,, then K, ... Kind E wO. It 
follows immediately by induction on j that KG. .. Kind E wj- 1 and thus 
K, 4 e o, _ I which implies 4 E w, = w’. 

To show that 4 is common knowledge in wl, we observe that for each 
n > 1 and sequence i,, . . . . i,, Kj, . . Kin4 is also common knowledge in w 
and therefore, by the first part of this theorem, true in w’. Q.E.D. 

The relation between P(w) and P,(w) is given in the next lemma. The 
simple proof is omitted. 

LEMMA 3. For each ie I and w EL?, Pi(P(w)) c P(w). Moreover, if 
Q E 52, then P,(P(w)) = P(w). If D c 52, then P(w) is the minimal element 
of the join of the partitions { Pi)i,r which contains w. 

We recall that the join of the partitions (Piji,, is the finest partition of 
52 which is coarser than each Pi. In Aumarin’s model where common 
knowledge is an attribute of events, an event is common knowledge at w 
if it contains this minimal element of the joint, P(w). 

We end this section with a topological property of P(w). 

LEMMA 4. For each w E Q, P(w) is a countable union of closed sets. 

ProoJ: The proof follows from the definition of P(w), Lemma 2, and the 
countability of I. Q.E.D. 

5. FINITELY GENERATED KNOWLEDGE 

We say that the set of propositions Y logically implies a proposition 4, 
if I$ is true whenever all the propositions in Iv are, i.e., if for every state w, 
YC w implies that q5 E w. The set Y informationally implies 4 for agent i if 
Ki Y logically implies Kid (where Ki Y = (K$ \11/ E Y) ), i.e., if whenever i 
knows all the propositions in Y he knows also 4. A set of propositions Y 
generates I”s ken in w if YE K,:(w) and Y informationally implies each 4 
in K,T(w). It is easy to check that Y generates I’s ken iff Y c Kz: (w) and 
for each w’, if Y c K,: (0’) then Kz: (w) 5 K; (0’). That is Y is part of what 
i knows in w and whenever he knows this part he knows everything else 
he knows in w. 
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Q illustrate this notion, consider a state space 52 c Q,. Su 

K;(o) = {q5, i-C& KiKiq5, . ..I. 

It follows by (Kl) that {4) g enerates l”s ken in o. The knowledge 
propositions Ki#, K,K,#, . . . is acquired by i “effortlessly”; it is im 
general, a priori knowledge rules which are state i~de~ende~t~ 
(Kl)-(K3) are very basic rules of knowledge and in general 
constructed with many other such rules. As opposed to these ~ro~Qsit~~~s~ 
# could be a piece of information that was gamed by e~~crie~ce (a 
posteriori knowledge) and was not derived from previously known 

ropositions. It is natural to assume that this type of information, which 
requires some “effort” to gain, is of finite size. This leads us to the fol~o~~~ 
definition. Knowledge is finitely generated in 52 if for each agent i and stat 
w, Ki(w) is generated by a finite set of propositions. 

Consider now the equivalence relation NN i defined on 
kens, i.e., o ~~0’ iff Kr(o) = K; (co’). Let IIFai be the 
equivalence classes with respect to z i. 

LEMMA 5. If R C 52, then the following five conditions are e~~iva~e~t: 

(1) P,(o) = Pi(O’). 
(2) w E P,(w’) and co’ E P,(w). 
(3) Ky(w) = KJw’). 

(41 w xi 0’. 
(5) A(o) = A(w’), where A(o) and A(@‘) are the eiements cfI12 which 

contain o and iw’ correspondingly. 

Pro@ (I) and (2) are equivalent by Corollary l(b). The equivalence of 
(2) and (3) follows from Theorem l(a). The equivalence of (3), (4), and (5) 
follows from the definition of xi and ZIi. 

Let A,=(P,(w)lo~Q;z). By Corollaryl(c) when QcQ,, Ai= 
when G E L?, these sets are not necessarily the same. The following t 
relates di to 17, and to finitely generated know~ed~e~ 

THEOREM 4. Suppose Q E Sz, and knowledge is finitely generated in 8. 
Then for each in I, the sets Ai and 17, are countable, Moreover, the o-j?eldJ 
S(di) and 5(ni) g enerated by these two sets, ~orres~o~di~g~y, coincide. 

Praof: Let A be an element of 17,. Hf u, o’ E A then K;(w) = 
and thus o and w’ have the same finite generators. Let 
map which assigns to each A in Iii a finite subset of 
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generates KC:(o) for each o E A. Since Q, is countable it has countably 
many finite subsets and therefore Y has countably many values. Thus in 
order to show that flj is countable it is enough to prove that ly is one-to- 
one. To see this, suppose Y(A) = !P(A’) and let w E A and w’ E A’. Y(A) 
and Y(A’) are finite generators of Ki(w) and K;(o’), respectively. Hence 
Y(A) = Y7(A’) c Ki(w’) and therefore, since Y(A) generates K,:(w), 
Kz:(o’) 2 K(:(w). By symmetry we conclude that K;(w) = KL:(w’) and 
hence A = A’. 

To see that d, is countable we observe that by Lemma 5, Pi(w) = P,(w’) 
iff A(o) = A(w’) and therefore there exists a one-to-one correspondence 
between Ai and iii. 

We prove now that 17,~ g(Ai) and Ai_c z(l7,) which show that 
5(Ai) = iTi( 

ZIi c %(A J: To see this choose an element A(o) in 17,. Define 
B(o) = Pi(w)\U Pi(o’), where the union ranges over all o’ in P,(o) such 
that P,(o) 2 P,(o’) (where ‘1’ means strict inclusion). We show that 
A(o) = B(o). Indeed if o’ E B(o) then it must be the case that 
P,(o’) = P,(w) and therefore by the equivalence of (1) and (4) in Lemma 5, 
O’E A(o). Thus B(o) c A(w). Conversely, if w’EA(w) then Pi(W’) = Pi(W). 
Clearly w’ is not an element of any Pi(w”) which satisfy Pi(W) 2 Pi(W”) 
(because otherwise, by (P2), P,(w’) c P,(w”) #P,(w)). Hence W’E B(w) 
which shows that A(w)s B(w). We conclude that A(w) =B(w). The fact 
that B(w) E g(Aj) follows from the countability of Ai. 

dj_c g(n,): By Theorem 1, if W’E P,(w) then A(w’)c Pi(w). Thus 
P,(w) = U A(w’) where the union ranges over all w’ in Pi(w). The latter 
union is in g(JZJ due to the countability of fli. Q.E.D. 

Another useful implication of finitely generated knowledge, which we use 
in the sequel, is the following. 

THEOREM 5. Suppose 52 -c 52, and knowledge is finitely generated in B. 
Let (on} be a sequence in 52 such that Pi(~n+l)~ P,(w,)for n> 1. Then, 
for large enough n and m, Pi(w,) = Pi(w,). 

ProoJ Since D is compact {w,} has a converging subsequence. In 
order to show that a decreasing sequence (Pi(w,)},2 i is constant for large 
enough IZ, it is enough to prove that a subsequence of it has this property. 
Thus we may assume without loss of generality that (on} converges to 
some w in 9. 

We prove first that 

(1) KE:(w)= u Kr(w,). 
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Note that for m>n, W,EPj(W,)SPj(W,) and thus {O,),,.E,Pi(W,). 
Since, by Lemma 2, P,(w,) is closed, it follows that w E Pi(o,) and this is 
for all la. Therefore by Theorem 1, K; (LO) r> K;(w,) for each n, i.e., 
K; (w) 2 U, K;(w,). Conversely, suppose 4 +! U, Kz: fo,); then for each n, 
Ki(d)$w, and hence -K,(~)Eo,. Since convergence in Q is pointwise it 
follows that - &(4) E o and therefore 4 $ K; (0). Thus (1) is estab~~s~e~. 
Note also that 

(2) the sequence (K; (o,)}, a I is increasing, 

since LO, + 1 E Pi(w,) for IZ 3 1. 
Now let !P be a finite generator of K;(w). Then in particular !PG 

and therefore: since !P is finite, by (1) and (2), Y c K; (w,) for big 
IZ. Therefore, since knowledge is finitely generated, Kz: (w,) 2 KI: (o), which 
proves, by (1) and (2), that for big enough n, Ki (w) = K&T ( 
Lemma 5, this implies that P,(o,) is constant for big enough n. 

Let us finally look at two simple conditions each of which implies that 
knowledge is finitely generated. 

THEOREM 6. Knowledge is finitely generated in each of the folbwing 
cases: 

(a) $2 is finite. 
(b) For each i E I, Ai is finite. 

Proof. Clearly (a) implies (b) and therefore it suffices to prove for 
case (b). Suppose di is finite and let w E 92. Let P,(w 1), . . . . Pi(w,) be 
all the elements of Ai which satisfy P,(w,)\P,(o) # a, for j= 1, . . . . m. ‘Rr 
must be the case then that Ki(w)\ Kl:(wj) # Qj for j= 1, ..~, m (since 
otherwise Ki(w) E K;(Wj) and by Theorem l(a) and Corollary J.(b), 
Pi(wj)~Pi(w)). NOW choose for eachj= 1, . . . . m, $,+E Kl~(~)\Kr~(~j) and 
let Y=(ljJ1, . ..) I),>. w e c aim 1 that Y is a finite generator of 
Indeed, suppose ?PG KJw’). Then for all j= I, . . . . m, P,(w’) 
because if for some j, P,(w’) = P,(o,), then $, E K;(w)) 
contradicts the choice of $/. Since P,(w’) is not one of t 
must satisfy Pi (w’) E Pi(o) which implies K,: (0’) 2 Kz: (w ). This proves 
that Y generates K;(w). ED. 

6. AGREEING TO DISAGREE 

Let 93 be the Bore1 o-fields on Q and let ,u be a probability measure on 
). The measure h is interpreted as a prior distribution on Sz which is 

common to all agents. In particular for events of the form T6 = (w / 4 E o), 
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p( T$) is obviously interpreted as the prior probability that the proposition 
fj is true. 

LEMMA 6. For each i E I and o E 9, P,(o) and P(o) are measurable. 

Proof. This lemma follows from Lemmas 2 and 4. Q.E.D. 

Assume now that knowledge in 52 is finitely generated. Fix a proposition 
4 in CD. For each o E 52 and iE I such that p(Pi(o)) > 0 denote by qiw the 
posterior probability of 4 given the knowledge of agent i in o; that is, 

Let Qi = (qj,o) p(P,(co)) > O}. By Theorem 4, Qi is countable. We assume 
now that for each q E Qi there exists a proposition #i(q) which is inter- 
preted as saying that the posterior of 4 for i is q. The propositions that 
correspond to different q’s are different; i.e., if q # q’ then #i(q) # #i(q’). We 
denote by Yi the countable set of all such propositions; i.e., 
Yi = {#i(q) 1 q E Qi}. We assume that for each state o and agent i, at most 
one proposition from !Pyi is true in o, namely the one that describes the 
posterior of 4 in o for i. We call this condition regularity. Formally 
regularity requires that 

Foreachiando,ifp(Pi(o))>O then !Pjnn=~i(qi,o), 

and if p(P,(w)) = 0 then Yin CD = $3. 

We say that in L? it is impossible to agree to disagree if for each o E 52 the 
following holds: 

If for each ieI, &(qi,J is common knowledge in w 

then for eachj, k E I, qj,, = qk,w. 

THEOREM 7. If 52 E LJz then it is impossible to agree to disagree in 52. 

Proof: Suppose di(qi,J is common knowledge in o for all i. Then by 
Theorem 3, for each agent i, $i(qi,w) EW’ for each o’ E P(o). By the 
regularity codition it follows that di(qi,o) = +4i(qj,wf) and thus qi,o = qi,wf, 
i.e;,‘i has the same posterior of 4 in all the states of P(w). Let us denote 
this common posterior by qi. We will show that 

(1) !@“p(~))=qi. 

Since the left-hand side of this equality is independent of i this proves that 
the posteriors of all the agents are the same. 

BY Lemma 3, P(o) = UwtEP(w) Pi(w’), and therefore by Theorem 4, there 
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is a subset Ti of ni such that P(o) = UBE,-, B. Since this is a countable 
union of disjoint sets it is s&ices to show, in order to prove (I), that 

(2) For each BE ri, either p(B) = 0 or P(T~ j B) = qi~ 

Let P‘i = (B(BE~~, B satisfies (2)}. P roving (2) is eq~~va~e~t to proving 

(3) rl=ri. 

Suppose to the contrary that (3) does not hold, i.e., I’i 13 ri. 
G = UBEly B. By our assumption P(w) I> 6, and we can choose a 
which satisfies 

(4) wlEfY@)\~. 

Then, since oO E Pi(o,) it follows that 

(5) w3EP,(%)\G. 

We claim that oO can be chosen such that also 

(6) For each W’E P,((u,)\G; Pi(o’)\G= Pi(U,)\G, 

Indeed suppose to the contrary that each mO which satisfies 44) and (5) 
does not satisfy (6). We construct by induction, under this assumption. a 
sequence (on> such that for all n >, 1, 

(?I 0, E P(w), 

(8) wn E Pil%)\G 

(9) f’~(utr)\G~ Pi(Wn+ ,l\G. 

For or select any state which satisfies (4) and (5). Suppose ml, . . . . 0, were 
selected. Then by (7) and (8), o, satisfies (4) and (5) as mO, and therefore 
by our assumption does not satisfy (6), which moans that for some 
u n+1EPi(un)\G, f’i(u,)\G#Pi(u,+,)\G. Since pi(O,+1)CPi(O,) it 
must be the case that (9) is satisfies. This completes the construction of the 
sequence. But (9) implies that for each n>, I, Pi(~,,) 3 -Pi(~,+l), whit 
contradicts Theorem 5. 

Now let w,, satisfy (4), (5), and (6). We prove that 

(10) Pi(cJ,)\GE ni. 

First, for each O’E Pj(w,)\G it follows by (6) that Pj(o’)\G= iTP,(o,f\G 
and thus by (5) oO E P,(o’). Hence o’ zi oO by the equivalence of (2) and 
(4) in Lemma 5. Conversely, suppose that u’ xi 0,; then UI’ E Pi (oO). 
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Moreover, both states belong to the same element of 17i and since w0 $ G 
also w’ $ G. Thus o’ E P, (q,)\ G. This completes the proof of (10). 

We note that Pi(w,)\G_cP(w) and therefore by (10) 

(11) Pi(o,)\G~ri. 

But, since Pi(oO)\G is disjoint from G, 

(12) J’i(m,)\G$f’/. 

We show now that 

(13) either n(P,(w,)\G) =0 or n(T,\ Pi(o,)\G)= qi. 

(13) and (11) contradict (12), and this completes the proof. To prove (13) 
we note that by (4) o,~P(o) and thus 

Also Pj(o,) n G~l’~(o,). This and (14) imply that to prove (13) it is 
enough to show that 

(15) either p(Pi(coo)nG)=O or p(T41Pi(w,)nG)=qi. 

For this we recall that for each o’, o’ E A(o’) c Pi(w’), where A(w’) is the 
element in ni which contains w’, and therefore 

(16) PJw,)nG= u A(@‘). 
o’sP,(oo)nG 

But each A(w’) in the latter union is in ri which proves (15). Q.E.D. 

It is possible to extend Theorem 7 to D c 52, provided that we restrict 
52 and the prior distribution p as follows. We say that p is consistent with 
Sz if n(Q \sZ,) = 0. We note that for each o E a\a2 there exist an agent i 
and a proposition 4 such that i knows 4, but 4 is not true in o. Clearly 
this implies that w is impossible for i in o. The consistency of p guarantees 
that the prior distribution reflects this impossibility. 

A state w is a dead end in 52 if for some i E I, P,(o) = @. Note that if 
52 E 52, then Q does not have dead ends. 

THEOREM 8. If D E 0, , p is consistent with 8, and 52 does not have dead 
ends then it is impossible to agree to disagree in Sz. 

ProoJ We give an outline of the proof. Since Li does not have dead 
ends, P(o) # @ for each o. Consider the state space LY = Sz n C12,. Define 
P;(o) = P,(o) n Sz, and P’(o) = P(o) n 52,. P;(o) and P’(o) are the sets 
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of possible and commonly possible states for i in w, correspondingly 
The consistency of p enables us to carry the same proof as in The 
with respect to Q’. 

7. DISCUSSION 

Common Knowledge and Epistemie Logic 

The basic features of the model presented in section 2 are common in the 
literature of formal model logic and epistemic logic. (See Hintikka [S 
a philosophical analysis of the model and Hughes and Creswell [9] fo 
mathematical development of the theory.) It is worth noting though 
for our purposes we do not need the full body of these theories. First of a& 
unlike formal modal logic systems we do not start with a language, but 
rather with a set of propositions the structure of which is irrelevant to us. 
Also the epistemic operators Ki are functions from the set of propositions 
into itself rather than letters of an alphabet. As a result these operators may 
have properties that the corresponding operators of epistemic logic car-mot 
have. For example, Ki in this work is not necessarily one-to-one, 
is always the case that Kj4 # K& for any 4 + I,!I when K, is an epist 
logic operator. Thus in our model the same proposition may 
simultaneously that i knows two different propositions. More 
not restrict the relation between Kls of different agents. It is 
have a proposition Q such that Kid = Kj+ for two distinct agen 
It may also be the case that for each i and 4, 

(*) KiKi$ = Ki4. 

This means that knowing IJ~ and knowing that q5 is known are the same. 
When this is the case, requirement (Kl) is automatically satisfied in each 
state of the worId and R r = 9,. 

In our model it may be possible to verify that a certain 
common knowledge without resorting to infinite application of &‘s. This 
may be the case for example if the only source of knowledge in our 
is the newspaper and the propositions Kid for all i are the same pr 
tion: “4 is in the newspaper.” In this case it is enough that all agents 
know q5 in o, in order for 4 to be common knowledge in w. Such 
formalize ideas of Lewis [L?] and Clarck and Marshall [4] which try to 
eliminate infinite processes of verifying common knowledge. 

Another feature of the theory of common knowledge here is the lack of 
any “logical” restriction on knowledge. Beyond (Kl)-(K3) there is no 
required relation between knowledge and propositional calculus or other 
logical structure. Unlike epistemic logic we do not require that agents have 
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any deductive tools and our agents do not necessarily know all tautologies. 
In short the whole theory is indifferent to logic. Bacharach [3], on the 
contrary, assumes in his model that agents’ knowledge follows some logical 
rules. We will comment on this in the next paragraph. 

Alternative Approaches 

In our model each proposition I$ is associated with an event T,, the set 
of all states in which 4 is true. In models which start with states as 
primitives, we can think of events as representing propositions. The formal 
equivalence of “event E is true in state 19’ is simply o E E. Knowledge 
operators map events to events; the event K,E is the event “i knows E’ and 
o E K,E means “i knows E in w”. The properties (Kl )-(K3) can be easily 
translated as well. The possibility relation between states is similarly 
defined. w’ is possible for i in o, if each event which is known to i in w (i.e., 
o E K,E) is true in o’ (i.e., o’ E E). Thus the set of states which are possible 
to i in 0 is Pi(o)= nwEKiE E. (Appropriate conditions should be specified 
to guarantee that this, possibly uncountable, intersection is an event.) It 
can be easily shown that under the assumptions (Kl)-(K3) the possibility 
relation generates a partition of the state space. Bacharach [3] uses an 
event-based model but his definition of the possibility relation differs from 
the one we mentioned here. As a result he needs an additional property, 
(K4), to guarantee a partition, namely for each i and events El, Ez, ..; 
K,(E,nE,n .-.)=Ki(E,)nKi(E,)n . . . . This is interpreted as saying that 
knowing a conjunction is equivalent to knowing each conjugant. Such a 
requirement is not needed, either in a proposition-based model, or in an 
event-based model if the possibility relation is defined as it is in this work. 

Another possible approach is to discard the knowledge operators 
altogether and use the possibility relation on states as the primitive notion. 
One then replaces the properties (Kl)-(K3) by properties analogous to 
(Pl)-(P3). 

For obvious reasons we preferred the proposition-based model. The 
natural topology defined on the state space, when we start from proposi- 
tions, enables us to derive the measurability of all the needed sets rather 
than to assume it. More importantly, the notion of finitely generated 
knowledge and the properties it implies in Theorems 4 and 5, which are 
crucial to the proof of the main result, Theorem 7, are most naturally set 
in this model and would have required ad hoc assumptions in any of the 
other models. 

Updating and Learning 

Aumann’s “Agreeing to Disagree” also has dynamic variations in which 
agents interchange information until their posteriors become common 
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knowlege at which point they must coincide (see, e.g., ~eanako~~os and 
Polemarchakis [ 51 and Bacharach [3]). In these dynamic mo 

wledge increases in each step and as a result the parti.tions are refined. 
n oue tries to apply such a procedure in our model one faces a 

dif~~~~ty. Suppose Q c 0, and i does not know 4 in o, i.e., - Ki4 E o. If 
i gains some new information and he knows Q; then the state of the world 
is no longer w. Changes in l’s knowledge result in a change in the state of 
the world. But the partition of !LJ cannot c nge at ah. 4t depends on 
relations between the states, which are fix Even worse, information 
cannot increase. Suppose we are now in a state o’ where Kid E cci’. 
Unfortunately, by moving to UI’, i lost some knowledge; he kne 
ccl while of course he does not know it in Q’ since it is not true 

To resolve this apparent difftculty one has to introduce ti 
model. A state of the world should be a description of the whole history of 
the world. In particular knowledge is now time dependent. Formally we 
have for each t, c = 1,2, . . . . epistemic operators && which are interpreted as 
“i knows at time t that...” Correspondingly we have for each period t and 
state w kens K,(o) and sets of possible states for i, Pi,Joj. 
(K I) and (K2) should be applied to each K,;*. r;2 1, Q,, and 92, are defined 
mutatis mutandis. We add also a new requirement. For each agent i, 
proposition #, time t, and state o, 

This simply says that agents do not forget what they knew. (KO) guaran- 
tees that for each t, i, and o), K,(o) c K&, !(a); i.e., knowledge does not 
decrease. As a result of the growing knowledge, information structure is 
refined in time, that is, for each i, w, and t, P,,!+ I(o)~Pi,,(m). In 
particular for 52 c Q, the partitions of the agents are refined. 

The use of this model for dynamic processes of information exchange 
makes possible careful examination of the conditions under which the 
exchange leads to, or ends in common knowledge. Results similar to t 
of Bacharach [33 can be obtained for information structures which are not 
partitions. 

th (Kl) and (K3) require infinite application of the operators 
W the agents are bounded in their ability to process information 
can expect that these two assumptions may fail to hold. We bring no 
argument, based on such bounded ability, that supports rejection of 
while it still enables the acceptance of (KI). 

Suppose we have a measure of complexity on 
that bmW4 I4 E @I is unbounded. We assume t 
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(Cl) comp(K4) 3 camp(+), 

and 

(C2) comp( -4) 2 camp(d). 

Assume further that 

(C3) comp(K,K,qS) = comp(&+). 

(An extreme case of this is when K,K,cj = Kid.) If knowledge in our model 
involves the ability to produce the known proposition or to use it in a 
deductive process then it is natural to assume that knowledge of an agent 
in a given state is bounded by complexity. Formally this means that for 
each i and w there exists a bound M,, such that for each q5 E Ki(o), 
camp(d) G Mi.o. Under this assumption 52 cannot satisfy (K3). Indeed for 
q5 with comp(q5) > Mi,,, comp( -Kiq5) > comp(q5) > M,, by (Cl) and (C2) 
and therefore -&d#Kr(o). On the other hand, by (C3), (Kl) can be 
satisfied notwithstanding the bounded complexity. Note that it is not the 
resemblance of (C3) to (Kl) that gives (Kl) the advantage over (K3). 
Indeed since the previous result depends only on (Cl) and (C2) it still hols 
even if we add the assumption 

(C4) comp(& - &=#) = comp( -X,d) 

(or even the stronger assumption comp(& N Kid) = comp(qS)), which 
corresponds to (K3) in the same way (C3) corresponds to (Kl). 
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