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Faculty of Management, Tel A¨ ï Unï ersity, Tel A¨ ï , 69978, Israel

Received June 20, 1995

ŽThe class of probabilistic belief spaces Harsanyi, 1967]68, Man. Sci., 14,
.159]182, 320]324, 486]502 contains a unï ersal space, into which every other

belief space can be mapped in a unique way by a belief morphism. We show that
there is no analogous universal space in the class of knowledge spaces. To show
this we define the rank of a knowledge space, which is the ordinality of the most
complicated descriptions of knowledge in the space. We then show that a knowl-
edge space can be mapped by a knowledge morphism only to spaces of higher or
equal rank. We construct knowledge spaces for arbitrarily high rank, demonstrating
that there is no universal space. Journal of Economic Literature Classification
Numbers: D80, D82. Q 1998 Academic Press

1. INTRODUCTION

Knowledge spaces have been a major tool for modeling interactive
uncertainty in game theory and economics, ever since Aumann’s seminal

Ž .paper ‘‘Agreeing to Disagree’’ Aumann, 1976 . Player’s knowledge is
modeled, in a knowledge space, by ascribing to him a partition of the
space. At each element of the space, called a state, he knows those events
Ž .i.e., subsets of the knowledge space which contain the partition member
that includes the state. To describe what the players know about a game,
we associate with each state a state of nature, which specifies the value of
the objective parameters of the game, like the payoffs or signals. In this
way, it is possible to describe what each player knows, in each state,

Ž .* This is a revised version of part of the material in Heifetz and Samet 1993 . We are
grateful to Ehud Lehrer and Ron Fagin for fruitful discussions and comments.
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regarding nature, and given these descriptions, what each player knows
about the knowledge of the others regarding nature. Continuing induc-
tively, one can describe the mutual knowledge of the players of all orders.

In applications, finite knowledge spaces are often used, in which clearly
not every conceivable description of mutual knowledge is represented. It
would, therefore, be nice to know that there is a unï ersal knowledge
space, in which every state of mind of the players in whatever knowledge

Ž .space with the same states of nature is represented. In other words, a
universal space is one into which every knowledge space can be mapped by
a knowledge morphism}a map that preserves both nature and the knowl-
edge of the players. If such a big space exists, we could in principle always
carry out the analysis in it, with no fear of neglecting any relevant state of
affairs.

Ž .Type spaces, introduced by Harsanyi 1967]68 are another tool for the
modeling of interactive uncertainty. Player’s uncertainty in a state of such
a space is represented by a s-additive probability measure over the space
Ž .rather than an element of his partition in a knowledge space .

In the following section we develop a general approach to the definition
of type spaces, of which both knowledge spaces and Harsanyi type spaces
are special cases. This enables us to consider a general notion of universal
spaces, and rigorously pose the question of the existence of a universal
space for both families of models in a unified manner.

The existence of a universal space for Harsanyi type spaces was first
Ž .proved by Mertens and Zamir 1985 . They were followed by Branden-

Ž . Ž . Ž .burger and Dekel 1993 , Heifetz 1993 , Mertens et al. 1994 , and Heifetz
Ž .and Samet 1996 , who proved it for more diverse and general conditions.

In this work we show that there is no unï ersal space for knowledge spaces.
For this purpose we define the rank of a knowledge space to be the ordinal
length of the maximal non-trivial description of mutual knowledge in the
space. We then show that a knowledge space cannot be mapped by a
knowledge morphism to a knowledge space of lower rank. In order to
prove that there is no universal knowledge space, one to which all
knowledge spaces can be mapped, it is enough, then, to show that there
are knowledge spaces with arbitrarily high ranks. We do this in Section 3,
where we show by an explicit construction that even with two states of
nature and two players there are knowledge spaces of any ordinal rank.
This fact, with a somewhat different setup and terminology was proved

Ž .independently, in a non-constructive way, by Fagin 1994 . Fagin et al.
Ž .1991 built a knowledge space with three players of order v q 1.

The lack of a universal space for knowledge spaces, in contrast to the
existence of such a space for Harsanyi type spaces, can be traced down to a
single factor: continuity. In Harsanyi type spaces the beliefs of the players
are s-additive, and therefore continuous on increasing and decreasing
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sequences of events. As a result, describing the beliefs of a player regard-
ing all the finite-order beliefs of the other players dictates also his beliefs
regarding limit events that involve all these finite orders together. Indeed,

Ž .Heifetz and Samet 1996 showed that type spaces of non-additive beliefs
have universal spaces when the belief functions are continuous. In this
they demonstrated that continuity is what guarantees the existence of a
universal space.

Knowledge, by contrast, does not have this continuity property. More
specifically, one can not-know any of the events in an increasing sequence

Ž .of events that is, events that are less and less informative and yet know
Ž .and thus fail not-to-know the limit of this sequence. Our construction
shows that this lack of continuity holds for all limit ordinals. This means
that there are arbitrarily long descriptions of mutual knowledge, which
preclude the existence of a universal knowledge space.

2. KNOWLEDGE SPACES AND THEIR RANK

Knowledge Spaces

Throughout this section we fix non-empty sets I and S. The elements of
I are the players and the elements of S are the states of nature. We think of
each element of S as being the specification of the possible values of the
parameters that are relevant to the interaction between the players, e.g.,
payoff functions or strategy sets.

A knowledge-space on S is given by a triplet,

² :V , Q , P ,Ž .i igI

where V is a non-empty set whose elements are called states of the world
and whose subsets are called e¨ents; Q: V ª S specifies for each state of
the world the state of nature that prevails there; and for each player i g I,
P is a partition on V.i

The partitions describe the players’ knowledge. In state v g V of the
Ž .world player i considers as possible all the states in P v }the elementi

of P , which contains v. He cannot tell, though, which of them obtains.i
Thus, player i can tell at v that event E holds if, and only if, E contains

Ž .P v . In such a case we say that i knows E at v. The set of all states v ini
Ž .which i knows E is the e¨ent that i knows E, and is denoted by K E .i

Thus,

<K E s v g V P v : E .� 4Ž . Ž .i i

The operators K : 2V ª 2V are called the knowledge operators.i
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Knowledge Morphisms

In order to make the modeling of interactive knowledge by knowledge
spaces a complete theory, we have to be able to compare the objects of this
theory, namely, knowledge spaces. Such comparisons can be done by
mappings of spaces that preserve their structure as follows.

² Ž . : ² Ž X . :Let V, Q, P and V9, Q9, P be two knowledge spaces oni ig I i ig I
S. A function f : V ª V9 is a knowledge morphism if it satisfies the
following two conditions:

Ž . Ž . Ž Ž ..2.1 For each v g V, Q v s Q9 f v .
Ž . Ž Ž .. X Ž Ž ..2.2 For each v g V and i g I, f P v s P f v .i i

These conditions guarantee that f preserves the structure of the spaces.
Ž .By 2.1 , the same state of nature prevails in states that correspond by f.
Ž .By 2.2 the partition structure of the first space is mapped onto that of the

second. The following proposition expresses the preservation of the knowl-
Ž .edge structure of 2.2 in terms of knowledge operators. The simple proof

is omitted. We denote by K X the knowledge operators of the spacei
² Ž X . :V9, Q9, P .i ig I

Ž .PROPOSITION 2.1. The following condition is equï alent to 2.2 :

Ž . y1Ž XŽ .. Ž y1Ž ..2.3 For each i g I and e¨ent E : V9, f K E s K f E .i i

Type Spaces

ŽIn order to see the analogy between knowledge spaces and probabilis-
.tic belief spaces, we now present knowledge spaces as type spaces.
We start with some simple definitions. Let X and Y be sets and f a

ˆgiven function f : X ª Y. We use f to define a function f that maps real
valued set functions on X to real valued set functions on Y. For each real

ˆ y1Ž .Ž . Ž Ž ..valued set function r on X and E : Y, f r E s r f E .
A type space on S is a triple

² :V , Q , t ,Ž .i igI

where V and Q are defined as before, and for each i, t is a type functioni
from V to the set of real valued functions on events. We call the real

Ž .valued function t v the type of i at v. We describe important events ini
ŽV in terms of the type functions as follows see Monderer and Samet,

.1989 . For each real number p, event E in V, and player i,
p <B E s v t v E G p .� 4Ž . Ž . Ž .i i

Knowledge spaces can be easily described as type spaces where the types
are restricted to a certain kind of real valued functions: With each event

Ž .P : V we associate a 0]1 real valued set function d , where, d E s 1P P
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Ž .whenever P : E and d E s 0 otherwise. The knowledge spaceP
² Ž . : ² Ž . :V, Q, P can be alternatively given by the triplet V, Q, t ,i ig I i ig I

Ž .where for each state v, t v is the function d . As the type functionsi P Žv .ipŽ .are 0]1 functions the only non-trivial events B E are those for whichi
Ž . 1Ž .p s 1. It is easy to see that K E s B E . Knowledge morphisms can bei i

also expressed in terms of the type functions as follows. We denote by tX
i

² Ž X . :the type functions of the space V9, Q9, P .i ig I

Ž .PROPOSITION 2.2. The following condition is equï alent to 2.2 :
X ˆŽ . Ž Ž .. Ž Ž ..2.4 For each i g I and v g V, t f v s f t v .i i

Representing knowledge spaces as type spaces reveals the common
features of knowledge spaces and probabilistic belief spaces. To demon-
strate this point we describe briefly the class of probabilistic belief spaces
on the space S of states of nature.

A probabilistic belief space, or belief space for short, is a type space
where the spaces S and V are compact topological spaces. Events in a
space are elements of the Borel s-field generated by the topology of the

Ž .space. For each i and v, t v is a s-additive probability measure on thei
Borel s-field on V. The functions Q and t are required to be continuousi
when the topology on the space of all probability measures on V is the
topology of weak convergence. The continuity of t guarantees that thei

pŽ .sets B E are measurable, i.e., they are events. The event-to-eventi
pŽ .functions B ? are called belief operators.i

A continuous function f from a belief space V to a belief space V9 is a
Ž . Ž .belief morphism if it satisfies conditions 2.1 and 2.4 . Thus, knowledge

and belief morphisms are defined in exactly the same terms.

Unï ersal Type Spaces

The use of type spaces in economic or game-theoretic models raises the
question of the limitations of such spaces. Fixing one type space usually
leaves out types which are not accounted for in the space. It is possible,
and usually is the case, that there is a richer type space into which the first
can be mapped by a type morphism. The question, then, is whether every
type space is restrictive in this sense, or there exists a ‘‘biggest’’ type space
that includes all possible types. This would be a type space to which all

Ž .other type spaces with the same space of nature states can be mapped by
a type morphism. This question can be posed, in precisely the same terms,
for every class of type spaces and in particular for knowledge spaces and
belief spaces.

Ž .Mertens and Zamir 1985 answered this question in the affirmative for
belief spaces. They proved the existence of a universal belief space V*,
characterized by the property that for each belief space V there is a
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unique belief morphism from V to V*. The same was proved for belief
spaces with various topological properties other than compactness by

Ž . Ž .Brandenburger and Dekel 1993 , Heifetz 1993 , and Mertens et al.
Ž . Ž .1994 . Heifetz and Samet 1996 proved the theorem for the general

Ž .measure-theoretic case. Epstein and Wang 1994 made a similar construc-
1 Ž .tion for more general types of beliefs. Vassilakis 1992 investigated the

question in a general category-theory framework.
In this work, we show that, unlike in belief spaces, there is no universal

space for knowledge space. We prove:

THEOREM 2.3. If there are at least two players in I and at least two states
of nature in S, then there is no unï ersal knowledge space V* on S, i.e., a
knowledge space with the property that, for each knowledge space V on S,
there exists a knowledge morphism from V to V*.

To prove this theorem we employ the notion of the rank of a knowledge
space.

The Rank of Knowledge Spaces

Knowledge spaces on S are designed for the purpose of expressing
interactive knowledge concerning S. Thus, the events in V which are of
interest are those that can be described in terms of states of nature and
knowledge operators. The rank of a knowledge space is the ordinality of
the non-trivial longest descriptions of such an event in the space.

To define rank formally, we use the following notation and terminology.
For a partition P we denote by P the set of all arbitrary unions of
elements of P. We say that the partition P is generated by a subset FF of

V2 , if P is the coarsest partition such that P contains FF. Alternatively, P
is the partition of V to equivalence classes, where two states in V are
equivalent if they belong to the same sets in FF.

We associate with a given knowledge space V a partition P a of V, for
aeach ordinal a . The elements of P are called a-order e¨ents. We start

with the partition of V which is defined in terms of states of nature. Then
each partition P a refines the previously defined partitions by adding to
them events obtained by applying knowledge operators to previously
defined events. Formally, the partitions P a are defined as follows. P 0 is

y1Ž . athe partition of V to the sets Q s for s g S. The partition P is
generated by the sets of the previously defined partitions and by events
expressing knowledge of lower order events. Namely, P a is generated by

b bŽ .the sets in D P and the sets of the form K E , where E g D P ,b - ab - a i
i.e., E is a b-order event for some b - a . Clearly, for a - b ,

1 Ž .Their result is even more general and allows for some kind of preferences over acts
from which beliefs cannot be explicitly isolated.
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a bP : P . But the cardinality of a sequence of strictly refining partitions
cannot exceed the cardinality of V. Therefore, we must have, for some a ,
P a s P aq1, or equivalently, P a s P b for all b ) a . The minimal a that
satisfies this is called the rank of V.

PROPOSITION 2.4. If there is a knowledge morphism from V to V9, then
the rank of V does not exceed that of V9.

Proof. Let f be the knowledge morphism from V to V9, and denote
by P a and P9a the partitions associated with V and V9, respectively. De-
note by K and K X the respective knowledge operators. We show that, fori i
each a ,

fy1 P9a s P a . 2.5Ž . Ž .
a Žaq1. a Žaq1.Therefore, if P9 s P9 then P s P , which proves the proposi-

tion.
Ž . y1Ž y1Ž .. y1Ž .We proceed by induction on a . By 2.1 , f Q9 s s Q s for

Ž .each s g S, and therefore 2.5 holds for a s 0. Suppose it holds for all
b - a . We show that fy1 maps the set of generators of P9a onto the set

a Ž .of generators of P , which proves 2.5 . By the induction hypothesis,
X by1 b bŽ . Ž .f D P s D P . Also if F g D P9 , then by 2.3 ,b - a b - a b - a

y1Ž XŽ .. Ž y1Ž .. y1Ž .f K F s K f F , where by the induction hypothesis f F gi i
b y1D P . This shows that f maps the set of generators into the set ofb - a

generators. To see that the map is onto we note that by the induction
b bhypothesis for each E g D P there exists F g D P9 such thatb - a b - a

y1Ž .f F s E. Q.E.D.
In the next section we prove:

THEOREM 2.5. If there are at least two players in I, and at least two states
of nature in S, then for each ordinal a there exists a knowledge space W a on
S with rank a . Moreo¨er, the cardinality of W a, for an infinite ordinal a ,
does not exceed that of a .

Proposition 2.4 and Theorem 2.5 are used now to prove Theorem 2.3.

< < < <Proof of Theorem 2.3. If I G 2 and S G 2 then, by Proposition 2.5,
for any state space V* on S there is a space V on S with rank higher than
that of V*. By Proposition 2.4, there is no knowledge morphism from V
to V*. Q.E.D.

3. A CONSTRUCTION OF KNOWLEDGE SPACES
WITH ARBITRARY RANK

We prove Theorem 2.5 by constructing the spaces W a. The construction
is carried out for two states of nature and two players, but can be easily
extended to more states of nature and more players; extra states are simply
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ignored and extra players are assigned trivial partitions. This construction
Ž .constitutes a positive reply to a question that Fagin 1994 posed as an

open problem.
The set of states of nature, in our construction, consists of the two

� 4results of tossing a coin, H and T. The set of players is I s 1, 2 , where
we adopt the notational convention that j is the opponent of player i. We
construct for every ordinal a a knowledge space

² a :W , Q , P , P ,Ž .1 2

� 4on H, T , of rank a .
For the construction of W a we need the following definition. A con-

Ž .sciousness record of length a or a record of length a , for short is a
Ž b .sequence r s r such that:b - a

Ž . � 4a3.1 r g S, D , i.e., r is a sequence of the letters ‘‘S’’ and ‘‘D.’’
Ž .3.2 For each limit ordinal l - a , there exists an ordinal g - l

such that r b s D for all ordinals b that satisfy g F b - g . That is, for
each limit ordinal l there is a smaller ordinal from which on there are

Ž .only Ds in the sequence up to not including l.

We define the space W a by

a � 4W s w , w , w ¬ w g H , T , w and w are records of length a .� 4Ž .0 1 2 0 1 2

The records w and w are called the records of players 1 and 2,1 2
a � 4 Ž .respectively. The function Q: W ª H, T is defined by Q w s w . Note0

Ž . athat by condition 3.2 in the definition of a record, the cardinality of W ,
for infinite a , is the same as the cardinality of a .

The formal description of the players’ partitions, which we give later, is
motivated by the following ‘‘story.’’ The letters S and D stand for ‘‘sober’’
and ‘‘drunk.’’ The players are hopelessly addicted to alcohol. No matter
how much they try to avoid it, they finally fail and give up as embodied by

Ž .condition 3.2 in the definition of a record.
A player’s consciousness record tells what he knows about nature and

Ž 0 .the other player’s record, as follows. Sobriety of a player i at 0 w s Si
means that he knows whether the state of nature is H or T. When he is

Ž 1 .drunk at 0 he cannot distinguish between them. Being sober at 1 w s Si
means that the player knows the record of the other player at 0. That is, he
can tell whether his opponent is sober or drunk at 0. Thus, i can tell
whether j knows the state of nature or not. This makes sense even if he
himself cannot tell the true state of nature, in case he is drunk at 0. Similar

Žmeaning is given to sobriety in all non-limit ordinals which are the
. bq1 bordinals of the form b q 1 : w s S means that i can tell whether wi j

is S or D, while w bq1 s D means that i cannot tell it.i
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The meaning of sobriety for limit ordinals must be different, as such
ordinals do not have immediate predecessor. To explain the meaning of
being sober at limit ordinals we introduce the following definition.

Ž .By condition 3.2 in the definition of a record, for each record r and a
limit ordinal l there exists a minimal ordinal, smaller than l, from which

Ž .on the elements of r are constantly D up to not including l. We denote
lŽ . 2 lŽ .this ordinal by m r . The l-parity of the record r is the parity of m r .

Being sober at a limit ordinal l means that the player knows the
l-parity of his opponent’s record. The crucial point is that i’s record up to
Ž .not including the limit ordinal l never enables him to perceive whether
the other player is l-even or l-odd. This is so because i is always drunk

lŽ .from m w on, and therefore he cannot exclude the possibility that thei
Žother player stood the temptation longer than he did, and fell drunk up to

. lŽ .l only at some later ordinal g ) m w , where g may be even as well asi
odd. Therefore, becoming sober again in ordinal l enables the player to
exclude some records of the other player that he cannot exclude when he
is drunk there. The state of consciousness of the players at limit ordinals l
determines, therefore, if they can resolve this uncertainty concerning
previous ordinals. The state of consciousness in l becomes itself the
subject for uncertainty in later stages and so on.

To complete the informal description of players’ information in W a we
add that each player always knows his own record.

This informal description of agents’ knowledge in W a results in the
Ž .following definition of the players’ partitions. For a state w s w , w , w0 1 2

a Ž .in W the element of i’s partition, P w , which contains it, is defined byi

P w s w , w , w g W :Ž . Ž .½i 0 1 2 a

i w s wŽ . i i

0ii w s S « w s wŽ . i 0 0

iii for all ordinals b such that b q 1 - a :Ž .
bq1 b bw s S « w s wi j j

iv for every limit ordinal l - a :Ž .
lw s S « w and w have the same l-parity .5i j j

Ž . aIt is easy to verify that the sets P w form a partition of W , and thati
Ž .P w is indeed the element of that partition that contains w.i

2 An infinite ordinal b is said to be odd or even according to whether the unique finite n
such that b s l q n, where l is a limit ordinal, is odd or even.
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We show in the following theorem that the intuitive explanation we gave
to sobriety and drunkness holds formally, in terms of the knowledge
operators K that are induced by the partitions.i

With some abuse of notation, we denote by H the event that the state of
� < 4nature is H, that is, H s w w s H . We denote by T the complement of0

b � < b 4H. For every b - a let S s w w s S be the event that i is sober ini i
ordinal b , and let D b be its complement}the event that he is drunk ini
b. Finally, let El and Ol be the complementary events that player i’si i

l � < 4 ll-parity is even and odd, respectively, i.e., E s w w is l-even and O isi i i
its complement.

THEOREM 3.1.3 In W a, for each player i g I,

Ž . 0 Ž . Ž .3.3 S s K H j K T ,i i i

Ž . bq1 Ž b . Ž b .3.4 S s K S j K D for all ordinals b with b q 1 - a ,i i j i j

Ž . l Ž l. Ž l.3.5 S s K E j K O for all limit ordinals l - a .i i j i j

To prove Theorem 3.1 we use Lemma 3.2 below. We first introduce
� 4some notation. For a state w, player i, and a letter L from S, D , denote

by
< bw w ª LŽ .i

the state obtained from w by substituting L for w b. Similarly, the statei
Ž � 4.obtained from w by substituting in it the state of nature L from H, T is

denoted by
<w w ª L .Ž .0

For a state w, an ordinal b - a , and player i, we denote by w - b thei
Ž g . - bb-initial segment of w , i.e., the sequence w , and by w the tripleti i g - b

Ž - b - b . - b b G bw , w , w . Note that w g W . By w we denote the sequence0 1 2 i
Ž g . Ž - b G b . aw . Thus ¨ , w g W is the concatenation of the initiali g G b

segment of ¨ with the terminal segment of w.

LEMMA 3.2. Let ¨ , w g W a, where for some g - a we ha¨e ¨ -gq1 g
Ž -gq1. gq1 a iŽ .P w in the space W . Then, in W there exists a state u g P vi

with the same g-initial segment as that of ¨ , i.e., u-g s ¨ -g.

Proof. The state
-g Ggu s ¨ , wŽ .

Ž . Ž . Ž . Ž .is ‘‘almost’’ in P w ; it satisfies conditions i , ii , and iii in the definitioni
Ž .of P w , as may be easily verified. The only problem may arise withi

3 Ž .In Hart et al. 1996 the ‘‘Knowing Whether’’ operator J on events E in a partition space
Ž . Ž . Ž c.is defined by J E s K E j K E . Thus, Theorem 3.2 asserts that being Sober at a given

v Žstage means to know whether an appropriate event takes place. A variant of W for the first
.infinite ordinal v was the main tool in the above paper.
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Ž .condition iv : If there is a limit ordinal g - l - a in which player i is
lŽ . Žsober in w i.e., w s S , and the l-parity of the other player j in u i.e.,i
.the l-parity of u is different than the l-parity of w , then player ij j

iŽ .excludes u, that is u f P w .
By changing one coordinate in u we overcome this difficulty. Let l be

the minimal limit ordinal exceeding g . Choose an ordinal d which satisfies

max ml w , ml w - d - lŽ . Ž .Ž .i j

such that the parity of d q 1 is the same as the l-parity of w . Definej

d -g Gg d< <u s u w ª S s ¨ , w w ª S .Ž .Ž . Ž .j j

dq1 dq1 Ž .Observe, that u s w s D, so u continues to satisfy condition iii ini i
Ž . lŽ .the definition of P w . Furthermore, m u s d q 1 and thus the l-i j

parity of u is, by the definition of d , the same as that of w . Since l is thej j
smallest limit ordinal exceeding g , the l9-parity of u is the same as thatj
of w for all limit ordinals g - l9 - a . We conclude that u satisfies alsoj

Ž . Ž .condition iv in the definition of P w , as required. Q.E.D.i

Ž .Proof of Theorem 3.1. The inclusions of the left-hand sides of 3.3 ,
Ž . Ž .3.4 , and 3.5 in the corresponding right-hand sides follow directly from

Ž . Ž . Ž .articles ii , iii , and iv , respectively, in the definition of P . It remains toi
prove the reverse inclusions.

Ž . 0 0To prove it in 3.3 , observe that if w f S , that is, w g D , theni i

< <w w ª H , w w ª T g P w ,Ž .Ž . Ž .0 0 i

Ž . Ž .and hence w f K H j K T .i i
Ž .We now prove the inclusion of the right-hand side of 3.4 in its

left-hand side. Suppose w f S bq1. Define the states s, d g W a byi

< bs s w w ª SŽ .j

< bd s w w ª D .Ž .j

bq2 - bq2 - bq2 Ž - bq2 .Observe that in W , both s , d g P w . By Lemma 3.2i
Ž . Ž .there exist states s9, d9 g P w with the same b q 1 -initial segment asi

s, d, respectively. In particular, sX b s S and dX b s D. Consequently, w fj j
Ž b . Ž b .K S j K D , as required.i j i j

Ž .The proof of the inclusion from right to left in 3.5 is similar. Suppose
w f Si . Choose b - l that has the same parity as the l-parity of w andl j
such that

b G max ml w , ml w .Ž . Ž .Ž .i j
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Ž .From b on, up to not including l, both players are constantly drunk in
w. Define the state ¨ g W a by

< b¨ s w w ª S .Ž .j

lŽ .As m ¨ s b q 1 it follows that w and ¨ have opposite l-parities.j j
However, since w l s D, in W lq1, bothi

w - lq1 , ¨ - lq1 g P w - lq1 .Ž .i

Ž .By Lemma 3.2 there exists u g P w with the same l-initial segment asi
that of ¨ . In particular, the l-parity of u j is opposite to that of w . Sincej

Ž . Ž l. Ž l.w g P w as well, we conclude that w f K E j K O , as required.i i j i j
Q.E.D.

Proof of Theorem 2.5. Consider the partitions P b associated with W a

as described in the previous section. By definition, P 0 is the partition of
W into the two sets H and T. We prove that, for all b with 1 F b F a ,a

b a b - b - bŽ . � 4the partition P satisfies for each w g W , P w s w N w s w .
That is, P b separates the states of W a by the state of nature and the
coordinates of both records for ordinals that are smaller than b. This

b9 b a Ž . � 4implies that, for all b9 - b F a , P / P and P w s w which shows
that a is the rank of W a.

The proof is by induction on b. For b s 1 we have, by Theorem 3.1,
0 Ž . Ž . 1 ŽS s K H j K D . Thus P is generated by H, T which are thei i i

0. 0elements of P , and S for i s 1, 2, which is what we need to show.i
Suppose the claim was proved for all ordinals smaller than b. If b is a

limit ordinal, then the claim is true for b , since in this case P b is
generated by D Pg, and the latter consists, by the induction hypothe-g - b

-g -g� < 4sis, of all sets of the form w w s w for all g - b.
If b is not a limit ordinal, then b s g q 1, where 1 - g q 1 - a . Now,

g Ž d . Ž d .either g s d q 1, and then, by Theorem 3.1, S s K S j K D , ori i j i j
g Ž g .else g is a limit ordinal, in which case, by Theorem 3.1, S s K E ji i j

Ž g . gK O . In either case the set S is obtained by applying knowledgei j i
operators to sets which are, by our induction hypothesis, g-events. There-

g Ž .fore the sets S , for both players, are g q 1 -events.i
By the induction hypothesis it follows that Pgq1 separates the coordi-

nates of levels smaller than g q 1. It remains to prove the converse,
Ž .namely, that if ¨ , w g W have the same g q 1 -initial segment, i.e.,a

¨ -gq1 s w -gq1 3.6Ž .

then ¨ and w are not separated by Pgq1.
For this we have to show that events obtained by applying knowledge

operators to g-order events, do not separate ¨ and w. Let G be a g-order
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Ž . Ž .event and suppose that w g K G . We need to show that ¨ g K G .i i
Equivalently we are assuming that

P w : G, 3.7Ž . Ž .i

and we want to show that

P ¨ : G. 3.8Ž . Ž .i

Suppose then that

¨ g P ¨ . 3.9Ž . Ž .i

gq1Ž . Ž .We have to prove that ¨ g G. Now, by 3.9 and 3.6 we have, in W ,

-gq1 -gq1 -gq1¨ g P ¨ s P w .Ž . Ž .i i

Therefore, by Lemma 3.2 there exists a state

u g P w 3.10Ž . Ž .i

with the same g-initial segment as that of ¨ , that is,

-g -gu s ¨ . 3.11Ž .
Ž . Ž .By 3.10 and 3.7 ,

u g G. 3.12Ž .

Since G is a g-order event, the induction hypothesis says that G does not
Ž .separate states that have the same g-initial segment. Therefore, by 3.11

Ž . Ž .and 3.12 we conclude that ¨ g G, which proves 3.8 , as required.
Q.E.D.
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