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Abstract

The rank of a partition space is the maximal ordinal number of steps in the process, in which
events of the space are generated by successively applying knowledge operators, starting with
events of nature. It is shown in Heifetz and Samet (1998) that this rank may be an arbitrarily large
ordinal [Heifetz, A., Samet, D., 1998. Knowledge spaces with arbitrarily high rank. Games and
Economic Behavior 22, 260–273]. Here we construct for each ordinal a a canonical partition
space U , in analogy with the Mertens and Zamir (1985) hierarchical construction for probabilistica

beliefs [Mertens, J.F., Zamir, S., 1985. Formulation of Bayesian analysis for games with
incomplete information. Int. J. Game Theory 14, 1–29]. Our main result is that each partition
space of rank a is embeddable as a subspace of U , where l is the first limit ordinal exceeding a.l

 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

1.1. Models of knowledge and belief

Both partition spaces and Harsanyi (1967–68)-type spaces are predominant in
modeling uncertainty in game theory and economics. The first kind models knowledge in
set theoretic terms, the other models belief in probabilistic terms. In both kinds of
models, each possible state of the world in the space is associated with a state of nature
and a type for each player. The state of nature is a description of the exogenous
parameters that do not depend on the players’ uncertainties – the initial endowments, the
payoff functions and the like. By type of players we mean their epistemic state, that is,
an account of their certainties and uncertainties. In Harsanyi type spaces, henceforth
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probabilistic type spaces, a player’s type in a given state (i.e., epistemic state) is a
s-additive probability measure on the space, associated with the state. In partition
spaces, a player’s type in a state is given by the set of states the player considers
possible in that state. This set of possible states is the element of the player’s partition
which contains that state. In this work we examine the ways in which the general
structure of partition spaces differs from and resembles that of probabilistic type spaces.

1.2. Unfolding epistemic states by a-order events

The above definition of types enables us to unfold the mutual certainties and
uncertainties of the players. In each state and for each player, we can describe explicitly
the player’s perception of the state of nature, the player’s perception of how others
perceive the state of nature, and so forth. This explicit description of the epistemic states
of the players is reached as follows. First we define epistemic operators on the space.
These operators map events to events, where an event is a subset (a measurable one in
the probabilistic case) of the state space. In partition spaces each player has one
epistemic operator – the knowledge operator. It maps an event E to the event K(E)
called ‘the player knows E’. This event includes every state for which E is true in all the
states considered possible at that state by the player. In probabilistic type spaces each
player has, for each p between 0 and 1, a p-belief operator. The event ‘the player
p-believes E’ consists of all the states in which he ascribes probability at least p to E
(see e.g., Monderer and Samet, 1989). Next we define by induction events of order a.
0-order events are the natural events – those that contain all the states whose state of
nature belongs to some given (measurable, in the probabilistic case) set of states of
nature. 1-order events are those describing nature (i.e., 0-order events) and the players’
attitude (knowledge or belief, according to the case) towards 0-order events. In general,
a-order events describe nature and the epistemic attitude towards lower order events.
Thus, the a-order events (for all the ordinals a) to which a given state belongs describe
the epistemic state of all the players (as well as the state of nature) in that state.

1.3. How partition spaces and probabilistic type spaces differ in the construction of
a-order events

How far does this inductive construction of a-order events proceed? Here partition
spaces differ from probabilistic type spaces. In the latter, the construction need not go
beyond the finite order events. That is, if the event E is in the s-field generated by all
the finite order events, then any belief concerning E already belongs to that s-field. This
property of probabilistic type spaces follows from the main theorem of Mertens and
Zamir (1985), which we discuss shortly.

In partition spaces, by contrast, finite order events may not be enough in order to
describe the players’ scope of knowledge. After constructing all these events we can, in
some spaces, construct new events which describe knowledge regarding all the finite
order events. And we must not stop at this point either. For any given ordinal a there are
spaces in which the construction adds new events for all orders preceding a. In section 3
we describe, for every given ordinal and with only two players, an explicit construction
of such a space, taken from Heifetz and Samet (1998).
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1.4. The construction of epistemic states by a-order types – the probabilistic case

The construction of a-order events helps to unravel in an explicit way the epistemic
state of the players in a given state space. There is also another, canonical, way to
construct explicitly all the types of the players, starting from a given set of states of

¨ ¨nature. This construction was carried out by Armbruster and Boge (1979), Boge and
Eisele (1979), and Mertens and Zamir (1985) for the probabilistic case. The construction
progresses by inductively defining a-order types. 0-order types are simply the states of

1nature. A player’s 1-order type is a s-additive probability measure on the 0-order types
(i.e., on the set of states of nature). A player’s a-order type is a s-additive probability
measure on all the combinations of previously defined types. We define then a state
space, called the universal state space, each element of which is a sequence starting with
a 0-order type (a state of nature) and specifying the a-order type of each player for all
the a’s (taking into account certain consistency restrictions on such sequences). As it
turns out, there is no need to go beyond finite-order types. The sequence of all
finite-order types of a player (specified in a state) defines a unique s-additive probability
measure on all the sequences of finite order types, that is, it determines its unique
v-order type. Thus the universal state space is a probabilistic type space, where a
player’s type in a state is his v-order type, which is determined by the state. Mertens
and Zamir (1985) showed that this space is universal not only by virtue of including all
possible sequences of finite-order types, but also in light of its relation to the class of
probabilistic type spaces: they proved that any non-redundant type space (see Remark
2.4 below) can be embedded in a natural way in the universal type space.

1.5. The construction of epistemic states by a-order types – the knowledge case

An analogous construction of a-order types can be carried out for knowledge types.
0-order types are, as before, states of nature. A player’s 1-order type is a subset of
0-order types. A player’s a-order type is a subset of combinations of all previously
defined types (with appropriate consistency restrictions). Again, we can define a state as
sequence starting with a 0-order type and specifying the a-order types of the players for
each a. But here, as one can expect in light of the construction in section 3, the sequence
may develop in a non-trivial way beyond any given ordinal. This result, which we prove
in section 4, follows from the construction of section 3, and the theorem we describe in
the next paragraph. Consequently, we have a host of canonical spaces – one for each
ordinal a. The canonical a-order type space consists of all the sequences of types of
orders smaller than a, and is indeed a partition space.

As in the theorem of Mertens and Zamir (1985), we can still relate the class of
partition spaces to the hierarchic type spaces. We define the rank of a partition space to
be the least ordinal a for which higher-order events appear already as a-order events. In
section 4 we prove that a (non-redundant) partition space of rank a can be isomorphical-

1In the above cited works it is assumed that the set of states of nature is Hausdorff compact. Brandenburger
and Dekel (1993) showed that the same results can also be obtained when this set is Polish. Heifetz (1993)
relaxed both assumptions and showed it can be done with any Hausdorff space. Various other sufficient
topological conditions are discussed in Mertens et al. (1994). In Heifetz and Samet (1996) we showed that
these results may fail in the general measure-theoretic case.
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ly embedded in the l-canonical type space, where l is the least limit ordinal exceeding
a. Moreover, the image of the partition space in this l-canonical type space has the
following property, which resembles that of the unique universal space of Mertens and
Zamir (1985): each sequence of types of a player in a state of the space can be continued
in a unique way beyond l.

Fagin et al. (1991) were the first to give an example of three players with mutual
uncertainties of rank v 1 1. Fagin et al. (1992) presented the inductive construction and
found conditions under which a v hierarchy suffices to characterize the knowledge of
the player. In a work parallel to ours, Fagin (1994) proved analogous results, but with a
logical, rather than set-theoretical, construction.

The class of partition spaces is sound and complete with respect to the multi-player
epistemic logic S5. The transfinite aspects of mutual knowledge explored here arguably
call for a logical treatment where infinite conjunctions and disjunctions are allowed in
the language. Such a logical language is presented in Fagin (1994), and an axiomatic
approach with completeness results is further investigated in Heifetz (1997).

2. Partition spaces and their rank

A partition space consists of a set V called the space of states of the world. Each state
in V stands for a situation in which the game or trade may take place. We denote by S
the set of states of nature. Each element of S is the specification of all the values of the
parameters that are relevant to the interaction between the players and that do not
depend on their uncertainties. In each state of the world a certain state of nature prevails.
The function Q :V → S maps each state of the world to its state of nature.

iWe denote by I the set of players. Each player i [ I has a partition P on V. The
imember of i’s partition that contains v is denoted by P (v). In state v [ V player i

iconsiders as possible all the states in P (v), and he can not tell which of them obtains.
To sum up, a partition space is specified by the tuple

i
, V, S, Q :V → S, I, (P ) . .i[I

iEvents are subsets of V. For a given event E, the event K (E) – ‘‘player i knows E’’ –
i iis: K (E) 5 hv [ V : P (v) 7 Ej. That is, i knows E in state v, if E is true in all the

i V Vstates he considers possible at v. The operators K :2 → 2 are called the knowledge
operators.

iDefine also K(E) 5 > K (E). The event that E is common knowledge isi[I`
n nC(E) 5 > (K) (E) where (K) is the operator K applied successively n times.n51

Using these operators we can reveal the structure of knowledge in the partition space
– what players know about the state of nature, what they know about what they know
about the state of nature and so on. This is done by constructing for every ordinal a a
partition P of V, by transfinite induction. An arbitrary union of elements of P is calleda a

an a-order event. The first partition is defined by:

P (v) 5 P (v9) iff Q(v) 5 Q(v9)0 0
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For the ordinal a :

P (v) 5 P (v9) iffa a

i i
Q(v) 5 Q(v9), and (v [ K (E)⇔v9 [ K (E)),

for every b-order event E, b , a and i [ I.

The partition P generates the natural events. The partition P generates the mutual-0 a

knowledge events, where the chain of mutual references of the players to each other’s
knowledge is of length at most a. Clearly for a , b, P weakly refines P . But theb a

cardinality of a sequence of strictly refining partitions cannot exceed the cardinality of
V. Therefore, we must have for some a, P 5 P , or equivalently, P 5 P for alla a 11 a b

b . a. The sequence of partitions up to P gives the full account of the knowledgea

structure in the space. This leads to the following definition:

Definition 2.1. The rank of the partition space V, is the minimal ordinal a such that
P 5 P .a a 11

If two states are not separated by P , where a is the rank of the space, then they standa

for the same natural parameters and uncertainties. Hence the obvious definition of
redundancy in partition spaces:

Definition 2.2. The partition space V is non-redundant if for a, the rank of the space, Pa

is the partition of V into single points.

Proposition 2.3. If the partition space V is non-redundant then any two states are either
separated by their state of nature or by the partition of some player.

Proof. Otherwise, there are two states v, v9 [ V with the same state of nature and such
i ithat P (v) 5 P (v9) ;i [ I. Thus, v and v9 are not separated by P . Furthermore, if0

ithey are not separated by P ;b , a, then they are neither separated by K (E), whereb

E is b-order event for some b , a and i [ I. Hence, v and v9 are not separated by
P . QEDa

Examples.

1. Let V 5 hv ,v j, and suppose that there is only one state of nature. Thus, P 5 V.1 2 0

Suppose that there is only one player, and his partition is the trivial one – hVj. Then,
as P 5 P , the rank of V is 0. The space is redundant, since v and v cannot be0 1 1 2

separated.
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In general, if we replace a given state v in a partition space by two ‘copies’ v9 and
v99, leaving the two copies in the same elements of the partitions in which v was,
and associating with them the same state of nature that was associated with v, then
the resulting space is redundant.

2. Consider again the space V 5 hv , v j, where P 5 V. Assume now that there is a1 2 0

single player with the partition hhv j,hv jj. The rank of this space is also 0, and the1 2

space is redundant.
In general, the union of two isomorphic copies of the same partition space, where

the partition on this union is the union of the partitions on each of the copies, is a
redundant partition space.

Note that Proposition 2.3 is a necessary condition for non-redundancy, but it is not
sufficient, as demonstrated by example (b).

Remark 2.4. Mertens and Zamir [(1985), Def. 2.4] used a condition analogous to the
necessary condition in Proposition 2.3 to define non-redundancy. With this definition the
union of two isomorphic copies of a non-redundant probabilistic type space is non-
redundant, and hence Proposition 2.5 there does not hold. To remedy this, one should

idefine inductively ^ 5 sh^ , ht (v)(E) $ r: r [ [0,1], E [ ^ , i [ I, k , nj (where ^n 0 k 0
iis the s-field of natural events and t (v) is the type of player i in v), and then define a

type space to be non-redundant whenever any two of its points are separated by some
^ .n

3. A construction of partition spaces with arbitrary rank

It is possible to define the rank of probabilistic type spaces analogously to the way
rank is defined here for partition spaces. However, it follows from the work of Mertens
and Zamir (1985) that the rank of a probabilistic type space never exceeds v. In
contrast, for any given set of states of nature S, with at least two elements, there is a
partition space on S of rank a, for every ordinal a. We cite here an example from Heifetz
and Samet (1998), in which for any a, a non-redundant partition space W of rank a isa

constructed for two players, 1 and 2, and two states of nature. We review the main
features of the example, without the proofs.

The states of nature are the two results of tossing a coin, H and T. The space Wa
0 1 2 0 1 2consists of triples w 5 (w , w , w ), where w [ hH, T j, and w and w are the

consciousness records (records for short) of players 1 and 2, respectively, which we
0describe in a short while. The first coordinate w is the state of nature at the point w (i.e.

0 1
Q(w) 5 w .) A record of a player is a sequence of S’s and D’s of length a. That is, w ,

2 aw [ hS, Dj where the ordinal a is, as usual, the set of ordinals smaller than a.
Not all such sequences are qualified as records. The following story motivates the

special structure of records. Think of S as standing for Sober and D for Drunk. Our
players are hopelessly addicted to alcohol: Whenever they try to avoid it, they finally fail
and give up. Formally, for every record and every limit ordinal l # a, there exists an
ordinal g , l such that there are only D’s in the sequence from g up to (not including)
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2
l. The record is called l-even if this g is even and l-odd otherwise. Thus, we have
completed the description of the space W and the map Q. Next we describe thea

ipartitions P .
iIf the record of player i starts with Sober (i.e., w 5 S), that means that player i knows0

whether the state of nature, w , is H or T. If the player is Drunk in the beginning, he0
i iˆcannot tell what the state of nature is. Thus, if w 5 S, then w [ P (w) only if0

0 0ˆ(i) w 5 w .

i 0ˆIf w 5 D, no restriction is imposed on w .0

Being Sober at a given non-limit ordinal b means, so goes the story, that the player
can tell whether his opponent was Sober or Drunk at the ordinal preceding b. Thus for

iexample, when player i is Sober in the next level (w 5 S), he can tell whether the other1

player’s record starts with S or with D. This means that he knows whether his opponent
knows the state of nature. It makes sense, of course, even if he himself can not tell the

itrue state of nature – in case he is Drunk in the beginning. To summarize, if w 5 S,b
iˆthen w [ P (w) only if

i iˆ(ii) w 5 w .b 21 b 21

i iˆIf w 5 D, no restriction is imposed on w .b b 21

The above interpretation of being sober works only for non-limit ordinals, since they
have an immediate predecessor. Being Sober at a limit level l means that the player

i iˆknows whether the other player is l-even or l-odd. That is, if w 5 S, then w [ P (w)l

only if
i iˆ(iii) w is of the same parity as w .b 21 b 21

i iˆIf w 5 D, no restriction is imposed on the l parity w .l

The crucial point is that no combination of S’s and D’s up to (not including) a limit
ordinal l ever enables a player to perceive whether the other player is l-even or l-odd.
This is because in such a combination he himself is always Drunk from some g on, so
he cannot exclude the possibility that the other player stood the temptation longer than
he did, and fell Drunk (up to l) only at some later stage g 9 . g, where g 9 may be even
as well as odd. Therefore, becoming Sober again in stage l enables the player to exclude
some records of the other player that he can not exclude when he is Drunk there. The
state of consciousness of the players at stage l is, therefore, a meaningful source of
uncertainty for the next stage, and so on.

In addition we assume that every player always knows his own record. That is,
iŵ [ P (w) only if

i iˆ(iv) w 5 w .

i iˆ ˆThese restrictions define the partitions P . That is, w [ P (w), if and only if w
satisfies conditions (i)–(iv). It is shown in Heifetz and Samet (1998) that the rank of Wa

is a.

2i.e., in the unique representation g 5 l9 1 n, where l9 is a limit ordinal (or 0) and n [ N, n is even.
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Remark 3.3. For every ordinal a, the cardinality of W is the same as that of a. Ina

particular, W is countable whenever a is. Fagin (1994) presented the construction ofa

such partition spaces as an open problem, which was solved by this example.

4. Canonical partition spaces

In section 2 we derived the mutual knowledge of the players, in a state of a partition
space, by constructing a-order events. In this section we describe the players’
knowledge explicitly, in analogy with the construction of the universal space for
probabilistic beliefs of Mertens and Zamir (1985). We construct for each ordinal a a
canonical space U of rank a. Each point of U is a hierarchy of length a – it describesa a

the state of nature and the types of the players of order smaller than a – i.e, what
players know about lower order types. In the case of the universal space for probabilistic
beliefs, only finite order types are required. Once these types are specified, further,
infinite-order types are determined uniquely. The partition spaces constructed in section
3 suggest that in the case of knowledge, for any ordinal a, a-order types may not be
determined by lower order types. In order to show it we have to establish the relation
between the class of partition spaces and the canonical a-rank type spaces U . Thea

relation of probabilistic type spaces and the universal type space, established by Mertens
and Zamir (1985) is relatively simple. Each non-redundant probabilistic type space can
be isomorphically embedded in the universal space. In the knowledge case such a simple
relation cannot exist, since there is no universal space. We show though, in Theorem 4.3,
that every non-redundant partition space can be embedded in some U , for big enough aa

which depends on the rank of the partition space.
We start with the construction, by induction, of the canonical type spaces U of ranka

a. The same construction, using different notations, is carried out in Fagin et al. (1992)
Let S be the set of states of nature and I the set of players. Define U by transfinitea

induction:

U 5 S0

j U Ib
b ,aUa 5 (s, (t ) ) [ S 3P (2 ) : ;b , a ;i [ Ih b j[I b ,a

j i
g ,b(I) (s, (t ) ) [ tg bj[I

] j i ] i i]
g ,b(II) (s, (t ) ) [ t ⇒t 5 t ;g , bg b g gj[I

i i(III) ;g , b the projection of t on U is t jb g g

Let F denote the projection from U to U for b # a.ab a b
j i

b ,aFor a given u 5 (s, (t ) ) in U , t is i’s type of order b in u. It is a set of b-orderb a bj[I

states (i.e., a subset of the space U ) that i considers possible in state u. The point ub
ispecifies a state of nature, and for each player i, a sequence (t ) of his types for allb b ,a

orders smaller than a. The point u should satisfy for each player i:

I Correctness: i’s uncertainties regarding the b-order state of the world, for b , a,
ishould allow for the actual state, that is, the set t should contain the b-initialb

segment of u.
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II Introspection: in all b-order states that player i considers possible, for b , a, (i.e., in
iall the points of t ) his b-order type is the same as his actual one in u.b

III Coherence: the set of g- order states that i considers possible should be the same at
iall higher levels. That is, for g , b , a, t should coincide with the set of g-initialg

isegments of the points in t .b

i iNote that by condition (III), for each b and i, t determines t for all g , b andb g
i itherefore t can be identified with the sequence (t ) .b g g ,b

Conditions (II) and (III) are similar to the ones used in the construction of the
universal space of probabilistic beliefs. Condition (I) does not have a corresponding one
in this construction. This condition makes the knowledge of different players and state of
nature correlated (through the requirement to consider as possible the actual lower-order
types of each other). In the Mertens and Zamir (1985) construction there need not be any
correlation between the beliefs of different players in a given state.

The canonical a-rank type spaces U can be made into a partition space verya

naturally. Its map to the state of nature is given by the projection on the first coordinate.
iPlayer i’s partition, P , of U , partitions it to i’s a-order types. That is, for every u 5 (s,a a

j
b ,a(t ) ) [ Ub aj[I

i ] j ] i i] b ,aP (u) 5 h(s, (t ) ): t 5 t ;b , aj.a b b b
j[I

i
b ,aLemma 4.0. For every u 5 (s, (t ) ) [ U we haveb ai[I

i(u, (P (u)) ) [ U .a i[I a 11

iProof. We have to prove that (u, (P (u)) ) satisfies conditions (I), (II) and (III) fora i[I

b 5 a in the definition of U (for b , a, these conditions obtain since u [ U ). (I)a 11 a
iand (II) are immediate from the definition of P . For (III), we have to show thata

i i
F (P (u)) 5 t for every g , a.ag a g

i]Condition (I) in the definition of U says that for every g , a, every u [ F (P (u))a g ag a
i i i]satisfies u [ t , and hence that F (P (u)) 7 t ; and condition (II) in the definition ofg g ag a g

i i] ]U says that for every g , a, every u [ t satisfies u [ F (P (u)), and hence thata g g g ag a
i i i it 7 F (P (u)). Together this means that F (P (u)) 5 t , as required. QEDg ag a ag a g

Now, knowledge is defined on U in two ways. First, the internal structure of eacha

state defines the players’ knowledge. Second, the partitions defined on U also define thea

players’ knowledge, say by constructing the sequence of b-order events as in section 2.
There is a discrepancy, though, between the two. The partition structure determines
knowledge completely. That is, we can construct by it b-order events for any ordinal b

(although it is unnecessary for b bigger than the rank of the space). The internal
structure of a state does not enable such a complete description of knowledge. States in
U determine all b-order types for b # a but they do not necessarily determine types ofa

iorder higher than a. Thus, by Lemma 4.0, (u, (P (u)) ) [ U for each u in U . Fora i[I a 11 a

some u this may be the only possible extension of u to a point in U . But for some ua 11

in U , there may be other extensions to points in U , which means that u does nota a 11

determine the a 1 1 types of the players.
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This motivates the following definition of subspaces in U as those subsets of Ua a

where the above mentioned discrepancy does not exist.

Definition 4.1. U is a subspace of U if ;u [ U :a

i1. P (u) 7 U ;i [ Ia
i2. (u, (P (u)) ) is the only possible extension of u to a point in U .a i[I a 11

Remark.

1. It is easy to verify by induction, that when U is a subspace of U , every u [ U has aa

unique extension in every U , g . a.g

2. Note that property (1) in Definition 4.1 guarantees that U is common knowledge in
iU , i.e. U 5 C (U ) where C is the common knowledge operator on , U , (P ) . .a a a a a i[I

iˆProperty (2) implies further that for the set U 5 h(u,(P (u)) : u [ U j 7 U wea i[I a 11
ˆ ˆhave U 5 C (U ).a 11

We define now a notion of a morphism between partition spaces (which have the same
set of states of nature) that preserves the natural and knowledge characteristics of states.

iDefinition 4.2. A partition space , V, S, Q :V → S, I, (P ) . is epimorphic to thei[I] ] ]] ] ipartition space ,V, S, Q :V → S, I, (P ) . if there is an onto function H:V →Vi[I] ] i isuch that for all v [ V and i [ I, Q(H(v)) 5 Q(v), and P (H(v)) 5 H(P (v)). If H is
one-to-one, the two partition spaces are called isomorphic.

We now come to the main theorem of this section.

iTheorem 4.3. Let , V, S, Q :V → S, I, (P ) . be a partition space of rank a, and li[I

the least limit ordinal greater than a. Then V is epimorphic to a subspace U of the
canonical l-order type space U . Moreover, F :U → U is one-to one, and a is thel la a

least ordinal with this property. If V is non-redundant then the epimorphism of V onto
U is an isomorphism.

Proof. Define inductively mappings H :V → U :b b

H (v) 5 Q(v)0

i
g ,bH (v) 5 (H (v), (H (P (v)) )b 0 g i[I

It is straightforward to verify, by transfinite induction, that indeed H (v) [ U .b b

3Claim 1. Two points v and v9 in V are separated by H iff they are separated by P .b b

Proof of Claim 1. Note that the claim is equivalent to saying that an event in V is a
b-order event iff it is the inverse image, by H , of some event in U .b b

3P was defined in section 2.b
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We prove the claim by induction. H maps each point to its state of nature, so v and0

v9 are separated by H exactly when they are separated by P .0 0

Suppose the claim holds ;g , b. Then H separates v and v9 either when they differb

by their state of nature, which is exactly the case when they are separated by P and0
i ihence also by P , or when H (P (v)) ± H (P (v9)) for some g , b and i [ I. This holdsb g g

i 21 iexactly when P (v9) is not a subset of the event H (H (P (v))). By the inductiong g

hypothesis this event is g-order event, and player i does not know it in v9 while he does
in v. This happens when and only when v and v9 are separated by P and hence alsog 11

by P . Thus claim 1 is proved.b

If two states in V are separated by some P then they are separated by P for everyb b

b $ a where a is the rank of V. By claim 1 they are therefore mapped by H tob

different states in U for every b $ a. If, however, two states are not separated by anyb

P , then by claim 1 they have the same image by all H . We conclude that ;g . b $ a,b b

the projection F of H (V ) to U is one-to-one.gb g b

Let l be the least limit ordinal greater than a. We now head to show that H (V ) is al

subspace isomorphic to V.

iClaim 2. For every v [ V (H (v), H (P (v)) ) is the unique extension of H (v) to al l i[I l

state in U .l11

Proof of Claim 2. Suppose

i(H (v), (t ) ) [ U .l l i[I l11

Then by property (III) in the definition of U , for every i [ I and b , l the projectionl11
i i i b i*of t on U is H (P (v)). This means that for every u [ t there is a u [ H (P (v))l b b l l l l

such that

b *F (u ) 5 F (u ).lb l lb l

By the conclusion that followed claim 1, for a # b , l the projection F of H (V )lb l
i i*on U is one to one. So for every u [ t there is a unique u [ H (P (v)) such thatb l l l l

*F (u ) 5 F (u ) ;a # b , l.lb l lb l

i i*Since l is a limit ordinal, this simply means that u 5 u . Hence t 7 H (P (v)).l l l l
i iOn the other hand, we actually have t 5 H (P (v)), because by property (III) in thel l

definition of U ,l11

i i i
F (t ) 5 H (P (v)) 5 (F (H (P (v))), (1)la l a la l

iand for every u in (1) there is a unique u [ H (P (v)) such thata l l

u 5 F (u ).a la l

Thus claim 2 is proved.
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Claim 2 implies that H (V ) satisfies condition (2) in the definition of a subspacel

(Definition 4.1). Furthermore, since by Lemma 4.0

i(H (v), P (H (v)) ) [ U ,l l l i[I l11

we have
i iP (H (v)) 5 H (P (v)) (2)l l l

for all v [ V, which proves condition (1) of that definition. Thus H (V ) is a subspace ofl

U .l

Now note that by definition F (H (v)) 5 Q(v), where F maps U to S. Thisl0 l l0 l

together with (2) shows that H is an epimorphism of V onto H (V ). If V isl l

non-redundant, then by claim 1, H is one-to-one on V, and hence an isomorphism. Thisl

completes the proof of the theorem. QED

Note that although H (V ) for a # b , l is a one-to-one image of V in U , it fails inb b

general to be a subspace of U . Thus by part (2) of the remark after Definition 4.1,b

H (V ) is not common knowledge in U . l is the minimal ordinal g for which it isb 11 b 11

guaranteed that H (V ) is common knowledge in U .g 11 g 11

The construction of the a-rank spaces W in section 3 enables us to show that fora

a , a the projection F from U to U is many-to-one. Indeed, let l and l be1 2 a a a a 1 22 1 2 1

the limit ordinals following a and a , respectively. Then by theorem 4.3 for k 5 1,2,1 2

W can be embedded as a subspace in U , and the projection of this subspace to U isa l ak k k

one-to-one. But the projection from W to W is many-to-one, so F is many-to-one,a a a a2 1 2 1

at least on the image of W in U .a a2 2

If the rank of the partition space V is a limit ordinal l, it may sometimes be possible
to embed V already in U (and not only in U , as the theorem guarantees). Thel l1v

‘coordinated attack’ is such an example:

Example 4.4. The day before the campaign two generals agree to attack together either
at dawn or at twilight. General A is supposed to send general B a personal messenger
with a message about the time. Then B is supposed to send the messenger back with a
confirmation, A is supposed to send him once more to confirm the confirmation, and so
on. For each decision of general A and for each natural number n [ N, there would be a
state for the state of mind of the generals when the messenger made his way successfully
exactly n times. We denote the partition of general A by round brackets, that of general
B with curly brackets:

!$#"

dawn (• h•) (•j h•) . . .
twilight (• h•) (•j h•) . . .#"!$

0 1 2 3 . . .

When this partition space is mapped into the canonical spaces with states of nature
hdawn, twilightj, the states that correspond to the success of the nth mission of the
messenger are first separated in U from those that correspond to the success of then11

earlier missions. Hence all the states are separated only in U , so v is the rank of thisv

partition space.
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In particular, a partition member of the form (n 2 1, n) is mapped in a one-to-one
fashion to U and on. This means that the projection of this two-point set from Un11 v

downwards is one-to-one from the projection to U and on. By the same argument asn11

in the proof of Claim 2 in the theorem, this is the unique belief of the general on Uv

which is coherent with his lower-level beliefs there. Hence the image of the partition
space in U is a subspace. In this example the partition space is therefore of rank v, butv

embeddable already in U (and not only in U , as the theorem guarantees).v v 1v

On the other hand, the canonical space U itself is of rank v, and is only embeddablev

in U (because many states in U have multiple extensions to U , and so on forv 1v v v 11

v 1 2, v 1 3 . . . ). Thus, embedding in the canonical space of the next limit ordinal is
the best general result we can attain.

5. The canonical class partition space

ˆWhen U is a subspace of U and a $ l, the functionl l

ˆC :U → Ula l a

defined inductively by

iˆ ˆ ˆC (u ) 5 (u , (P (C (u ))) i [ I)la l l b lb l l#b ,a

ˆˆmaps each u [ U to its unique extension in U . Let On be the class of all the ordinalsl l a
ˆˆ(for an axiomatic treatment of classes see, for instance, Devlin, 1993). For each u [ Ul l

iˆ ˆ ˆ l#b [Ondefine the point C (u ) 5 (u , (P (C (u ))) . Using this definition, we can nowl,On l l b lb l i[I4define the class

ˆ ˆˆ ˆU 5 hC (u ):u [ U , U is a subspace of U , l [ Onj.On l,On l l l l l

j
b [OnFor all i [ I and for all u 5 (s, (t ) ) [ U define also the classOn b Onj[I

i ] j ] i i]
b [OnP (u ) 5 h(s, (t ) ) [ U :t 5 t ;b [ Onj. (3)On On b On b bj[I

The same argument as in claim 2 in Theorem 4.3 implies that

i iˆ ˆP (C (u )) 5C (P (u ))On l,On l l,On l l

ˆ(and in particular that (3) is actually a set.) In this sense, U can be embedded as al

subspace of U . Therefore, by that theorem, any partition space which is a set can beOn

4 ˆAs written, U seems to be a family of classes, since each point C (u ) is actually a class. However,On l,On l

ˆ ˆD 5 hu [ U :u belongs to some subspace of U jl l l l l

is a set, and D 5 < D is a class. Denote by V the class of all sets. Then U is the family of classesl[On l On

ˆ(C (u )) , which can be represented as a relation R 7V 3 D, defined byˆl,On l u [Dl

ˆ ˆ(v, u ) [ R iff v 5C (u ) for some b [ On.l lb l

Such a relation in the class V 3 D is a class by definition.
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embedded as a subspace of U . Hence, it may be convenient to treat U as theOn On

canonical hierarchic construction for (set) partition spaces.
However, if we allow partition spaces to be classes, we shall have to continue the

construction further. For instance, if we extend the class of examples in section 3 and
allow for a space with class-long sobriety records that have an entry S or D for every
ordinal, a state where the players are always Drunk will not be in U , and will haveOn

more than one potential ‘extension’. We will avoid here the technical details, which are,
however, completely analogous to those of section 3.

To sum up, U has indeed the desired canonical properties for set partition spaces.On

On the other hand it is a class, which can not embed every class partition space. We can
not achieve with it ‘self sufficiency’, exactly in the same way we could not with all the
previous U ’s. This is in sharp contrast with the Mertens–Zamir construction fora

s-additive Bayesian types, which achieves this ‘self sufficiency’ in just v steps.
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