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There are four types of dominance depending on whether domination is strict or weak and 
whether the dominating strategy is pure or mixed. Letting d vary over these four types of 
dominance, we say that a player is d-dominance rational when she does not play a strategy 
that is d-dominated relative to what she knows. For weak dominance by a mixed strategy, 
Stalnaker (1994) introduced a process of iterative maximal elimination of certain profiles 
that we call here flaws. We define here, analogously, d-flaws for each type of dominance d, 
and show that for each d, iterative elimination of d-flaws is order independent. We 
then show that the characterization of common knowledge of d-dominance rationality is 
the same for each d. A strategy profile can be played when d-dominance rationality is 
commonly known if and only if it survives an iterative elimination of d-flaws.

© 2019 Published by Elsevier Inc.

1. Introduction

There is a fairly substantial literature on the processes of the iterative elimination of dominated strategies and some 
literature on the justification of such processes in terms of common knowledge of rationality. Either explicitly or implicitly 
the justification is in terms of dominance relative to what the player knows or believes. We say that a player is dominance 
rational if she does not play a strategy that is dominated relative to the set of strategy profiles of the other players that she 
considers possible. This paper is concerned with this kind of dominance rationality and the characterization of its common 
knowledge in terms of elimination processes that are the same for all types of dominance.

The notion of dominance we have just discussed is a general term that refers to four different types of dominance: strict 
dominance by a mixed strategy (sm), strict dominance by a pure strategy (sp), weak dominance by a mixed strategy (wm), 
and weak dominance by a pure strategy (wp). Correspondingly, there are four notions of rationality which we denote by 
d-dominance rationality, for d in {sm, sp, wm, wp}.

We start with a description of various processes of elimination and their informal justification by common knowledge 
of d-dominance rationality. Iterative elimination of strictly dominated strategies (for pure or mixed domination) can be 
informally justified by common knowledge of strict dominance rationality. It is well known that similar claim, mutatis 
mutandis, cannot be made for iterative elimination of weakly dominated strategies. For some games, the argument that 
justifies this process by common knowledge of weak dominance rationality is inconsistent. In the next three subsections 
we demonstrate this inconsistency and show that the right way to avoid it is by eliminating flawed profiles, to be defined, 
rather than eliminating weakly dominated strategies.
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1.1. Strict dominance

Iterative elimination of strictly dominated strategies can be justified by common knowledge of strict-dominance rational-
ity. In each iteration of the elimination there is a smaller restricted game that the players know they are playing. Because 
players are strict-dominance rational, some strategies that are dominated relative to the set of profiles known to be played 
cannot be chosen by the players, and they are eliminated. Since strict-dominance rationality is commonly known, the elim-
ination is known to the players, and the knowledge of the even smaller game starts the next iteration.

1.2. Weak dominance

Common knowledge of weak dominance rationality may fail to justify an iterative elimination of weakly dominated 
strategies. The simple example shown in Fig. 1 demonstrates this well known failure, and will lead us to a process that can 
be justified, at this stage informally, by common knowledge of weak dominance rationality.

Player I

Player II
L R

T 2,1 3,0

B 2,0 2,1

Fig. 1. Iterative elimination of weakly dominated strategies.

At first glance, the argument for iterative elimination of weakly dominated strategies can be justified by common knowl-
edge of weak dominance rationality analogously to the case of strict dominance. Thus, if Player I is weak dominance rational 
she should not play B . Knowing that, Player II should not play R . Thus common knowledge of weak dominance rationality 
should imply that they play (T , L) and this profile should be commonly known to be played.

The argument, however, is inconsistent. The elimination of the weakly dominated strategy B is justified if Player I does 
not exclude the possibility that Player II plays R . But the conclusion of the argument is that Player I does know that Player II 
plays L and not R . But, if this conclusion is right, then the elimination of B was unjustified.

The iterative elimination of strictly dominated strategies does not suffer from this inconsistency because of the property 
of strict dominance that we call monotonicity: if a strategy of a player is strictly dominated relative to some known set of 
strategy profiles of the other players, then it is strictly dominated also when the player knows more, that is, a subset of that 
set. This property does not hold for weakly dominated strategies. In the above example, strategy B is weakly dominated if 
all that Player I knows is that Player II may play either L or R , but is not dominated if Player I knows that Player II plays L.

Note that it is the iterative elimination of weakly dominated strategies that is inconsistent when it tries to capture 
common knowledge of weak dominance rationality. However, the idea that players commonly know that they avoid playing 
strategies that they know to be weakly dominated is coherent and meaningful, and so is the question of what they might 
play in this case.

1.3. Flaws

Understanding why common knowledge of weak dominance rationality fails to justify the process of elimination of 
weakly dominated strategies helps us to describe the right process that can be thus justified. The elimination of strategy B
means that both profiles (B, L) and (B, R) are eliminated. It is justified only if Player I does not exclude the possibility that 
R is played. If she does exclude this possibility, then B is not weakly dominated given Player I’s knowledge and hence the 
profile (B, L) may be played even when Player I is weak dominance rational. In contrast, the profile (B, R) cannot be played 
if Player I is weak dominance rational, because if it is played, Player I does not exclude the possibility that R is played, and 
then B is weakly dominated given Player I’s knowledge. This will remain true no matter how much more knowledge she 
has at the end of the process.

Thus at this point, since we don’t yet know what the state of knowledge of the players is when weak dominance 
rationality is commonly known, all we can say is that the profile (B, R) cannot be played if Player I is weak dominance 
rational. We call (B, R) a I-weak flaw. The “weak” refers to the fact that the strategy B , which is used to define the flaw 
(B, R) is weakly, rather than strictly dominated. We eliminate only this profile rather than the two profiles (B, R) and 
(B, L). Recall that it was the elimination of (B, L) that rendered the process of elimination of weakly dominated strategies 
inconsistent.

If Player II knows that Player I is weak dominance rational, she knows that the profiles that can be played are the three 
profiles other than (B, R). Therefore, if Player II plays R she knows that Player I plays T . But then, given this knowledge, L
dominates R and she should not play R . Thus the II-flaw (T , R) is eliminated. We are left with the two profiles (T , L) and 
(B, L) that can be played when weak dominance rationality is commonly known.

This example demonstrates how we are led to the elimination of profiles rather than strategies in order to avoid the 
pitfalls of the inconsistency in eliminating weakly dominated strategies, the inconsistency being the result of the lack of 
monotonicity of weak dominance, as discussed in the example.
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The flaws in this example are defined for weak dominance. The iterative maximal elimination of such flaws (maximal in 
the sense that in each iteration all flaws are eliminated) was introduced by Stalnaker (1994) to characterize certain Bayesian 
models. We discuss his work in the last subsection of the introduction.

Here, we extend this definition and define, analogously, d-flaws for all four types of dominance. We then show:

Order Independence. For each d, all processes of iterative elimination of d-flaws terminate in the same set of profiles.

For different d the terminal sets of profiles of the four processes may be all different.
The iterative elimination of strictly dominated strategies (by pure or mixed strategy) is a special case of iterative elimi-

nation of strict flaws, thus, the order independence of iterative elimination of strict flaws implies:

Strict dominance. A profile survives the iterative elimination of strict flaws if and only if it survives the iterative elimination of strictly 
dominated strategies.

1.4. Common knowledge of rationality

In order to define formally the notions of knowledge and common knowledge, which we previously discussed, we use 
the standard partition structure introduced by Aumann (1976), which consists of a state space and a partition for each player 
that defines her knowledge.

A model of the game is a partition structure where each state specifies the strategy profiles played in the state. Such 
models were used in Aumann (1995) and Aumann (1998) to study dominance rationality in extensive form games of perfect 
information.2 In such a model we are able to define the event that a player is d-dominance rational as follows. At a given 
state ω, a player knows that the other players play one of the profiles specified in the states in the element of her partition 
that contains ω. The player is d-dominance rational at ω if the strategy she plays at ω is not d-dominated given the other 
players’ profiles that she considers possible at ω.

We can now state our main result which characterizes common knowledge of all types of dominance rationality, and 
show, somewhat surprisingly, that all of them are completely analogous.

The unified theory of dominance rationality. A strategy profile can be played when there is common knowledge of d-dominance 
rationality if and only if it survives the iterative elimination of d-flaws.

1.5. Comparison to the prior literature

1.5.1. Flaws
Stalnaker (1994) introduced the insightful notion that he called an inferior profile and we call here an sm-flaw to 

maintain consistency with our other notions of flaws. Here we extended his notion to all four types of dominance which 
enables us to unify the characterization of common knowledge of dominance rationality for all types of dominance in terms 
of flaws. Stalnaker (1994), and the works that followed his idea, for example, Bonanno (2008) and Trost (2013) considered 
only the process of maximal elimination of sm-flaws, and thus there was no room in their work to study, let alone prove 
the order independence of the general processes of elimination of flaws.

1.5.2. Monotonicity and order independence
Gilboa et al. (1990), Apt (2011), Trost (2014), and others studied order independence of various processes of elimination. 

In these studies, a monotonicity property of strategy domination, and a weaker notion of hereditary, play an important 
role. However, in all these papers the processes concern an elimination of strategies or some relation on restrictions of the 
original game that are products of individual sets of strategies. We study here more general processes in which profiles, 
rather than strategies, are eliminated. Such processes involve subsets of strategy profiles that are not necessarily products. 
Our proof that monotonicity implies order independence for such processes is elementary and short. It does not follow 
by the order independence in the above mentioned studies. The opposite implication does hold: Our proof that iterative 
elimination of strict flaws is order independent implies the order independence of iterative elimination of strictly dominated 
strategies.

1.5.3. The relationship between various processes of elimination
Stalnaker (1994, p. 61) remarks that the process of maximal elimination of wm-flaws falls between the processes of 

iterative elimination of weakly and strictly dominated strategies. We prove this claim. To show that elimination of weakly 

2 The first paper that used a model for a game was Aumann (1987) that studied common knowledge of Bayesian rationality in a Bayesian model with a 
common prior.
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dominated strategies is more demanding we use the fact that elimination of weak flaws is monotonic. To show that elim-
ination of strictly dominated strategies is less demanding we use the claim that elimination of strict flaws and strictly 
dominated strategies end in the same terminal set.

Except for mentioning the set theoretic relation between elimination of weak flaws and weakly dominated strategies, 
Stalnaker (1994) does not provide any intuitive explanation of the relation between these two processes. Nor is such an 
explanation given in Bonanno (2008) or Trost (2013). The explanation is clear when we consider the monotonicity property 
of flaws presented here. The reason for the inconsistency of iterative elimination of weakly dominated strategies is the 
lack of monotonicity of that process. A weakly dominated strategy can be eliminated at some stage, and then, at a later 
stage, in a smaller restricted game, it is no longer weakly dominated, which reflects the lack of monotonicity. Thus we 
cannot conclude that a player will not use such a strategy before we know what exactly she knows when there is common 
knowledge of rationality. What we can conclude is that when the player is using a weakly dominated strategy, it must be 
the case that certain profiles cannot be played, exactly those profiles that cannot be played even in later stages. These are 
exactly the weak flaws. Thus eliminating of weak flaws is the way to avoid the lack of monotonicity of eliminating weakly 
dominated strategies.

1.5.4. The unified approach
We now discuss each of the four instances of the main theorem with regard to the existing literature. Characterizing 

common knowledge of strict-dominance rationality in terms of elimination of strict flaws is what enables the unification 
of the theory along the strict-weak axis. Since such flaws have never been defined or discussed no such a characterization 
can be found in the literature. But some works are related to characterization of common knowledge of strict dominance 
rationality in terms of elimination strictly dominated strategies.

For strict domination by pure strategies, Chen et al. (2007) characterized common knowledge of sp-dominance rationality 
by iterative elimination of strategies that are strictly dominated by pure strategies. Chen, Long and Luo used, like us, a model 
of the game based on a partition structure.

We are unaware of any work that dealt with the non-Bayesian notion of sm-rationality in a non-Bayesian model, and 
characterized its common knowledge in terms of elimination of strictly dominated strategies. However, all these non-
Bayesian notions have equivalent Bayesian notions for which such a characterization does exist. This equivalence is based on 
the observation that a strategy is strictly dominated by a mixed strategy if and only if it is not a best response against any 
probabilistic belief about the profiles of the other players (see, Pearce, 1984).3 Thus the set of profiles that survive iterative 
elimination of strategies dominated by a mixed strategy is the same as the set of profiles that survive iterative elimination 
of strategies which are not a best response, known as correlatedly rationalizable strategies (see, Brandenburger and Dekel, 
1987).4 Thus the non-Bayesian characterization of common knowledge of sm-dominance rationality can be derived, in a 
roundabout way, from their characterization. This is done by adding the right probabilistic beliefs to a non-Bayesian model 
and using the characterization of common knowledge of Bayesian rationality. Our non-Bayesian characterization is simpler 
conceptually and mathematically, and enables us to use the very same proof for both pure and mixed domination.

The case of weak dominance by pure strategies was proved by Bonanno (2008) and by Trost (2013). The first used a 
syntactic approach and the second, a type space with preference relations on the state space associated with states.5 The 
result for weak dominance by mixed strategies was never stated and cannot be so easily derived from Bayesian models as 
could be done in the case for strict dominance discussed above. The natural candidate for comparison is Stalnaker (1994). 
As opposed to the approach used here and in other papers to fix the model of the game and vary the notion of rationality, 
Stalnaker deals with only Bayesian rationality and varies the family of Bayesian models by various properties of beliefs. 
Thus, in one family of Bayesian models common knowledge of Bayesian rationality is characterized by the elimination of 
strategies strictly dominated by mixed strategies, and in another family of models by the elimination of sm-flaws. Even if a 
derivation of our non-Bayesian result can be reached from Stalnaker’s model it is not of much interest in light of our simple 
non-Bayesian derivation which is common to both pure and mixed domination.

2. Domination and flaws

Let G be a game with a finite set of players I , and a finite set of strategies Si for each player i. The set of strategy 
profiles is S = ×i Si , and the set of the profiles of the players other than i, is S−i = × j �=i S j . The payoff function for i is 

3 Probabilities are used in this equivalence on both sides; the dominating strategy is a mixed strategy and the beliefs about the play of the other players 
is a probability distribution over their strategy profiles. However, the probability of mixed strategy requires only a “roulette” to choose the pure strategy, 
while subjective probabilistic beliefs require heavier machinery to derive, like that in Savage (1954) or in Anscombe and Aumann (1963). Thus non-Bayesian 
notions of rationality seem to be conceptually more elementary than Bayesian rationality even when they are mathematically equivalent.

4 Brandenburger and Dekel (1987) do not actually use the term correlatedly rationalizable strategies and nor do other authors who have followed 
them in using this concept. They do refer to correlated rationalizability and also to correlated rationalizable payoffs. But in the last phrase, the adjective 
‘correlated’ modifies the noun ‘payoffs’, while it is the rationalizability which is correlated. Hence ‘correlatedly’ in our phrase which modifies the adjective 
‘rationalizable’.

5 As was shown by Bonanno and Tsakas (2018), common belief, rather than knowledge, of weak dominance rationality is not characterized by elimination 
of flaws.
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hi : S → R. We denote by �i the set of player i’s mixed strategies. The payoff functions hi are extended to � = ×i�i by 
taking expectations. As usual, we embed Si as a subset of �i .

We define four types of dominance as follows.

Definition 1. Let T−i be a nonempty subset of S−i .6

1. Strict domination. A mixed strategy σi ∈ �i strictly dominates si ∈ Si relative to T−i if hi(σi, t−i) > hi(si, t−i) for all t−i ∈
T−i . We say that si is sm-dominated (by σi ) relative to T−i . If σi is also pure, we say that si is sp-dominated (by σi ) relative 
to T−i .

2. Weak domination. A mixed strategy σi ∈ �i weakly dominates si relative to T−i if hi(σi, t−i) ≥ hi(si, t−i)) for all t−i ∈ T−i , 
and the inequality is strict for at least one t−i ∈ T−i . We say that si is wm-dominated (by σi ) relative to T−i . If σi is also 
pure, we say that si is wp-dominated (by σi ) relative to T−i .

Let d ∈ {sm, sp, wm, wp} be one of the four types of dominance. We define processes of elimination of d-dominated 
strategies.

Definition 2. A process of elimination of d-dominated strategies is a strictly decreasing sequence of strategy-profile sets S =
S0, S1, . . . , Sm , such that for each k ≥ 0, Sk = ×i Sk

i ; for each k > 0, Sk
i is obtained by eliminating from Sk−1

i some strategies 
which are d-dominated relative to Sk−1

−i ; and where in the sets Sm
i there are no d-dominated strategies relative to Sm

−i . The 
set Sm is called the terminal set of the process.7

Next we define flaws.

Definition 3. A profile s = (si, s−i) in A ⊆ S is an i-d-flaw of A if for some strategy σi of i,

1. si is d-dominated by σi relative to {t−i | (si, t−i) ∈ A};
2. hi(σi, s−i) > hi(si, s−i).

We say that a profile in A is a d-flaw of A if it is an i-d-flaw of A for some i.

It is straightforward to show that flaws have the following monotonicity property.

Claim 1 (monotonicity of flaws). Let A and B be sets of profiles. If s ∈ A ⊆ B is an i-d-flaw of B, then it is also an i-d-flaw of A.

Definition 4. A process of elimination of d-flaws is a strictly decreasing sequence of strategy profile sets S = S0, S1, . . . , Sm , 
such that for each k > 0, Sk is obtained by eliminating from Sk−1 some strategy-profiles that are d-flaws of Sk−1, and such 
that there are no profiles in Sm that are d-flaws of Sm . The set Sm is called the terminal set of the process.

Due to the monotonicity property in Claim 1, processes of elimination of flaws have the desired property of order 
independence.

Proposition 1. All processes of elimination of d-flaws have the same terminal set.

Proof. Let g(A) be the set of all profiles in A which are not d-flaws of A. By Claim 1, if A ⊆ B , then g(A) ⊆ g(B).
Let S0, S1, . . . , Sm be a process of elimination of d-flaws. Then, by definition, for each k > 0, g(Sk−1) ⊆ Sk and g(Sm) =

Sm . Suppose that g(T ) = T . We show by induction on k that T ⊆ Sk for each k. As S0 = S , the claim for k = 0 is obvious. 
Suppose that T ⊆ Sk , for k < m. Then, by the monotonicity of g and the induction hypothesis, T = g(T ) ⊆ g(Sk) ⊆ Sk+1. 
Thus, terminal sets of different processes should contain each other, and therefore they are all the same.8 �

6 We do not assume that T−i is a product set × j �=i T j .
7 The process can be simplified by looking at stage k for strictly dominating strategies in Sk−1

i only, rather than in Si as required here. This simplification 
is justified for finite games, where processes are finite, because in this case there exists a strictly dominating strategy in Si if and only if there exists 
such a strategy in Sk−1

i . However, in infinite games, when the process is infinite, this equivalence breaks down. Dufwenberg and Stegeman (2002) studied 
conditions on infinite games under which the simplified process is order independent. Chen et al. (2007) showed that the full process is order independent.

8 The process S, g(S), g2(S) . . . is the maximal process, in the sense that in each stage all flaws are removed. The convergence of the maximal process to 
the largest fixed point of g is an instance of Kleene’s fixed point theorem or Tarski’s fixed point theorem for monotonic operators on lattices. Proposition 1
shows that monotonicity also implies that all processes converge to the same limit. The function g is also a contraction, that is, g(A) ⊆ A which implies 
that the maximal process, is monotonically decreasing and implies also that starting from any event A, not necessarily S , A, g(A), g2(A), . . . converges to 
the largest fixed point of g contained in A.
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3. The relations between elimination processes

The relation between the iterative elimination of strict flaws and weak flaws is simple to state and to prove.

Claim 2. The terminal set of elimination of wm-flaws (wp-flaws) is a subset of the terminal set of elimination of sm-flaws (sp-flaws).

Proof. Since a strictly dominated strategy is also a weakly dominated strategy, it follows that a sm-flaw is in particular a 
wm-flaw. Thus, a process of elimination of sm-flaws is the beginning of a process of elimination of wm-flaws. The proof for 
the case of pure domination is the same. �

Next we consider the relation between elimination of strict flaws and elimination of weak dominated strategies.

Claim 3. Any process of elimination of sm-dominated strategies (sp-dominated strategies) is a process of elimination of sm-flaws 
(sp-flaws).

Proof. If S0, S1, . . . , Sm is a process of elimination of sm-dominated strategies, then for any si which is eliminated from 
Sk

i and any t−i in Sk
−i , (si, t−i) is an i-sm-flaw of Sk relative to Sk

−i i. Thus, the elimination of si form Sk
i , which is the 

elimination of all profiles (si, t−i) in Sk , is an elimination of sm-flaws from Sk . The argument for pure domination is the 
similar. �

Thus, in view of the order independence stated in Proposition 1 we conclude:

Corollary 1. The terminal set of all processes of elimination of sm-flaws (sp-flaws) is the terminal set of all processes of elimination of 
sm-dominated strategies (sp-dominated strategies).

Finally, we consider the relation between processes of elimination of weak flaws and processes of elimination of weakly 
dominated strategies. While the first are order independent, the latter are not. However,

Proposition 2. The terminal set of the processes of elimination of wm-flaws (wp-flaws) contains all the terminal sets of processes of 
elimination of wm-dominated strategies (wp-dominated strategies).

Proof. Let T = ×i T i be a terminal set of a process of elimination of wm-dominated strategies, and let S = S0, S1, . . . , Sm

be a process of elimination of sm-flaws. We show by induction that for all k, T ⊆ Sk . This hold obviously for k = 0. Assume 
that T ⊆ Sk . Suppose that s ∈ T is a wm-flaw of Sk , then by Claim 1 it is a wm-flaw of T . But this means that for some 
i, si is wm-dominated relative to T−i which contradicts the definition of T . Thus, s is not a wm-flaw of Sk and therefore 
s ∈ Sk+1. The same proof holds for pure domination. �

The example in the introduction demonstrates that the terminal set of elimination of weak flaws can be larger than 
the terminal sets of processes of elimination of weakly dominated strategies. The relation between the terminal sets of 
the various processes of elimination is summarized in the following table, where weak and strict refer to either wm- and 
sm-dominance, or wp- and sp-dominance.

Any terminal set

of elimination

of weakly

dominated strategies

⊆
The terminal set

of elimination

of weak flaws

⊆
The terminal set

of elimination

of strict flaws

=
The terminal set

of elimination

of strictly

dominated strategies

Among the ways in which they differ, the elimination of weak flaws differs from the elimination of weakly dominated 
strategies in the way in they which treat pure strategy equilibria. An equilibrium profile can be eliminated in the latter, 
but not in the first, as, by definition, an equilibrium profile is never a flaw. Thus, all pure strategy equilibrium profiles are 
contained in the terminal set of the iterative elimination of weak flaws.9

9 In fact, we can make a much stronger statement. In Hillas and Samet (2019) we show that no strategy profile played with positive probability in a 
correlated equilibrium is a d-flaw for any d.
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4. Common knowledge of dominance rationality

To express formally rationality and its common knowledge we use a model for the game G .10 The model is given by a 
knowledge structure and a description of the strategy profiles played in each of its states. The knowledge structure consists 
of a finite state space � with a partition �i for each player i. At a state ω player i knows all the events that contain �i(ω), 
the element of i’s partition that contains ω. The meet of the partitions �i is the partition which is the finest among all 
partitions that are coarser than each �i . The event E is common knowledge at ω if the element of the meet that contains 
ω is a subset of E . Thus, the event that E is common knowledge is the union of all the meet’s elements that are contained 
in E . (See Aumann, 1976.)

The strategic choices of the players are given by a function s : � → S which determines which strategy profile is played in 
each of the states. The strategy played by i in each state is given by the function si : � → Si , which satisfies si(ω) = (s(ω))i . 
We further assume that each player knows which strategy she plays. This means that si is measurable with respect to �i , 
or in other words, for each player i and state ω, i plays the same strategy in all the states in �i(ω). For any event E we 
write s(E) for {s(ω) | ω ∈ E} and s−i(E) for {s−i(ω) | ω ∈ E}.

Note, that T−i = s−i(�i(ω)) is the set of profile strategies of the players other than i played in �i(ω). Thus, the event 
that the players other than i play a profile in T−i contains the event �i(ω). Therefore, i knows at ω that the other players 
play a strategy profile in T−i . We can now define the event that a player is rational.

Definition 5. Player i is d-dominance rational in state ω if the strategy she plays in ω is not d-dominated relative to the set 
of profiles of the other players which she considers possible at ω. That is, there is no strategy of hers that d-dominates 
si(ω) relative to the set s−i(�i(ω)).11

Definition 6. A strategy profile s is compatible with common knowledge of d-dominance rationality, if there is a model of the 
game, and a state ω in the model, such that s(ω) = s, and it is common knowledge at ω that all players are d-dominance 
rational.

Theorem 1. A strategy profile is compatible with common knowledge of d-dominance rationality if and only if it is in the terminal set 
of the processes of elimination of d-flaws.

Proof. Let S0, S1, . . . , Sm be a process of elimination of weak (strict) flaws. Suppose that in some model for G it is common 
knowledge in some state that players are weak-dominance (strict-dominance) rational. By restricting the model to the event 
that weak-dominance (strict-dominance) is common knowledge, we can assume, without loss of generality, that the players 
are weak-dominance (strict-dominance) rational in each state.

We show by induction that s(�) ⊆ Sk for each k ≤ m. This is obvious for S0 = S . Suppose we proved it for k. Observe 
that for each ω, s(ω) ∈ s(�i(ω)) ⊆ s(�) ⊆ Sk , where the last inclusion is the induction hypothesis. Thus, if, contrary to 
what we want to show, s(ω) /∈ Sk+1, then, for some i, it is a weak (strict) i-flaw of Sk . It follows by Claim 1 that s(ω)

is a weak (strict) i-flaw of s(�i(ω)). But this implies that some strategy ŝi of i weakly (strictly) dominates si(ω) relative 
to {t−i | (si(ω), t−i) ∈ s(�i(ω))} = s−i(�i(ω)). This means that i is not weak-dominance (strict-dominance) rational in ω, 
contrary to our assumption. Thus, s(ω) ∈ Sk+1 for each ω, that is, s(�) ⊆ Sk+1.

For the converse direction we construct a model in which weak-dominance (strict-dominance) rationality holds in all 
states (and thus is common knowledge in each state) and Sm = s(�). We take � to be Sm and set s(s) = s. For each i
and s ∈ �, we define the partition �i such that each player knows what she plays, that is, �i(s) = {s′ | s′

i = si}. It follows 
immediately from the fact that for any i there are no weak (strict) i-flaws in Sm , that for each state s ∈ Sm each player is 
weak-dominance (strict-dominance) rational at s. �

The order independence of iterative elimination of weak (strict) flaws, which was proved in Proposition 1, is also a corol-
lary of this theorem, as each terminal set of such a process coincides with the same set of profiles that can be played when 
weak-dominance (strong-dominance) rationality is commonly known. Note, that the proof makes use of the monotonicity 
of flaws described in Claim 1, which is used to prove directly the order independence in Proposition 1.
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