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A game theoretic approach reveals that discretizing
clinical information can reduce antibiotic misuse
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The overuse of antibiotics is exacerbating the antibiotic resistance crisis. Since this problem is

a classic common-goods dilemma, it naturally lends itself to a game-theoretic analysis.

Hence, we designed a model wherein physicians weigh whether antibiotics should be pre-

scribed, given that antibiotic usage depletes its future effectiveness. The physicians’ decisions

rely on the probability of a bacterial infection before definitive laboratory results are available.

We show that the physicians’ equilibrium decision rule of antibiotic prescription is not

socially optimal. However, we prove that discretizing the information provided to physicians

can mitigate the gap between their equilibrium decisions and the social optimum of antibiotic

prescription. Despite this problem’s complexity, the effectiveness of the discretization solely

depends on the type of information available to the physician to determine the nature of

infection. This is demonstrated on theoretic distributions and a clinical dataset. Our results

provide a game-theory based guide for optimal output of current and future decision support

systems of antibiotic prescription.
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Resistance to antibiotics has significant public health
implications worldwide1,2. Antibiotic-resistant infections
increase mortality rates, lengthen hospital stays and

increase treatment costs3. When a patient is suspected of having a
bacterial infection, bio-specimens are often collected, cultured,
and undergo antimicrobial susceptibility testing. Typically, the
results are known within several days. Having the results, a
physician can prescribe an appropriate definitive treatment.
However, these days might be critical, and therefore an initial
empirical antibiotic treatment is given before identification of
the causative pathogen4. The choice of empirical treatment can be
based on either the physician’s informal assessment of the like-
lihood of different types of infection, given the patient’s medical
symptoms, clinical settings, and the results of immediate diag-
nostic tests5,6, or the output of a decision support system7.

Appropriate empirical treatment, that ex-post matches the
culture results, is highly important. Mainly, it reduces the mor-
tality rate due to bacterial infections significantly8–10. The obvious
adverse effect of unnecessary empiric treatment is excessive use of
antibiotics, which drives the emergence of antibiotic-resistant
pathogens in the general population1,11, as well as in the treated
patients themselves12–14, through the evolutionary forces of
selection. Nonetheless, patients are often unnecessarily treated
with antibiotics (i.e., when no bacterial infection is present)15.

The problem of resistance emergence has set a challenge to the
medical decision-making literature, which traditionally focuses on
the well-being of the individual patient. Both empirical and the-
oretical studies have been conducted to find antibiotic prescrip-
tion strategies that decelerate the process of resistance emergence
and spread16–22 and analyze its economic cost to society23,24.

Nearly none of the existing models have analyzed the clinical
decision problem of initiating antibiotic treatment from a game-
theoretic perspective but instead tried to identify the socially
optimal policy—one that considers the benefit of both current and
future patients. The underlying assumption in such models is that
since antibiotics can only be consumed given the physician’s pre-
scription, the recommended policy can and will be implemented,
despite the inherent conflict between the social interest and the
personal interest of a single patient. However, the assumption of
compliance to antibiotic usage guidelines may be unwarranted.
Physicians have been documented to ignore recommendations of
support systems, both with regards to antibiotic therapy7,25 and in
other settings26–28. These deviations may be analyzed as rational
strategic behavior, using the framework of game theory.

A game-theoretic approach views a physician as a decision-
maker (player) who seeks the treatment policy that will optimize
the expected utility of his own patients, given the behavior of the
other players. The player is not assumed to consider the utility of
patients who are not under his direct responsibility. This
assumption can be interpreted in two possible ways: the physician
may either act myopically as if each patient himself were the
decision-maker, or he may act on behalf of both his present and
future patients.

The first interpretation was recently modeled in ref. 29, but the
model precluded physicians from considering any long-term
implication of antibiotic usage on future patients. Furthermore,
this model did not consider a potentially crucial factor underlying
the clinical decision of whether to administer an antibiotic treat-
ment: the differential information regarding the probability of
bacterial infection in each patient. Hence, the modeled treatment
strategies were limited to either treat/not treat everyone, or
making a random decision. Additionally, in ref. 30 the authors use
an evolutionary game theory approach to model antibiotic pre-
scription behavior. However, this study assumes that the treat-
ment is definitive rather than empirical: only patients who actually
have a bacterial infection are treated, while no considering the

uncertainty about the patient diagnosis, which is the main issue we
tackle in this research.

The second interpretation of the game-theoretic approach has
not yet been considered, and it is the main focus of our study. In
this setting, the decision-maker does not completely ignore the
effect of antibiotic use on future patients, as in the case of myopic
behavior. However, the decision-maker does not completely
comply to it as well, as in the case of socially optimal policy. Due
to the abovementioned lack of compliance to decision support
systems, the Nash equilibrium of this game may be viewed as a
realistic representation of physicians’ decision-making. Here, the
Nash equilibrium is a scenario where none of the physicians
benefit from unilaterally changing their behavior, and thus will
tend to continue the same course of action. Therefore, it is
important to find out under which conditions the equilibrium
strategies correspond with the socially optimal policy. A sig-
nificant difference between the physicians’ equilibrium and the
optimal policy would lead to the conclusion that full imple-
mentation of the social optimum should not rely solely on the
goodwill of physicians.

This study analyzes the clinical decision problem of initiating
an empirical antibiotic treatment from a game-theoretic per-
spective and compares the socially optimal policy with the
myopic policy and the subgame perfect Nash equilibrium. A
subgame perfect equilibrium is the most rational equilibrium of
the game, in the sense that each player’s strategy is required to be
optimal for every possible progression of the game (not only in
the path that is actually implemented). In the “Methods” section,
the medical problem is described and modeled as a repeated game
with imperfect information between two physicians in “For-
mulation of the problem” subsection, which also includes the
description of the myopic policy. The social optimum and its
main characteristics are analyzed in “The social optimum” sub-
section and the subgame perfect equilibrium in “The subgame
perfect equilibrium” subsection, where we prove the existence of a
symmetric subgame perfect equilibrium and show that the opti-
mal policy and this equilibrium are never the same. Furthermore,
we show that the equilibrium strategies always dictate an overuse
of antibiotics, compared to the social optimum.

In the “Results” section, we propose a simple yet surprising
solution to show that changing the structure of the data available
to the physicians, specifically discretizing or coarsening it, can
reduce the gap between a rational physician’s equilibrium and a
socially optimal policy. The formal derivations and proofs of this
result are given in “Reducing the problem” subsection of the
“Methods” section. This result is independent of any parameter
values, apart from the shape of the physician’s information dis-
tribution (i.e., the distribution of probabilities of a bacterial
infection, based on various diagnostics). We show our results
under different theoretic distributions as well as an empiric dis-
tribution we estimate from data of respiratory infections in
children.

Results
The original model: continuous information signal. We
describe a repeated (stochastic) game with imperfect information,
in which physicians are players, who receive patients over time.
Each physician decides whether to treat his current patient with
antibiotics. The physicians’ decisions rely on a partial information
signal about each patient: the probability of a bacterial infection
before culture results are available. Each physician estimates this
probability, often intuitively, without a formal derivation, from
medical symptoms and the results of immediate diagnostic tests5.
The single-patient decision problem of a physician is described in
Fig. 1.
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In addition, each use of an antibiotic drug depletes its future
effectiveness due to antibiotic resistance. Thus, a strategy of the
physician in our game describes the minimal probability of
infection (threshold signal) that would make him administer
antibiotic treatment at any given level of antibiotic effectiveness
(E-state—the current sensitivity of the bacterial population to the
antibiotic).

In order to calculate the total expected payoff of any possible
strategy-combination, the physicians should consider the signal’s
distribution; i.e., the probability that a future patient would have a
certain value of p (probability of a bacterial infection). This
information system is characterized by a continuous density
function f(p), which induces a posterior p that the patient has a
bacterial infection. That is, there is a probability of F pð Þ ¼R p
0f xð Þdx that a random patient has a posterior that is lower than

or equal to p.
An extended description of the model appears in “Formulation

of the problem” subsection of the “Methods” section.
We then focused on contrasting two main treatment policies: A

socially optimal policy, aimed to maximize the sum of all patients’
utilities over time; and an equilibrium policy, derived from each
physician’s attempt to maximize the cumulative utility of all of his
own patients over time, given the behavior of the other physician.

Under the social optimum, we show that as long as a sufficient
amount of antibiotic effectiveness still exists (the E-state is large
enough)—it is worth treating only patients with a very high
probability of infection (see Theorem 2 in the section “The social
optimum”). When analyzing the equilibrium policy, we prove
that a symmetric pure-strategy Markov Perfect Equilibrium
(MPE) always exists (Theorem 6 in the section “The existence of a
Markov Perfect Equilibrium in pure symmetric strategies”). An
MPE is an equilibrium in which each player’s strategy is subgame
perfect (as explained above), and the decision regarding each
patient depends only on the information available to the
physician at the present time (p and the current level of antibiotic
effectiveness). The decision does not depend, for example, on the
past behavior of the other physician. Moreover, under the MPE
the physicians always use antibiotics more extensively than the
social optimum would dictate (Theorem 7 in the section
“Comparing the MPE and the social optimum”).

Implementing social optimality. We will try to eliminate, or at
least reduce, the gap between the optimal policy and the MPE, by
changing the structure of the game. The implementation pro-
blem31 is “the problem of designing a mechanism (game form)
such that the equilibrium outcomes satisfy a criterion of social
optimality”. The mechanism designer cannot impose the socially
optimal policy on the players. Instead, he strives to set the rules of
the game in such a way that the desired outcome will become an
equilibrium. In our case, the possible changes in the rules of the
game are constrained, mainly by ethics and norms. For instance,

fining a player for using undesirable strategies is a common and
effective means in mechanism design. However, as the payoffs in
our game are based on survival rates or other measures of health,
it is not possible to punish a physician by reducing his payoffs
(i.e., harming his patients). In addition, it is not reasonable to
make a clinical decision on the basis of the toss of a coin.
Therefore, we will consider solutions that are based on changing
the information structure of the game.

Coarsening the information. Our goal now is to manipulate the
information structure in a way that would turn the optimal policy
into an MPE. Alternatively, in case this is impossible, we would
like our manipulation to add a new equilibrium to the game,
which is more socially desirable than the existing MPE.

The information system in our original model consists of each
physician’s private signal, which we define as a continuous
density function f(p). This private signal can be, for example, the
body temperature of the patient or an output from a decision
support system. The continuous signaling system can be replaced
with a discrete signal system, which is less informative. The
posteriors induced by the new signal are calculated using Bayes’
rule. We call this process “coarsening” the information.

If we have a continuous information system f(p) and we want to
replace it with a dichotomous discrete system, we need to determine
a certain threshold probability T. The new system contains two
signals, high (H) and low (L), indicating whether the patient’s
probability of having a bacterial infection is higher or lower than the
given threshold T. Each of these two signals appears with a certain
probability and induces a different posterior that the patient has the
infection (see section “Coarsening the information: calculations”).

Notice that in the case of medical information, it is very simple
to implement, especially when decisions are informed by predictive
risk scores or probability assessments attained from algorithms—
by receiving the results clustered into ranges instead of an exact
number. For example, if the signal is the patient’s temperature, we
can relay information only regarding “high” vs. “low” temperature
values, based on our selected threshold.

Similarly, if we want to replace the continuous information
system with a discrete system that contains J signals rather than
two, we will use a similar coarsening process with J − 1
thresholds. However, for the purpose of our discussion, it is
sufficient to consider dichotomous signals.

Information and stability. By Theorem 4, we know that if any
deviation in any direction (and specifically towards overuse of
antibiotics) is worthwhile, then the minimal deviation in this
direction is worthwhile as well (the minimal one-stage-deviation
principle). However, the opposite claim is not necessarily true. In
many cases, it is possible that a physician has an incentive to
perform a small deviation towards overuse, while a large devia-
tion in the same direction would result in a loss.

Using a dichotomous signal system with a threshold T is
equivalent to limiting the set of available decision rules in each E-
state to either “treating only patients with a high signal” or
“treating everyone”. Consequently, we limited the set of possible
deviations from a recommended policy. Specifically, if the
recommended symmetric policy is “treating only patients with
a high signal”, a player may either deviate to “treating everyone”
or stick to the recommendation. Thus, it is possible that this
recommended policy will not be an equilibrium under the
original continuous information system, and yet it will be an
equilibrium under the dichotomous system.

As a result, although the optimal symmetric policy is never an
MPE in a continuous information system, we may be able to turn
it into one by coarsening the information using a very high

Fig. 1 Single-patient decision tree. The tree of the single-patient decision
problem of a physician given information signal p.
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threshold. For example, let us assume once again that the signals
are the patient’s body temperature. Suppose that a body
temperature of at least 39 °C induces a very high posterior that
the patient has a bacterial infection (p→ 1). Thus, the optimal
policy is treating only patients with at least 39 °C, and we want
this policy to be an equilibrium. Assume a patient arrives with a
body temperature of 38.9 °C. The posterior probability that he has
a bacterial infection is only slightly lower than that of a patient
whose body temperature is 39 °C, and thus the expected utility
from treating this patient with antibiotics is rather high.
Therefore, if the physician knows the exact body temperature
of this patient, he has a strong incentive to deviate from the
optimal policy. However, suppose now that we coarsen the
information, and the new signal merely informs the physician
whether the patient’s body temperature is above or below 39 °C. If
the physician only knows that his patient’s body temperature is in
the range of 36–38.9 °C, the new posterior that this patient has a
bacterial infection is much smaller, and therefore the expected
utility from treating him is much lower. Consequently, the
physician’s tendency to follow the optimal policy will be much
stronger. A similar scenario may arise if a physician receives an
output of a decision support system designed to predict the
probability of the need for antibiotic treatment. This output too
can be discretized into “low”, “medium”, and “high” categories
instead of a numerical value between 0 and 1 to increase the
tendency to follow the optimal policy.

When we use the new information system, the fixed symmetric
policy of “treating only patients with a high signal” can be
considered a good approximation of the original optimal policy.
Therefore, we would like to know whether it can be an MPE.

Our main theorem states that the symmetric strategy
combination, in which both players treat only patients with a
high signal is an MPE if and only if

pH � pL ≥ 1� F Tð Þ½ �pH þ F Tð ÞpL ð1Þ
For detailed mathematical formulation and proof see Theorem 9
in the section “Implementing optimal policy as a new MPE”.

Note that the condition in the theorem involves only the
information of the physicians and not any other parameter of the
medical problem.

The meaning of Theorem 9 is that treating only patients with a
high signal is an MPE if the difference between the higher and the

lower posterior of bacterial infection is not smaller than the prior
probability of bacterial infection. This prior probability of a
bacterial infection, P(B), is a given parameter of the original
continuous information system f(p):

8T; P Bð Þ ¼ 1� F Tð Þ½ �pH þ F Tð ÞpL ¼
Z 1

0
p � f pð Þdp ¼ E pð Þ

which, conveniently, is the expected value of the posterior
probability of a patient having a bacterial infection. Therefore, for
any given continuous information system, we can define h(T)=
pH − pL, and find out what is the range of possible thresholds,
subject to h(T) ≥ E(p).

From this theorem, we can also conclude that if we specify the
“symmetric strategy combination, in which both players treat
only patients with a high signal MPE” as our goal, a coarsening
process will fail only in either of the following probabilistic
scenarios. First, when the prior probability of bacterial infection
(the right side of Eq. (1)) is very high, to begin with. However, in
this case, the damage caused by the instability of the optimal
policy is limited, since even overuse of the drug would yield a
relatively high social utility. Second, if the original signal
distribution has low dispersion resulting in a low difference
between pH and pL (the left side of Eq. (1)).

Signal distributions. To demonstrate the relations between the
original information structure and the possible values of the
threshold T, we present several possible scenarios of the signal
distributions of a bacterial infection f(p) represented by a beta
distribution with different parameter combinations (Fig. 2a–d).
The choice of a beta distribution was driven by its flexibility, its
support laying in [0,1], and its role as a conjugate prior of the
Bernoulli distribution, lending itself naturally to model distribu-
tions of such probability values. Examples of other distributions
are given in the Supplementary Information (Supplementary
Note 12). First, we present a scenario wherein often information
regarding the infection is distinctly associated with a bacterial or
non-bacterial disease (Fig. 2a). Such a scenario may arise when
diagnosing endocarditis, where clinical information can be highly
indicative of bacterial infection, rule it out almost certainly, or
have some uncertainty32. In this case, we can set T at any value
larger than 0 (Fig. 2e). In a scenario where patients are approxi-
mately as likely to arrive with different symptoms that define

Fig. 2 Theoretical posterior distributions of bacterial infection signals, and corresponding threshold values possible by coarsening the data.
a–d Probability distribution functions f(p) representing distinct scenarios of a bacterial infection signal. e–h Corresponding (top-bottom) values of E
(expected posterior value, horizontal black lines), pH and pL (posterior probability of bacterial infection given a high and low signal, upper and lower dashed
curves, respectively), their difference pH − pL (red curves) and the minimal threshold T (blue vertical lines) achievable by coarsening the data.
All distributions are beta with parameters α 2 1

2 ; 1; 1; 20
� �

; β 2 1
2 ; 1; 5; 20
� �

, corresponding to a–d.
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various degrees of certainty in the diagnosis of a bacterial infec-
tion, we can represent f(p) by a uniform distribution (Fig. 2b).
Similarly, we can model information with uniform distribution on
only a subset of the range of probability values, e.g., uniform on
(0,0.5) and zero otherwise. A scenario pertaining to these kinds of
distributions can be observed, for example, in pharyngitis diag-
nosis, for which a set of criteria have a range of probabilities
attributed to them being indicative of a bacterial infection33. Then,
once again, any threshold T can be turned into an MPE by
coarsening the information (Fig. 2f). If most of the infections are
non-bacterial, and f(p) is skewed to the right, we have some
freedom in setting the value of T and can potentially reduce
antibiotic misuse by coarsening the signal given to physicians
(Fig. 2c). This is similar to the empiric data of upper respiratory
infections in young children, demonstrated in the next section. On
the other hand, if in most cases a bacterial infection is approxi-
mately as likely as a non-bacterial one, i.e., f(p) is centered around
0.5, then there is not enough information in the system and no
equilibrium T values can be set by coarsening the data (Fig. 2d).

Empirical example. We further investigated a real-world exam-
ple. We obtained medical record data of 1202 children aged <2
years who were hospitalized for a respiratory tract infection. We
trained a machine learning model to classify bacterial and viral
infections using the patients’ medical records, and used the
model’s output as an estimate of the posterior probability of a
bacterial infection—f̂ p

� �
(Fig. 3; see “Methods” section for

details). For the obtained posterior distribution, coarsening the
data can produce any threshold T ≥ 0.546, which can thus allow
varying degrees of the strictness of antibiotic regulation upon a
respiratory tract infection in children. That is, if the output of this
toy model, or an improved machine learning algorithm, is pro-
vided to physicians to assist rapid classification of respiratory
tract infections, a simplified output of “high” and “low” prob-
ability should help compliance and might mitigate antibiotic
overuse.

Discussion
This study applies the conceptual framework of game theory to
analyze the conflict between individual and societal interests that
is inherent to the decision problem of initiating an empirical
antibiotic treatment. The problem is clear when the physician
focuses on the well-being of a single present patient: in this case,
initiating antibiotic treatment is a dominant strategy. However,
we have shown that the problem remains even if the physician
does consider long-term implications, and cares about the well-
being of his future patients.

We have shown that in this setting, although a symmetric
subgame perfect equilibrium in pure Markov strategies always
exists, it is not socially optimal, and the socially optimal policy is
not an MPE. The analysis in the section “The subgame perfect
equilibrium” of the “Methods” chapter, provides evidence that,
although administering antibiotics to everyone is no longer a
dominant strategy, the rational strategic behavior would lead to
an overuse of antibiotics.

Our model reveals that in a setting that involves an interaction
between several decision-makers (physicians), supplying each of
them with the maximal available information turns the socially
optimal treatment policy into an instable recommendation (i.e.,
knowing the maximal information generates an incentive for each
physician to deviate from the recommended policy). This is an
unintuitive result since in single-agent decision theory informa-
tion cannot have a negative value, as it is either beneficial or
ignored by the decision-maker. We have further suggested a way
to mitigate the problem by coarsening the information that is

available to the physicians regarding the probability of a bacterial
infection. Hence, by coarsening the available information and
bringing the physician’s decisions closer to the social optimum, a
reduction in antibiotic misuse is expected, which should con-
sequentially reduce antibiotic resistance frequencies1,11,13,34,35.

Importantly, the conditions dictating when coarsening the
information is socially beneficial to depend solely on the dis-
tribution of the signal indicating whether the infection is of
bacterial origin. This is a general result, independent of other
parameters such as the utility of antibiotic treatment and anti-
biotic resistance frequencies.

Coarsening the information provided to a physician is already
carried out in both this and other medical decision problems. For
example, the Centor criteria help identify whether a sore throat is
caused by a bacterial agent33, and the diagnosis is based on
summing points allotted to symptoms and discretized age
brackets. Similar discretizations of risk information are made for
stroke36, endocarditis32, cardiovascular-related death37, pancrea-
tic fistulas38, and many other medical applications. Our work
shows for the first time that this discretization can guide rational
physicians to more societally beneficial decisions.

Furthermore, low compliance to the recommendations provided
by clinical decision support systems is often a limiting factor in their
success39,40. In addition to the benefits of coarsening information

Fig. 3 Posterior distributions of bacterial infection signals for children
with respiratory tract infections, and the corresponding threshold values
possible by coarsening the data. Top: The estimated probability
distribution function f(p) associated with respiratory tract infections in
children, caused either by a bacterial or viral (RSV) agent (see “Methods”
section). Under the distribution, a rug-plot indicates the actual origin of
infection in the data. Bottom: The corresponding values of E (expected
posterior value, horizontal black line), pH and pL (posterior probability of
bacterial infection given a high and low signal, upper and lower dashed
lines, respectively), their difference pH − pL (red curve) and the minimal
stable threshold T (blue vertical line) achievable by coarsening the data.
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presented in our results, a potential benefit could result from the
fact that providing detailed probabilistic information to physicians
does not necessarily improve their decisions regarding antibiotic
treatment. A study examining whether improving physicians’
judgments of the probability of streptococcal pharyngitis for
patients with sore throats would affect their use of antibiotics,
concluded that teaching physicians to make better judgments of
disease probability may not alter their treatment decisions5. The
authors hypothesized that even when the exact probabilistic infor-
mation was available to physicians, they did not condition their
decisions on it; but rather on ordinal judgments of disease prob-
ability or symptom severity, such as “not sick”, “mildly sick”,
“moderately sick”, or “severely sick”. If this is the case, coarsened
information can define these categories for physicians in a way that
would benefit society. In other words, the goal of the coarsening is
not to reduce the information available to the physicians but to
simplify the decision-making process and thus make it more
effective.

Although the analysis performed here is relatively general and
relies on few assumptions, it naturally includes several limitations.
Principally, the coarsening process may also add new undesired
equilibria. In the worst case, it may even turn the myopic policy
of treating everyone at every E-state into an equilibrium. How-
ever, a reasonable assumption is that a policy can be recom-
mended to the physicians (either by some kind of authority or by
a decision support system), and if the players have no incentive to
deviate from this recommendation—it will indeed be accepted
and implemented. Therefore, if the coarsening process indeed
succeeds, the social interest in adding a good MPE outweighs the
risk of adding a bad MPE.

Notably, we did not use a mechanistic model for the spread of
antibiotic resistance, but rather approximated it by depletion of
antibiotic effectiveness (E-state), as explained in the “Methods”
section. We also assumed, for mathematical convenience, that the
game ends when antibiotic effectiveness is completely depleted
(E-state 0). In practice, the administration of antibiotics with very
high resistance frequencies is rare, but this has a negligible effect
on our modeling framework. Low levels of drug effectiveness
yield very low utility to the players, and therefore stopping the
game at this point has no significant effect on their decisions until
this point. Moreover, while we set the conditions for a successful
information coarsening process (Theorem 9), we demanded that
the new threshold T would be an equilibrium at any resistance
level. If we, alternatively, specify a less ambitious MPE as our goal,
e.g., “treating only patients with a high signal from E-state k′
onwards” (i.e., restricting the antibiotic treatment to patients with
likely bacterial infections only when resistance levels are low),
such a target MPE would only extend the range of possible
T values.

Further limitations of our analysis are the focus on a decision
including only the binary option of treatment/no treatment, and
focusing on a two-player game between physicians. Regarding the
former, a more general scenario should include different types of
antibiotics, with different spectra of coverage and effect on resis-
tance frequencies. In order to simplify the mathematical pre-
sentation, we have chosen to focus on the single antibiotic case,
which contains the main aspects of the decision problem. Future
research should also cover a wider framework, containing several
drugs, e.g., representing the prescription of broad or narrow-
spectrum antibiotics. However, this is a more complex case where
the effect of one antibiotic on the other’s future effectiveness, due
to cross-resistance41–43 between the different antibiotics, is not
trivial and should be accounted for. With respect to the latter
limitation, our results are relevant not only for single physicians. A
player in a game-theoretical model is often a group of people with
common goals and utilities and centralized decision-making, such

as a football team, a firm, or even a country. In our case, a player
may refer to a hospital or a country, in which many physicians
apply the same clinical guidelines and policies. Consequentially
our results can translate into the conflicts between the current and
future patients of the specific hospital or country, rather than a
certain physician. Finally, we note that our results are of the
highest relevance where antibiotic use is mostly conditioned on a
physician’s prescription. We acknowledge that this might not be
the case in some low- and middle-income countries, where non-
prescription use can even account for the vast majority of total
antibiotic use44.

To conclude, the problem of antibiotic misuse and resistance
can be viewed as an example of the tragedy of the commons45.
This concept has been previously used to describe the allocation
of limited medical resources in scenarios of a conflict between
individual and societal interests46. Previous studies called for
collective solutions47, which may take the form of placing explicit
resource constraints on resources available to physicians, or
clinical practice guidelines that recognize cost-effective care as
acceptable. The current study suggests another type of solution:
supplying the physician with the level of information that would
enable him to be committed to his patients without hurting
society. This solution is expected to become increasingly relevant
as data collection and computational power continually enhance
the involvement of decision support systems in medicine48 and
specifically with respect to antibiotic resistance49–51, and hence
warrants further empirical investigation.

Thus, by changing his available information, we allow the
physician to act rationally and yet guide him towards the socially
optimal decision and relieve him of the prisoner’s dilemma
underlying the decision of antibiotic prescription.

Methods
Formulation of the problem. The medical problem considered in this research
involves a patient who has clinical symptoms that may indicate the existence of a
bacterial infection. To simplify the analysis, we assume that only one type of
antibiotic treatment is available, and that antibiotic treatment increases the chances
of recovery of patients having bacterial infections while not affecting the recovery
of patients without bacterial infections.

The effectiveness of the antibiotic drug, denoted e, is the probability that the
infecting bacteria are susceptible to it, whereas 1− e will be the probability of
resistance.

The effectiveness of the antibiotic drug is not constant. Each use of the
antibiotic drug (whether necessary or not) induces selection of resistant pathogens,
and therefore reduces its future effectiveness (i.e., diminishes e). In addition, a
patient who does not have the bacterial infection might acquire an opportunistic
infection as a consequence of unnecessary antibiotic treatment. The chance of that
happening is denoted c.

The physician, an agent acting on behalf of the patient, must decide whether an
empirical antibiotic treatment should be administered. His decision relies on partial
information about the patient: the probability of a bacterial infection in a given
patient before culture results are available. This information is derived from
symptoms, immediate diagnostic tests or decision support systems. The
information signal results in a random variable parameter p, which is the posterior
probability that the patient has the bacterial infection, where 0 ≤ p ≤ 1. The signal is
a continuous random variable with a density function f(p) (see section “Treatment
policies in the dynamic model”, under “Information”). We assume the physician
has complete information on all the parameters mentioned above, regarding the
patient.

Treatment policy in the static model. Most of the medical decision-making focuses
on the best interest of a single patient currently under treatment. Under this point
of view, the question of whether to administer an antibiotic treatment, given a
certain signal, becomes a static decision problem. The static decision analysis takes
the current level of effectiveness as a parameter and ignores the current decision’s
contribution to the emergence of resistance and its effects on other future patients.

Following Pauker and Kassirer52,53, the static problem can be represented as a
decision tree, and analyzed using the threshold approach derived directly from
expected utility theory. In our case, the decision tree is presented in Fig. 1. The
calculation of the expected utility of each action is simply performed by weighting
the probability and the utility of each possible outcome presented in this tree. If we
denote bacterial infection by B and no bacterial infection by N, the expected
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utilities of administer\withhold antibiotic treatment are:

E Að Þ ¼ p � u B; Treatedð Þ þ 1� pð Þ � u N;Treatedð Þ
E Wð Þ ¼ p � u B;Not Treatedð Þ þ 1� pð Þ

� u N;Not Treatedð Þ
where p is the probability of having a bacterial infection and u is the utility
function. The aim of the static analysis is to calculate the treatment threshold
probability, T. The optimal treatment policy of the physician is administering
treatment if the probability of the patient having a bacterial infection (p) exceeds
the threshold. By setting E(A)= E(W), the treatment threshold probability is
calculated in the following way:

T ¼ u N; Not Treatedð Þ � u N;Treatedð Þ
u B; Treatedð Þ � u B;Not Treatedð Þð Þ þ u N;Not Treatedð Þ � u N;Treatedð Þð Þ

ð2Þ
In the original analysis of Pauker and Kassirer, there are four possible outcomes,

and each one of them is assigned a utility. However, as we have mentioned, in our
case we assume that a patient who does not have the bacterial infection has the
same chance of recovery with or without antibiotic treatment. Furthermore, we
assume that since the case of bacterial infection involves a substantial risk, treating
bacterial infection is always preferred to not treating it, and not having a bacterial
infection is preferred to having it, regardless of treatment. Thus, we can define
three levels of utility: r1, the utility of “Bacterial Infection - Not Treated” (bacterial
infection, without appropriate empirical antibiotic treatment); r2, the utility of
“Bacterial Infection - Treated” (bacterial infection, with appropriate empirical
antibiotic treatment); and r3, the utility of “No Bacterial Infection” (no bacterial
infection, either with or without antibiotic treatment). Where r3 > r2 > r1 (note that
the assumption regarding r3 is presented at this point only for the sake of
compliance with the approach of Pauker and Kassirer, but it will not be needed
later on in our complete model, from Eq. (5) onward).

For example, if we assume that the most important aspect of the possible
outcomes is the survival of the patient, the utilities were assigned as follows: There
are two possible states—alive and dead. Since we are dealing with Von
Neumann–Morgenstern utilities54 we can arbitrarily set u(alive) = 1 and u(dead) =
0. Consequently, the utility of each outcome is simply the conditional probability of
survival. Importantly, the utilities in the model can include other aspects not
mentioned above, such as drug side effects, quality of life, financial costs, or other
indirect costs6,55. The only assumption we make is that the order of preferences,
based on the utility values, is preserved (r3 > r2 > r1). This assumption translates into
the statement: having an untreated bacterial infection is worse than having a
bacterial infection that is treated with an effective antibiotic, and this is, in turn, is
worse than not having a bacterial infection at all. This assumption holds as long as

having a bacterial infection is costly (health-wise or financially) to the patient or the
healthcare system.

If we replace the final outcomes in the original tree with these utilities, denote A
for administer treatment and W for withhold treatment, and add the posterior
probability of disease induced by the patient’s symptoms (p), we get to the decision
tree shown in Fig. 4a.

However, two additional components of our model need to be included: the
current level of drug effectiveness (e), and the risk that a patient who does not have
the bacterial infection will develop one because of antibiotic treatment (c). These
two components have the form of additional chance nodes in our decision tree.
Importantly, these do not add new type of outcomes, since they are simply lotteries
between the worst outcome and a more preferable one. The decision tree of the
single-patient one-period problem given a signal that induces a posterior p is shown
in Fig. 4b. The definitions of all relevant variables are summarized in Table 1.

If we now want to calculate the threshold treatment probability in our model,
Eq. (2) has to be adjusted in accordance with the new decision tree. The threshold
T is defined as the probability (of bacterial infection) that generates indifference
between administering and withholding antibiotic treatment. The optimal
treatment policy of the physician is administering antibiotic treatment if the
conditional probability induced by the patient’s signal exceeds the threshold: T ≤ p.
The net risk of treatment is the loss of utility (or survival rates) caused by
developing a bacterial infection as a consequence of the antibiotic treatment,
multiplied by the chance of that happening. The net benefit of treatment is the net
gain of utility (or survival rates) due to effective antibiotic treatment, multiplied by
the chance that the treatment is indeed effective. The threshold treatment
probability equation becomes:

T ¼ c r3 � r1ð Þ
e r2 � r1ð Þ þ c r3 � r1ð Þ ð3Þ

Note that unlike Eq. (2), in the adjusted threshold Eq. (3) there are only three
possible final outcomes (instead of four) and two extra multiplications: of the net
benefit by the effectiveness coefficient e and of the net risk by the risk coefficient c.

Treatment policies in the dynamic model. Treatment policies in dynamic models
involve the use of an antibiotic drug over time. In our dynamic setting, drug
susceptibility (effectiveness) is regarded as a nonrenewable resource. This is a
decent approximation of the state of antibiotic susceptibility—reversal of resistance
is relatively slow and works on time scales bigger than resistance accumulation56,57.
Therefore, any policy which aims to maximize the utility of different patients over
time (either all patients or a selected group of them) has to take into consideration
the future negative consequences of antibiotic use. For the purpose of calculating
social utility, we will assume that it equals the sum of the individual utilities.

The dynamic model compares three types of treatment policies: a myopic
policy, aimed to maximize the utility (or chance of survival) of the current patient

Fig. 4 The decision tree of the single-patient static problem given signal p. a The basic decision tree including administering or witholding treatment (A
and W, respectively), with the probabilities of bacterial and non-bacterial infections (B and N, respectively), and their associated utilities of the outcomes
(r1, r2, r3). b The tree extended to include antibiotic effectiveness (e) and the risk of unnecessary treatment (c). All variable definitions are given in Table 1.

Table 1 Definitions of the variables in the single-patient static problem.

A Administer antibiotic treatment
W Withhold antibiotic treatment
p Probability of bacterial infection given the symptom (signal)
e Current resistance level of the antibiotic drug
c Chance of developing bacterial infection by resistant pathogen after using the antibiotic drug
r1 Utility of bacterial infection, without appropriate empirical antibiotic treatment
r2 Utility of bacterial infection, with appropriate empirical antibiotic treatment
r3 Utility of no bacterial infection, either with or without antibiotic treatment
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at each point of time; a socially optimal policy, aimed to maximize the sum of all
patients’ utilities over time; an equilibrium policy, derived from each physician’s
attempt to maximize the cumulative utility of all of his own patients over time,
given the behavior of the other physician.

Time in our dynamic model is discrete, each physician receives patients and
makes decisions at discrete time points. The following definitions specify the
characteristics of the game model.

Players. The basic setting is a game of two players (physicians) denoted 1 and 2, each of
whom treats one patient in each period. A brief discussion of the extension to n players is
given in section “Recursive calculation of payoffs” and a more general interpretation of
the two players model appears in the discussion.

Patient’s health condition. A patient either has a bacterial infection, B, or does not have it
N. The patient’s condition is not known to his/her physician. We denote by hi the health
condition of player i’s patient, hi ∈ {B, N}, i= 1, 2. The prior probability of a patient
having the bacterial infection in each period is P(B). These probabilities are independent
within each period (between the two patients) and between periods (over time).

Actions. Each player chooses one of two possible actions: to administer antibiotic
treatment, A, or withhold antibiotic treatment, W.

Effectiveness depletion. As mentioned before, each use of the drug decreases the average
antibiotic susceptibility to the drug, or its effectiveness, in the next period by a depletion
effect α. Such depletion is in accordance with both biological knowledge of antibiotic
resistance acquisition in bacterial populations as well as observations of resistance fre-
quencies in countries with varying antibiotic consumption11,34,35. The game ends when
antibiotic effectiveness is completely depleted, for mathematical convenience. This
assumption can be easily attenuated (see “Discussion” section). Given an initial effec-
tiveness level e0 and the depletion effect α, one can calculate the total number of possible
game effectiveness-states, M. Note that since the effect of use has a delay of one period,
when the effectiveness is α two patients can be treated simultaneously before the effec-
tiveness is completely depleted. Therefore, the number of patients that will be treated is
either M or M+ 1. Empirically, M is very large (an antibiotic drug is used by millions of
patients before it is considered not effective), and for the purpose of mathematical
convenience, we will assume that it is as large as we want. For simplicity, we will also
assume that e0=Mα, whereM is a positive integer. The current level of effectiveness et in
any given period t is represented by the current effectiveness-state (E-state), kt ¼ et

α . For
simplicity, and since the E-state does not depend on the period number, we will omit the
index t and denote the E-state by k.

States and dynamics. The definition of state in our model has two aspects. As explained,
the current E-state is defined by the current number of doses left, k ¼ et

α . In each E-state,
the players face a stage-game with imperfect information. The information structure is
defined in the next paragraph. In each stage-game, there are four possible health-states
(H-states), which are the combinations of the health condition of each of the current
patients. The set of H-states is Ω = H1 × H2, where Hi= {B, N} represents the health
condition of player i’s patient. That is, for any fixed k the four possible H-states are: {(B,
B), (B, N), (N, BB), (N, N)}. The system dynamically moves between states. The system
dynamics has two components: deterministic and stochastic. The deterministic compo-
nent is the transition between E-states, and it is determined by the player’s actions and
the current E-state number k, through the effectiveness depletion. The stochastic com-
ponent is related to the condition of the patients in the next period. It is stationary and
depends on the distribution of patients, i.e., on P(B). Thus, with k > 1 doses left, the
deterministic dynamics is moving from E-state k to k, k − 1 or k − 2 according to the
actions described in Table 2.
The stochastic dynamics are:

P ωð Þ ¼
P Bð Þ2� �

forω ¼ B;Bð Þ
1� P Bð Þð Þ2 forω ¼ N;Nð Þ
P Bð Þ 1� P Bð Þð Þ forω ¼ N;Bð Þ orω ¼ B;Nð Þ

8><
>:

Information. We assume that each physician knows the E-state k. That is, physicians
have information regarding the average resistance frequencies of bacterial infections in
their cohorts. However, since the health condition of the patients is not known, the
current H-state is not known by any physician. Each physician observes a signal
regarding his patient. The information signal results in a random variable parameter p,
which is the posterior probability that the patient has the bacterial infection, where 0 ≤
p ≤ 1. The parameter p is a continuous random variable with a density function f(p). We
assume that f is integrable, and thus the probability that a patient’s posterior is p′ or less
is F p0ð Þ ¼ R p00 f xð Þdx. For simplicity, we will also assume that f(p) > 0, ∀p. This
assumption can be easily omitted, by adjusting the strategy space, as explained later
under “Decision rules and strategies” section. The patients’ signals within and between
each period are independent. The signals are private information; each physician
knows only his own patient’s signal. The distribution of the signals, f(p), is common
knowledge. Note that the prior probability that a patient has the bacterial infection is:
P Bð Þ ¼ R 10p � f pð Þdp, which is the expected value of the posterior distribution of a
bacterial infection, later referred to as E(P).

The immediate payoffs. In each period these are defined as the net expected utility of
antibiotic use, i.e., the difference between the utility of treatment and the utility of no
treatment (otherwise, infinite utility can be accumulated by not treating any patient
forever, due to the chance of a spontaneous recovery). Positive net utility (or gain in
survival chances) can be achieved only if the patient had a bacterial infection and the
treatment was effective. The probability of that happening, when signal pi is observed, is
pi · e= pi · kα. Negative utility (or loss of survival chances) is the consequence of
developing infection as a result of the antibiotic treatment, when the patient did not
initially have the infection. The probability of that event is c · (1 − pi). Following are the
immediate expected payoffs of physician i in E-state k when the signal of his patient is pi:

If physician i plays A:

upi kð Þ ¼ pikα r2 � r1ð Þ � 1� pið Þc r3 � r1ð Þ ð4Þ

If physician i plays W: 0
Notice that the immediate payoff of each physician depends only on his own action in

the current period. The mutual effect is indirect and delayed, through the depletion of e.

Decision rules and strategies. A strategy of a physician is a mapping from histories (of E-
states, H-states, and actions) to actions. However, we are interested in a subgame perfect
equilibrium in stationary Markovian strategies (also known as Markov perfect equili-
brium—MPE). Markovian means dependence only on payoff-relevant variables, which in
our model are the states (the E-states and the partial information about the H-states).
Stationary means that these strategies will not depend on t (since time is not payoff-
relevant in our model). In order to check that a combination of stationary Markovian
strategies is an equilibrium, we need only to check that each player has no incentive to
deviate to another Markovian strategy. The reason is that given any fixed stationary
Markov strategy played by the other physician, the decision problem faced by physician i
is equivalent to a Markov decision process (MDP)58. Thus, the best response exists in
Markov strategies, and it can be found using a maximization process of dynamic pro-
gramming. Therefore, we will denote strategies as Markovian, even though we do not
actually limit a physician from deviating into a non-Markov strategy. A stationary
Markov strategy is compounded of decision rules. A decision rule of a physician
determines what to do in the current E-state, given the signal that he currently observes
(the physician’s information about the current H-state), and not on the history. We will
limit our discussion to threshold decision rules dki 2 ½0; 1Þ, where physician i will choose
A if pi ≥ d

k
i and will choose W if pi < dki . The decision rule dki ¼ 1 is not allowed, because

it means not treating at all, since the probability that a patient has a posterior of pi= 1 or
more is 1� F 1ð Þ ¼ R 11f xð Þdx ¼ 0. For the same reason, if we want to allow f(p) = 0 for
pmax < p ≤ 1 then we must limit dki 2 0; pmax½ �. A pure (stationary Markov) strategy of
physician i is, therefore, a vector containing the physician’s M decision rules for all the
possible E-states si ¼ d1i ; d

2
i ; ¼ ; dki ; ¼ ; dMi

� �
; i ¼ 1; 2. Note that the decision rules

will be implemented in reverse order (d1i is the decision rule of player i with only one
dose left to give, e= α). In addition, note that not all the rules will necessarily be applied
in the realization of the game, because whenever both physicians choose A simulta-
neously the game skips E-state k − 1 and moves straight to k − 2. We denote by
ski ¼ d1i ; d

2
i ; ¼ ; dki

� �
(the projection of si on its first k coordinates) a strategy in the

subgame that starts on E-state k (when et
α ¼ k) and continues onwards. We note that

threshold decision rules are not only the intuitive, it is also easy to prove that they are the
most efficient. The proof requires additional definitions that will be specified later in this
section and appear in the Supplementary Information (Supplementary Note 3).

Finding the myopic policy is immediate. The emergence of resistance changes the net
benefit of action A (giving antibiotics) over time, but the future change has no influence
on the decision in the current period. Therefore, the threshold probability is calculated in
each period using (3) with the current level of effectiveness, et.

However, in order to find the equilibrium policies and the socially optimal policy, we
need to analyze the repeated game characterized by the model. The socially optimal
policy is derived assuming that one physician (a social planner) treats all the patients.
Under this assumption, the game becomes a Markov decision process.

The information structure of the social planner problem matches the information structure
of the game between the two physicians. Namely, the social planner is only allowed to
condition his treatment policy on each patient’s signal, and not on the combination of signals.

Table 2 Transition matrix of the deterministic game.

Player 2’s action

A W

Player 1’s action
A k − 2 k − 1
W k − 1 k

A administer treatment, W withhold treatment, k doses left (E-state).
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This setting enables us to compare the two cases since it preserves the information limitations
of the game, but it is also reasonable—in reality, the number of both patients and physicians is
much higher, and it is very unlikely to allow an action that depends on the simultaneous
information of all. Following this line of reasoning, we will also require that the socially
optimal policy will be symmetric, i.e., the same decision rule (but importantly, not necessarily
the same decision) is applied to both patients in every period.
The analysis of the game requires a more detailed definition of the payoffs and the concept

of deviation. These definitions and the derivation of both optimal and equilibrium policies are
described in the next section. For the sake of simplicity, and since c is very small, we will
assume from this point onwards that c= 0. Under this assumption, the net risk of treatment
equals 0, and using antibiotics is a dominant alternative from the single-patient perspective. As
a result, the myopic policy is necessary to treat every patient, regardless of his signal. The
immediate expected payoff for a player who chooses action A in E-state k under this
assumption is:

upi kð Þ ¼ pikα r2 � r1ð Þ ð5Þ

Recursive calculation of payoffs. Payoffs can be calculated for any strategy profile
s= (s1, s2). Let vki sk

� �
be the expected cumulative payoff of physician i from E-state

k onwards, for a strategy profile s. The expected payoff is calculated with respect to
the probability distribution of the signals. Note that the payoff depends on the
strategies of the players only from this point onwards (i.e., their decisions for
E-states 1, …, k), and on the distribution of the future signals.

The value of vki sk
� �

can be calculated recursively, starting from k= 1. The
action taken by each physician in each E-state provides him with a certain
immediate payoff, and the combination of actions taken by both physicians
determines the future E-state, and thus their future payoff. Given the current
E-state decision rule (threshold) of each physician, dki , the probability that
physician i will choose to administer treatment equals the probability that his
patient’s signal will exceed the threshold, i.e.,

R 1
dki
f pð Þdp ¼ 1� F dki

� �
. The different

possibilities of expected payoffs on E-state k are represented in Fig. 5, and the
definitions of all relevant variables appear in Table 3. Note that the figure does not
represent the game tree, but merely the four possible action combinations and their
consequences.

To facilitate the recursive calculation of payoffs, we will sometimes write vki sk
� �

as
vki sk�1; dki ; d

k
�i

� �
. The payoffs can be calculated using the following recursive equation:

vki sk�1; dki ; d
k
�i

� � ¼ Z 1

dki

f pð Þupi kð Þdpþ F dki
� �

F dk�i

� �
vki sk
� �

þ F dki
� �

1� F dk�i

� �� �þ 1� F dki
� �� �

F dk�i

� �� �
vk�1
i sk�1
� �

þ 1� F dki
� �� �

1� F dk�i

� �� �
vk�2
i sk�2
� �

or, noting that vki sk
� �

is on both sides of the equation,

vki sk�1; dki ; d
k
�i

� � ¼
 
kα r2 � r1ð Þ

Z 1

dki

p � f pð Þdpþ F dki
� �

1� F dk�i

� �� ��
þ 1� F dki

� �� �
F dk�i

� ��
vk�1
i sk�1
� �

þ 1� F dki
� �� �

1� F dk�i

� �� �
vk�2
i sk�2
� �! � 1

1� F dki
� �

F dk�i

� �
ð6Þ

The numerator in (6) is the expected immediate payoff of player i given his own
current E-state decision rule plus the expected future payoff given the strategy
profile. The expected future payoff is the probability that either one or two
physicians give antibiotic treatment, multiplied by the expected payoff with either
one or two doses left, respectively. The denominator is the probability that at least
one physician gives antibiotic treatment. For the sake of simplicity, we will
sometimes use the following notation:

k·U= kα(r2 − r1)—the maximal immediate payoff of each physician (net
benefit of treatment) at E-state k.

Ei d
k
i

� � ¼ R 1dki p � f pð Þdp—the expected posterior of a patient that is treated by

physician i.
Aj d

k
i ; d

k
�i

� �
—the probability that exactly j physicians treat with antibiotics.

Specifically:

A0 dki ; d
k
�i

� � ¼ F dki
� �

F dk�i

� �
A1 dki ; d

k
�i

� � ¼ F dki
� �

1� F dk�i

� �� �þ 1� F dki
� �� �

F dk�i

� �
A2 dki ; d

k
�i

� � ¼ 1� F dki
� �� �

1� F dk�i

� �� �
Using this notation, (6) can be written as

vki sk�1; dki ; d
k
�i

� � ¼ k � U � Ei dki
� �þ A1 dki ; d

k
�i

� �
vk�1
i sk�1
� �þ A2 dki ; d

k
�i

� �
vk�2
i sk�2
� �

1� A0 dki ; d
k
�i

� � ð7Þ

Remark. (6) can be easily extended to n physicians:

vki sk
� � ¼ kα r2 � r1ð ÞR 1dki p � f pð ÞdpþPn

j¼1 P exactly j physicians treatð Þvk�j
i sk�j
� �

1�Qn
j¼1 F dkj

� �
Note that since F dki

� �
is continuous and 0 ≤ dki < 1, the payoff function

vki sk�1; dki ; d
k
�i

� �
is also continuous. Due to the symmetry between the players and

the symmetry of the social optimal policy, we will concentrate on searching for
symmetric Nash equilibria. Therefore, we will assume from this point onwards that
the strategy profile is symmetric, i.e., dki ¼ dk�i ¼ dk for all k= 1,…,M. Under the

Fig. 5 Expected payoffs of the players on E-state k. All variables are defined in Table 3.

Table 3 Definitions of the payoff variables in the dynamic
game.

A Administer antibiotic treatment
W Withhold antibiotic treatment
k Current E-state (number of antibiotic doses left)
dki The threshold decision rule of physician i
1� F dki

� �
The probability that physician i administers treatment

F dki
� �

The probability that physician i withholds treatment
upi kð Þ The immediate payoff that physician i receives from

treating the current patient
vk�j
i sk�j
� �

The future payoff of each physician, when exactly j of the
current patients are given antibiotics
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symmetry assumption, (6) can be replaced by:

vki sk�1; dk; dk
� � ¼

 
kα r2 � r1ð Þ

Z 1

dk
p � f pð Þdpþ 2F dk

� �
1� F dk

� �� �
vk�1
i sk�1
� �

þ 1� F dk
� �� �2

vk�2
i sk�2
� �! � 1

1� F dkð Þð Þ2

ð8Þ
where vki ¼ 0 if k ≤ 0.

The original equation of the non-symmetric case (6) will be used later on to
check whether a player has an incentive to deviate at E-state k from a given
symmetric strategy combination.

The social optimum. In this section, we will study the supremum of the payoff of
symmetric policies. Though this supremum may not be obtained, we will describe
how to approach it, and find an approximation of it.

Since the policies we are studying are symmetric, we will denote by sk the
strategies of both physicians. Omitting the player index i, we will look for the
supremum of νk(sk) or, alternatively, νk(sk−1, dk). Let σk be the supremum of the
payoff that can be achieved from E-state k onwards using a symmetric policy sk:

σk ¼ sup
sk

vk sk
� � ¼ sup

sk�1 ;dk
vk sk�1; dk
� �

When we consider general policies, dk= 1 is not allowed, because the payoff
function cannot be defined at dki ¼ dk�i ¼ 1, and the limit at this point does not
exist. However, when we limit the discussion to symmetric policies, the definition
of the payoff function can be extended to the case of dk= 1.

Lemma 1.

lim
ϵ!0

vk sk�1; 1� ϵ
� � ¼ kα r2 � r1ð Þ

2
þ vk�1 sk�1

� �
Proof See supplementary information (Supplementary Note 4)
By Lemma 1, we can extend the symmetric payoff function for dk= 1, by

defining

vk sk�1; 1
� � ¼ kα r2 � r1ð Þ

2
þ vk�1 sk�1

� �
with this definition, the strategy space becomes a closed set, and the payoff function
is continuous in it. Therefore, the extended payoff function has a maximum value.

Let d̂1; d̂2; ¼ ; d̂k; ¼
� �

be a sequence of decision rules in the interval [0, 1], such

that ŝk ¼ d̂1; d̂2; ¼ ; d̂k
� �

maximizes vk, that is, σ̂k ¼ vk ŝk
� �

. Note that if this

maximum value is achieved by strategies containing some dk= 1 then it cannot
actually be obtained, but only approached.

The following theorem states the main characteristic of optimality in our model.
Theorem 2.

lim
k!1

d̂k ¼ 1

Proof See Supplementary Information (Supplementary Note 5).
The intuition behind this theorem is that since the model is characterized by

endless patience: as long as a sufficient amount of antibiotic effectiveness still exists
—it is worth waiting for the patients with a very high probability of infection
(almost certainty).

The subgame perfect equilibrium. In this section, we analyze the model as a non-
cooperative game between the two physicians. Our goal is to compare the socially
optimal policy to the equilibrium strategy of the game, and in particular to Markov
perfect equilibria (MPE) of the game. In order for it to be comparable to the
optimal policy, we limit our discussion to pure symmetric equilibria of this type. In
addition, based on our explanation of decision rules and strategies in section
“Treatment policies in the dynamic model”, when discussing the notion of equi-
librium, we need only consider individual deviations to Markov strategies, and not
to history-dependent strategies.

This section consists of three parts: in the section “The conditions for a
symmetric pure-strategy Markov perfect equilibrium”, we provide a criterion for a
given policy to be an MPE, in the section “The existence of a Markov perfect
equilibrium in pure symmetric strategies”, we prove that such an equilibrium
always exists and in the section “Comparing the MPE and the Social Optimum”, we
compare the MPE and the socially optimal policy.

The conditions for a symmetric pure-strategy Markov perfect equilibrium

The one-stage deviation principle. The analysis of subgame perfect equilibrium in our
model is based on the one-stage deviation principle. This principle is well known in the
game-theoretic literature; see for example Fudenberg and Tirole59: “in a finite multi-stage
game with observed actions, strategy profile s is subgame perfect if and only if it satisfies
the one-stage-deviation condition that no player i can gain by deviating from s in a single

stage and conforming to s thereafter” (p. 109). An extended definition and explanation of
why this principle is valid in our model to appear in the Supplementary Information
(Supplementary Note 6).

Based on the one-stage deviation principle, at every E-state, k= 1, …, M, the expected
payoff under symmetric behavior (dk, dk) will be compared with the expected payoff of
an individual stage-deviation from dk to �dk ≠ dk . A symmetric strategy profile s is an MPE
if and only if

vki sk�1; dk; dk
� �

≥ vki sk�1; �dk; dk
� �

for every k ¼ 1; ¼ ;M and for all 0≤ �d < 1 ð9Þ
and we will use backward induction to verify this.

Remark. If the condition for profile s is violated at E-state k <M, then any other
strategy profile t with tk= sk is not an MPE as well.

The condition (9) can be also represented as a set of difference-equations. The for-
mulation of these equations will use the following definition:

For any given 0 ≤ dk < 1 let

gdk �dk
� � ¼ 1� F dk

� �� �2� � R 1
�dk p � f pð Þdp� 1� F dk

� �
F �dk
� �� �R 1

dk p � f pð Þdp
1� F dkð Þð Þ2 F dkð Þ � F �dk

� �� �
The formulation of the equilibrium equations using gdk �dk

� �
appears in the Supplemen-

tary Information (Supplementary Note 7).
The following Lemma states an important property of gdk �dk

� �
.

Lemma 3. gdk �dk
� �

is strictly increasing:

gdk �dk
� �

> gdk �dk � ϵ
� �

; 8 0 ≤ �dk < 1; 0< ϵ< �d

Proof See supplementary information (Supplementary Note 8).
Following the last part of this proof, we define

gdk dk
� � ¼ lim

�dk!dk
gdk �dk
� � ¼ 1þ F dk

� �
1� F dkð Þ d

k � F dk
� �R 1

dk p � f pð Þdp
1� F dkð Þ½ �2

ð10Þ

This definition will serve us later on in proving the gap between the socially optimal
policy and the MPE.

The unimodality of payoffs. The following theorem states that, when k > 1, for any given
symmetric decision rule and assuming it is applied by the other physician, physician i
faces a unimodal E-state payoff function with respect to his own decision rule. Fur-
thermore, the E-state payoff function is strongly unimodal, i.e., the global maximum is
attained at a single point, and the function is strictly increasing until that point and
strictly decreasing thereafter.

Theorem 4. It is impossible that the following two conditions hold simultaneously
at any given E-state k > 1:

vki sk�1; dk; dk
� �

≤ vki sk�1; dk � x; dk
� �

for some 0< x ≤ dk

and

vki sk�1; dk; dk
� �

≤ vki sk�1; dk þ y; dk
� �

for some 0< y < 1� dk

Proof See supplementary information (Supplementary Note 9).
This theorem has two important implications for proving the existence of a pure

symmetric MPE:
First, when we want to check if a physician has an incentive to deviate from a given

symmetric decision rule in a certain direction, it is enough to check a very small deviation
in that direction (there are no local maxima or inflection intervals). We shall term this
notion the minimal one-stage deviation principle. Second, if a physician has an incentive
to deviate from a given symmetric decision rule in a certain direction, then he necessarily
has no incentive to deviate in the other direction.
The existence of a Markov perfect equilibrium in pure symmetric strategies. Due to
the one-stage deviation principle, in order to prove the existence of a symmetric
pure MPE, we can use backward induction. Starting from E-state k= 1, we only
need to prove that at every E-state k there exists a symmetric pure stage-equili-

brium, dk1 ; d
k
2

� � ¼ ~dk; ~dk
� �

. Theorem 4 and the following lemma will enable us

to do so.
Lemma 5.

90< ϵ; lim
dk!1

vki sk�1; dk � ϵ; dk
� �

> vki sk�1; dk; dk
� �

Proof See Supplementary Information (Supplementary Note 10).
We can now prove the following existence theorem:
Theorem 6. There always exists a symmetric pure-strategy MPE in the game.
Proof We can prove the existence of a symmetric pure-strategy MPE by

constructing it, using backward induction. At each E-state k, we will search for a

symmetric pure-strategy stage-equilibrium ~dk; ~dk
� �

, given the symmetric pure-

strategy equilibrium that was found in the previous E-states ~sk�1. Due to the one-
stage deviation principle, if these symmetric pure-strategy stage-equilibria exist for
all k= 1, …, M (i.e., no player i can gain by deviating from s in a single stage) then
there exists a symmetric pure-strategy MPE in the game.

The following process is performed at each E-state k= 1, …, M:
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First, we check whether (0, 0) is a symmetric stage equilibrium. If it is—then an

E-state-k-equilibrium exists ~dk; ~dk
� �

¼ 0; 0ð Þ, and we can move to E-state k+ 1.

Otherwise, the physicians must have an incentive to deviate upwards (to �dk > 0).
Let

Bk ¼ εj9Δ> 0; vki sk�1; εþ Δ; ε
� �

> vki sk�1; ε; ε
� �� 	

bk ¼ supBk

Bk ≠ ∅ because (0, 0) ∈ Bk.
bk ≠ 0 since the payoff function vki sk�1; �dk; d

k
� �

is continuous. Thus, if
vki sk�1; 0þ Δ; 0
� �

> vki sk�1; 0; 0
� �

then there exist other symmetric combinations of
decision rules (dk, dk) = (ε, ε) close to (0, 0) from which each physician has an
incentive to deviate upwards.

bk ≠ 1 because by Lemma 5, if dk is close enough to 1, then each physician has
an incentive to deviate downwards, and by Theorem 4, if a physician has an
incentive to deviate downwards from a given symmetric combination (dk, dk), then
he does not have an incentive to deviate upwards.

We now check whether (bk,bk) is a symmetric stage equilibrium. If a player has
an incentive to deviate upwards, then due to the continuity of the payoff function
there exists ϵ such that each player also has an incentive to deviate upwards from
bk þ ϵ; bk þ ϵ
� �

, but that contradicts the definition of bk. Similarly, if a player has
an incentive to deviate downwards, then due to the continuity of the payoff
function there exists Δ and an interval from (bk − Δ, bk − Δ) to (bk, bk) such that
for every 0< ϵ<Δ, a player has an incentive to deviate downwards from
bk � ϵ; bk � ϵ
� �

. But by Theorem 4, if at every bk � ϵ; bk � ϵ
� �

, a player has an
incentive to deviate downwards then he does not have an incentive to deviate
upwards, and that also contradicts the definition of bk.

Therefore, ð~dk; ~dkÞ ¼ ðbk; bkÞ is a symmetric pure-strategy stage equilibrium.

Comparing the MPE and the social optimum. After proving that a symmetric pure-
strategy MPE always exists, we would like to compare it to the social optimum that
was analyzed in “Reducing the problem” section. By Theorem 2, we know that as
long as k is large enough the social optimum is waiting for patients with a very high
probability of a bacterial infection (almost certainty). We now show that the MPE
is significantly different, namely that in MPE the physicians always use antibiotics
more extensively.

Theorem 7. Let ð~dk; ~dkÞ be a stage equilibrium.

lim
k!1

~dk≠1

Proof See supplementary information (Supplementary Note 11).

Reducing the problem. After proving the existing gap between the optimal policy
and the equilibrium of the game and the players’ rational incentive for overusing
antibiotics, we strive to implement an approximation of the optimal policy as a new
MPE of the game by coarsening the information available to the physicians. The
motivation and practical interpretation of this process have been reviewed and
explained in the results section. The following section contains its mathematical
formulation and proofs of the main results.

Coarsening the information: calculations. We now replace the continuous infor-
mation system f(p) with a dichotomous discrete system signal system. We first need
to determine a certain threshold probability T. The new system contains two
signals, high (H) and low (L), indicating whether the patient’s probability of having
bacterial infection is higher or lower than the given threshold T. Each of these two
signals appears in a certain probability and induces a different posterior that the
patient has the infection (Table 4).

Payoffs and MPE conditions with a dichotomous signal system. In order to explore
the effects of the information coarsening on our game, we first need to adjust our
definitions of payoffs (Eqs. (6) and (8)) and MPE conditions (Eq. (S7.1)) to a
discrete dichotomous information system.

Briefly, the full model contains recursive calculations of payoffs. vki sk
� �

is the
expected cumulative payoff of player i from E-state k onwards (from the current
stage of antibiotic efficiency until the end of the game), for a strategy profile. It can
be decomposed to vki sk

� � ¼ vki sk�1; dki ; d
k
�i

� �
, where dki is the threshold of the

posterior probability of a bacterial infection defining the decision rule of player i in
E-state k. The full description of the model and the definitions of all the variables
appear in subsections “Treatment policies in the dynamic model” and “Recursive
calculation of payoffs” in the “Methods” section.

Using a dichotomous signal system is equivalent to limiting the set of available
decision rules in each E-state to dki 2 0;Tf g. That is, there are only a low and a
high signal.

Thus, there are only four possible payoff combinations in each E-state:
vki sk�1; 0; 0
� �

; vki sk�1;T;T
� �

; vki sk�1; 0;T
� �

; vki sk�1;T; 0
� �

.
For the extended calculations of the following equations see Supplementary

Information (Supplementary Note 1).

If the strategy profile is symmetric, then the payoff of each player when they
both treat everyone (dk= 0) is:

vki sk�1; 0; 0
� � ¼ kα r2 � r1ð Þ F Tð ÞpL þ 1� F Tð Þ½ �pHð Þ þ vk�2

i sk�2
� � ð11Þ

and when both treat only patients with a high signal (dk= T) it is:

vki sk�1;T;T
� � ¼ kα r2 � r1ð ÞpH þ 2F Tð Þvk�1

i sk�1
� �þ 1� F Tð Þð Þvk�2

i sk�2
� �� � � 1

1þ F Tð Þ
ð12Þ

If the strategy profile is not symmetric, then the payoff of the physician who treats
everyone is:

vki sk�1; 0;T
� � ¼ F Tð Þ kα r2 � r1ð ÞpL þ vk�1

i sk�1
� �� �þ 1� F Tð Þ½ � kα r2 � r1ð ÞpH þ vk�2

i sk�2
� �� � ð13Þ

and the payoff of the physician who treats only patients with a high signal is:

vki sk�1;T; 0
� � ¼ F Tð Þ vk�1

i sk�1
� �� �þ 1� F Tð Þ½ � kα r2 � r1ð ÞpH þ vk�2

i sk�2
� �� �

ð14Þ
when we want to check whether a given symmetric strategy profile is an MPE, the
one-stage deviation principle, wherein a strategy profile is an MPE if and only if no
player can gain by deviating from it in a single stage and conforming to it
thereafter59, still applies (as in our original information setting, see “The conditions
for a symmetric pure-strategy Markov perfect equilibrium” section). However,
there are only two types of possible deviations—either from dk= T to �dk ¼ 0 or
vice versa.

Thus, dk= 0 (treating everyone) is a symmetric stage equilibrium if and only if
there is no incentive to deviate to dk= T (treating only patients with a high signal).
Formally, iff:

vki sk�1; 0; 0
� �

≥ vki sk�1;T; 0
� �

Using (11) and (14) and some algebra we get

kα r2 � r1ð ÞpL ≥ vk�1
i sk�1
� �� vk�2

i sk�2
� � ð15Þ

and, similarly, dk= T (treating only patients with a high signal) is a symmetric
stage equilibrium iff:

vki sk�1;T;T
� �

≥ vki sk�1; 0;T
� �

Using (12) and (13) and some algebra we get

kα r2 � r1ð Þ 1þ F Tð Þ½ �pL � F Tð ÞpHð Þ
1� F Tð Þ ≤ vk�1

i sk�1
� �� vk�2

i sk�2
� � ð16Þ

Implementing optimal policy as a new MPE. When we use the new information
system, the fixed symmetric policy of “treating only patients with a high signal”
(i.e., dk= T, k= 1, …, M) can be considered a good approximation of the original
optimal policy. Therefore, we would like to know whether it can be an MPE

In order to find the necessary and sufficient condition for this, we will use the
following claim:

Claim 8. Under the fixed symmetric policy s= (T, T)M (i.e., dk= T, k= 1,…, M)

vki sk
� �� vk�1

i sk�1
� �

> 0; k ¼ 1; ¼ ; M

That is, the fixed symmetric policy of “treating only patients with a high probability of
a bacterial infection” yields a total expected payoff (from E-state k onwards) that is
strictly increasing in k.

Proof See Supplementary Information (Supplementary Note 2)
Now we can use (16) and Claim 8 to set the following theorem.
Theorem 9. Treating only patients with a high signal, s= ((T, T)M), is an

MPE iff

pH � pL ≥ 1� F Tð Þ½ �pH þ F Tð ÞpL
Proof Due to the one-stage-deviation principle and Eq. (16) s= ((T, T)M) is an

MPE if

kα r2 � r1ð Þ 1þ F Tð Þ½ �pL � F Tð ÞpHð Þ
1� F Tð Þ ≤ vk�1

i sk�1
� �� vk�2

i sk�2
� �

; k ¼ 1; ¼ ;M

ð17Þ

Table 4 Information signals and their probability.

Signal Probability of appearance Posterior probability induced by
the signal

H qH ¼ 1� F Tð Þ ¼ R 1T f pð Þdp
pH ¼

R 1

T
p�f pð ÞdpR 1

T
f pð Þdp

¼
R 1

T
p�f pð Þdp

1�F Tð Þ

L qL ¼ F Tð Þ ¼ R T0f pð Þdp
pL ¼

R T

0
p�f pð ÞdpR T

0
f pð Þdp

¼
R T

0
p�f pð Þdp
F Tð Þ
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When k= 1:

vk�1
i sk�1
� �� vk�2

i sk�2
� � ¼ 0

and by Claim 8, when k > 1:

vk�1
i sk�1
� �� vk�2

i sk�2
� �

> 0

Therefore, if we want Eq. (17) to hold for all k= 1, …, M we get

kα r2 � r1ð Þ 1þ F Tð Þ½ �pL � F Tð ÞpHð Þ
1� F Tð Þ ≤ 0

which means

1þ F Tð Þ½ �pL ≤ F Tð ÞpH
and finally

pH � pL ≥ 1� F Tð Þ½ �pH þ F Tð ÞpL ð18Þ

Data description and analysis. We obtained data of 1202 children aged <2 years
who were hospitalized for bronchiolitis at Hillel Yaffe Medical Center in Hadera,
Israel between 2008 and 2018. All children tested positive for RSV by antigen
detection enzyme immunoassay, but 967 had only RSV bronchiolitis (viral infec-
tion), whereas 235 also had bacterial pneumonia, as confirmed in an X-ray scan.
After retaining only variables with <10% missing values, our data contained 27
patient variables, including demographics (e.g., age, sex, place of birth), clinical
symptoms and signs (e.g., temperature, tachypnea, etc.), comorbidities, and the
season of hospitalization. Values were imputed using a random forest algorithm
(using the randomForest R package60). We used the patient data to train a gradient
boosted tree model (using the xgboost R package61) that classified bacterial and
viral infections. Briefly, we tuned the hyperparameters of the model using a 10-fold
cross validation, using the default values of the xgb.cv function in xgboost and a
logistic loss function, and applied the model to the entire dataset to recover for each
patient a value 0 < p < 1. The estimated distribution of p; f̂ p

� �
, was a smoothed

version of the resulting distribution of the patients, with a small positive constant
(10−4) added to the distribution to account for sampling limitations and create a
support of (0,1). This f̂ p

� �
was considered as an approximation for the posterior

distribution of having a bacterial infection. The final model output performed well
with an area under the receiver operating curve (AUC) of 0.81. This study com-
plied with all relevant ethical regulations for work with human participants. The
study protocol was approved by the Institutional Review Board (Helsinki Com-
mittee) of Hillel Yaffe Medical Center. An exemption of informed consent was
given by the Helsinki Committee given the retrospective study design. The patients’
identities were kept confidential and coded information was used.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw data were generated at Hillel Yaffe Medical Center. Derived data supporting the
findings of this study are available upon reasonable request from the corresponding
author.

Code availability
Code is available at https://github.com/uriobolski/GameTheoryAMR.
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