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Abstract
We propose a model of an agent’s probability and utility that is a compromise between

Savage (The foundations of statistics, Wiley, 1954) and Jeffrey (The Logic of Decision,

McGraw Hill, 1965). In Savage’s model the probability–utility pair is associated with

preferences over acts which are assignments of consequences to states. The probability is

defined on the state space, and the utility function on consequences. Jeffrey’s model has no

consequences, and both probability and utility are defined on the same set of propositions.

The probability–utility pair is associated with a desirability relation on propositions. Like

Savage we assume a set of consequences and a state space. However, we assume that states

are comprehensive, that is, each state describes a consequence, as in Aumann (Econo-

metrica 55:1–18, 1987). Like Jeffrey, we assume that the agent has a preference relation,

which we call desirability, over events, which by definition involves uncertainty about

consequences. For a given probability and utility of consequences, the desirability relation

is presented by conditional expected utility, given an event. We axiomatically characterize

desirability relations that are represented by a probability–utility pair . We characterize the

family of all the probability–utility pairs that represent a given desirability relation.

Keywords Savage’s model � Jeffrey’s model � Desirability � Preferences � Utility �
Consequences � Subjective probability

1 Introduction

1.1 Savage vs. Jeffrey

Savage (1954) and Jeffrey (1965) each studied a model in which a preference

relation is associated with subjective probability. We begin by describing the two
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models and delineate the model that we study in this paper which is a compromise

between Savage’s and Jeffrey’s models.

The building blocks of Savage’s theory are consequences, acts, and states of the

world. The agent in this theory faces various acts each of which may result in some

possible consequences. The agent is uncertain about which consequence will be

realized by her acts. This uncertainty is modeled by specifying a set of states of the

world. Each state is a rich enough description of the world that resolves these

uncertainties, namely, each state determines the consequence of each one of the

acts. Thus, the uncertainty about the consequence of an act is translated into

uncertainty about the state of the world. Probability in this theory is defined on

events, that is, subset of states, while utility is defined over consequences. The

expected utility of acts defines a preference relation over acts. These preferences

satisfy certain axioms, and fulfilment of these axioms makes it possible to find a

probability–utility pair that gives rise to the preferences.

The primitive notion of Jeffrey’s model is a set of propositions. Two measures

are defined on this set: A signed measure and a probability measure. The signed

measure of a proposition is thought of as the total utility it provides, although the

theory does not explicitly define utility. The ratio of the signed measure and the

probability measure is called the desirability function. The desirability of

propositions naturally defines a preference relation over propositions. We call such

a relation a desirability relation. The desirability relation satisfies certain axioms,

and when a preference relation on propositions satisfies these axioms then the

relation can be shown to be defined by the ratio of the two measures as described

above.

Here we propose a model which integrates elements from the two models that at

first glance seem to have nothing in common. First we show what is indeed common

to them. The set of proportions is a Boolean algebra, and so is the set of subsets of a

state space. Thus, disregarding the mathematical details, we can think of the events

in Savage’s model as being Savage’s propositions.1 Hence, the signed measure and

the probability measure in Jeffrey’s model can be thought of as measures defined on

events. We said before that the signed measure in Jeffrey’s model can be though of

as total utility delivered by the proposition. Now that we think of propositions as

being events, we can define a utility function, defined on the state space, as the

derivative of the signed measure with respect to the probability. This way, the

signed measure of an event becomes the integral of the utility over the event, which

is indeed the total utility provided by the event. The ratio of the signed measure and

the probability, is the expected utility given the event. At this point the affinity

between the two models breaks down. The utility thus derived is defined on states,

while in Savage’s model it is defined on consequences. In Jeffrey’s model there are

no consequences and therefore no acts.

In our model we keep the state space with the Boolean algebra of its events and

the probability on events as in Savage’s model. As we have seen this also agrees

with Jeffrey’s model though we gain the concept of states of the world that is

1 This is done with almost no loss of generality as by the Stone Theorem, Stone (1936), every Boolean

algebra is isomorphic to the Boolean algebra of a family of subsets.
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exclusive to Savage’s model. But we also want to keep consequences and utility

defined on them as in Savage’s model, and at the same time have a relation of

desirability on events as in Jeffrey’s model.

The difficulty in combining together all these elements is the nature of states of

the world in Savage’s model. A state is a description of the world that enables us to

determine the consequence of each act. Thus, the description of the world in a state

does not and should not include a specific consequence and it is consistent with any

consequence. But, then, we cannot talk about the expected utility given an event,

when the utility is defined on consequences and the states in the event are not related

to any specific consequences. Therefore we cannot talk also about the desirability of

an event or about a desirability relation.

If, however, we fix one act in Savage’s model, then each state, combined with the

act, determines a consequence. We can now think of the state as being

comprehensive, that is, it is a full description of the world, including a consequence.

With this it is possible to talk about the expected utility given an event, and hence to

define a desirability function and a desirability relation on events in the set of

comprehensive states, à la Jeffrey. We formulate several axioms on a preference

relation on events that guarantee that it is a desirability relation defined by a

probability on events and utility over consequences.

1.2 Comprehensive states

Comprehensive states, that is, states that also describe a consequence, should come

as natural objects when we consider an interaction of decision makers, rather than

an a acto of a single decision maker. There is nothing in Savage’s model that

excludes the possibility of other agents being there whose acts may influence the

consequence of the agent’s act. In other words, the theory can be applied even when

the agent is a player in a game. In this case, however, in order to determine the

consequence of the player’s chosen act, the description of the world should specify

the acts of the other players.

An extension of a very well known example, taken from Savage (1954),

illustrates this. Our agent considers the problem of breaking an egg and adding it to

a bowl with five eggs previously broken for making an omelette. There are two

states of the world: the sixth egg can be good or rotten. The omelette maker has

three possible acts: breaking the egg into the bowl, breaking it into a saucer for

inspection, or throwing it away. The consequences describe the number of eggs in

the omelette and the need to wash the saucer if it was used.

Imagine now another agnet, the egg seller, who sold the sixth egg to the omelette

maker The egg seller has new good eggs and old rotten eggs, and he can discern

between them. The egg seller is facing two acts: selling a good egg or a rotten one.

The states of the world in the omelette maker’s model that specify whether the egg

is good or rotten, describe the acts available to the egg seller.

Consider now the model that describes the egg seller’s decision problem. He has

two acts to choose between. The consequences that matter to him concern whether

the omelette maker will come again to buy eggs or not. These consequences depend

on the acts of the omelette maker. For example, if the omelette maker throws away
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the egg, he will never discover whether it is rotten or not and he will continue to buy

eggs from this seller. Thus, a state of the world in the model describing the egg

seller’s decision problem should specify the acts of the omelette maker.

The two models that describe the decision problems of the omelette maker and

the egg seller are different. In the model of each of the players the states specify the

acts of the other player, but not those of the player whose decision is modeled. One

may conclude that subjective probabilities of agents in interaction can be derived for

each of the agents separately and game theory is not needed for Bayesian agents.

But if we analyze each player in a separate model, we miss an important aspect of

the interaction, namely the reasoning of players about each other’s choices. To

understand this, we note that a player’s beliefs are given by the probability she

assigns to the various events in her space of states. If we want the player to reason

about another player, and in particular about another player’s beliefs, then these

beliefs should be described by an event in the space of the first player. But this

means that the state space of the other player should be the same as the state space

of the first player. Thus, interaction of reasoning requires one model for all players.

As each state in the state space of a player should include the acts of the other

players, and as all the players should share the same state space, each state in this

space describes the acts of all players, and hence also the consequence that results

from their acts. Thus, a model that describes the interaction of actions requires a

space of comprehensive states.

Comprehensive states were first studied in Aumann (1987) to facilitate the

analysis of the interactive reasoning of the players in a game. Aumann claimed in

this paper that the use of comprehensive states was the main novelty of his proposed

model.

The chief innovation in our model is that it does away with the dichotomy

usually perceived between uncertainty about acts of nature and of personal

players. ½ . . .� In our model ½ . . .� the decision taken by each decision maker is

part of the description of the state of the world. (Aumann 1987)

However, in order to analyze the implications of Bayesian rationality on the players’

behavior, Aumann needs each player to have a subjective probability distribution on

states of the world. In this he relies on Savage’s framework:

Assume that ... as in Savage (1954), each player has a subjective probability

distribution over the set of all states of the world.

But the subjective probability and the utility in Savage (1954) are derived for a state

space in which neither actions nor consequences are associated with states. How can

such probability and utility be derived in a comprehensive state space in Aumann

(1987)?

This question is partially answered here by laying the basis for a full-fledged

study of interactive decision making in a comprehensive state space. Modeling

interaction of multiple agents, like Aumann (1987), requires the introduction of

knowledge structures. Here we study a comprehensive state space of a single agent,

which does not require the introduction of knowledge structures. The results of this
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research will be used in subsequent work to study the derivation of probability and

utility in comprehensive state spaces of several players with knowledge structures.

1.3 Desirability and choice

It is possible to give the relation of desirability several informal intuitive meanings.

We can think of one event as being more desirable than another event if learning

that the first happened would make the agent happier, or more pleased, or more

content, than learning that the second event happened.

Alternatively, we can think of desirability as reflecting a counterfactual choice.

Although the agent does not usually have control over the events that will obtain, or

at least not all of them, she can entertain the counterfactual situation in which she

can choose one of two events to obtain. Saying that one event is more desirable than

another means that had the agent had the opportunity to choose, she would have

chosen the first event to obtain. Note that even in Savage’s setup we can hardly

think of the preference over acts without resorting to counterfactuals. We cannot

really put the agent in situations where she can choose from only two acts, for any

two acts. The claim that the agent prefers one act to another involves counterfactual

choice: had the agent been offered only two acts from which to chose, she would

have chosen this act. With this interpretation, both desirability of events and

preference over acts reflect counterfactual choices.

Since both desirability and preferences over acts cannot be put to an empirical

test, we need to rely on the reports of the agent about her counterfactual choices.

Such reports are usually considered to be of limited reliability.

However, two recent technological innovations made closer the possibility to find

out more reliably the preferences and desires of agents. New technologies of recent

years suggest that reports can be validated by somatic indicators, and moreover,

desirability and preferences can be found without any direct report. The first one is

what we call here the biological-somatic revolution. The other is the information

and communication technology (ICT) revolution.

The use of MRI, and mainly fMRI, which started about 40 years ago for brain

research, was partially applied to research in decision theory. Later, and mainly in

the present century, fMRI was replaced by less expensive tools like EEG, glasses to

follow eye movements, etc. In many experiments the participants were asked to

state their preferences between or among consumption goods. These preferences are

reports of desirability. In the experiment the researcher can observe the subject’s

reply before the subject is aware of it. This kind of research was carried out by

teams including brain researchers and researchers in departments of business

schools.

ICT is an ongoing revolution that is changing its emphases. Our interest is

focused on a phenomenon that has been particularly prominent in the last decade:

The participation of a large majority of the population in two-way traffic on the web.

(The use of smart phones exceeds that of PCs, which intensifies the participation.)

Part of this traffic consists of what we termed desirability reports. The two

technologies used in tandem mitigate the problem of the reliability of reports. See

Telpaz and Levy (2015), Carlaw et al. (2007) and Webb et al. (2019).
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1.4 An example

We illustrate the notion of desirability by the following example. Consider Eve, who

is contemplating the submission of her new paper to one of several equally reputed

journals between which she is indifferent. The choice of a journal is an act. There

are only three consequences that matter to her: acceptance of the paper, rejection, or

a request for a revision. Each state of the world determines the consequence of

submitting the paper to each one of the said journals. In this work we assume that

there are finitely many consequences. Aumann (1987) (in comment (c) of the

Discussion section) suggested several reasons for finiteness.

We are now meeting Eve after making her decision to submit the paper to journal

J. Now, each state is comprehensive, namely, it specifies which of the three

consequences holds. In particular, the state space is partitioned into three

consequence events: the event that consists of all states in which the paper is

accepted, the event of rejection, and the event of a required revision.

Eve has a desirability relation over events and in particular over the consequence

events. It is quite natural to assume that she prefers the event of acceptance over the

event of revision, and the latter over the event of rejection. But the desirability

relation concerns other events too. We may assume that each state of the world

specifies who is the associate editor handling the paper, as this is one of the factors

that determines the consequence. It is possible that Eve desires the event that Alice

rather than Bob will be the associate editor handling the paper. Note that Alice

handling the paper or Bob doing so, are not consequences. Eve’s desire that the first

event will obtain rather than the second reflects the different ways in which these

two events are associated with the three consequences. For example, if it is more

likely that the paper will be accepted when Alice is the associate editor, Eve may

find this event more desirable than the event of Bob being the associate editor.

1.5 The axioms of desirability

We present in Sect. 2.2 seven axioms, A1–A7, on a desirability relation on a fixed

comprehensive state space. Here, we sketch their gist. These axioms appear to hold

for the intuitive meanings of desirability discussed above.

Before the axioms are introduced we define for any binary relation on events its

null events. Roughly, an event is null for a given relation between two events if it

does not affect the relation. More specifically, set theoretical addition (union) or

subtraction of any subset of the null event to any of the two events in the relation do

not change the relation between them.

Axioms A1–A3 are not special to desirability. They have analogues in other

axiomatizations like Savage’s, de Finneti’s axioms of qualitative probability, von

Neumann and Morgenstern’s axioms, and many other binary relations. The first

three axioms are analogous to Savage’s P5, P1, and P60, in this order. The Non-
degeneracy axiom (A1) requires that the relation is non-trivial. This axiom implies

that there are non-null events, which makes the next axiom of Weak Order (A2)

non-vacuous. The latter says that the desirability relation is a complete and

transitive order on the non-null events. Such axioms predate Savage and von
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Neumann and Morgenstern. One of the innovative axioms of Savage that plays a

crucial role in proving the existence of a probability is P60. Our axiom A3 is similar

to P60 and we name it Small events, as it says that the space can be partitioned into

‘‘small‘‘ events.2

Axioms A4–A7 are special to desirability relations. The first among them, the

axiom of Intermediacy (A4) says that mixed news, good and bad, lies, in terms of its

desirability, between the good news and the bad news. Thus, in our example the

event that the paper is either accepted or rejected is less desirable than the event of

acceptance, but more desirable than the event of rejection. Formally, such an axiom

is common in works that study relations on subsets.

Next, the axiom of Persistency (A5) is a first glimpse into the notion of

likelihood, which is part of our intuition about desirability of events. Before we

discuss this axiom we demonstrate how a likelihood relation between certain events

can be deduced from the desirability relation. Let E and F be events that the agent

equally desires, and H be an event disjoint of E and F and more desirable than both.

At first glance the event E [ H cannot be more desirable than F [ H. But on closer

examination there can be a reason for that. If F is more likely than E, then the

relative likelihood of the good news H is higher in E [ H than in F [ H. Of course,

likelihood is not defined in our setup, but the phenomenon just described can be

used to define it. If E, F, and H are as described, and E [ H is more desirable than

F [ H, we say that F is more likely than E. This definition has one drawback, it

depends on the event H. The axiom of persistency removes this drawback by

requiring that the concept of being more likely is independent of the event H that is

used to define it.

Axiom A6 of Consequence Events says that a consequence event is as desirable

as any of its non-null subevents. Let us illustrate this axiom in our example.

Consider the event ‘the paper is accepted’, and the more informative event ‘the

paper is accepted and Alice handles it’. Set-theoretically, the second event is a

subevent of the first. The axiom requires that these two events are equally desirable.

The reason is simple. In both events the paper is accepted. The event that Alice

handles it is not a consequence and it has no value of its own, and therefore it does

not change the desirability of the event that the paper is accepted.

The axioms already presented enable us to find out what the consequences are for

the agent, which is impossible in Savage’s theory. Savage’s theory purports to

derive probability and utility from observed choices. However, in order to construct

the model in which this derivation takes place one needs to know in advance the

consequences for the agent. But these consequences are neither observed or deduced

from observations of choice. In Savage’s omelette story, for example, one cannot

conclude what the consequences are for the omelette maker by just observing the

choices he makes about the egg. Thus, the derivation of probability and utility in

Savage’s model is based on one hand on the observation of choice, and on the other

hand on the guesswork of consequences.

2 Axiom P60 is imposed on a qualitative probability relation on events. Here, it is imposed on the

desirability relation on events. Axiom P6 is a translation of P60 for a preference relation on acts.
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In the model of desirability, we can find out what the consequence events are,

using the data of the desirability relation. By axiom A6, a consequence event C is

one that is as desirable as any more informative event. We say that such events are

complete. It turns out that consequence events are, roughly speaking, maximal

complete events. The formal details are in Sect. 2.2. Here we illustrate how in our

example we can verify that the event ‘Alice handles the paper’ is not a consequence

event, while ‘the paper needs a revision’ is a consequence event. When we find that

the event ‘Alice handles the paper and it needs a revision’ is more desirable than the

event ‘Alice handles the paper’, we conclude that the latter is not complete and

therefore is not a consequence event. By contrast, we find that the event ‘Alice

handles the paper and it needs a revision’ is as desirable as the event ‘the paper

needs a revision’. Moreover we find that for any event X, the event ‘X and the paper

needs a revision’ is as desirable as the event ‘the paper needs a revision’. Thus, the

latter event is complete and is a candidate for being a consequence event. We only

need to check that it is a maximal complete event. Indeed, suppose that A is a

superevent of the event ‘the paper needs a revision’. Then it contains some subevent

B of either ‘the paper is accepted’, or ‘the paper is rejected’, or both. Suppose B is a

subevent of ‘the paper is accepted’. Then, by axiom A4 of Intermediacy, the event

‘B and the paper needs a revision’ is more desirable than the event ‘the paper needs

a revision’ and hence, there are two subevents of A that are not equally desirable.

We conclude that A is not a consequence event. This shows that ‘the paper needs a

revision’ is a maximal complete event, namely a consequence event. To make this

example rigorous we need to address issues concerning null events. It is easy to

complete the formal description along the lines presented in Sect. 2.2.

While the axiom of Persistency (A5) enables us to define likelihood relation of

equally desirable events, the axiom of Likelihood Ratio (A7) emphasizes the role of

likelihood ratios in desirability. It amounts to saying that if the likelihood ratio of

the consequence in one event is the same as in another event then the two events are

equally desirable. This is done, of course, in terms of the desirability relation.

Our first theorem is:

A desirability relation satisfies axioms A1–A7 if and only if it is represented

by a probability-utility pair (P, u).

A given desirability relation can be represented by more than one probability-utility

pair. Our next two theorems describe the structure of all representing pairs. We note

that the probability on the state space can be given by the finitely many conditional

probabilities on the consequence events, and the finite dimensional vector of the

probabilities of the consequence events, which we shall call consequence
probabilities. For two consequence probability vectors p and q, we say the p is

more optimistic than q, if for any pair of consequences, the likelihood of the more

desired one in p is higher than that likelihood in q.

Our second theorem characterizes, by two properties, a set of probabilities that

can arise as the probabilities in representing pairs.

1. All the probabilities in the set have the same conditional probability on the

consequence events, and thus differ only in their consequential probabilities;
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2. The set of consequence probability part of the probabilities in the set is an

interval, namely the convex hull of two points, and the consequence

probabilities are ordered in the interval according to optimism.

We say that utility u is more content than v if the gains from moving to a more

desirable consequence, measured by the ratio of utility difference, is higher in u than

in v. In the third theorem we characterize the utilities in the set of the representing

pairs.

For any representing pair (P, u), the utility u is uniquely determined by P up to

a positive affine transformation, and the probability P is uniquely determined

by u. If (P, u) and (Q, v) are representing pairs, and the consequence

probability part of P is more optimistic than the consequence part of Q, then

the utility u is less content than v.

Thus the optimism in consequence probabilities is balanced by the contentment of

the utility function. In our fourth theorem we show that a certain product of

optimism and contentment is the same for all representing pairs.

2 The model

Let ðX;RÞ be a state space, where X is the set of states and R is a r-algebra of

events. A finite set C ¼ fc1; . . .; cng with n� 2 is the set of consequences. An act is

a measurable function f : X ! C that specifies a consequence in each state.

We fix an act f and refer to ðX;R; f Þ as a comprehensive state space. This reflects

the fact that each state of the world can be thought of as a full description of the

world, including the consequence at the state specified via f.
Fixing the comprehensive space ðX;R; f Þ, we consider a binary desirability

relation, % , on R. We read E%F as ‘E is at least as desirable as F’. We denote by

� the symmetric part of % . That is, E�F when E%F and F%E . We read, E�F
as ‘E is as desirable as F’, or ‘E and F are equally desirable’. We denote by � the

asymmetric part of % . That is, E�F when E%F but not F%E. The relation E�F
is read as ‘E is more desirable than F’. We introduce below the axioms A1–A7 that

desirability relations should satisfy.

2.1 Null events

Given a binary relation % on events, we define null events as those that have no

impact on the relation. In the definition that follows, we denote by ADB, for events A
and B, their symmetric difference.3

Definition 1 (Null events) An event N is null for the relation % when for all events

E and F, if E%F (E 6 %F), then also E0
%F0 (E0 6 %F0) for any E0 and F0 that

satisfy ðE0DEÞ [ ðF0DFÞ � N.

3 The symmetric difference of two events consists of all the states in these events that do not belong to

both, that is, ADB ¼ ðA [ BÞ n ðA \ BÞ ¼ ðA n BÞ [ ðB n AÞ.
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An immediate corollary of this definition is that null events do not affect any of

the relations �, � , 6 �, and 6 � .

Corollary 1 If E and F satisfy any of the relations �, � , 6 �, and 6 � , N is a null
event, and ðE0DEÞ [ ðF0DFÞ � N, then E0 and F0 satisfy the same relations.

We denote by R0 the set of null events of % , and by Rþ the set of non-null

events, namely, Rþ ¼ R n R0. We note the following properties of R0.

Claim 1 The set of null events R0 satisfies:

1. ; 2 R0;

2. If N, M are in R0 then N [M 2 R0;

3. If N 2 R0 and M � N, then M 2 R0.

Proof Items 1 and 3 follow trivially from the definition of a null event.

For item 2, assume N and M are null events, E%F, and

ðE0DEÞ [ ðF0DFÞ � N [M. We need to show that E0
%F0.

By our assumptions, there are events N0 � N, N 0
0 � N and M0 � M, M0

0 � M,

such that E n E0 ¼ N0 [M0 and E0 n E ¼ N 0
0 [M0

0. Let Ê ¼ ðE \ E0Þ [M0 [ N 0
0.

Then, ðE n ÊÞ � N0 and ðÊ n EÞ � N 0
0, and hence EDÊ � N. We analogously define

F̂ such that FDF̂ � N, and since N is null, we conclude that Ê% F̂. Now, E0 n Ê �
M0

0 and Ê n E0 � M0, thus ÊDE0 � M. A similar relation holds for F̂ and F0. Thus, as

M is null, we conclude that E0
%F0. The proof for the case that E 6 %F is similar. h

The three properties of R0 in Claim 1 make R0 an ideal of events in R. Savage

(1954) also proves that the null events defined in his model form an ideal. Finally,

the set of null events of a probability measure is obviously an ideal.

Without making any assumption about % , it may happen that all events are null.

However, we next show that if this relation is non-trivial, then there necessarily

exist non-null events.

Claim 2 If there are events E and F such that E�F, then there are non-null events.

Proof Assume that E�F and suppose that, contrary to the claim, all events are null.

Set E0 ¼ F and F0 ¼ E. Then E0DE and F0DF are null, and thus E0
%F0, that is,

F%E. Thus, E�F, a contradiction. h

Finally, it is easy to prove

Claim 3 If R0 is the set of null events of % , and %
0 is the restriction of % to the

non-null events of % , that is to ðRþÞ2
, then R0 is also the set of null events of % 0.

2.2 The axioms of desirability

The first three axioms are typical of many binary relations and do not reflect the

intuitive meaning of desirability. The first axiom requires that the desirability

relation is non-degenerate. It is a mild assumption, since without it there is nothing
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of interest to say about the given relation. Non-degeneracy is assumed also in

Savage (1954), as well as in the axioms of qualitative probability in de Finetti

(1931).

A1 (Non-degeneracy) There are events E and F such that E�F.

Axiom A1 of Non-degeneracy guarantees, by Claim 2, that there are non-null

events. We are interested in the desirability relation only between the non-null

events of % . In the next axiom we require that % be defined only on pairs of non-

null events, and on these events it is a weak order, namely complete and transitive.

A2 (Weak Order) % is contained in ðRþÞ2
and it is a complete and transitive

relation.

Alternatively, we could allow % to be defined also out of ðRþÞ2
and require only

that % 0, the restriction of % to ðRþÞ2
, is a weak order on it. By Claim 3, % and %

0

have the same set of non-null sets. Since we are going to compare the desirability of

non-null events only, we can use either % or %
0, and the latter satisfies axiom A2.

Next, we require that, given a strict desirability relation between two events, the

state space can be partitioned into events that are small in the sense that they do not

affect the given relation. This axiom is a slight variation of property P60 in Savage

(1954).

A3 (Small Events) For two events E and F such that E�F there exists a partition

of X, P ¼ ðP1; . . .;PmÞ, such that for each i, if F0DF � Pi, then E�F0, and if

E0DE � Pi, then E0�F.

The next four axioms capture the intuitive meaning of desirability. We first

formalize the idea that a mixture of some good news and some bad news is more

desirable than the bad news and less desirable than the good news. It has the same

spirit as the averaging condition in Bolker (1967). We illustrate it with the example

discussed in the introduction. Let E be the event Alice handles the paper and F,

which is disjoint from event E, that Bob handles the paper. Suppose that E is weakly

more desirable than F, that is E%F. The event E [ F is mixed news. Therefore E,

the good news, must be at least as desirable as E [ F, and E [ F must be at least as

desirable as the less desirable event F.

A4 (Intermediacy) Let E and F be disjoint non-null events. Then the relations

E%F, E [ F%F, and E%E [ F are equivalent.

We illustrate the next axiom using our example. In doing so we use axiom A6 of

Consequence Events which is presented below, but was already discussed in the

introduction. Consider the events A ¼ acceptance and B ¼ acceptance and Alice
handles the paper, which by axiom A6 of Consequence Events are equally desirable

as only acceptance is a consequence about which Eve cares. Note, however, that as

B � A, B is less likely than A. Now consider the event G ¼ revision, which is

disjoint from A and B, and the events A [ G and B [ G. The likelihood of

acceptance in A [ G is higher than in B [ G. Therefore, A [ G should be more

desirable than B [ G. Note that if G is an event disjoint from A and B that is less

desirable than both A and B, then we expect that the relation of desirability between

A [ G and B [ G will be reversed.
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The implication in this example is based on an informal, intuitive notion of

likelihood relation. But we can reverse the reasoning and use this to formally define

a restricted concept of likelihood relation.

Definition 2 Suppose that A�B and that G is a non-null event such that

G \ ðA [ BÞ ¼ ;. Then A is at least as likely as B according to G if either A�G and

A [ G%B [ G, or G�A and B [ G%A [ G.

If the relation of likelihood according to G is to capture the likelihood of equally

desirable events, then this relation should not depend on G. That is, if we take

instead of G another event H with the same properties, then the relation of

likelihood according to H should be the same. This is the meaning of the next

axiom, which is in the spirit of the impartiality property in Bolker (1967).

A5 (Persistency) Suppose A�B, and G, H are non-null events disjoint of A and

B such that G 6 �A and H 6 �A. If A is at least as likely as B according to G, then

A is also at least as likely as B according to H.

By axiom A5 of Persistency, we can now define the following relation between

events.

Definition 3 For two equally desirable events A and B, A is at least as likely as B if

A is at least as likely as B according to some G.

The first five axioms did not involve consequences. The next two axioms address

consequences directly. This is where our model deviates from Jeffrey (1965). We

first introduce some notation. For c 2 C we denote by C the event that the

consequence of f is c. Namely, C ¼ fx j f ðxÞ ¼ cg. We call the events C
consequence events. For each E and c we write Ec for E \ C. Thus, the event E is

the disjoint union of the events Ec for all consequences c.

The next axiom addresses the nature of consequence events that distinguishes

them from other events. Such distinction does not exist in Savage’s setup, as

consequence events do not exist. The axiom says that when the agent is informed

that a consequence c occurs, any additional information is irrelevant to desirability.

Formally:

A6 (Consequence Events) For any consequence c and a non-null event E � C,

E�C.

Axiom A6 of Consequence Events and axiom A4 of Intermediacy enable us to

derive consequences from the desirability relation, rather than guess them as in

Savage’s model. To see this, let’s say that an event E is complete if all its non-null

subevents are equally desirable (that is, the restriction of % to the non-null events

of E is a complete order). Then, axiom A6 states that a consequence event is

complete. Hence, only the complete events are candidates for being consequence

events. Obviously not all of them are, as every subevent of a complete event is itself

a complete event and in particular, subevents of a consequence event are complete

events. However, the next claim helps us to discover consequence events.

Claim 4 Suppose that any two non-null consequence events are not equally
desirable. Then, a non-null consequence event C is maximally complete in the sense
that if C � A and A is complete, then A n C is null.
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Indeed, suppose that C � A and A n C is not null. Then there exists a non-null

consequence event D 6¼ C and a non-null event D0 � D, such that C � C [ D0 � A.

Since, by axiom A6, D0 �D, axiom A4 of Intermediacy implies that if D�C then

C [ D0�C, and if C�D then C�C [ D0. In either case, this shows that A is not

complete.

The family of maximal complete events includes not only consequence events,

but also any event that differs from a consequence event by a null event, that is, any

M such that MDC is null for a non-null consequence event C. Thus, we are able to

identify consequence events up to null events. In case there are equally desirable

consequence events, say C and D, then by axiom A4, C [ D is an complete and thus

C and D are not maximal. However the union of consequence events that are as

desirable as C is a maximally complete, and for the purpose of finding out the

probability and utility of the agnet it is enough to consider this union as a

consequence event.

The next axiom, like axiom A5 of Persistency, addresses issues of likelihood.

Axiom A5 gave rise to Definition 3 which introduced the likelihood relation on

equally desirable events. The next axiom uses a qualitative proxy to likelihood

ratios. Thus, it is a relation between two pairs of events, more specifically, pairs

ðEc;EdÞ and ðFc;FdÞ for two distinct consequences c and d. If C is at least as

desirable as D, then the relation Ec [ Ed %Fc [ Fd can be interpreted as a

qualitative expression that is represented by a quantitative relation of a higher

likelihood ratio. Namely, the numerical likelihood ratio of Ec to Ed is at least as high

as the likelihood ratio of Fc to Fd. Thus, to say that likelihood ratio of the two pairs

is the same amounts to saying that Ec [ Ed �Fc [ Fd. We can now say that

desirability depends on the likelihood ratio of consequences by saying that if the

likelihood ratios of consequences in E are the same as in F then E and F are equally

desirable. To say that the likelihood ratio of consequences is the same in E and F is

to say that for each c and d, Ec [ Ed �Fc [ Fd. Of course, we need to be careful to

state that events are equally desirable only when they are non-null, which we do

formally next.

A7 (Likelihood ratio) Let E and F be non-null events. If for each pair of distinct

consequences, c and d, Ec [ Ed and Fc [ Fd are either both null or both non-null,

and in the latter case Ec [ Ed �Fc [ Fd, then E�F.

3 The main theorems

Our first result concerns representation of a desirability relation in a comprehensive

state space. For this we define how a probability-utility pair represents a desirability

relation.

Definition 4 (Representation) Consider a pair (P, u), where P is a finitely additive

probability on ðX;R; f Þ and u : C ! R. We say that (P, u) represents a binary

relation % on R if the set of null events of % is the set of P-null events, and for all

non-null events A and B, A%B if and only if
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Xn

i¼1

uðciÞPðCijAÞ�
Xn

i¼1

uðciÞPðCijBÞ: ð1Þ

Note that if inequality (1) holds, then it holds also for any positive affine

transformation of u, i.e., u 7!auþ b where a[ 0.

Theorem 1 For a comprehensive state space ðX;R; f Þ, a relation % on R satisfies
axioms A1–A7 if and only if there exists a pair (P, u) that represents it. Moreover, P
is non-atomic.4

We illustrate the relation between probability-utility pairs and desirability

relations in the following example.

Example 1 Let the state space ðX;RÞ be the unit interval with the r-algebra of

Borel sets. The set of consequences is C ¼ fc1; c2; c3g. The fixed act f is defined by

f ðxÞ ¼ c1 for x 2 ½0; 1=3Þ, f ðxÞ ¼ c2 for x 2 ½1=3; 2=3Þ, and f ðxÞ ¼ c3 for

x 2 ½2=3; 1�. Thus, the consequence events are: C1 ¼ ½0; 1=3Þ, C2 ¼ ½1=3; 2=3Þ, and

C3 ¼ ½2=3; 1�. The comprehensive state space is ðX;R; f Þ.
Consider the pair (P, u), where P is the uniform probability distribution, and the

utility function, u : C ! R, is given by uðc1Þ ¼ u1 ¼ 0, uðc2Þ ¼ u2 ¼ 1=2, and

uðc3Þ ¼ u3 ¼ 1. Denote by Pi, for i ¼ 1; 2; 3, the conditional probability of P on Ci.

For a P-non-null event E, let xi ¼ PðEjCiÞ. Then the conditional utility given E is:

½ð0Þð1=3Þx1 þ ð1=2Þð1=3Þx2 þ ð1Þð1=3Þx3�=½ð1=3Þx1 þ ð1=3Þx2 þ ð1=3Þx3�:

The conditional expectation defines a desirability relation % on the P-non-null

events, which (P, u) represents. The null events of % are the P-null-events. Note

that the conditional expectation given E is determined by the xi’s. Thus, in par-

ticular, if two events have the same conditional probability given each Ci, then they

are equally desirable.

In order to simplify the formulation of the following results we make two

assumptions.

Assumptions

1. For each consequence c, the event C is non-null,

2. Cn�Cn	1� � � ��C1.

The main thrust of the second assumption is that no two distinct events Ci and Cj

are similar. The ordering of desirability according to the indices is made, of course,

without loss of generality.

4 A probability measure P is non-atomic if for each event E and a in [0, 1], there exists an event F � E
such that PðFÞ ¼ aPðEÞ. This condition appeared first in Savage (1954) and was described as non-

atomicity by Machina and Schmeidler (1992). Gilboa (1987) defined an extension of this condition to

non-additive measures, and referred to a measure that satisfies it as convex ranged.
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The question that usually arises in representation theorems is the uniqueness of

presentation. In our case the set of pairs that represent % is not a singleton. In the

following theorems we characterize this set. We denote by Pð% Þ the set of all

probability measures P such that for some u, (P, u) represents % .

We decompose a probability P on ðX;RÞ into two parts: The conditional part

ðPiÞni¼1, where for each i, Pið�Þ ¼ Pð � j CiÞ, and the consequential part, p, in the

simplex DðCÞ, where pi ¼ PðCiÞ. Thus, for each event E, PðEÞ ¼
Pn

i¼1 piPiðEÞ. It

turns out that the conditional part is uniquely determined for the given desirability

relation, while the consequential part is not. In order to describe this non-uniqueness

we introduce the notion of optimism.

For two positive probabilities p and q in DðCÞ, we say that p is more optimistic
than q, and write p 
 q, if for each i\j, pj=pi [ qj=qi. The reason why these

inequalities describe optimism follows from Assumption 2. If p 
 q, then for any

two consequences the likelihood of the preferred one is higher in p than in q. Let

qðpÞ be the ðn	 1Þ-dimensional vector with components qiðpÞ ¼ piþ1=pi for

i ¼ 1; . . .n	 1. We say that p likelihood-ratio dominates5 q if qðpÞ[ qðqÞ.
Obviously, p is more optimistic than q if and only if p likelihood-ratio dominates q.

An open interval of positive probabilities ðp; qÞ ¼ fapþ ð1 	 aÞq j 0\a\1g is

ordered by optimism if for any a[ a0, apþ ð1 	 aÞq 
 a0pþ ð1 	 a0Þq. The

interval is maximal if p and q are on the boundary of the simplex DðCÞ.
We are now ready to describe the multiplicity of the probabilities in the

representing pairs.

Theorem 2 A set of probabilities P is Pð% Þ for some relation % on R that
satisfies axioms A1–A7 and Assumptions 1,2 if and only if:

1. The conditional parts of the probabilities in P coincide. That is, for each P and
Q in P, ðPiÞ ¼ ðQiÞ,

2. The consequential parts of probabilities in P form a maximal interval ordered
by optimism.

Finally, we characterize the utilities in the representing pairs.

Theorem 3 For every P 2 Pð% Þ, there exists a utility u, which is unique up to a
positive affine transformation, such that (P, u) represents % . Moreover, if (P, u)

and (Q, u) represent % , then P ¼ Q.

We can say more about the representing utilities. Let ui ¼ uðciÞ and define the

vector of utility gains Du ¼ ðDuiÞn	1
i¼1 by Dui ¼ uiþ1 	 ui. By Theorem 1�, Du[ 0.

For two utility vectors u and v we say that u is more content than v if for each i\j
between 2 and n, Duj=Dui\Dvj=Dvi. The ðn	 2Þ- dimensional vector qðDuÞ, where

qiðDuÞ ¼ Duiþ1=Dui for i ¼ 2; . . .; n	 1 is the vector of the utility-gain ratio.

Obviously, u is more content than v if and only if qðDvÞ[ qðDuÞ, that is, Dv 
 Du.

Note that qðuÞ is invariant under positive affine transformations of u.

5 It is straightforward to see that Likelihood-ratio dominance implies stochastic dominance.
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Roughly speaking, being more optimistic means assigning higher probability to

more desirable consequences, and being more content means having less utility

from such consequences. The next theorem says that being more optimistic is

balanced by being more content.

Theorem 4 For each i ¼ 2; . . .; n	 1, the product qiðDuÞqiðpÞqi	1ðpÞ is the same
for all pairs (P, u) that represent % . Thus, if (P, u) and (Q, v) represent % , and
qðpÞ[ qðqÞ, then qðDuÞ\qðDvÞ.

Example 2 The desirability relation in Example 1 can be represented by other pairs

(Q, v). By Theorem 2, the conditional probability of Q given Ci is Pi for each i.
Thus, Q ¼ q1P1 þ q2P2 þ q3P3 for some probability vector q ¼ ðq1; q2; q3Þ. If we

choose q ¼ ð1=6; 1=3; 1=2Þ and v1 ¼ 0; v2 ¼ 3=4 and v3 ¼ 1, then (Q, v) also

represents % . This can be easily seen by checking that the conditional expected

utilities of the two pairs are similarly ordered. Note that qðqÞ ¼ ð2; 3=2Þ, while for

p ¼ ð1=3; 1=3; 1=3Þ, in Example 1, qðpÞ ¼ ð1; 1Þ. Thus, qðqÞ[ qðpÞ, and therefore

q is more optimistic than p. Also Du ¼ ð1=2; 1=2Þ, Dv ¼ ð3=4; 1=4Þ, and hence

qðDuÞ ¼ ð1Þ and qðDvÞ ¼ ð1=3Þ, which demonstrates the claim of Theorem 4.

In Section 5.10, we show how to compute the maximal interval of probability

vectors that are ordered by optimism guaranteed by Theorem 2.

4 Literature survey

Jeffrey (1965) introduced a real-valued function on propositions which he called

Desirability. The set of propositions was rigorously modeled by Bolker (1967) as a

complete Boolean algebra. Measures are defined on such algebras in much the same

as on fields or sigma fields, which are, in particular, Boolean algebras of events. The

desirability function in Jeffrey (1965) and Bolker (1967) is the ratio of a signed

measure and a probability measure on the Boolean algebra.

The theory of desirability presented by Jeffrey and Bolker is a departure from the

theories of von Neumann and Morgenstern (1953) and Savage (1954) in that it does

not include consequences (or prizes) and a utility function on consequences. Acts

cannot be defined in their theory since there are no consequences. Bolker comments

on the difference between Jeffrey’s model and Savage’s model: ‘‘The states must be

unambiguously described. By so doing we blur the often useful distinctions among

acts, consequences and events’’ (Bolker 1967, foonote 7). This lost distinction is

reinstated here, where we use Savage’s model in which consequences are the main

features.

Based on a previous work, Bolker (1966, 1967) considered a binary relation on

propositions, which was not named, and axioms on this relation that guarantee that it

can be represented by a desirability measure. He has two axioms that correspond to

our axioms A4 of Intermediacy and A5 of Persistency.

In addition to the essential difference of incorporating consequences, our model

differs from Bolker’s model in other aspects. (1) In Bolker (1967) the relation is

defined on the non-zero elements of a complete non-atomic Boolean algebra. This

corresponds to the quotient space of a measurable space with respect to null events.
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Thus, null events must be defined prior to the definition of the desirability relation.

In our model, as in Savage’s, null events are defined in terms of the relation rather

than assumed. (2) Bolker assumes that the relation is continuous and derives

representing probabilities that are r-additive. We make no continuity assumption

and, like Savage (1954) and unlike Bolker (1967), we derive a finitely additive

probability.

Bolker (1967) and Jeffrey (1983) describe a linear structure of the set of

probability-utility pairs that represent the binary relation in their model, a structure

that was suggested to Jeffrey by Kurt Gödel (Jeffrey 1983, p. 143). The

characterization of this set in our model depends on its central feature, the set of

consequences. We show: (1) the conditional probability given a consequence event

is uniquely determined; (2) the probabilities of the consequence events are ordered

by optimism; and (3) a cardinal utility for a given probability is uniquely determined

and the utility gains are ordered by contentment.

Binary relations on subsets of a given set were studied in various works. de

Finetti (1931) considered a relation on events in a state space, named qualitative
probability. He proposed several axioms on qualitative probability, but they were

not enough to guarantee that qualitative probability can be represented by a

numerical probability. By adding axiom P60, Savage (1954) showed that a

qualitative probability has a unique representation by an additive probability. We

use this result to prove the existence of a unique probability on each consequence

event, using axiom A3 of Small Events, which is similar to Savage’s P60.
Ahn (2008) studied a preference over lotteries. His axioms, like ours, resemble

those of Bolker, despite the different domain of the relation. Thus, his presentation

of the relation is expressed as a ratio of an integral on utility divided by a

probability.

Luce and Krantz (1971) used conditional expected utility to represent a binary

relation. However, unlike desirability, the relation they study is not defined on

events, but on conditional acts, namely acts that are a function not on the whole

state space, but only on an event in this space. For a further discussion of the

relation between Luce and Krantz (1971), Savage (1954), and Jeffrey (1965), see

Chai et al. (2016).

5 Proofs

5.1 An outline of the proofs

We omit the proof of the simple ‘‘if’’ part of Theorem 1. We prove first a restricted

version of Theorem 1 under Assumptions 1 and 2, and then show how Theorem 1

can be derived from this version.

Theorem 1* For a comprehensive state space ðX;R; f Þ, a relation % on R
satisfies axioms A1–A7 and Assumptions 1 and 2 if and only if there exists a pair
(P, u) that represents % , such that PðCiÞ[ 0 for i ¼ 1; . . .; n and
uðcnÞ[ uðcn	1Þ[ � � � [ uðc1Þ.
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In Sect. 5.2 we derive for each consequence c a probability Pc on Rc, the r-field

of events in C, that will serve as the conditional probability of the probability P in

Theorem 1*. Definition 2 enables us to introduce a likelihood relation on a family of

similar events. Since, by axiom A6 of Consequence Events, all non-null subevents

of C are similar, we manage to define a likelihood relation on Rc. This relation is

shown to be a qualitative probability. By axiom A3 of Small Events, a theorem of

Savage ensures that there exists a unique non-atomic probability on Rc, which

represents the qualitative likelihood relation on Rc.

In Sect. 5.3 we show that the desirability relation between events depends only

on the n-dimensional vector of their conditional probabilities ðPcðE \ CÞÞc2C.

Moreover, it is homogeneous in this vector.

This enables us to translate, in Sect. 5.4, the desirability relation on events into a

relation on the positive orthant of RC. We show that the sets defined by this latter

relation are convex, and describe their topological properties.

In Sect. 5.5 we again use Definition 2 to define a relation of being more likely on

each equivalence class of points in RC. We characterize the convexity of sets

defined in terms of this relation and their topological properties.

We show in Sect. 5.6 that the sets of being more likely than x and less likely than

x, in the set of points equivalent to x, can be separated by a probability vector.

Moreover, this vector is independent of x. Such a probability vector will be the

probability of the consequence events.

In Sect. 5.7 we characterize the space of separating functionals of the previous

subsection in terms of exchange rates of coordinates in the Euclidean space. These

exchange rates help us to derive the utility in the next subsection.

Using the conditional utility in Sect. 5.2, the probabilities derived in Sect. 5.5,

and the utility derived in Sect. 5.8, we go back to the desirability relation and prove

Theorems 1–4.

5.2 The conditional probability over consequences

The following are three immediate corollaries of axioms A4 of Intermediacy

and A2 of Weak Order. The first is not only a corollary of the two axioms, but

combined with axiom A2 implies axiom A4.

Corollary 2 If E and F are disjoint non-null events, then the relations E�F,

E [ F�F, and E�E [ F are equivalent.

Corollary 3 If E and F are disjoint non-null events, then the relations E�F and

E [ F�F are equivalent. Hence, if E1; . . .;Ek are non-null events that are disjoint

in pairs, and E1 �E2 � . . .�Ek, then [k
i¼1E

i �E1.

Corollary 4 Let E and F be disjoint events. If A�E and A%F, then A�E [ F. If
E�A and F%A, then E [ F�A.

Proof For the first part, if E%F, then by intermediacy A�E%E [ F. If F�E, then

by Corollary 1, A%F�E [ F. The second part is similarly proved. h
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We denote by Rc the r-algebra that R induces on C, namely,

Rc ¼ fE j E � C;E 2 Rg:
We begin with a derivation of a non-atomic probability distribution Pc on Rc for

each consequence c. This is done by defining a relation ’ on Rc, in terms of the

relation % , and showing that it satisfies the axioms of qualitative probability.

Fix for now a consequence c and the corresponding event C. Choose a non-null

event G such that G \ C ¼ £ and G 6 �C. By Assumption 2, and since n� 2, there

exists such a G, as Cj for j 6¼ i satisfies it. Note, that since G is non-null, for any

A 2 Rc, including the null events, A [ G is non-null. We define a binary relation ’

on Rc as follows.

Definition 5 For A;B 2 Rc, A’B if either C�G and A [ G%B [ G, or G�C and

B [ G%A [ G.

Observe that non-null events A and B in Rc are similar events by axiom A6 of

Consequence Events, and therefore A’B if and only if A is more likely than B

according to G, as in Definition 2. Thus, ’ is an extension of the latter relation to all

events in Rc. We write A � B when A’B and B’A, and A[B when it is not the

case that B’A.

Proposition 1 There exists a unique probability measure Pc on Rc such that for any
A;B 2 Rc, A’B if and only if PcðAÞ�PcðBÞ. The probability Pc is non-atomic.

Proof We first show that ’ is a qualitative probability on Rc. That is, it satisfies the

following properties for all A;A0, and B in Rc such that B \ ðA [ A0Þ ¼ £.

1. ’ is transitive and complete;

2. A’A0 if and only if A [ B’A0 [ B ;

3. A’£, C[£.

Since G 6 �C, either G�C or C�G. We assume that C�G. The proof for the other

case is analogous.

By Weak Order either A [ G%B [ G, in which case A’B , or B [ G%A [ G, in

which case B’A. Thus, ’ is complete. Suppose that A1’A2 and A2’A3. Then,

A1 [ G%A2 [ G and A2 [ G%A3 [ G. By Weak Order A1 [ G%A3 [ G, and thus

A1’A3. Therefore ’ is transitive.

To show 2, we consider the following four cases. (a) B is null. In this case,

A [ B [ G%A0 [ B [ G if and only if A [ G%A0 [ G, which yields 2. (b) A is null

and A0 is not. This case is impossible when A’A0, because by Corollary 2,

A0 [ G�G�A [ G. (c) A is non-null and A0 is null. By Intermediacy

A [ G%G�A0 [ G. Thus, in this case, necessarily A’A0. Since B�G,

A�B%B [ G, and hence by axiom A4 of Intermediacy,

A [ B [ G%B [ G�A0 [ B [ G. Thus, in this case it is also necessary that

A [ B’A0 [ B. (d) All three events A, A0 and B are non-null. In this case, A’A0

means that A is more likely than A0 according to G. As B�C�G, it follows by

Corollary that C�B�B [ G. Also ðB [ GÞ \ ðA [ A0Þ ¼ £. Thus, by axiom A5 of

Persistency, A is more likely than A0 according to G if and only if A is more likely
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than A0 according to B [ G. Hence, A [ G%A0 [ G if and only if

A [ B [ G%A0 [ B [ G.

If A is non-null, then by Corollary 2, A [ G�G ¼ £ [ G. Hence it is not the case

that £ [ G%A [ G, and therefore A[£. In particular, C[£. If A is null then

A [ G�£ [ G. Which shows that for all A, A’£. This proves 3.

Next, we prove a property of ’ which is named by Savage P6’:

If E[F, then there exists a finite partition of C, ðPiÞki¼1, such that for each i,
E[F [Pi.

Since E[F, it follows that E [ G�E [ G. Let fP0
i j i ¼ 1; . . .;mg be the

partition the existence of which is guaranteed by axiom A3 of Small Events for the

last relation. Then, the set of nonempty events of the form Pi ¼ P0
i \ C is a

partition of C and for each such event Pi, ðF [ G [PiÞDðF [ GÞ ¼ Pi � P0
i. Thus,

by the said axiom, E [ G%F [ G [Pi, which means E[F [Pi.

This property with the properties of ’ as qualitative probability imply the claim

of the proposition as is shown in Savage (1954). h

In the next subsection we show that the desirability of an event E depends only

on the probabilities PcðEcÞ. Here, we show that the question whether E is null or not

depends only on these probabilities.

Definition 6 Let p : R ! RC be defined by pðEÞ ¼ ðPcðEcÞÞc2C.

Proposition 2 An event N is null if and only pðNÞ ¼ 0.

Proof Since R0 is closed under unions, and inclusion, an event N is null if and only

if for each c, Nc is null. Thus, it is enough to show that Nc is null if and only if

PcðNcÞ ¼ 0. If Nc is null then for any non-null H, Nc [ H�H and therefore Nc � £

and thus, PcðNcÞ ¼ 0. For the converse suppose PcðNcÞ ¼ 0. We need to show that

if E%F, EDE0 � Nc, and FDF0 � Nc then E0
%F0. For this it suffices to show that

E�E0 and F�F0. Note that E n C ¼ E0 n C. Now, if E n C�C, then by Corollary

E ¼ Ec [ ðE n CÞ�C and similarly E0 �C and we are done. Otherwise,

E n C 6 �C. Now, Ec ¼ ðEc \ E0
cÞ [ N1

c for some N1
c � Nc. Since PcðN1

c Þ ¼ 0, it

follows by axiom A5 of Persistency, that E ¼ ðEc \ E0
cÞ [ N1

c[
ðE n CÞ� ðEc \ E0

cÞ [ ðE n CÞ. Similarly E0 � ðEc \ E0
cÞ [ ðE0 n CÞ. Since

E n C ¼ E0 n C, it follows that E�E0. Similarly, F�F0. h

5.3 The homogeneity of desirability

In this subsection we prove:

Proposition 3 If there exists t[ 0 such that pðEÞ ¼ tpðFÞ 6¼ 0, then E�F.

To prove it we use the following three lemmas.

For each non-null G, the support of G is CðGÞ ¼ fc j Gc is non-nullg. We split

the support into two parts C	ðGÞ ¼ fc 2 CðGÞ j G�Gcg and CþðGÞ ¼ fc 2 CðGÞ j
Gc %Gg.
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Lemma 1 The set CþðGÞ is not empty, and if jCðGÞj � 2, then also C	ðGÞ is not
empty.

Proof Suppose that CþðGÞ ¼ £. Then G ¼ [c2C	ðGÞGc. By Corollary 4,

G� [c2C	ðGÞ Gc, which is impossible. Assume now that jCðGÞj � 2 and suppose

that C	ðGÞ ¼ £. Then for some c and d in CþðGÞ, Gc�Gd. Again by Corollary 4,

G ¼ [c2CþðGÞGc�G. h

Lemma 2 Let G be an event such that jCðGÞj � 2. Denote for each event X such that
CðXÞ ¼ CðGÞ, Xþ ¼ [c2CþðGÞXc and X	 ¼ [c2C	ðGÞXc. If G

þ � Xþ and X	 � G	,

and the events Gþ n Xþ and X	 n G	 are non-null, then X�G.

Proof By Corollary 4, G�G	 n X	. This implies that X	 [ Gþ�G, because if

G%X	 [ Gþ, then G�ðX	 [ GþÞ [ ðG	 n X	Þ ¼ G. Also, Xþ n Gþ
%G. Hence,

ðX	 [ GþÞ [ ðXþ n GþÞ�G. Since CðXÞ ¼ CðGÞ it follows that X�ðX	 [ GþÞ [
ðXþ n GþÞ and thus X�G. h

Next, we describe a simple result of axiom A3 of Small Events. If F�E, and

E1 � E is non-null, then there exists D � E1 such that D \ E1 is non-null and

F�E n D. Indeed, choose the partition P in axiom A3, and select an element Pi of

P such that Pi \ E1 is non-null, and set D ¼ Pi \ E1. This result can be generalized

as follows.

Lemma 3 If F�E, and E1; . . .;Em are non-null subevents of E, then there exists

D � [m
i¼1E

i such that for each i, D \ Ei is non-null and F�E n D.

Proof Prove by induction on m. In the k stage we have Dk that satisfies the

condition for E1; . . .;Ek. Since F�E n Dk, we can apply axiom A3 of Small Events

and choose Pi such that Pi \ Ekþ1 is non-null. We let Dkþ1 ¼ ðDk [ PiÞ \ [kþ1
i¼1 E

i. h

Proof of Proposition 3 By Proposition 2,

CðEÞ ¼ CðFÞ ¼ fc j pcðEcÞ ¼ pcðFcÞ[ 0g. If this set, which we denote by C, is a

singleton c, then both E and F are similar to C and we are done. We assume

therefore that jCj � 2.

We prove first for t ¼ 1. By the definition of pc and axiom A5 of Persistency, for

each d 6¼ c in C, Ec [ Fd �Fc [ Fd. Similarly, by the definition of pd,

Ec [ Fd �Ec [ Ed. Thus, Ec [ Ed �Fc [ Fd. It follows by axiom of Likelihood

Ratio that E�F.

Suppose that t ¼ k=m for some integers k and m. By the non-atomicity of pc,

there exists for each c 2 C, a partition E1
c ; . . .;E

k
c of Ec into k equally pc-probable

events and a partition F1
c ; . . .;F

m
c of Fc into m equally pc-probable events. Then

pcðEi
cÞ ¼ pcðF j

cÞ for all c 2 C and i, j. Let Ei ¼ [c2CE
i
c and F j ¼ [c2CF

j
c . Then, by

the claim for t ¼ 1, Ei �F j for all i and j. As all the Ei’s are disjoint in pairs and

similar, it follows by Corollary 3 that [k
i¼1E

i �E1. In the same way, [m
j¼1F

j �F1 .

Since for all c 62 C, Ec and Fc are null, E� [k
i¼1 E

i and F� [m
j¼1 F

j. But, E1 �F1,

and therefore E�F.

Let t be an irrational number. Suppose that contrary to the claim, F�E. This can
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be assumed without loss of generality, because if E�F we write pðFÞ ¼ t0pðEÞ for

t0 ¼ 1=t.
We derive a contradiction. By Lemma 1, C	ðFÞ is not empty. By Lemma 3, there

exists an event D such that F�E n D, D � [c2C	ðFÞEc, and D \ Ec is non-null for

each c 2 C	ðFÞ. We denote Hc ¼ Ec n D. Let e ¼ minfpcðEc \ DÞ j c 2 C	ðFÞg.

Then, e[ 0 and we can choose a rational number k/n such that t 	 e\k=m\t.
Given this relation we have by the non-atomicity of the probabilities pc an event

G � E such that pðGÞ ¼ ðk=mÞpðFÞ. Moreover, for c 2 C	ðFÞ, we can choose Gc to

satisfy Hc � Gc where the difference is a non-null event.

As we have shown, G�F. Therefore, if F�Fc then G�F�Fc �Gc. Thus,

C	ðGÞ ¼ C	ðFÞ, and similarly, CþðGÞ ¼ CþðFÞ. We apply Lemma 2 to X ¼ E n D.

The event X	 is H ¼ [c2C	ðGÞHc � G	, and Xþ ¼ Eþ 
 Gþ. We conclude that

F�E n D�G�F, which is a contradiction. h

5.4 From desirability to a relation in a Euclidian space

Using Proposition 3, we describe a binary relation on RC. We use the notation %

for both this relation and the relation on events, and call both desirability relations.

No confusion will result.

Definition 7 Denote by RC
þ the set of all points x 2 RC such that x� 0 and x 6¼ 0.

We define a relation on RC
þ by x% y if there exist events E and F and positive

numbers t and s such that pðEÞ ¼ tx, pðFÞ ¼ sy, and E%F.

Note that if x% y then by Proposition 3, E0
%F0 for any pair of events E0 and F0

such that pðE0Þ ¼ t0x and pðF0Þ ¼ s0y, for t0; s0 [ 0.

Denote MðxÞ ¼ fy j y% xg, MþðxÞ ¼ fy j y�xg, LðxÞ ¼ fy j x% yg,

L	ðxÞ ¼ fy j x�yg, and EðxÞ ¼ fy j y� xg.

The next proposition addresses the convexity of these sets.

Proposition 4

1. The relation % on RC
þ is complete and transitive.

2. For each x, the sets MðxÞ, MþðxÞ, LðxÞ, L	ðxÞ, and EðxÞ are convex cones.

Proof

1. For x and y in RC there exist small enough positive t and s such that for some

events E and F, pðEÞ ¼ tx and pðFÞ ¼ sy. Since at least one of the relations

E%F or F%E holds, it follows that at least one of x% y or y% x must hold.

Suppose x% y and y% z. Then there are events E, F, and positive numbers tE
and tF , such that pðEÞ ¼ tEx, pðFÞ ¼ tFy, and E%F. There are also events G
and H, and positive numbers tH and tG, such that pðGÞ ¼ tGy, and pðHÞ ¼ tHz,

where G%H. Since pðGÞ ¼ tGt
	1
H pðHÞ, it follows by Propostion that G�H.

Hence, E%H and therefore x% z.
2. The sets in this part of the proposition are cones by the definition of % .

Consider the set MðxÞ. To prove that it is convex it is enough to show that for
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any z;w 2 MðxÞ, zþ w 2 MðxÞ. Let G be an event such that pðGÞ ¼ rx. For

small enough t[ 0 there are disjoint events E and F such that pðEÞ ¼ tz and

pðFÞ ¼ tw. Hence, E%G and F%G. By Corollaries and 4, E [ F%G. But

pðE [ FÞ ¼ tðzþ wÞ and thus zþ w 2 MðxÞ. The proof for the rest of the sets

is similar. h

Next, we discuss the topological properties of these sets. We denote by ec the unit

vector of the coordinate c, and write ei for eci .

Proposition 5 For each x 2 RC
þ:

1. the sets MþðxÞ and L	ðxÞ, are open subsets in RC
þ. If x 6¼ e1 then L	ðxÞ 6¼ £.

If x 6¼ en then MþðxÞ 6¼ £;

2. the sets MðxÞ, LðxÞ, and EðxÞ are closed subsets in RC
þ;

3. the interior of EðxÞ is empty.

Proof

1. Let y 2 MþðxÞ and suppose that pðEÞ ¼ ty and pðFÞ ¼ sx. We may assume

without loss of generality that tyc\1 for each c. As E�F we can apply

axiom A3 of Small Events. Consider a consequence c. If PcðEcÞ[ 0, then Ec is

non-null, and we can find an element Pi of the partition P such that Pi \ Ec is

non-null. Let Dc ¼ Ec \Pi. Then E n Dc�F. As pðE n DcÞ ¼ ty	 pcðDcÞec, it

follows that y	 t	1pcðDcÞec�x. Thus, at a point y which is not on the face

yc ¼ 0, we can decrease the c -coordinate and remain in MþðxÞ. Similarly,

since C n Ec is non-null, per our assumption on ty, we can choose an element Pi

of the partition P, such that ðC n EcÞ \Pi is non-null. By setting

Dc ¼ ðC n EcÞ \Pi, we have E [ Dc�F. In this way we show that

yþ t	1pcðDcÞec�x. Thus, we can increase the c-coordinate and remain in

MþðxÞ. Since MþðxÞ is convex, to prove that it is open it is enough to show

that for each point y in MþðxÞ an interval along the c-coordinate containing y is

in MþðxÞ. If x 6¼ en, then en�x and hence MþðxÞ is not empty. The proof for

the set L	ðxÞ is similar.

2. The sets MðxÞ and LðxÞ are the complements in RC
þ of L	ðxÞ and MþðxÞ

correspondingly, and hence they are closed. The set EðxÞ is the intersection of

MðxÞ and LðxÞ and hence closed.

3. Let y 2 EðxÞ. There exists c such that either y�ec or ec�y. Suppose the first

holds. We can assume without loss of generality that y ¼ pðEÞ and yc\1.

Choose Fc � C , such that Fc \ E ¼ £ and pcðFcÞ\e. Then E�E [ Ec. This

means that y�yþ eec, and therefore yþ eec 62 EðxÞ. This shows that y is not in

the interior of this set. The proof for the case ec�y is similar. h

For x 62 fe1; eng, the three sets MþðxÞ, L	ðxÞ and EðxÞ form a partition of RC
þ.

The first two are disjoint open convex cones. Since EðxÞ does not have an interior

point, it is the closure of each of the first two sets. These two convex open sets can
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be separated by a hyperplane. Since 0 is in the closure of the separated sets, the

hyperplane is an ðn	 1Þ-dimensional subspace SðxÞ. As EðxÞ is the closure of both

sets, it must be the intersection of SðxÞ with RC
þ. Since the two separated sets are

open, EðxÞ contains an interior point of RC
þ. Thus we conclude:

Corollary 5 For x 62 fe1; eng, the set EðxÞ is the intersection of RC
þ with an ðn	 1Þ-

dimensional subspace, SðxÞ. This intersection is of dimension n	 1, that is, it

contains interior points of RC
þ.

5.5 Likelihood relation in the Euclidean space

Using the desirability relation of events we defined a likelihood relations % H on

events which are equally desirable. We now show how such relations are

transformed to a relation in RC.

For v 6 � x we define a relation %
�
v on EðxÞ.

Definition 8 For y; z 2 EðxÞ, if x�v, then y% �
vz when yþ v% zþ v, and if v�x then

y% �
vz when zþ v% yþ v.

By axiom A5 of Persistency, if u; v 6 � x then %
�
u ¼ %

�
v . We denote this relation

which is independent of the choice of v, by %
�. We study the following sets that are

defined in terms of this relation.

For each y 2 EðxÞ, we define five subsets of EðxÞ: M�ðyÞ ¼ fz j z% �yg,

M�
þðyÞ ¼ fy j z��yg, L�ðyÞ ¼ fz j y% �zg, L�

	ðyÞ ¼ fz j y��zg, and E�ðyÞ ¼
fz j z� �yg.

First, we describe the convexity properties of these sets.

Proposition 6

1. The relation %
� on EðxÞ is complete and transitive.

2. For each y 2 EðxÞ, the sets M�ðyÞ, M�
þðyÞ, L�ðyÞ, L�

	ðyÞ, and E�ðyÞ are

convex.

Proof

1. Since either yþ v% zþ v or zþ v% yþ v, it follows that either y% vz or z% vy.

Suppose y% vz and z% vw. Then yþ v% zþ v%wþ v and therefore y% vw.

2. Let z;w 2 M�ðyÞ and a 2 ð0; 1Þ. Then for some v such that x�v, zþ v% yþ v
and wþ v�yþ v. Therefore, azþ av% yþ v, and ð1 	 aÞwþ ð1 	 aÞv% yþ v.

By intermediacy, azþ ð1 	 aÞwþ v% yþ v. That is, azþ ð1 	 aÞw 2 M�ðyÞ.
The proof for the rest of the sets is similar. h

The following lemma is used in the next proposition that describes the

topological properties of these sets.

Lemma 4 For all y; z 2 EðxÞ:
1. zþ y��y;
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2. if y� �z and t[ 0 then ty� �tz.

Proof

1. Let x�v. By intermediacy, z� y�yþ v. Therefore, zþ yþ v�yþ v. Hence

zþ y��y.

2. If y� �z then for some v such that x�v, yþ v� zþ v. Therefore, tyþ tv� tzþ
tv and thus ty� �tz. h

Proposition 7 For each y 2 EðxÞ:
1. the sets M�

þðyÞ and L�
	ðyÞ, are non-empty open subsets in EðxÞ;

2. the sets M�ðyÞ, L�ðyÞ, and E�ðyÞ are closed subsets in EðxÞ;
3. the interior of E�ðyÞ in EðxÞ is empty.

Proof

1. By Lemma 4, yþ ey��y��y	 ey and thus M�
þðyÞ and L�

	ðyÞ are not empty.

This also shows that close enough to E�ðyÞ there are points not in this set, which

proves 3. If zþ v�yþ v, then by Proposition 5 there is a ball B around zþ v
such that for each w 2 B, w�yþ v. Therefore, there is a ball B0 around y such

that for each w0 2 B0, w0 þ v�yþ v. Thus y 2 B0 \ EðxÞ which shows that

M�
þðyÞ is open. The proof for L�

	ðyÞ is similar.

2. The first two sets are complements of open sets, and the third is the intersection

of the first two. h

5.6 Separation

By Propositions 6 and 7 we can separate M�ðyÞ and L�ðyÞ by a hyperplane. Since

E�ðyÞ is the boundary of each of these sets it is contained in this hyperplane. As the

separated sets are of dimension n	 1, E�ðyÞ is of dimension n	 2. Thus,

Corollary 6 For y 2 EðxÞ, there exists a unique subspace L(x, y) of dimension n	 2

such that E�ðyÞ ¼ ðLðx; yÞ þ yÞ \ EðxÞ.

We next show in two steps that the space L(x, y) is independent of x and y.

Proposition 8 There exists an ðn	 2Þ-dimensional subspace L such that for all x
and y 2 EðxÞ, Lðx; yÞ ¼ L.

We prove it with the next three lemmas. We first fix x and vary y.

Lemma 5 For each x there exists L(x) such that for all y 2 EðxÞ, Lðx; yÞ ¼ LðxÞ.

Proof Let y0 2 EðxÞ. By the separation, the ray ty must intersect E�ðy0Þ, and thus,

for some t[ 0, y0 � �ty and hence E�ðy0Þ ¼ E�ðtyÞ. By Lemma 4, E�ðtyÞ ¼ tE�ðyÞ.
But tE�ðyÞ ¼ t½Lðx; yÞ þ yÞ \ EðxÞ� ¼ ðLðx; yÞ þ tyÞ \ EðxÞ. Thus, Lðx; y0Þ ¼ Lðx; yÞ.
h

In order to show that L(x) is independent of x we use the next lemma.
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Lemma 6 For each x,y, and z, if x� �y, then xþ z� �yþ z.

Proof If x� �y, then by definition x� y. Suppose x�z. As x� �y it follows that

xþ z� yþ z. In order to show that xþ z� �yþ z it is enough to find some v such

that xþ z�v, and xþ zþ v� yþ zþ v. Indeed, take v ¼ z, then by Intermediacy

xþ z�z, and as x� �y, xþ ðzþ zÞ� yþ ðzþ zÞ. The proofs for the cases that z�v
and z� z are similar. h

Lemma 7 There exists L such that for all x, LðxÞ ¼ L.

Proof For x and x0 choose y 2 EðxÞ and y0 2 Eðx0Þ such that y0 	 y ¼ z 2 RC
þ. By

Lemma 6, E�ðyÞ þ z � E�ðy0Þ. But, E�ðy0Þ ¼ ðLðx0Þ þ y0Þ \ Eðx0Þ, and E�ðyÞ þ z is

an ðn	 2Þ-dimensional subset of LðxÞ þ yþ z ¼ LðxÞ þ y0. Therefore, LðxÞ ¼ Lðx0Þ.
h

This completes the proof of Proposition 8.

Since L is of dimension n	 2 there are many linear functionals p such that

pw ¼ 0 for all w 2 L. By the definition of L, each such functional separates M�ðyÞ
and L�ðyÞ, and contains E�ðyÞ for every x and y 2 EðxÞ. The separating functional

p is going to play the role of consequential probabilities. Therefore we need the

following claim.

Proposition 9 The functional p can be chosen to be a strictly positive probability
vector.

Proof Let p0 be a separating functional. By Lemma 4, for fixed x and y 2 EðxÞ, and

for any w 2 EðxÞ, yþ w 2 M�
þðyÞ. Therefore, p0ðyþ wÞ 6¼ p0y and thus p0w 6¼ 0.

Since EðxÞ is the intersection of RC
þ with a subspace S of dimension n	 1, there

exists a non-zero functional q 2 RC such that for each w 2 RC
þ, qw ¼ 0 if and only if

w 2 EðxÞ.
Consider the two-dimensional space ap0 þ bq. We show that it contains a point in

RC
þ. Suppose to the contrary that fap0 þ bq j a; b 2 Rg \ RC

þ ¼ ;. Then, the two

sets can be separated by a non-zero functional w. Since the first set is a subspace,

wðap0 þ bqÞ ¼ 0 for each a and b, and we can assume that wr� 0 for all r 2 RC
þ

which implies that w 2 RC
þ. By the separation, wq ¼ 0 and wp0 ¼ 0. The first

equality implies that w 2 EðxÞ. But then the second equation is impossible because

we proved that p0w 6¼ 0 for each w 2 EðxÞ. Therefore, we can choose p ¼ ap0 þ bq
in RC

þ. By the definition of q, for every z 2 E�ðyÞ, pz ¼ ap0z ¼ ap0y ¼ py, which

shows that p vanishes on L.

To see that p is strictly positive, note that for ec, pec ¼ pc. By Lemma 4, ec þ
ec��ec and therefore 2pc [ pc, which shows that pc [ 0. We can assume that p is

normalized and therefore it is a strictly positive probability vector. h
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5.7 The family of separating functionals

When n ¼ 2 the dimension of L is 0. The probability vector p can be chosen in this

case to be any vector ða; 1 	 aÞ for 0\a\1. We now assume that n[ 2 and

construct a basis for L.

Proposition 10 For each i ¼ 2; . . .; n	 1 there is a unique pair of positive numbers

di; gi, such that the vector di, defined by ðdii	1; d
i
i ; d

i
iþ1Þ ¼ ðdi;	1; giÞ and dj ¼ 0 for

all j 62 fi	 1; i; iþ 1g, is in L. The vectors di form a basis of L.

Proof For i ¼ 2; . . .; n	 1, let RðiÞ be the subspace of RC spanned by ei	1, ei, and

eiþ1, and RþðiÞ ¼ RðiÞ \ RC
þ. Since the dimension of L is n	 2, the dimension of

L \ RðiÞ is at least 1, and it cannot be higher than 1 because then there would be

x; y 2 RðiÞ such that x[ y and x	 y 2 L, contrary to Lemma 4. Thus, L \ RðiÞ is of

dimension 1.

Choose two distinct points x and y in the interior of RþðiÞ such x	 y 2 L. We

show that xi 6¼ yi. Suppose to the contrary that xi ¼ yi. Since x	 y 2 L, it follows

that pi	1ðyi	1 	 xi	1Þ þ piþ1ðyiþ1 	 xiþ1Þ ¼ 0. Since p[ 0, yi	1 	 xi	1 and yiþ1 	
xiþ1 are of different signs. But eci	1

�x�eciþ1
and thus by Lemma 2 either y�x or

x�y, which contradicts the assumption that x� y.

Thus, we can assume without loss of generality that yi\xi. Now,

pi	1ðyi	1 	 xi	1Þ þ piðyi 	 xiÞ þ piþ1ðyiþ1 	 xiþ1Þ ¼ 0, and since the middle term

is negative, pi	1ðyi	1 	 xi	1Þ þ piþ1ðyiþ1 	 xiþ1Þ[ 0. Therefore it is impossible

that yi	1 	 xi	1 � 0 and yiþ1 	 xiþ1 � 0. Also, as eci	1
�y�eciþ1

, it is impossible that

one difference is positive and the other is non-negative, because this would imply

contrary to x� y, that either y�x or x�y. Therefore both are positive. Let,

di ¼
yi	1 	 xi	1

xi 	 yi
ð2Þ

and

gi ¼
yiþ1 	 xiþ1

xi 	 yi
: ð3Þ

Then y	 x ¼ ðxi 	 yiÞdi. Since x	 y 2 L, it follows that di 2 L. Since L \ RðiÞ is a

line, di and gi are uniquely determined.

Since the vectors d2; . . .; dn	1 are n	 2 independent vectors they are a basis of L.

h

The following proposition is a corollary of the proof of Proposition 10.

Proposition 11 The vector p is in L if and only if for each i ¼ 2; . . .; n	 1, and x
and y in RðiÞ that satisfy x� y and x� �y,

dipi	1 þ gipiþ1 ¼ pi: ð4Þ
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5.8 Utility

We now construct a utility vector u ¼ ðucÞ, where we write ui for uci . We say that u
is monotonic if ui\uiþ1 for i ¼ 1; . . .; n	 1.

Proposition 12 There exists a monotonic vector u such that the function

ûðxÞ ¼
X

c

pcxcuc=px

on RC
þ is constant on Eðx0Þ, for each x0 2 RC

þ. The vector u is uniquely determined

up to transformations u ! aðu1 þ b; u2 þ b; . . .; un þ bÞ, for a[ 0.

Proof When n ¼ 2, Eðx0Þ is simply the ray ftx0 j t[ 0g. Since û is homogeneous,

the claim of the proposition holds for any monotonic vector ðu1; u2Þ. Assume now

that n[ 2.

Consider first x 2 E�ðx0Þ. Since px ¼ px0, ûðxÞ ¼ ûðx0Þ is equivalent to
X

c

pcðxc 	 x0
cÞuc ¼ 0:

By Proposition 10, for small enough t, x ¼ x0 þ tdi 2 E�ðx0Þ. The last equality in

this case is equivalent to:

dipi	1ui	1 þ gipiþ1uiþ1 ¼ piui: ð5Þ

Using Eqs. (4), (5) can be written as

dipi	1ðui	1 	 ui	1Þ þ gipiþ1ðuiþ1 	 ui	1Þ ¼ piðui 	 ui	1Þ: ð6Þ

This gives rise to: ðuiþ1 	 ui	1Þ=ðui 	 ui	1Þ ¼ pi=ðgipiþ1Þ. Denoting Dui ¼ ui 	
ui	1 for i ¼ 2; . . .; n, Eq. (6) is ðDuiþ1 þ DuiÞ=Dui ¼ pi=ðgipiþ1Þ, or

Duiþ1

Dui
¼ pi

gipiþ1

	 1 ¼ dipi	1

gipiþ1

; ð7Þ

where the right-hand side is positive. Thus, choosing arbitrarily u1\u2, the rest of

the coordinates of u are determined by 7, and as the Dui’s are positive, u is

monotonic. Obviously, a vector v solves (5) if and only if for some b 2 RC and a

positive a, v ¼ aðu1 þ b; u2 þ b; . . .; un þ bÞ.
Now, considering tx0. Obviously, ûðtx0Þ ¼ ûðx0Þ. Thus the function û is constant

on [t[ 0E
�ðtx0Þ, which is Eðx0Þ. h

Proposition 13 x% y if and only if ûðxÞ� ûðyÞ.

Proof In the previous proposition we constructed u such that if x� y then

ûðxÞ ¼ ûðyÞ. It is enough now to show that y�x if and only if ûðyÞ[ ûðxÞ.
Denote by Xi the set of points in RC

þ such that xk ¼ 0 for all k 62 fi; iþ 1g.

Clearly, for x 2 Xi, ûðxÞ 2 ½ui; uiþ1� and eiþ1 % x% ei. Let X ¼ [n	1
i¼1 X

i. We first

prove the claim for points in X. Suppose x; y 2 Xi. We can assume that yi ¼ xi. By
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the definition of Piþ1, y�x if and only if yiþ1 [ xiþ1. But this holds if and only if

ûðyÞ� ûðxÞ.
Next, suppose that y 2 Xi and x 2 Xj for j 6¼ i. Then, y�x if and only if iþ 1� j

and it is not the case that iþ 1 ¼ j and x� y� ej. But this is equivalent to

ûðyÞ[ ûðxÞ.
Observe now that for every x 2 RC

þ there exists a point x0 2 X such that x0 � x.

Indeed, there exists i such that eiþ1 % x% ei. Consider the sets MðxÞ \ Xi and

LðxÞ \ Xi. By Propositions 4 and 5 these are closed cones. The first contains ei and

the second eiþ1. Therefore there exist x0 in Xi which belong to both. Thus x0 � x.

Now, x�y if and only if x0 � y0, which is equivalent to ûðx0Þ[ ûðy0Þ. But, ûðx0Þ ¼
ûðxÞ and ûðy0Þ ¼ ûðyÞ, which completes the proof. h

5.9 Proofs of Theorems 1–4

To complete the proof of Theorem 1* we define a probability P on R by

PðEÞ ¼ ppðEÞ ¼
P

c pcPcðEcÞ. Note, that as p[ 0, an event E is P-null if and only

if pðEÞ ¼ 0, which holds, by Proposition 2, if and only if E is null. Now,P
ci
uiPðE j CiÞ ¼ ûðpðEÞÞ. Since E%F if and only if pðEÞ% pðFÞ, (P, u)

represents % on R by Proposition 13.

Proof of Theorem 1 To prove the ‘‘only if‘‘ part of Theorem 1 we construct a new

state space ðX̂; R̂Þ, a new set of consequences C, and a new relation %̂ on R̂. The set

X̂ is obtained by eliminating from X all events Ci that are null. The r-algebra R̂

consists of the events in R which are subsets of X̂. For C, we partition the set of

consequence for which Ci is non-null into equivalence classes such that ci and cj
belong to the same class if Ci �Cj. The consequences in C are these equivalence

classes.

We need to show that C has at least two points, that is that there are i and j such

that Ci and Cj are non-null and Ci�Cj.

Let I be the set of indices i such that Ci is non-null. The set I is not empty,

because otherwise, X ¼ [iCi is null, and hence all events are null, contrary to Non-

degeneracy. Suppose that all the events Ci with i 2 I are similar. Let E be a non-null

event. For each i 62 I, Eci is null, and hence, E� [i2I Eci . For some indices i 2 I,
Eci must be non-null. Let I� be the subset of I of such indices. Then, E� [i2I� Eci .

Choose i� 2 I�. Then by Corollary, E�Eci� . By axiom A6 of Consequence Events,

E�Ci� . Since this holds for all non-null events E, and all the Ci� are similar, all non-

null events are similar, contrary to Non-degeneracy.

Finally, the relation %̂ is the restriction of % to the events in R̂. We skip the

simple proof that %̂ satisfies axioms A1–A5 as well as Assumptions 1 and 2. By

Theorem 1* there exists a pair ðP̂; ûÞ that represents %̂ . We define a probability P

on R by setting PðEÞ ¼ P̂ðE \ X̂Þ. The utility u is defined arbitrarily on ci that

correspond to null Ci, and for all other ci, uðciÞ ¼ ûðĉjÞ where ĉj is the equivalence

class of ci. We omit the straightforward proof that (P, u) represents % . h
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Proof of Theorem 2 Assume that % satisfies the said properties and (P, u)

represents % . We show that the conditional probability Pð� j CÞ represents the

qualitative probability relation ’ in Definition 5. Since, by Proposition 1 there

exists a unique probability on Rc that represents this relation, it follows that the

conditional parts of probabilities in Pð% Þ are the same.

Consider an event A � C and event H such that H \ C ¼ ;. Then, the expected

utility given A [ H is

PðCÞPðA j CÞuc þ
P

c0 6¼c PðC0ÞPðH j C0Þuc0
PðCÞPðA j CÞ þ

P
c0 6¼c PðC0ÞPðH j C0Þ : ð8Þ

Choose H such that C�H (if there is none, we choose H such that H�C and the

argument is similar). Then uc is greater than the expected utility given H. It follows

that the derivative of (8) with respect to PðA j CÞ is positive. Thus, For A;B � C,

A [ H%B [ H, which is equivalent to A’B, holds if and only if

PðA j CÞ�PðB j CÞ.
A probability vector p is a consequential part of some P 2 Pð% Þ if and only if it

is a positive solution of the n	 2 equations in (4). The set of positive solutions of

these equations in the simplex is a maximal interval. Dividing Eq. (4) by pi we

obtain for i ¼ 2; . . .; n,

ri ¼
1 	 di=ri	1

gi
; ð9Þ

where r ¼ qðpÞ. The function ð1 	 di=xÞ=gi is monotonic in x[ 0. Thus, if q is in

the said interval, s ¼ qðqÞ, and r1 [ s1, then r2 [ s2, which implies that r3 [ s3 and

so on. That is, p 
 q. It is easy to check that the maximal interval that contains

p and q is ordered.

Conversely, suppose that a family of probability P satisfies the two properties of

the theorem. Let ðPiÞ be the unique conditional part of probabilities in P. Let p 6¼ q
be two elements in the interval of consequential probabilities of P, such that q 
 p.

Consider the two equations kipi	1 þ gipiþ1 ¼ pi and kiqi	1 þ giqiþ1 ¼ qi with

variables di and gi. It is easy to see that these two equations have a unique solution

and that it is positive. We define now a monotonic vector u by Eq. (7). The vectors p
and u satisfy Eqs. (4) and (5). Let P ¼

P
piPi and let % be the desirability relation

defined by the pair (P, u). Then, Eqs. (2) and (3) are satisfied and thus, the set of

consequential probabilities of Pð% Þ is the set of positive solutions of Eq. (4). Since

q is also in this set, P ¼ Pð% Þ. h

Proof of Theorems 3 and 4 Equation (7) shows that Duiþ1=Dui is uniquely

determined by the consequential probability vector ðpiÞ ¼ ðPðCiÞÞ, which means

that u is determined up to a positive affine transformation. Moreover, it satisfies the

equation in Theorem 4. h
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5.10 An example

We discuss here the desirability relation % from Example 1, which is represented

by the pair (P, u) where P is the uniform probability distribution on the unit interval.

We construct the family of all the probability-utility pairs that represent % . We

choose an example with three consequences because the case of two consequences

is trivial. In this case all of DðCÞ is an interval ordered by optimism, and all utility

functions are positive affine transformation of each other (with Assumption 1).

We project the P-non-null events in R to R3
þ, the non-negative orthant of R3

without 0, by pðEÞ ¼ ðPðE j CiÞÞi. By inequality (1) in Definition 4, the desirability

relation between two events E and F depends only on pðEÞ and pðFÞ. Moreover, if

pðEÞ and pðFÞ are proportional then E�F. This last property makes it possible, just

for convenience, to extend % to all of R3
þ.

These claims on the relation % on R3
þ follow easily from the fact that the

relation is defined by a probability–utility pair by inequality (1). In the proof of

Theorem 1 we need to show that they follow from the axioms.

For x 2 R3
þ, let d and g be the increase in x1 and x3 respectively, per a decrease of

one unit of x2, required for maintaining the same probability and the same

conditional expected utility. Recalling that PðCiÞ ¼ 1=3 for i ¼ 1; 2; 3, d and g
should satisfy:

ð1=3Þdþ ð1=3Þg ¼ ð1=3Þð1Þ; ð10Þ

ð1=3Þð0Þdþ ð1=3Þð1Þg ¼ ð1=3Þð1Þð1=2Þ: ð11Þ

Equation (10) reflects the preservation of probability. Since, the probability is kept

fixed, Eq. (11) reflects that preservation of the conditional expected utility. Observe

also that these equations are the same for all x.

Equations (10) and (11) are derived from the given pair (P, u). In the proof of

Theorem 1 we show how they can be derived from the axioms on % .

The solution of (10) and (11) is d ¼ g ¼ 1=2. Thus, if the difference x	 y of two

points x and y in R3
þ is in the direction ð1=2;	1; 1=2Þ, the two points are similar,

that is x� y and have the same probability, that is
P

ið1=3Þxi ¼
P

ið1=3Þyi. In

Fig. 1, the difference between x ¼ ð1=4; 0; 1=2Þ and y ¼ ð0; 1=2; 1=4Þ is in this

direction. Therefore, the whole interval between x and y consists of points which are

similar and have the same probability. By the homogeneity of similarity, the cone

generated by x and y consists of similar points, and all the points in an interval

parallel to the interval [x, y] in this cone have the same probability.

We now show the other pairs (Q, v) that represent the same relation % . First, we

know by Theorem 2 that Qð� j CiÞ ¼ Pð� j CiÞ for each i. Thus, the projection of the

Q-non-null events to R3
þ is the same as the projection of the P-non-null events.

Also, since (P, u) and (Q, v) present the same desirability relation, the relation %

on R3
þ is the same for both representations.

We show in the proof that having the same probability for two events that are

similar is defined in terms of the desirability relation using axiom A5 of Persistency.
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Since (Q, v) and (P, u) represent the same desirability relation, the picture of

similarity and having the same probability for (Q, v) should look the same as the

one in Fig. 1. Thus, the direction of having similarity and same probability should

be ð1=2;	1; 1=2Þ. Hence, the vector of consequential probability q ¼ ðQðCiÞÞi and

v should satisfy the following equations:

q1ð1=2Þ þ q3ð1=2Þ ¼ q3ð1Þ; ð12Þ

q1v1ð1=2Þ þ q3v3ð1=2Þ ¼ q2v2ð1Þ: ð13Þ

The positive probabilities that solve (12) form an open interval of probabilities

between (2/3, 1/3, 0) and (0, 1/3, 2/3) as in Fig. 2. The point (1/3, 1/3, 1/3) with

which we started is, of course, on this line. The closer the point in this interval is to

(0, 1, 3, 2/3) the more optimistic it is. Thus, the likelihood ratio vector for (1/3, 1/

3, 1/3) is (1, 1), while for (1/6, 1/3, 1/2) it is (2, 3/2) which dominates the first

vector.

Fixing q that solves (12) and solving for v in (13) we find that

ðv3 	 v2Þ=ðv2 	 v1Þ ¼ q1=q3 ¼ ðq1=q2Þðq2=q3Þ, which is the equality in Theorem 4.

1

2

3

1/4

1/2

x

y

1/2

1/4

Fig. 1 Similarity and same
probability

1 2

3

(2/3, 1/3, 0)

(0, 1/3, 2/3)

(1/3, 1/3, 1/3)

(1/6, 1/3, 1/2)

Fig. 2 The interval of
consequential probabilities
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Thus, v is uniquely determined by q, up to a positive affine transformation.

Moreover, if q is more optimistic than p then the ratio of utility gains of v is

dominated by that of u.
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