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CONTINUOUS SELECTIONS FOR VECTOR MEASURES*t 

DOV SAMET 

Bar-Ilan University 

A vector measure is a many to one map; it maps many measurable sets onto the same point. 
A selection for a vector measure is a function which assigns to each point in the range of the 
vector measure only one measurable set which is mapped onto the point. The existence of a 
continuous selection for nonatomic vector measures is proved where the distance in the a-field 
is the measure (for a given scalar measure) of the symmetric difference. 

A stronger version of continuous selection exists for strictly convex ranges. 

1. Introduction. Vector measures are used frequently in economics, game theory, 
statistics and control theory and in many cases a continuous selection for the inverse of 
the vector measure is meaningful and desirable (see e.g. Tauman [5]). We illustrate this 
situation by a simple production model. A measurable space (U, 2, X) with a non- 
atomic, a-additive finite measure A is representing in this model a continuum of 

production units or producers. There are n products that can be produced by each 

producer and the integrable function a: U -* R" gives for each producer t in U his 

production capacity a(t). We assume further that each producer t in U can produce 
only vectors in the line segment [0, a(t)]. Such an assumption can be made in models 
of short run production (Hildenbrand [2]). We associate with the function a a 
nonatomic finite vector measure tC defined by t((S) = fa(t) dX for each measurable set 
S. Let F denote the set of all measurable functions X satisfying 0 < X < 1. A function 

X E F is called a production plan. For each t, X(t) represents the proportion of a(t) 
produced by t and the total production in this case is fa(t)x(t) dX = fx d,u which we 
denote by /i(x). It is well known that L(F) is the range R(M) of the vector measure [L. 

A production program 9p is a function p: R(ti) -* F such that i(<p(x)) = x for each 
x E R(,i), i.e., T assigns to each x a production plan which generates x. Obviously, it 
is desirable to have a continuous production program which means that small changes 
in demand (i.e. in x) require only small changes in production plans to match them, 
where these last changes are naturally measured with respect to the L1(X) topology 
on F. 

Consider now a further restriction on possible production and assume that each 

producer t can produce either 0 or a(t). This means that we allow our production 
plans to get the values 0 and 1 only. Denote by E the set of all 0-1 functions in F. E is 

naturally identified with 2 and /z(2) is of course the range of /C. Production programs 
are similarly restricted and p is allowed to have values only from E. A continuous 

production plan in this case is a continuous selection for I-L, the inverse of ,i. (In 
particular such a selection is also a production program for the more general case 
where all production plans in F are allowed.) We prove in Theorem 1 the existence of 
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such a selection. To understand the difficulties in finding such a selection we compare 
the "restricted" problem to the one we started with. 

A theorem that can be used to guarantee continuous selections is Michael's Theorem 
[3]. One of the conditions required in this theorem is the lower semicontinuity of /-'. 
It is proved in Samet [4] that A: E -, R(i) is open and similarly one can prove that ju: 
F -> R(,u) is open which is equivalent to the lower semicontinuity of u-1. Another 
requirement is that `-l(x) is convex and closed for each x. This is indeed the case 
when the whole of F is taken into account and in this case applying Michael's theorem 
is straightforward. The novelty in Theorem 1 is that a continuous selection can be 
found with values restricted to E, which means that for each x in R(,t) (p selects an 
extreme point of - l(x). 

Suppose now that only a subset S of U is available for production. The production 
set of S is R(/L, S) the range of the restriction of j, to subsets of S. By Theorem 1 there 
exists a continuous selection p(S, *) defined on the range R(,u, S). We show in 
Theorem 2 that when R(() is strictly convex the family of selections qp(S, .) (for all 
measurable S) can be chosen to be simultaneously continuous in S and x. 

2. The main results. Let (U, 2) be a measurable space and ju: Y -> R" a non- 
atomic a-additive finite vector measure. A function p: ju(E) -> l is called a selection 
(for UA(2)) if t((p(x)) = x for each s E A(2). For a given nonatomic a-additive finite 
measure X on (U, 2) we consider the topology on 2 associated with the pseudo metric 
d, defined by dx(S, T) = X(SAT) for each S, T E 2, where SAT is the symmetric 
difference (S \ T) U (T\ S). When 9p is continuous with this topology on 2 and the 
relative topology from R" on /L(2) we say that qp is continuous with respect to (w.r.t.) 
X. Equivalently p may be considered as a function from /u(2) to the set of 0-1 
functions in L1(X) such that frp(x) dIu = x. 

THEOREM 1. Let X, AIl,..., I,n be nonatomic, a-additive, finite measures on a mea- 
surable space (U, 2) and let X be nonnegative. Then there exists a selection for 
(,i, ... -i,)(2) which is continuous with respect to A. 

Theorem 2 states a stronger result for strictly convex ranges. We need for this 
theorem the following notations. For S E 2 we denote by R(,u, S) the range of the 
restriction of , to subsets of S, i.e. R(,A, S) = {(I(T)IT c S). For a scalar measure v, 
we write IvI for the sum of the positive and negative parts of v. For a vector measure 
A = (jU--,- j,U,), I1 = 'ini,|l. The complete range of ,l = (I,I..., jIn,) is the subset 

RC(I) of 2 x R" defined by 

RC(,) = {(S, x)IS E 2, x E R(i, S)}. 

A function qp: RC(!) -o 2 is called a selection (for RC(Au)) if for each S e 2, qp(S, *) is 
a selection for R(/,, S) i.e. if for each (S, x) E RC(A,), 9p(S, x) c S and ipq(S, x) = x. 
The topology of RC(AL) is induced by the dx-topology on 2 and the usual topology on 
R". We say that q is continuous w.r.t. X if it is continuous with the above mentioned 
topology on Rc(!L) and the dx-topology on E. 

The range R(I) is strictly convex if every nontrivial convex combination of points in 
the range falls in the relative interior of R(,/). We say in such a case that I is strictly 
convex. 

THEOREM 2. Let ! = (!y, ..., !,) be a nonatomic, a-additive, finite and strictly 
convex vector measure and let A be a nonnegative, nonatomic, a-additive and finite 
measure such that \/L, is absolutely continuous with respect to A (I|l << X). Then there 
exists a selection for the complete range of I, RC(!) which is continuous with respect to h. 
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3. Proofs. We start by proving Theorems 1 and 2 for X = i LI. When no measure is 
mentioned we refer by 'almost everywhere' ('a.e.') to the measure 1i. We use in the 

proof some well-known properties of the extreme points of vector measure ranges 
which we describe now. For further details see Bolker [1]. We denote the Radon- 

Nikodym derivative of JL = (j,..., ,n) w.r.t. I|ti by f = (f,..., f) (i.e., fi = 

dLiJ/d ll). For each S E 2, /i(S) = fsfdllM. For d # 0 in Rn and T E 2 the face of 
R(,, T) in the direction d is the set 

F(T,d) ={x(d,x) = max T(d,y)} ye R(A,r) 

where (d, x) is the scalar product of d and x. A measurable set S c T for which 
t($S) E F(T, d) must satisfy 

(d, p(S)) = j(d, ) dll = 
maxf,d, f ) dl, 

which implies that 

{t e Tl(d, f(t)) > 0} c S c {t E T(d, f(t)) > 0} 

a.e. w.r.t. I|l. It follows then that: 

LEMMA 1. The face of R(p, T) in the direction d is a singleton (i.e. it consists of an 
extreme point) if and only if 1j1 ({t E Tl(d, f(t)) = 0}) = 0. Moreover, if for S c T, 
,i(S) is an extreme point of R(I, T) then S = {t E Tl(d, f(t)) > 0} a.e. w.r.t. Ijl. 

By Lyapunov's Theorem the range R(ut, T) is convex. We note that the range is 

strictly convex iff each face of it, except R(/, T) itself, is an extreme point. It easily 
follows from Lemma 1 that if R(,u, U) is strictly convex and Jlil(S) > 0 then R(,u, S) 
is also strictly convex and of the same dimension as R(,i, U). We denote by dR(,, T) 
the relative boundary of R(1i, T) which is the union of all its nontrivial faces. 

We give now some simple properties of RC(!,). 

LEMMA 2. RC(h) is closed. Moreover, if p. is strictly convex, (Tk, Xk) E RC(,u) for 
each k > O, (Tk, xk) 

- (To, Xo) and xk E aR(p, Tk) for k > 1 then {xo} = dR(pi, To) 
and there are directions dk for each k > O, such that xk = F(Tk, dk) for each k > 0, 
and a subsequence of dk converges to do. 

PROOF. To prove closedness of RC([) let (Tk, xk) -* (TO, xo) and suppose for each 
k > 1, xk = h(Sk) for Sk c Tk. Define Sk = Sk n To and x, = I(Sk). Then xk - xk 
-> 0. But X'k E R(!i , To) for each k > 1 and therefore xo E R(p, To). Suppose now in 
addition that p is strictly convex and for k > 1, Xk e aR(p, Tk). We can choose 
directions dk for k > 1 with iIdkll = 1 such that {xk} = F(Tk, dk). When R(/x) is not 
of full dimension we select a point z 0 0 in R" which is normal to R(L) and choose 
the directions dk such that (dk, z) = 0 for each k > 1. Since there exists a converging 
subsequence of dk we may assume without loss of generality that for some d 0, 
dk -* d. Let y E R(,, To) and y = ,(S) for S c To. For each k > 1 define Sk = S n 
Tk, and Yk = A(SJ). Then Yk E R(M, Tk) and Yk - y. Therefore (dk, Xk) > (dk, Yk) 
and in the limit (d, x) > (d, y) which shows that x E F(To, d). The point x is not in 
the relative interior of F(To, d) because otherwise (d, R(,, To)) = 0 and since also 

(d, z) = 0, d = 0 is contradicted. Therefore {x } = F(To, d). Q.E.D. 
We denote by dRC(Ji) the set {(T, x)lx E aR(Mi, T)} and restrict ourselves in the 

next lemma to this set only, and to strictly convex ranges. 
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LEMMA 3. Let ,l be a strictly convex vector measure. Then there exists a selection i: 

aRC(,u) -L Y which is continuous with respect to Ijl. 

PROOF. For each (T, x) E dRC(L) choose ST, C T such that u(ST, ) = x and 
define 4(T, x) = ST,X. Let {(Tk, xk)})= be a sequence in aRC(p) such that (Tk, xk) 
-- (To, xo). By Lemma 1 (and by choosing a subsequence if necessary) there are 
directions dk for k > 0 such that {xk} = F(Tk, dk) and dk -d do. For each k > 0 let 

Sk = {t E Tkl(dk, f(t)) > 0). By Lemma 1 for each k > 0, 4(Tk, xk) = Sk a.e. w.r.t. 

Itul, and therefore it suffices to show that lI|l(SkASo) -O 0. 
Now 

SO\ Sk c (t E Tk u To(do, f(t)) > O} \ Tt E TkTo(dk, f(t)) > 0} 

c (t(do, f(t)) > O, (dk, f(t)) < 0)} 

u{t E TkATOI(do, f(t)) > 0}. 

DenoteAk = {tl(do, f(t)) > Oand (dk, f(t)) < 0O. ClearlyAk = {t0O < (do, f(t)) < 
(do - dk, f(t)). Notice that E=,If1(t)l = 1 a.e. and thus a.e. in Ak, 0 < 
(do - dk, f(t)) < lIdo - dkll = ck where 1 * 11 is the sup norm on Rn. Thus Ak c Bk = 

{tl0 < (do, f(t)) < c,} a.e.. But since ck -* 0, Bk converges a.e. to {tl(do, f(t)) = 0} 
which by Lemma 1 is of Iju measure 0. Also by our assumption Ilu(TkATo) - 0 and 
hence I/(l(So \ Sk) -- 0. Similarly, one can show that IL I(Sk \ So) -* 0 which completes 
the proof. Q.E.D. 

We show now in Lemmas 4-6 that the complete range of a strictly convex vector 
measure can be continuously imbeded in the boundary of the complete range of a 
strictly convex vector measure of higher dimension. The continuous selection guaran- 
teed for the boundary of the latter by Lemma 3 is then used to construct a continuous 
selection for the first. 

Notice first that if R(I, U) is strictly convex and of full dimension then by Lemma 1 
I|l({tl(a, f(t)) = 0}) = 0 for each a # 0 in R". In other words the functions fi, .., , 
are linearly independent over any set of positive I11l measure. We call such functions 
completely independent (w.r.t. 1/1I). 

LEMMA 4. Let fl, .., fn be measurable functions which are completely independent 
w.r.t. to a nonatomic nonnegative measure X. Then there exists a bounded measurable 
function fn, such that fl,..., fn + are completely independent w.r.t. X. 

PROOF. Since X is nonatomic we can choose a measurable function h such that for 
each real c, X({tlh(t) = c}) = 0. (Note that for n > 2 the nonatomicity of A follows 
from the complete independence of f,,..., fn.) To see that such h exists we construct a 
sequence { r} of measurable partitions of U and a sequence X, of characteristic 
functions. For n = 1, r = { U) and X = 1. The partition 7;r refines r,_n by dividing 
each set in 7rT - into two subsets of equal measure. Xn is defined to be 1 over one of 
these subsets and 0 over the other. The function h = E2-nXn satisfies the requirement. 
Consider the functions gi = h' (i = 1,..., n + 1). These functions are completely 
independent. Indeed for a # 0 the set { tIn+laihi(t) = 0) consists of all points at 
which h equals one of the finitely many roots of the polynomial E, n+ix'. Thus the 
measure of this set is 0. Clearly for each S whith X(S) > 0 there exists some i 
(1 < i < n + 1) such that fl,..., f,, g, are linearly independent over S. We claim that 
for each S with A(S) > 0 there exist a subset T = T(S) and a function gT in 
{ g, . ., g,+ 1 } such that X(T) > 0 and f, . . ., fn, g are linearly independent over 
any subset of T with positive measure. Suppose on the contrary that for some S with 
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X(S) > 0 there is no such T. Then we can construct inductively sets S = So D S, D 

?** D S +1 and indices io,..., i+1 from {1,..., n + 1) such that for each j= 
0,..., n + 1, f, ..., f, g,j are linearly independent over Sj but are linearly dependent 
over Sj+1 (j = 0,..., n). Since there are n + 2 indices there exist ij and ik, k > j such 
that gij = g. But gi is linearly dependent over Sj+ and therefore also over Sk which 
contradict the choice of g,. 

Consider now the family F = {T(S)XA(S) > 0) and the collection g= {BIB c F, 
the sets in B are disjoint}. Elements of ( are ordered by set inclusion and by Zorn's 
lemma there exists a maximal element Bo in '. Since the sets in Bo are disjoint and are 
all of positive measure, Bo has at most countably many sets and by the definition of F, 
ITEB oX(T) = X(U), otherwise X(U\U reBT) > 0 and thus Bo U {T(U\UT,EBT')} 

is in ' contradicting the maximality of Bo. Now set fn+ = EXTgT where XT is the 
indicator function of T. Q.E.D. 

LEMMA 5. Let 1t = (t1,..., ItLA) be a vector measure with an n-dimensional strictly 
convex range. Then there exists a vector measure i = (I,, t +l) such that R(i, U) is also 
strictly convex of dimension n + 1. 

PROOF. Let f = dl,/dl,l. By Lemma 4 there exists f,+l such that fl,..., f,n+ are 
completely independent. Let l,+1 be defined by d,,n+ =fn+1 dl l, and let = 

(It, in+ 1). Now 

di/dl = (di/CJ)(dJ = (d/dll)(dll/dl,l) =l, f,+)/(l + Ifn+11) 

= (f, fn+l)/(1 + Ifn+l) 

Thus for each d = (d1,..., d,+) 0 O in Rn+1 

f n+1 \ 
tJ(d, dj/dljil) = 0) = t l difi(t)= 0 

i=1 

and by the construction of fn+, the latter set is of ip [-measure 0 and, therefore also of 
,LI-measure 0. This shows, by Lemma 1, that R(i, U) is strictly convex and of 
dimension n + 1. Q.E.D. 

LEMMA 6. Let RC(IA) be the complete range of a strictly convex vector measure uA. 
Then there exists a selection for Rc which is continuous w.r.t. IjIL. 

PROOF. Assume first that R(,, U) is of full dimension and consider the vector 
measure ,i whose existence is guaranteed by Lemma 5. Note that the topologies defined 

by dl,l, and dl^I on 2 are the same. Let m: Rc(I) -* R be the function defined by: 

m(T, x) =min{zl(x, z) E R(t, T)). 

We show that m is continuous. Let (Tk, Xk) -- (To, x0) be a converging sequence in 

RC(/). Denote for k > 1, Zk = m(Tk, Xk) and assume that Zk -> z0. We show that 

zo = m(To, Xo). Clearly (xk, zk) E aR(gt, Tk) for each k > 1 and thus, by Lemma 2, 
(Xo, Zo) E dR(i, To). 

Consider first the case that xo e aR(i, To). In this case the whole interval between 

(Xo, Zo) and (xo, m(To, xo)) is contained in dR(iu, To) and by the strict convexity of 
R(i, To) it follows that zo = m(To, Xo). Secondly, suppose that xo i dR(it, To). It 
follows by Lemma 2 (and by choosing a subsequence if necessary) that xk q dR(it, Tk) 
and that there are directions dk in R"+l for k > 0 such that {(xk, zk)) = F(Tk, dk) 
and dk -o do. Now, since xk is an interior point of R(it, Tk) and R(i, Tk) is of full 
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dimension it follows that {zl(xk, z) E R(IL, tk)} is a nontrivial interval and therefore 
the n + 1 coordinate of dk satisfies d +l1 < 0 (otherwise (dk,(xk, z)) is not maxi- 
mized at z = zk). Thus, we conclude that d"+l < 0. 

Now xo is an interior point of R(/p, To) and (x0, z0) is in aR(/L, To) and thus z0 is 
either m(To, xo) or max{ zl(xo, z) E R(/, To)}. But if zo is the latter point then by the 
same argument as above d+l > 0 and moreover d1+l > 0 because when d`+l = 0, 
xo E dR(/L, To). 

We proved that z0 = m(T0, x0) and therefore m is continuous on RC(u). 
The functions (S, x) -o (S, (x, m(S, x))) is thus a continuous imbedding of RC(M) in 

aRC(p). By Lemma 5 there exists a selection 4: dRC(,i) -> which is continuous w.r.t. 
jiil (and therefore also w.r.t. I|l). We define now Tp(S, x) = 4(S, (x, m(S, x))) which is 
the required selection. 

If , = (j1,..., jl) is of dimension k < n then without loss of generality we can 
assume that for ju' = (JL,..., IU,k), R(p', U) is of full dimension and is strictly convex. 
Since ,k+1,... I, , are linearly dependent on l,,..., /k the topologies induced by dl,I 
and dl^,,l are equivalent. The map (S, x) -o (S, r(x)) where -r projects x on its first k 
coordinates is a continuous y-preserving map of RC(,i) onto RC(,'). For RC(,.') we 
have a continuous selection i and therefore (p(S, x) = '(S, 7(x)) is a continuous 
selection for RC(,). Q.E.D. 

To prove the theorem for general ranges we use the following lemma from Samet [4]. 

LEMMA 7. There is a countable decomposition R(/I, U) = Yi. IR(/ , Si) such that 
{ Si }i, is a partition of U and for each i E I, R (I, Si) is strictly convex. 

In general we have for a point in R(,i, U) many representations as a sum of points 
from the ranges R(,I, Si). In the next lemma we show that we can continuously select a 
unique representation for each x. 

LEMMA 8. Let { Ci i , be a finite or denumerable family of compact strictly convex 
sets in R" and let M = EiC, be compact too. Then there exists for each i a continuous 

function fi: M -, Ci such that for each m E M, m = E?if(m). 

PROOF. Consider the Cartesian product C = II,C,, equipped with the product 
topology. Define s: C -o M by s(c) = Ec(i). We use Michael's selection theorem [3] 
for s. For this purpose we have to show that s-'(m) is a convex and closed set in a 
Banach space and s-1 is lower semicontinuous. Indeed consider the space (Rn)I with 
the norm II(x(i)),e Il = Supillx(i)lI where Ilx(i)ll is the Euclidean norm in Rn. This is 
a Banach space and it is easy to see that the product topology of C is equivalent to the 
topology induced on C by the norm on (Rn)'. Clearly, for each m E M, s-l(m) is 
convex and closed in C. We show now that s is open which is equivalent to the lower 
semicontinuity of s- . We prove that s is open by induction on I the dimension of M. 
For I = 0, Ci is a singleton for each i and the claim is trivial. Suppose it is proved for 
all dimensions less than I and let M be of dimension 1. Let c E C be a point for which 
m = s(c) is in the relative interior of M. If N is a neighborhood of c, then for 
sufficiently small 8 > 0, (1 - 8)c + SC is in N. 

Now s(N) D s((1 - 8)c + 8C) = (1 - 8)m + SM which is a neighborhood of m. 
Suppose now that m = s(c) is a point in a face of M of dimension less than I in the 
direction d. For a set K we denote by F(K, d) the face of K in the direction d. 

Since for each i, Ci is strictly convex it follows that for each i either Ci = F(Ci, d) or 
F(C,, d) consists of a single point in Ci. 

Define 

I,= {iF(Ci, d) C}, I2= {ilF(C, d) =C C} = C, C2 = CCi, 
iei ieI2 
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and for each k E C denote by kl and k2 its projection on C1 and C2, respectively. We 
use s to denote the natural restriction of s to C' and C2 and we denote s(C') = M1, 
s(C2) = M2, s(cl)= ml and s(c2) = m2. Clearly ml + m2 = m. We note that 
F(Cl, d)= s-l(F(Ml, d)). Since F(C1, d) is a singleton and ml E F(M', d) it 
follows that F(Cl, d) = {c}) and F(M', d) = {ml). 

Proving that s maps a neighborhood of c onto a neighborhood of s(c) = m is 
equivalent to showing that for any sequence mi - m in M there exists a sequence cj 
in C such that s(c,) = mj and cj 

- c. Let m be such a sequence. For each j choose 
m M1 and m2 e M2 such that m1 + mj = mi. We observe that any limit point of 

ml must be in F(M1, d) and hence m -- m1. From this and m - m we conclude 
that m2 m2 

We build now the sequence cj. First we choose a sequence c) in C1 such that 
s(cj) = m1 Clearly c1 - c1. The dimension of C2 is less than 1 and thus by applying 
the induction hypothesis to m2, c2 and the sequence mj we find a sequence c2 in C2 
such that s(c2) = mm2 and cJ - c2. Define now cj E C by cj(i) = cj(i) for i e I1 and 

cj(i) 
= c2(i) for i I2. Thus, () = sj ) ) +- s(cJ) = + mj 

= 

m 

and c . 
Since s is open and s- (m) is closed and convex for each m E M we can apply 

Michael's theorem and find a function f: M -> C such that s(f(m)) = m i.e. 

Eif(m)(i) = m. The functions fi(.) = f(.)(i) satisfy the requirements. Q.E.D. 

LEMMA 9. For each vector measure i -there exists a selection for R(,t) which is 
continuous w.r.t. I|Ll. 

PROOF. Let R(,u, U) = ER( I, Si) be the decomposition of Lemma 7. By Lemma 8 
there are functions fi: R(,t, U) - R(,u, Si) such that Ef,(x) = x for each x E R(jL). 
Denote by RC(i, Si) the complete range of ,u restricted to subsets of Si. Since R(,u, Si) 
is strictly convex there are, by Lemma 6, selections #i: RC(u, Si) - {(TIT c Si) which 
are continuous w.r.t. Itjl (restricted to {TIT c Si}). We define ,i(.) = i(-, Si). For 
each x E R(/x) define <p(x) = U<pi(fi(x)). Clearly 

I(p(x)) = E((pi(fi(x)) = Ef,(x) = x 

and each function ci(f/(.)) is continuous on R(ju). Viewed as a series of functions with 
values in Ll(IuLI), p(x) is uniformly converging and therefore <p is continuous. 
Q.E.D. 

PROOF OF THEOREM 1. Decompose U into two disjoints sets UO and U, such that 

Ijul(Uo) = 0 and X << It\l on U2. By Lemma 9 there exists a selection qp for the range of 
it restricted to measurable subsets of U, which is continuous w.r.t. Iul and therefore 
also w.r.t. X. Since R(,i, U) = R(/u, U1)) the proof is complete. Q.E.D. 

PROOF OF THEOREM 2. Let U = U0 u U1 be the decomposition of the previous 
proof. Since jul << X and, on U1, X << 114, X is equivalent to JIll on U,. Let ? be the 
selection of Lemma 6 for RC(i, Ui). Define (p(S, x) = p(S nC U1, x)'. It can be easily 
verified that qp is continuous w.r.t. X. Q.E.D. 

4. Possible extensions. The existence of a selection for the complete range is 
proved in Theorem 2 only for strictly convex ranges. We do not know whether such a 
selection exists in general. This open problem is related to the following possible 
extension. A general range i can be decomposed by Lemma 7 into a sum ER([t, Si) of 
strictly convex ranges. By Lemma 8 we can present uniquely each x e R(,J) as a sum 
Exi with xi E R(/x, Si) for each i such that xi varies continuously with x. Consider 
now pairs (x, S) in the complete range RC(%). Can we assign continuously to each pair 
(x, S) a unique decomposition Exi such that xi E R(y, Si n S)? It is easy to see that 
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an answer to this question in the affirmative will enable us to extend Theorem 2 to 
general ranges. 

The range of a vector measure can be presented as the integral of set valued function 
(see ?3). Thus an extension of the notion of a selection for integrals of set valued 
functions in general can be readily formulated. Let A(t) be a set valued function on U 
with A(t) c R" for each t and let X be a measure on (U, 2). Denote by F the set of all 
X integrable functions h which satisfy h(t) E A(t) a.e. w.r.t. X. The set { fh dXlh E F) 
is denoted by fA dA. A selection for fA is a map p: fA -J F which assigns to each 
x E JA a "source" <p(x) in F (i.e. ftp(x)(t) dX(t) = x). When A(t) = {0, f(t)) for a 
given measurable f: U - Rn then fA dX is the range of the measure /x defined by 
dl~ = fdA. In this case Theorem 1 guarantees the existence of a selection which is 
continuous with the relative topology of L1(A) on F. However a function A(t) can be 
constructed for which no continuous selection exists. A natural question is then: under 
what conditions on A(t) might a continuous selection exist? 
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