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Abstract

For two interacting agents, we construct a space of nature states S and a coherent
Ž .hierarchy of beliefs s-additive probability measures of one agent about S, about S and the

beliefs of the other agent about S, and so on—a hierarchy that has no s-additive coherent
extension over S and the hierarchies of the other agent. Thus, this hierarchy of beliefs

wcannot be the description of the beliefs of some type in some Harsanyi Harsanyi, J.C.,
1967–1968. Games with incomplete information played by Bayesian players, parts I, II, and

xIII. Man. Sc. 14, 159–182, 320–334, 486–502 type space. Therefore, the space C of
coherent hierarchies over S properly contains the universal space TU of ‘all possible types’
over S. We show how to extract TU out of C in a transfinite process. q 1999 Elsevier
Science S.A. All rights reserved.
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1. Introduction

Two approaches coexist in the economic literature for modeling probabilistic
uncertainty of several interacting agents. According to the explicit approach,
describing a state of affairs requires, first, to specify the state of nature—detailing
the objective parameters which are relevant to the economic or strategic interac-
tion; and second, to specify for each agent a hierarchy of beliefs—probability
measures—about nature, about nature and the other agents’ beliefs about nature,
etc. On its face, the resulting model is complicated and cumbersome to handle.

) Corresponding author. Tel.: q972-3-640-9064; E-mail: aviad@econ.tau.ac.il

0304-4068r99r$ - see front matter q 1999 Elsevier Science S.A. All rights reserved.
Ž .PII: S0304-4068 98 00066-4



Ž .According to the implicit approach, introduced by Harsanyi 1967 , a state of
affairs, or state of the world comprises of the state of nature and the type of each
agent. A type is a probability measure on nature and the other agents’ types. Such
a space of states of the world is called a type space. The Harsanyi approach is
implicit, in the sense that it does not describe directly the mutual beliefs of the
agents. Nevertheless, it is easy to unfold from the implicit structure the explicit
hierarchy of beliefs of each type about nature, about nature and the others’ beliefs
about nature, and so on. This hierarchy is coherent, in the sense that the marginals
of the higher-order beliefs coincide with the corresponding lower-level beliefs. 1

Ž .Mertens and Zamir 1985 showed how to reconcile the two approaches.
Assuming the space of nature states is compact, they showed that every coherent
hierarchy of beliefs of an agent admits a unique coherent limit extension to a
probability measure over nature and the other agents’ coherent hierarchies. Calling
this extension the type of the agent, the space of nature states together with the
agents’ coherent hierarchies becomes a Harsanyi type space. This means that the
Harsanyi implicit approach is comprehensive—every explicit description of be-
liefs can be identified with a type in some type space.

Ž .Mertens and Zamir 1985 also showed that their space is uniÕersal, in the
sense that it ‘contains all possible types’: Every type space, with the same space of
nature states and the same set of agents, admits a unique belief morphism into the
Mertens–Zamir space, i.e., a morphism that preserves nature and the beliefs of the
agents. This implies that there is no loss of generality in analyzing an economic
interaction in any type space, possibly finite, that the modeler finds convenient,
because the analysis could always be transferred intact to the universal space, in
which every imaginable state of mind of each agent is represented in some state.

ŽIn works that ensued Brandenburger and Dekel, 1993; Heifetz, 1993; Mertens
.et al., 1994 , it was shown that the Mertens–Zamir enterprise may be carried out

under various other topological assumptions about the space of nature states. In
this work we show, however, that the Mertens–Zamir program breaks down if this
space is allowed to be a general measurable space. With two agents, we exhibit in
Section 4 a measurable space of states of nature with a coherent hierarchy of
beliefs of one agent that has no coherent limit extension. This coherent hierarchy
cannot be made a type in any type space. Thus, the Harsanyi implicit approach
does not exhaust all the states of affairs that can be described explicitly in the
general measure-theoretic case.

Ž .In a companion paper Heifetz and Samet, 1998 , we proved the existence of a
universal Harsanyi type space even in this general measure-theoretic framework.
In light of the above described discrepancy between the explicit and implicit
approaches, this universal space is not the space of all coherent hierarchies—in-

1 Ž .Coherence is usually called ‘consistency’ in the literature. In Harsanyi, 1967 , however, consis-
tency refers to a different property, and therefore we use the former term to avoid confusion.



deed, the construction must be carried out in a completely different fashion.
Nevertheless, as in every type space, one can always unfold the explicit beliefs of
all orders of each type in the universal space, and these beliefs do constitute a
coherent hierarchy. This means that the universal space is always a subset of the
space of coherent hierarchies, and generally it may be a proper subset. In Section
5 we show how the universal space can be ‘carved out’ of the space of belief
hierarchies.

2. Preliminaries

Let X be a measurable space with a s-field S. We refer to the measurable sets
in S as eÕents in X. The set of all s-additive probability measures on X is

Ž . Ž .denoted by D X . We consider D X as a measurable space with the s-field SD
pŽ . � < Ž . 4that is generated by all sets of the form b E s m m E Gp , for an event E in

X and 0FpF1. We use the following property of this s-field in the sequel.

Lemma 2.1. Let FF be a field on X that generates the s-field S, and FF theD

( )s-field on D X generated by sets of the form
p <b E EgFF , 0FpF1 .� 4Ž .

Then FF sS .D D

X pŽ .Proof: Denote by FF be the set of all events F in X, such that b F gFF forD

all 0FpF1. We prove that FF
X contains S, which shows that FF contains all theD

generators of S . Since FF
X contains the field FF that generates S, it is enough toD

X Ž .show that FF is a monotone class see, e.g., Theorem 4.4.2 of Dudley, 1989 .
Ž .` Ž .That is, we have to show that if E is a decreasing increasing sequence ofn ns1

X ` X Ž ` X.events in FF then l E gFF j E gFF .ns1 n ns1 n

Ž .` Ž . Ž Ž ..`If E is decreasing, then for any mgD X , m E is a decreasingn ns1 n ns1
Ž ` .sequence converging to m l E . Therefore, by s-additivity,ns1 n

b p l` E sl` b p E gFF .Ž .Ž .ns1 n ns1 n D

Ž .` Ž . Ž Ž ..`If E is increasing then for any mgD X , m E is an increasingn ns1 n ns1
Ž ` .sequence converging to m j E . In this case, s-additivity impliesns1 n

b p j` E sl` j` b py Ž1r m. E gFF .Ž .Ž .ns1 n ms1 ns1 n D

B

˜Ž . Ž .For a subset A not necessarily a measurable one of X, we denote by D A
Ž . Ž .the set of all measures m in D X for which m E s1 for all events E in X such

˜� 4 Ž .that A:E. When As x is a measurable set, D A consists of a single measure



which we denote by d . When all the singletons are measurable in X, we denotex
Ž . Ž .by d : X™D X the map defined by d x sd .x

The set A can be considered as a measurable space with the s-field SlA.
Ž .Viewing A as such, D A is a well defined measurable space with the s-field

˜Ž . Ž .SlA . The set of measures D A can be also considered as a measurable spaceD

˜ ˜Ž . Ž . Ž .with the s-field S lD A . The relation between D A and D A is given in theD

following lemma.

Ž . Ž .Lemma 2.2. For each mgD A , m PlA defines a measure on X. The map
˜Ž . Ž . Ž .m™m PlA is a measure theoretic isomorphism from D A onto D A . The

˜ 2Ž .inÕerse of this isomorphism maps each measure ngD A to the outer measure
n

U restricted to SlA.

Ž .Proof: It is straightforward to show that m PlA is a probability measure in
˜Ž . Ž .D A and that the map m™m PlA is one-to-one. To see that the map is onto

˜ UŽ . Ž .consider ngD A . By Theorem 3.3.6 in Dudley, 1989 , the outer measure n is
Ž . Ž .a probability measure on A, SlA , i.e., it is in D A , and it satisfies

U ˜ UŽ . Ž . Ž . Ž . Ž .n P sn PlA . Thus, ngD A corresponds to n PlA gD A .
B

Ž .In light of this lemma, when we have a measurable function to D X , the
˜Ž .image of which is in D A , we will consider it also as a measurable function to

Ž .D A .

Lemma 2.3. Suppose the s-field S in X has a countable sub-field S that0
Ž .separates the points of X. Then the map d : X™D X is a measure-theoretic

3 Ž .embedding of X into D X .

Proof. d is measurable, since for every EgS and 0-pF1 we have

dy1 b p E sE,Ž .Ž .
and for ps0

dy1 b 0 E sX .Ž .Ž .
Furthermore, for every EgS we have

d E s b 1 ElF jb 1 El! FŽ . Ž . Ž .Ž .F

FgS0

Ž .and the right-hand side is measurable in D X .
B

2 U Ž . U Ž . � Ž . 4The outer measure n B for B: X is defined by n B s inf n F : F g S, B: F .
3 A measurable map is an embedding, if it is one to one, and maps measurable sets to measurable

sets.



For measurable spaces X and Y and a measurable function w: X™Y, we
Ž . Ž . Ž . y1 Ždenote by w the function w: D X ™D Y defined by w m sm(w that is,ˆ ˆ ˆ

Ž .Ž . Ž y1Ž ..for each event F in Y, w m F sm w F . It is easy to check that w is aˆ ˆ
measurable function.

� 4We fix a finite set I to be the set of agents. The set I s Ij 0 includes all0
Ž .agents and ‘0’ which stands for ‘nature’. For a family of sets X we denotei i g I0

by X the product Ł X , and by X , for ig I, the product Ł X . Ifi g I i yi j g I _�i4 j0 0

Ž . Ž .Y is another family of sets, and f a family of functions, f : X ™Y ,i ig I i i g I i i i0 0

ŽŽ . . Ž Ž ..then we denote by f the function f : X™Y defined by f x s f x ,i i g I i i ig I0 0

ŽŽ . .and by f the function f : X ™Y defined by f x syi yi yi yi yi j jg I _�i40

Ž Ž ..f x . We consider any product, finite or infinite, of measurable spacesj j jg I _�i40

as a measurable space with the product s-field.

3. Type spaces, type morphisms and the coherent space

Type spaces. Fix a measurable space S the elements of which are called states
²Ž . Ž . :of nature. A type space on S is a pair T , m , wherei i g I i ig I0

1. T sS, and T , for ig I, is a measurable space.0 i
Ž .2. For each ig I, m is a measurable function m : T ™D T .i i i yi

The space T is called the space of types of agent i, and m specifies the belief ofi i

each type over nature and the other agents’ types.
²Ž . Ž . : ²Ž X. Ž X . :Type morphisms. Let T , m and T , m be type spacesi ig I i i g I i ig I i i g I0 0

Ž . Xon S, and w and I -tuple, of measurable functions w : T yT , where w isi i g I 0 i i i 00

the identity on S. The induced function w : T™T X is a type morphism if itt i

preserves the beliefs of the agents. That is, when t is mapped by w to tX, theni yi i
Ž . X Ž X. Xm t is mapped by w to m t . Or simply, for each ig I, m (w sw (m .ˆ ˆi i yi i i i i yi i

ŽThe morphism is a type isomorphism if w is an isomorphism or equivalently, if
.w is an isomorphism for each ig I .i 0

Definition 3.1. A type space TU is a uniÕersal type space on S, if for every type
space T on S there is a unique type morphism from T to TU.

Ž .In Heifetz and Samet, 1998 , we proved that for every set of agents I and a
Žmeasurable space S of nature states there exists a unique universal type space up

.to type isomorphism .
We now turn to consider the explicit approach, in which one specifies directly

the mutual beliefs of the agents. We are going to define inductively the n-order
n Ž 1 n.coherent spaces C , that will consist of coherent n-tuples t , . . . ,t of beliefsi i i

over C 0 ,C1 , . . . ,C ny1—the lower-level coherent spaces of the other agents andy i y i y i
n Ž 0 . Ž 1 . Ž ny1nature. C will thus be a subset of D C =D C = PPP =D C . More-i y i y i y i

n ny1 Ž ny1.over, C will be a subset of C =D C . Coherence means that the marginali i y i

belief of t kq1 on C ky1 is t k for kFny1.i y i i



The primary object of belief of each agent ig I is nature, so let us denote 4

0 1 Ž 0 .C sS. The primary space of beliefs of agent i will therefore be C sD C ,y i i y i

i.e., all the possible beliefs of agent i over nature.
For kG1, let C k sS. Denote by r1 the projection from C1 sS=Ł C1

0 yi yi je I _ i j

to C 0 sS. Inductively,yi
Ž . kq1 ŽŽ 1 k . kq1. k Ž k .1 Coherence: C consists of all the tuples t , . . . ,t ,t gC =D Ci i i i i yi

k Ž kq1. k kq1 ky1such that r t s t , that is the marginal of t overC coincides withˆyi i i i yi

t k.i
Ž . kq1 kq1 k2 r is the projection from C to C .i i i

Ž .In the limit, i’s coherent space over S , C , is the set of all sequencesi
Ž 1 2 . Ž 1 k . kt ,t , . . . such that t , . . . ,t gC for every kG1. These are the coherenti i i i i

hierarchies of beliefs of agent i about nature, about nature and the other agents’
beliefs about nature, etc. We denote by p k the projection from C to C k. Denotei i i

also C sS, and let p k: C ™C k be the identity map on S. We call CsŁ C0 0 0 0 i g I i0

the coherent space.
The next step is to consider the relationship between type spaces and the

²Ž . Ž . :coherent space C. Each type space T , m admits a natural map,i i g I i i g I0

Ž .hs h , that we call the hierarchy description map, into the coherent space C.i i g I0

The map unfolds the mutual beliefs of each agent ig I, by assigning to each type
t gT a coherent hierarchy of beliefs in C . To this end, we define the mapsi i i

hn: T ™C n as follows.i i i

Denote by h0 the projection of T to C 0 sT sS. For kG1 let hk be they i yi yi 0 0

identity on S. For the agents ig I define inductively hn: T ™C n byi i i

y11 0h t sm t ( hŽ . Ž . Ž .i i i i yi

y1 y1kq1 k k 0h t s h t ,m t ( h s m t ( h , . . . ,Ž . Ž . Ž . Ž .Ž . Ž .ž / ži i i i i i yi i i yi

y1 y1ky1 km t ( h ,m t ( h .Ž . Ž .Ž . Ž . /i i yi i i yi

kq1Ž . kq1h t is indeed in C . To show this, it is enough to prove that the marginal ofi i i
Ž . Ž k .y1 Ž k . ky1 Ž . Ž ky1.y1the measure m t ( h gD C on C equals m t ( h . This isi i yi y i yi i i y i

in fact the case—for every event F in C ky1
y i

y1 y1 y1k k k km t ( h ( r F sm t r (h FŽ . Ž . Ž . Ž .Ž . Ž . Ž .i i yi yi i i yi yi

y1ky1sm t h F ,Ž . Ž .Ž .i i yi

as required.

4 Deviating slightly from our notational conventions.



Finally, define h : T ™C to be the identity on S, and for all ig I define0 0 0

h : T ™C byi i i

y1kh t s m t ( h .Ž . Ž . Ž .ž /i i i i yi kG0

For spaces S of nature states with appropriate topological properties, C is the
Ž .universal type space. This was first proved by Mertens and Zamir 1985 , who

Ž k .showed that by the Kolmogorov extension theorem, each c s t gC admitsi i k G1 i
Ž .a unique s-additive probability measure m c over C with the appropriatei i yi

corresponding marginals 5

p k m c s t kq1
;kG0Ž .Ž .ˆyi i i i

²Ž . Ž . :Thus, C , m is a type space, which is moreover universal: It turnsi i g I i i g I0

out that for every type space T with T sS, the hierarchy description map0

h: T™C is a type morphism, which is the unique type morphism from T to C. In
particular, for the case TsC, the hierarchy description map h: C™C is the
identity map.

In the general measure-theoretic case with which we deal here, the Kolmogorov
extension theorem is not applicable. And indeed, in Section 4 we build a space of
nature states S and a coherent hierarchy of beliefs over it that has no s-additive
limit extension.

4. Coherent hierarchies which are not Harsanyi types

In this section we construct a coherent hierarchy of beliefs that cannot be
extended to a belief on the space of all coherent hierarchies. Andersen and Jessen
Ž .1948 gave an example of a sequence of spaces A with corresponding coherentk

probability measures n on X sŁ ny1 A that cannot be extended to a s-additiven n ks0 k
` Žprobability measure on X sŁ A the example may also be found in` ks0 k

Ž . 6Halmos, 1950, 49.3 .
However, this construction does not lend itself obviously to our case. It requires

some freedom in the way the components spaces A are chosen, while thek

component spaces in the constructions of coherent hierarchies are determined by
the basic space of states of nature, S.

Nevertheless, we show that the extra structure of the set of coherent beliefs
does not save it from the same problem. We construct a measurable space S and a
hierarchy of coherent beliefs of an agent that cannot be extended to a measure

5 k Ž . Ž k .By our convention, p is the projection from D C to D C .ˆyi y i y i
6 w x ŽA may be taken to be any decreasing sequence of subsets of 0,1 endowed with the relativek

. ` œBorel s-field , where l A s0, and each A has Lebesgue outer measure 1. n is concentrated onks 0 k k n

the diagonal of X sŁ ny 1 A , which is isomorphic to A . n is obtained by this isomorphismn ks0 k ny1 n
Žfrom the Lebesgue outer measure on A this outer measure turns to be s-additive when restrictedny 1

.to the relative Borel s-field on A .ny 1



over the coherent space based on S. This is done in two steps. In the first step we
show that a construction with the properties above can be carried out with all the
spaces in the product being identical with the same space S. In the second step we
show how, with two agents, the spaces Sn can be identified as a product of nature
and an agent’s coherent beliefs of orders 1, . . . ,ny1. Thus, the measures built in
the first step will be identified with coherent beliefs of the other agent about nature
and the belief hierarchies of the first agent.

4.1. The first step

For each 0Fm-nF` denote by X the product Ł A . For 0Fm-m ,n mF k - n k

n-` we write n for the marginal of n on X . In particular X sX , andm ,n n m ,n 0,n n
Ž . Ž .n sn . For every mG0, the coherent sequence n on X does0, n n m ,n n) m m ,n n) m

not have a limit extension, because this sequence of measures has exactly the same
properties as those of the basic sequence n , which precluded it from having an

limit extension. 7

We take S to be X , and regroup the factors of the product Sn as indicated in`

Žthe following diagram—taking first the products along columns from bottom to
.top in the diagram , and then products of these products:

nth copy S s A = A = . . . = A = A = . . .0 1 ny1 n

=

Ž .ny1 th copy S s A = . . . = A = A = . . .0 ny2 ny1

=
. . .. . .. . .

=
1st copy S s A = A = . . .0 1

We can then write:

Sn s X = X .Ł Ł0,k k ,kqn
1Fk-n 0Fk-`

We define the measure m on Sn to be the product measuren

m s n = n .Ł Łn 0,k k ,kqn
1Fk-n 0Fk-`

Ž .By the coherence of the sequences n it follows that the marginal of m onm ,n n) m n
Ž . n Ž .the first ny1 copies of S is m and thus the sequence m is coherent.ny1 n nG1

The space S` can be written as:
``S s X = X .Ž . Ł0,` k ,`

0Fk-`

Ž . `Clearly, the sequence m does not have an extension to S , as the marginal ofn
Ž .such an extension on any of the factors X would be an extension of n0,` 0, j j G1

on this factor.

7 See 6 above.



4.2. The second step

� 4We assume, now, that the set of agents is Is 1,2 . We will show how to
embed Sn in S=C ny1, the space of nature states and agent i’s coherenti

hierarchies of beliefs of length ny1. Using this embedding, we will be able to
identify the measures m as measures on S=C ny1, and thus to interpret them as an i

hierarchy of beliefs of the other agent j about nature and the hierarchies of agent
i.

n n ny1 ny1 Ž .The embedding g of S to C sS=C will map s , . . . ,s to thei yj i 0 ny1
ny1 Ž . Ž .point in S=C where 0 the nature state is s , 1 agent i is certain that si 0 1

Ž . Ž .occurs, 2 agent i is certain that agent j is certain that s occurs, 3 agent i is2

certain that agent j is certain that agent i is certain that s occurs, and so on.3

Formally, for ns1 the embedding g1: S™S will be the identity. Inductively,i

g nq1: Snq1 ™S=C n is defined byi i

g nq1 s , . . . ,s ,s s g n s , . . . ,s ,d nŽ . Ž .Ž .i 0 ny1 n i 0 ny1 g Ž s , . . . , s .j 1 n

s s ,d ,d , . . . ,d ny 1 ,d nŽ .0 s1 Ž s ,d . g Ž s , . . . , s . g Ž s , . . . , s .1 s2 j 1 ny1 j 1 n

s s ,d 1 ,d 2 , . . . ,d ny 1 ,Ž 0 g Ž s . g Ž s , s . g Ž s , . . . , s .j 1 j 1 2 j 1 ny1

d n 4.1Ž ..g Ž s , . . . , s .j 1 n

where js2y i is the other agent.
Indeed, g n is into C ny1 sS=C ny1. For ns1,2 this is immediate. If this isi yj i

ny1Ž . nŽ .true for n, then g s , . . . ,s is the projection of g s , . . . ,s , s fromj 1 ny1 j 1 ny1 n
ny1 ny2 Ž .C to C . From the second line of 4.1 we therefore conclude that theyi yi

marginal of d n on C ny2 is d ny 1 , as required.g Ž s1, . . . , s , s . yi g Ž s , . . . , s .j ny1 n j 1 ny1

In the limit, g : S` ™S=C is defined byi i

g s ,s ,s ,s , . . . s s ,d 1 ,d 2 ,d 3 . 4.2Ž . Ž .Ž .Ž . Ž . Ž .i 0 1 2 3 0 g s g s , s g s , s , s , . . .j 1 j 1 2 j 1 2 3

Proposition 4.3. For all nG1, g n, as well as g , are embeddings for is1,2.i i

Proof. For ns1 this is immediate. Suppose the claim holds for mFn. Let us
label the copies of S in Snq1 and write Snq1 sS =S = PPP =S . Since the0 1 n

Ž . Žspaces A of Andersen and Jessen 1948 are all separable metric spaces subsetsk
w x. ` mof the interval 0,1 with the Borel s-field, so are SsŁ A and S . Hence,ks0 k

Ž mŽ ..by Lemma 2.3 and the induction hypothesis, d g S = . . . =S is isomorphicj 1 m

to S = . . . =S for mFn with the map1 m

Ž m.y1d(g j
md g s , . . . ,s ™ s , . . . ,sŽ . Ž .Ž .j 1 m 1 m



Ž . nq1Ž .Observing the third line of 4.1 , g S = PPP =S is therefore isomorphic toi 0 n

s ,s , s ,s , . . . , s , . . . ,s : s gS , mFn� 4Ž . Ž .Ž .0 1 1 2 1 n m m

sS =Diag Sn =Diag Sny1 = . . . =Diag S2 =S 4.3Ž .Ž . Ž . Ž .0 1 2 ny1 n

Since S is a separable metric space with the Borel s-field, the product s-field
of Sm is its Borel s-field. Furthermore, the diagonal in Sm is closed, and hence

Ž . Ž n.isomorphic to S by the map s, . . . ,s ™s. Thus, the diagonals Diag S ,1
Ž ny1. Ž 2 . Ž .Diag S , . . . , Diag S in 4.3 are isomorphic to S , S , . . . , S , respec-2 ny1 1 2 ny1

nq1Ž .tively. We conclude that g S = PPP =S is isomorphic to S = PPP =S .i 0 n 0 n
Ž .By the same argument, in the limit g S =S =S = PPP is isomorphic toi 0 1 2

s ,s , s ,s , . . . , s , . . . ,s , . . . : s gS , mG0� 4Ž . Ž .Ž .0 1 1 2 1 n m m

sS =Diag S` =Diag S` = PPPŽ . Ž .0 1 2

which is isomorphic to S =S =S = PPP , as required.0 1 2

B

Ž n.y1 Ž ny1.Consider for nG1, the image measures k sm g gD C . It is easyn n i yj
Ž .to show by induction that the sequence k is a coherent hierarchy in C .n nG1 j

Indeed, the crucial inductive step is to show that the marginal of k on C ny1 isnq1 yj
Ž . nq1Ž . ny1k . But this follows since, by 4.1 , the projection of g s , . . . s on C isn i 0 n yj

nŽ .g s , . . . s .i 0 ny1
Ž .The coherent sequence k does not have a s-additive coherent extensionn nG1

to C . Suppose, to the contrary, that k were such an extension. Then, since g isyj i
Ž . Ž Ž ..an embedding, it would follow that the set function m defined by m E sk g E ,i

for each measurable set E, is a well defined s-additive probability measure on S`.
Moreover, m would be a coherent extension of m . Indeed, Let E be a measurablen

n Ž ` . Ž . Ž Ž .. Ž ny1Ž Ž ...set in S , and FsE= Ł S . Then, m F sk g F sk p g F ,ksnq1 k i n y j i
Ž .where the latter equality holds since k is a coherent extension of k . But, by 4.2 ,n

Ž ny1Ž Ž ... Ž nŽ .. nk p g F sk g E . Finally, since g is an one-to-one,n yj i n i i

y1n n nk g E sm g g E sm EŽ . Ž . Ž .Ž .Ž . Ž .Ž .n i n i i n

Ž . Ž .Together this implies that m F sm E , and this contradicts the non-existence ofn
Ž .a coherent extension of m .n nG1

5. Which hierarchies belong to the universal space?

Ž .In a companion paper Heifetz and Samet, 1998 , we proved that there exists,
for every space of nature states S, a unique universal type space
²Ž U . Ž U . : UT , m . Each T , ig I consists of hierarchies of beliefs—all thosei i g I i i g I i0

hierarchies that result by applying the hierarchy description map h to some typei

space over S. In that paper it was proved that the hierarchy description maps
h :TU ™C are the identity maps. In particular, this means thati i i

TU :C , ig I. 5.1Ž .i i



U ŽŽ U .k . UFurthermore, it was proved that for every t s t gT , the marginali i k G1 i
U Ž U . k Ž U . Ž U .kq1belief of m t over p T is t , i.e.,i i y i y i i

y1 kq1U U Ukm t p s t . 5.2Ž . Ž . Ž .Ž .i i yi i

U Ž U . ŽŽ U .k .In other words, m t is the limit extension of t .i i i k G1

However, in Section 4 we found a space of nature states S and a hierarchy of
Ž .beliefs k on it with no coherent limit extension whose correspondingn nG1

marginals are the k . This means that the universal space TU is in general a propern

subset of the coherent space C. In this section we show how the universal space
TU may be ‘extracted’ from C.

Ž .The coherence condition 2 in the definition of C makes it possible to
Ž .associate with each t gC an additive set function with total mass 1 on C ,i i y i

Ž .which is not necessarily s-additive, denoted by n t . This set function is definedi i

on the field
y1k k<p E kG0, E is measurable in C ,Ž .Ž .½ 5yi yi

which generates the s-field on C . For an event E in C k
y i y i

y1k kq1n t p E s t E . 5.3Ž . Ž . Ž . Ž .Ž .ž /i i yi i

Ž k .y1Ž . Ž l .y1Ž .It is easy to see that coherence guarantees that if p E s p F fory i y i
k l kq1Ž . lq1Ž . Ž .some events E in C and F in C , then t E s t F and therefore 5.3y i y i i i

defines an additive set function unambiguously. We can state now a condition
under which the space of coherent beliefs coincides with the universal one. The
following proposition is a special case of Proposition 5.5 and therefore is not
proved now.

( )Proposition 5.4. If for each ig I and t gC , the additiÕe set function n t cani i i i
( ) Ube extended to a s-additiÕe probability measure in D C then CsT .y i

Ž .Under reasonable topological assumptions on S this condition on n t is met.i i

But, as we saw, this is not necessarily the case when no topological assumptions
are made.

We now show how in general TU can be ‘carved out’ from C in an inductive
0 Ž .process. Denote by G the set of all t gC such that n t can be extended to ai i i i i

s-additive measure on C . We denote, with some abuse of notation, thisy i
Ž . Žs-additive measure by n t when the extension exists it is necessarily uniquei i

˜ 0 UŽ ..and belongs to D C . G may fail now to be T for one reason: for some
0 ˜ 0Ž . Ž .t gG , n t may not be in D G . To fix this we define, by transfinitei i i i yi

induction, 8 a decreasing chain of spaces Ga for each ordinal a . For nature, i.e.,i

for is0, let Ga sS for all a . For ig I, we denote by G- a and G- a the spaces0 i

8 Ž .For an exposition of ordinals and transfinite induction, see e.g., Devlin, 1993 .



l G b and l G b correspondingly. Since the chain is decreasing,b - a i b - a

l G b sGay1 and l G b sGay1 for non-limit ordinals a . We defineb - a i i b - a

y1a - a - a˜G sG l n D G .Ž . Ž .Ž .i i i yi

That is, Ga contains t from the previously defined G b only if the probabilityi i i
Ž .measure associated with it, n t , has its mass concentrated on the previouslyi i

defined G b .y i

Proposition 5.5. For some ordinal a , G Gaq1, and for this ordinal, Ga sTU.a

Proof: First we prove by transfinite induction that TU :Ga for all a . By
Ž . Ž . U U Ž U . U Ž U .comparing 5.2 and 5.3 we observe that for t gT , n t and m ti i i i i

Ž U .coincide on a generating field of C and hence n t can be extended to ay i i i
U U U U ˜ UŽ . Ž . Ž . Ž .s-additive measure on C which is m t . But m t gD T , and by 5.1 ,y i i i i i yi

˜ U ˜ U U ˜ U 0Ž . Ž . Ž . Ž .D T :D C . Therefore, m t gD C . This shows that T :G . Ifyi yi i i yi
U b U - a U U ˜ U ˜ - aŽ . Ž . Ž .T :G for all b-a , then T :G . Thus, m t gD T :D G , andi i yi yi

therefore TU :Ga.

Since Ga is decreasing there must be some a for which Ga sGaq1—the
ordinal up to which the chain of Gys is strictly decreasing may not exceed the
cardinality of C. By what we have shown, TU :Ga. For this a , n is a map fromi

a ˜ a a aŽ . Ž .G to D G , or according to Lemma 2.2, n : G ™D G .i yi i i y i

²Ž a . Ž . :Lemma 5.6. G , n is a type space oÕer S.i i g I i i g I0

Proof. We have to prove that n is measurable for each ig I. For each measurablei
k Ž a .E in p Gy i y i

y1 y1y1 p k a k<n b p E s t gG n t p E GpŽ . Ž . Ž .Ž . Ž .½ 5ž / ž /i yi i i i i yiž /
a < kq1s t gG t E Gp . 5.7Ž . Ž .� 4i i i

The last set is a measurable subset of Ga, as it is defined by an event in Ga. Thei i
Ž k .y1Ž . afield of events p E generates the s-field on G and hence, by Lemmay i y i

pŽŽ k .y1Ž .. Ž a .2.1, sets of the form b p E generate the s-field of D G . Thus, byy i y i
Ž .5.7 , n is measurable.i

B

Lemma 5.7. For all ig I, the hierarchy description map

h : Ga ™Ci i i

is the identity on Ga.i



Ž k . aProof. We have to prove that for all kG1 and t s t gG ,i i k G1 i

hk t sp k t s t1 , . . . ,t k .Ž . Ž . Ž .i i i i i i

For every event E:C 0 sS,y i

y10 1n t p E s t E ,Ž . Ž . Ž .Ž .i i yi i

Ž . 1because n t is a coherent extension of t . Inductively, if the claim holds fori i i

ky1, then for every event EgC ky1
y i

y1ky1 kn t p E s t E ,Ž . Ž . Ž .Ž .i i yi i

Ž . kbecause n t is a coherent extension of t . Therefore, by the induction hypothesisi i i

y1k ky1 ky1 1 ky1 kh t s h t ,n t p s t , . . . ,t ,t ,Ž . Ž . Ž . Ž . Ž .ž /i i i i i i yi i i i

as required.
B

Ž .End of Proof of Proposition 5.5. As constructed in Heifetz and Samet, 1998 ,
TU is the set of all hierarchies that result by applying the description map h on
type spaces over S. In particular, by Lemma 5.6, h sends Ga into TU. By Lemma
5.8, h is the identity on Ga. Therefore Ga :TU , as required.

Ž . Ž 0.Corollary 5.8. Let F be the operator on subsets X of G defined byi i g I i i g I0 0

F X s XŽ .Ž .igI0 i 00

y1 ˜F X s X ln D X , ig IŽ . Ž .Ž . Ž .igIi i i i yi0

Then the uniÕersal space TU is a fixed point of F, which is maximal in the sense
that eÕery other fixed point Y of F is contained in TU.

Proof. TU is obviously a fixed point of F. If Y is a fixed point of F, Lemmas 5.6
and 5.7 and the end of proof of proposition 5.5 apply word by word when Ga is
replaced by Y. Hence the conclusion that Y:TU.
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