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Abstract

For two interacting agents, we construct a space of nature states S and a coherent
hierarchy of beliefs (o-additive probability measures) of one agent about S, about S and the
beliefs of the other agent about S, and so on—a hierarchy that has no o-additive coherent
extension over S and the hierarchies of the other agent. Thus, this hierarchy of beliefs
cannot be the description of the beliefs of some type in some Harsanyi [Harsanyi, J.C.,
1967-1968. Games with incomplete information played by Bayesian players, parts|, 11, and
I1l. Man. Sc. 14, 159-182, 320-334, 486-502] type space. Therefore, the space C of
coherent hierarchies over S properly contains the universal space T* of ‘al possible types
over S We show how to extract T* out of C in a transfinite process. © 1999 Elsevier
Science SA. All rights reserved.
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1. Introduction

Two approaches coexist in the economic literature for modeling probabilistic
uncertainty of several interacting agents. According to the explicit approach,
describing a state of affairs requires, first, to specify the state of nature—detailing
the objective parameters which are relevant to the economic or strategic interac-
tion; and second, to specify for each agent a hierarchy of beliefs—probability
measures—about nature, about nature and the other agents' beliefs about nature,
etc. On its face, the resulting model is complicated and cumbersome to handle.
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According to the implicit approach, introduced by Harsanyi (1967), a state of
affairs, or state of the world comprises of the state of nature and the type of each
agent. A type is a probability measure on nature and the other agents’ types. Such
a space of states of the world is called a type space. The Harsanyi approach is
implicit, in the sense that it does not describe directly the mutual beliefs of the
agents. Nevertheless, it is easy to unfold from the implicit structure the explicit
hierarchy of beliefs of each type about nature, about nature and the others' beliefs
about nature, and so on. This hierarchy is coherent, in the sense that the marginals
of the higher-order beliefs coincide with the corresponding lower-level beliefs. *

Mertens and Zamir (1985) showed how to reconcile the two approaches.
Assuming the space of nature states is compact, they showed that every coherent
hierarchy of beliefs of an agent admits a unique coherent limit extension to a
probability measure over nature and the other agents' coherent hierarchies. Calling
this extension the type of the agent, the space of nature states together with the
agents' coherent hierarchies becomes a Harsanyi type space. This means that the
Harsanyi implicit approach is comprehensive—every explicit description of be-
liefs can be identified with a type in some type space.

Mertens and Zamir (1985) also showed that their space is universal, in the
sense that it ‘ contains all possible types': Every type space, with the same space of
nature states and the same set of agents, admits a unique belief morphism into the
Mertens—Zamir space, i.e., a morphism that preserves nature and the beliefs of the
agents. This implies that there is no loss of generality in analyzing an economic
interaction in any type space, possibly finite, that the modeler finds convenient,
because the analysis could always be transferred intact to the universal space, in
which every imaginable state of mind of each agent is represented in some state.

In works that ensued (Brandenburger and Dekel, 1993; Heifetz, 1993; Mertens
et a., 1994), it was shown that the Mertens—Zamir enterprise may be carried out
under various other topological assumptions about the space of nature states. In
this work we show, however, that the Mertens—Zamir program breaks down if this
space is allowed to be a general measurable space. With two agents, we exhibit in
Section 4 a measurable space of states of nature with a coherent hierarchy of
beliefs of one agent that has no coherent limit extension. This coherent hierarchy
cannot be made a type in any type space. Thus, the Harsanyi implicit approach
does not exhaust all the states of affairs that can be described explicitly in the
general measure-theoretic case.

In a companion paper (Heifetz and Samet, 1998), we proved the existence of a
universal Harsanyi type space even in this general measure-theoretic framework.
In light of the above described discrepancy between the explicit and implicit
approaches, this universal space is not the space of all coherent hierarchies—in-

! Coherence is usually called ‘consistency’ in the literature. In (Harsanyi, 1967), however, consis-
tency refers to a different property, and therefore we use the former term to avoid confusion.



deed, the construction must be carried out in a completely different fashion.
Nevertheless, as in every type space, one can aways unfold the explicit beliefs of
all orders of each type in the universal space, and these beliefs do constitute a
coherent hierarchy. This means that the universal space is aways a subset of the
space of coherent hierarchies, and generally it may be a proper subset. In Section
5 we show how the universal space can be ‘carved out’ of the space of belief
hierarchies.

2. Preliminaries

Let X be ameasurable space with a o-field 3. We refer to the measurable sets
in 3 as events in X. The set of al o-additive probability measures on X is
denoted by A(X). We consider A(X) as a measurable space with the o-field 3,
that is generated by all sets of the form BP(E) = { u| w(E) > p}, for an event E in
X and 0 < p < 1. We use the following property of this o-field in the sequel.

Lemma 2.1. Let  be a field on X that generates the o-field 3, and &, the
o-field on A(X) generated by sets of the form

{BP(E)IEEZF, 0<p<1}.
Then ‘7A = ZA'

Proof: Denote by &’ be the set of all events F in X, such that BP(F) € 7, for
al 0<p<1 Weprovethat #' contains 3, which showsthat #, contains al the
generators of 3. Since 7' contains the field & that generates Y, it is enough to
show that &’ is a monotone class (see, e.g., Theorem 4.4.2 of Dudley, 1989).
That is, we have to show that if (E,);,_, is a decreasing (increasing) sequence of
eventsin 7' then N7 _,E, €5’ (UT_,E, €F).

If (E,),_, is decreasing, then for any u e A(X), (u(E,),_, is a decreasing
sequence converging to w(N % _, E,). Therefore, by o-additivity,

Bp(mﬁ:lEn) = mﬁzlﬁp( En) EyA'

If (E,);_, isincreasing then for any u € A(X), (n(E,));_, is an increasing
sequence converging to w(U % _, E.). In this case, o-additivity implies

BP(UT-1E) = Nho UGo BP Y M(E) €9,
[
For a subset A (not necessarily a measurable one) of X, we denote by A(A)

the set of al measures w in A(X) for which w(E) = 1 for all events E in X such
that ACE. When A={x} isameasurable set, A( A) consists of a single measure



which we denote by §,. When all the singletons are measurable in X, we denote
by 6: X — A(X) the map defined by §(x) = 4,.

The set A can be considered as a measurable space with the o-field 2N A
Viewing A as such, A(A) is a well defined measurable space with the o-field
(2N A),. The set of measures A( A) can be also considered as a measurable space
with the o-field 3, N ACA). The relation between A(A) and A(A) isgivenin the
following lemma.

Lemma 2.2. For each u€ A(A), u(-NA) defines a measure on X. The map
w— u(-NA) is a measure theoretic isomorphism from A(A) onto ACA). The
inverse of this isomorphism maps each measure » € A( A) to the outer measure 2
v* restricted to 3 N A.

Proof: It is straightforward to show that u(- N A) is a probability measure in
A(A) and that the map u — u(- N A) is one-to-one. To see that the map is onto
consider v € ACA). By Theorem 3.3.6 in (Dudley, 1989), the outer measure v* is
a probability measure on (A, XNA), i.e, it is in A(A), and it satisfies
v(-)=v*(-NA). Thus, v € A(A) corresponds to v*(- N A) € A(A).

[ |

In light of this lemma, when we have a measurable function to A(X), the
image of which isin A(A), we will consider it also as a measurable function to
ACA).

Lemma 2.3. Suppose the o-field 3 in X has a countable sub-field 3, that
separates the points of X. Then the map 8: X — A(X) is a measure-theoretic
embedding 3 of X into A(X).

Proof. & is measurable, since for every E€ 3 and 0 < p < 1 we have
5 1(B°(E)) = E,
and for p=0
51(BY(E)) = X.
Furthermore, for every E € 3 we have
8(E) = n (Bl(EﬁF) UBl(Eﬁ = F))
FeX,
and the right-hand side is measurable in A(X).

2 The outer measure »*(B) for B C X is defined by »*(B) = inf(»(F): F€ X, BC F}.
® A measurable map is an embedding, if it is one to one, and maps measurable sets to measurable
sets.



For measurable spaces X and Y and a measurable function ¢: X—Y, we
denote by ¢ the function @: A(X) — A(Y) defined by &(w) = o ¢~ (that is,
for each event F in Y, $(u)F)= u(e (F)). It is easy to check that & is a
measurable function.

We fix afinite set | to be the set of agents. The set |, =1U {0} includes all
agents and ‘0" which stands for *nature’. For a family of sets (X)), o, we denote
by X the product I'T;c, X;, and by X_;, for i €1, the product IT;c X If
(V)i e, is another farnlly of sets, and (), o, afamily of functlons fi X, =Y,
then we denote by f the function f X — Y defined by f((x)ic )= (f(x))IEI :
and by f_; the function f_;: X_;—>Y_; defined by f_((X)jc, )=
(F;(X); e 1, y- We consider any product, finite or infinite, of measurable spaces
as a measurable space with the product o-field.

3. Type spaces, type morphisms and the coherent space

Type spaces. Fix a measurable space S the elements of which are called states
of nature. A type space on Sisapair ((T);c, .(m);c ), where
1. T,=S and T, for i €1, is a measurable space.

2. For exch i €1, m; is a measurable function m:: T, = A(T_)).
The space T, is called the space of types of agent i, and m; specifies the belief of
each type over nature and the other agents’' types.

Type morphisms. Let <(T)); < ,,(my); <> and ((T7); <, (M), < | ) be type spaces
on S and (¢); <, and lg-tuple, of measurable functions ¢;: T, — T/, where ¢, is
the identity on S The induced function ¢,;: T— T’ is a type morphism if it
preserves the beliefs of the agents. That is, when t; is mapped by ¢_; to t;, then
m,(t;) is mapped by ¢_; to m.(t)). Or simply, for each iel, mo gol Q_;om.
The morphism is a type isomorphism if ¢ is an isomorphism (or equivaently, if
¢; is an isomorphism for each i € 1).

Definition 3.1. A type space T* is a universal type space on S, if for every type
space T on S there is a unique type morphism from T to T*.

In (Heifetz and Samet, 1998), we proved that for every set of agents | and a
measurable space S of nature states there exists a unique universa type space (up
to type isomorphism).

We now turn to consider the explicit approach, in which one specifies directly
the mutual beliefs of the agents. We are going to define inductively the n-order
coherent spaces C, that will consist of coherent n-tuples (t!,...,t") of beliefs
over C°,,C*,,...,C" '—the lower-level coherent spaces of the other agents and
nature. C" will thus be a subset of A(C%,)x A(CY )X --- X A(C"; L. More-
over, C" will be asubset of C"~ 1 x A(C"; 1) Coherence meansthat the marginal
belief of tktt on Cktis tf for k<n— 1.



The primary object of belief of each agent i 1 is nature, so let us denote *
C%. =S The primary space of beliefs of agent i will therefore be C' = A(C° ),
i.e., al the possible beliefs of agent i over nature.

For k> 1, let C§ =S Denote by p*; the projection from C; = Sx IT;,,;C}
to C%, = S Inductively,

(1) Coherence: C/** consists of all thetuples ((t}, . ..,t}),t*" 1) € Ck x A(CK.)
such that p*,(t*"1) =tk that is the marginal of t**! overC*;* coincides with
tk,

(2) p*** isthe projection from C*** to CK.

In the limit, i's coherent space (over S), C,, is the set of al sequences
(tht?,...) such that (t},...,t*) € CK for every k> 1. These are the coherent
hierarchies of beliefs of agent i about nature, about nature and the other agents
beliefs about nature, etc. We denote by 7% the projection from C, to CX. Denote
also C, =S and let m§: C, — Cg betheidentity mapon S Wecal C=1IT;., G
the coherent space.

The next step is to consider the relationship between type spaces and the
coherent space C. Each type space {(T));c,(m);c,) admits a natural map,
h=(hy); ¢, that we call the hierarchy description map, into the coherent space C.
The map unfolds the mutual beliefs of each agent i € I, by assigning to each type
t; €T, a coherent hierarchy of beliefs in C;. To this end, we define the maps
hi: T, = C" as follows.

Denote by h° ; the projection of T_; to C°, =T, =S For k> 1 let h§ be the
identity on S. For the agents i € | define inductively hi: T, = C" by

(1) =my(t) * (h,)
hit (1) = (hCt ) mi(t) = (h<) ) =(mi(t) = (h2)
m(t) e (<1 my(t) o (h<,) 7).
h**(t,) isindeed in C***. To show this, it is enough to prove that the marginal of

the measure m;(t;) o (h*,)~* € A(C* ,) on C¥;* equals m,(t;) - (h*"))~%. Thisis
in fact the case—for every event F in C*71

m(t) = (M) e (p%) T (F) =m(t)( ok o b)) ' (F)
=m(t) (1) (F),

as required.

* Deviating slightly from our notational conventions.



Finally, define hy,: T, — C, to be the identity on S, and for al i €1 define
h;: T, = C, by

hi(t) = (mi(ti) o (h) l)kzo-

For spaces S of nature states with appropriate topological properties, C is the
universal type space. This was first proved by Mertens and Zamir (1985), who
showed that by the Kolmogorov extension theorem, each c¢; = (t1), . ; € C; admits
a unique o-additive probability measure m,(c;) over C_, with the appropriate
corresponding marginals °

w(m(c)) =t k=0
Thus, <(C);c,,.(m);c > is a type space, which is moreover universa: It turns
out that for every type space T with T,=S the hierarchy description map
h: T — C is atype morphism, which is the unique type morphism from T to C. In
particular, for the case T= C, the hierarchy description map h: C— C is the
identity map.

In the general measure-theoretic case with which we deal here, the Kolmogorov
extension theorem is not applicable. And indeed, in Section 4 we build a space of
nature states S and a coherent hierarchy of beliefs over it that has no o-additive
limit extension.

4. Coherent hierarchies which are not Harsanyi types

In this section we construct a coherent hierarchy of beliefs that cannot be
extended to a belief on the space of al coherent hierarchies. Andersen and Jessen
(1948) gave an example of a sequence of spaces A, with corresponding coherent
probability measures v, on X, =TT§-3 A, that cannot be extended to a o-additive
probability measure on X, =TIT;_, A, (the example may aso be found in
(Halmos, 1950, 49.3). ©

However, this construction does not lend itself obviously to our case. It requires
some freedom in the way the components spaces A, are chosen, while the
component spaces in the constructions of coherent hierarchies are determined by
the basic space of states of nature, S

Nevertheless, we show that the extra structure of the set of coherent beliefs
does not save it from the same problem. We construct a measurable space Sand a
hierarchy of coherent beliefs of an agent that cannot be extended to a measure

® By our convention, 7, is the projection from A(C_,) to A(CK ).

® A, may be taken to be any decreasing sequence of subsets of [0,1] (endowed with the relative
Borel o-field), where N_, A, =0, and each A, has Lebesgue outer measure 1. v, is concentrated on
the diagonal of X,=TIPZ3A,, which is isomorphic to A,_;. », is obtained by this isomorphism
from the Lebesgue outer measure on A, _ ; (this outer measure turns to be o-additive when restricted
to the relative Borel o-field on A, _ ;).



over the coherent space based on S Thisis done in two steps. In the first step we
show that a construction with the properties above can be carried out with all the
spaces in the product being identical with the same space S. In the second step we
show how, with two agents, the spaces S" can be identified as a product of nature
and an agent’s coherent beliefs of orders 1,...,n — 1. Thus, the measures built in
the first step will be identified with coherent beliefs of the other agent about nature
and the belief hierarchies of the first agent.

4.1. The first step

For each0 < m<n < denoteby X, , theproduct [T, _,.,A.For0<m<
n <« we write v, , for the marginal of », on X .. In paticular X, ,=X,, and
Von = ¥, For every m> 0, the coherent sequence (v, )~ m 0N (X, )y dOES
not have a limit extension, because this sequence of measures has exactly the same
properties as those of the basic sequence v,, which precluded it from having a
limit extension. ’

We take S to be X, and regroup the factors of the product S" as indicated in
the following diagram—taking first the products along columns (from bottom to
top in the diagram), and then products of these products:

nthcopy S = A; X A X ... X A,_; X A, X
X
(n—1ythcopy S = Ay X ... X A, X A_; X
X
X
lstcopy S = A, X A X

We can then write:
=TT XoxX TT Xkin:
1<k<n O0<k<o
We define the measure u,, on S" to be the product measure
M = 1_[ Vo X 1_[ Vkk+n-
1<k<n O0<k<w®
By the coherence of the sequences (v, ,),> it follows that the marginal of w,, on
the first (n — 1) copies of S" is u,_, and thus the sequence ( ,,),,. ; is coherent.
The space S° can be written as:
S =(Xon) X TT Xco-
O<k<®
Clearly, the sequence ( u,,) does not have an extension to S*, as the margina of
such an extension on any of the factors X,.. would be an extension of (v );. 4
on this factor.

7 See © above.



4.2. The second step

We assume, now, that the set of agents is | ={1,2}). We will show how to
embed S" in SXC"!, the space of nature states and agent i's coherent
hierarchies of beliefs of length n — 1. Using this embedding, we will be able to
identify the measures u,, as measureson Sx C""~*, and thus to interpret them as a
hierarchy of beliefs of the other agent j about nature and the hierarchies of agent
i.

The embeddmg g" of S"to C"j'=SxC'* will map (s, ...,s,_,) to the
point in Sx C"~* where (0) the nature state is s,, (1) agent i is certain that s;
occurs, (2) agent i is certain that agent j is certain that s, occurs, (3) agent i is
certain that agent j is certain that agent i is certain that s; occurs, and so on.

Formally, for n= 1 the embedding g: S— S will be the identity. Inductively,
gt S - SX C! is defined by

ginJrl(so,-..,sn—laSq)=(gin(50" 1)’691n(51 """ ”))
(SO! s1 (51,852)' v '89?71(5 ----- Sn— 1)’691n(51 """ S”))

= (50’891'1(31)’8912(51:52)""’891n71(51 ----- Sn-1)?

S (4.1)

gj"(sl ----- Sn))

where j = 2 —i isthe other agent.

Indeed, gI isinto C";'=Sx C" % For n= 12 this is immediate. If this is
true for n, then g/~ l(s:1 1Sh_1) is the projection of g/(sy,...,s,_;, S,) from
C"! to C";2 From the second line of (4.1) we therefore conclude that the

margmal of a7(sL.. y On C72 s §gpyg g ) @S required.
In thellmlt 0;: S’c - S>< C is deflned by
0i(50:51:%2:83:- ) = (80:8g35,) 825,50 gpssp500,...) (4.2)

Proposition 4.3. For all n> 1, g/, as well as g;, are embeddings for i = 1,2.

Proof. For n=1 this is immediate. Suppose the claim holds for m<n. Let us
label the copies of Sin S"*! and write S""1=§ X S X -+ X §,. Since the
spaces A, of Andersen and Jessen (1948) are all separable metric spaces (subsets
of the interval [0,1]) with the Borel o-field, so are S=TT;_, A, and S™. Hence,
by Lemma 2.3 and the induction hypothesis, 6(g/"(S; X ... X §,)) is isomorphic
to § X ... X §, for m< n with the map

(8og™M~?

8(9"(sy--iSw)) = (Suie--iSw)



Observing the third line of (4.1), g""(§ X - -+ X S,) is therefore isomorphic to
{(s0:80,(51,8),---,(S,.,8)) i Sn €Sy, mM<n}

= § x Diag( S}') X Diag(S)~*) X ... x Diag(S;_;) X §, (4.3)

Since S is a separable metric space with the Borel o-field, the product o-field

of S™ isits Borel o-field. Furthermore, the diagonal in S™ is closed, and hence

isomorphic to S by the map (s,...,s) —»s. Thus, the diagonas Diag(S]),

Diag(S)™1),..., Diag(S2_,) in (4.3) are isomorphicto S, S,, ..., S,_;, respec-
tively. We conclude that g"*(§, X - -+ X §) isisomorphicto § X - -+ X S,.
By the same argument, in the limit g;(§, X S, X S, X ---) isisomorphic to

{(50,5,(51:%) - -.(S1,--18),--. ) Sy €Sy M20)
= X Diag( Sy) X Diag(S;) X - -

which is isomorphicto § X S X S, X - - -, as required.
|

Consider for n> 1, the image measures «, = u(g") " € A(C"} Y. It is easy
to show by induction that the sequence (k). , is a coherent hierarchy in C,.
Indeed, the crucial inductive step is to show that the marginal of «,,, on C"; Lis
k,. But this follows since, by (4.1), the projection of g/'**(s,,...s,) on C";*is
97'(Sp.--- Sy 0)-

The coherent sequence (k,), . ; does not have a o-additive coherent extension
to C_;. Supposg, to the contrary, that « were such an extension. Then, since g; is
an embedding, it would follow that the set function w defined by w(E) = x(g,(E)),
for each measurable set E, is awell defined o-additive probability measure on S°.
Moreover, u would be a coherent extension of w,,. Indeed, Let E be a measurable
setin S", and F = E X (IT;_ ., ,S)- Then, u(F) = k(g,(F)) = k(7" 1(g;(F))),
where the latter equality holds since « is a coherent extension of «,,. But, by (4.2),
k(7" 1 gi(F)) = «,(g(E)). Finaly, since g is an one-to-one,

kn(97(E)) = o (9" " (8(E))) = ol E)
Together thisimpliesthat w(F) = w,(E), and this contradicts the non-existence of
a coherent extension of (), ;.

5. Which hierarchies belong to the universal space?

In a companion paper (Heifetz and Samet, 1998), we proved that there exists,
for every space of nature states S, a unique universal type space
(T e, (M) 2. Each T*, i €1 condsts of hierarchies of beliefs—all those
hierarchies that result by applying the hierarchy description map h; to some type
space over S In that paper it was proved that the hierarchy description maps
h,:T* — C, are the identity maps. In particular, this means that

TFcC, iel. (5.1)



Furthermore, it was proved that for every t*=((t*)"),., € T*, the marginal
belief of mif(t*) over 7%, (T*,) is(t*)<", i.e,

() (7)) = (1)< (52)

In other words, m#(t) is the limit extension of ((t/)), . ;.

However, in Section 4 we found a space of nature states S and a hierarchy of
beliefs (k,),., on it with no coherent limit extension whose corresponding
marginals are the k,,. This means that the universal space T* isin general a proper
subset of the coherent space C. In this section we show how the universal space
T* may be ‘extracted’ from C.

The coherence condition (2) in the definition of C makes it possible to
associate with each t, € C; an additive set function (with total mass 1) on C_,
which is not necessarily o-additive, denoted by n,(t;). This set function is defined
on the field

{(wfi)fl( E)lk> 0, Eismeasurablein Cﬁi},
which generates the o-field on C_ . For an event E in C* .

n(t)((75) (B)) =tk 3(E). (5.3)

It is easy to see that coherence guarantees that if (7%,) (E) = («',)"*(F) for
some events E in C¥; and F in C', then t***(E) = t/* %(F) and therefore (5.3)
defines an additive set function unambiguously. We can state now a condition
under which the space of coherent beliefs coincides with the universal one. The
following proposition is a special case of Proposition 5.5 and therefore is not
proved now.

Proposition 5.4. If for eachi €1 and t, € C,, the additive set function n,(t;) can
be extended to a o-additive probability measure in A(C_,) then C=T¥*.

Under reasonable topological assumptions on S this condition on n;(t;) is met.
But, as we saw, this is not necessarily the case when no topological assumptions
are made.

We now show how in general T* can be ‘carved out’ from C in an inductive
process. Denote by GP the set of al t; € C, such that n,(t,) can be extended to a
o-additive measure on C_,. We denote, with some abuse of notation, this
o-additive measure by n;(t;) (when the extension exists it is necessarily unique
and belongs to A(C)). G° may fail now to be T* for one reason: for some
t. €GP, n(t) may not be in A(G®)). To fix this we define, by transfinite
induction, ® a decreasing chain of spaces G for each ordina «. For nature, i.e.,
fori=0,let Gf =Sforal a.Foriel, wedenoteby G~“ and G~ * the spaces

8 For an exposition of ordinals and transfinite induction, see e.g., (Devlin, 1993).



mBMG and mB<aGB correspondingly. Since the chain is decreasing,
NgoGP=G* *and N, ,GP=G* * for non-limit ordinals . We define

G*=G~*n(n) (A(Gfia))-
That is, G* contains t; from the previously defined G only if the probability

measure associated with it, n;(t;), has its mass concentrated on the previously
defined G#,.

Proposition 5.5. For some ordinal o, G,G***, and for this ordinal, G*=T*

Proof: First we prove by transfinite induction that T* c G* for all a. By
comparing (5.2) and (5.3) we observe that for t* e T*, n(t*) and mF(t*)
coincide on a generating field of C_; and hence n;(t) can be extended to a
g-additive measure on C_; which is mif(t*). But m*(t*) S A(T* ), and by (5.2),
A(T* )yc A(C_ ). Therefore m*(t*)eA(C ;). This shows thaI T*c G If

_Gﬁ for aII B < a,then T* CG<* Thus, mf(t¥) € A(T*) c A(G=*), and
therefore T* G~

Since G* is decreasing there must be some « for which G*= G**1—the
ordinal up to which the chain of G — s is strictly decreasing may not exceed the
cardinality of C. By what we have shown, T* € G*. For this «, n; is amap from
G* to A(G?*)), or according to Lemma 2.2, n;: G* — A(G*®)).

Lemma 5.6. ((G*);c,,,(n); <, isatype space over S

Proof. We have to prove that n; is measurable for each i € |. For each measurable
Ein7*(G*)
n i B7((7%) (B))) = {t e GeIn(t)((=%) (E)) = p)

= {t e GFIt* *(E) = p}. (5.7)

The last set is a measurable subset of G, as it is defined by an event in G*. The
field of events (7*,)"(E) generates the o-field on G, and hence, by Lemma
2.1, sets of the form BP((7¥,)"1(E)) generate the o-field of A(G®,). Thus, by
(5.7), n, is measurable.

[ ]

Lemma 5.7. For all i €1, the hierarchy description map
is the identity on G.



Proof. We have to prove that for al k> 1 and t; = (), ., € G7,
hi(t) = 7*(t) = (t',....tF).
For every event ECC?. =S

n(t)(7%) (E) =t(E),
because n;(t;) is a coherent extension of t!. Inductively, if the claim holds for
k — 1, then for every event E € C**

n(t) (75 1) (E) =t&(E),

because n,(t;) is a coherent extension of t¥. Therefore, by the induction hypothesis

hi(t) = (h:(_l(ti)'ni(ti)(ﬂ'l(i_l)_l) = (til""'tik_lltik)’
as required.
|

End of Proof of Proposition 5.5. As constructed in (Heifetz and Samet, 1998),
T* isthe set of all hierarchies that result by applying the description map h on
type spaces over S. In particular, by Lemma 5.6, h sends G“ into T*. By Lemma
5.8, h is the identity on G*. Therefore G* € T*, as required.

Corollary 5.8. Let F be the operator on subsets (X)), ., of (G”);,, defined by

Fo((X)ie,) = Xo
F((X)ie) = x0nt(A(x)), iel

Then the universal space T* is a fixed point of F, which is maximal in the sense
that every other fixed point Y of F is contained in T*.

Proof. T* is obviously afixed point of F. If Y isafixed point of F, Lemmas 5.6
and 5.7 and the end of proof of proposition 5.5 apply word by word when G* is
replaced by Y. Hence the conclusion that Y € T*.
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