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We consider a group of individuals, such that each coalition of them is endowed with 
a preference relation, which may be incomplete, over a given set of prospects, and 
such that the extended Pareto rule holds. We assume that each singleton coalition has 
complete vNM preferences. In this setup, Baucells and Shapley (2008) gave a sufficient 
condition for a coalition to have complete preferences, in terms of the completeness of 
preferences of certain pairs of individuals. The new property that we introduce of individual 
prospects requires each individual to have a pair of consequences between which only she 
is not indifferent. We show that with this property a weaker condition guarantees the 
completeness of preferences of a coalition: it suffices for a coalition to be a union of a 
connected family of coalitions with complete preferences.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Consider a group of individuals each possessing a complete vNM preferences over a set of prospects. We further assume 
that each coalition of individuals is endowed with preferences that may be incomplete, i.e., some prospects may be incom-
parable. If we think of the preference relation of a coalition as an aggregation of the preferences of its members then the 
incompleteness of the coalition’s preference is the result of the inability to socially compare certain alternatives. Our aim is 
to provide sufficient conditions for the completeness of the preferences of a coalition in terms of the complete preferences 
of some of its subcoalitions.

We assume that the coalition preference relations satisfy the Extended Pareto (EP) rule: if two disjoint coalitions agree 
on the preference relation between two prospects, then the union of these coalitions also has the same preference over the 
prospects. The EP rule was introduced in Shapley and Shubik (1974, p. 65), and explored by Dhillon (1998), Dhillon and 
Mertens (1999), Baucells and Sarin (2003) and Baucells and Shapley (2008). It extends and implies the Pareto requirement 
in Harsanyi (1955), which requires that when all individuals agree on the preference relation between two prospects, then 
the grand coalition also agree with this preference relation.
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The following claim, which is a simplified version of the main result of Baucells and Shapley (2008), provides a sufficient 
condition for a coalition S to have complete preferences.1

(∗) Consider a connected graph the vertices of which are all the individuals in S . If each pair of individuals that form an 
edge in this graph has complete preferences, then S also has complete preferences.

Here, in addition to the EP rule, we assume the existence of Individual Prospects (IP). That is, for each individual there 
exists a pair of prospects, such that the individual prefers one to the other, while all other individuals are indifferent 
between them. If these prospects are lotteries of prizes this assumption holds when for each individual there is a prize that 
matters only to him. If prizes are monetary, then the assumption would require there to be more prizes than individuals, 
and have sufficient diversity among individuals’ risk preferences. Assuming IP enables us to give the following sufficient 
condition for the completeness of the preferences of S .

(∗∗) Consider a connected graph, the vertices of which are subcoalitions of S , such that the union of these coalitions is S
and each pair of coalitions that form an edge in the graph has a non-empty intersection. If each of these coalitions has 
complete preferences then S also has complete preferences.

The graphs in (∗) and (∗∗) are different. The nodes in the first are individuals, while in our condition, (∗∗), they are 
coalitions. However, the restriction of (∗∗) to coalitions of size two is equivalent to (∗). Thus, our condition (∗∗) is more 
general, and therefore weaker. We manage to reach the same conclusion as Baucells and Shapley (2008) with a weaker 
condition because of the assumption of IP.

Representation of preferences in terms of linear functions on the prospects plays an important role in our analysis and 
proofs. Representations of incomplete preferences were developed by Aumann (1962), Shapley and Baucells (1998), and 
Seidenfeld et al. (1995), and were revisited by Dubra et al. (2004) and Galaabaatar and Karni (2012). Incomplete preferences 
can be described by cones of utility vectors in the dual space of the space that contains the prospects. For complete 
preferences the cone is a one dimensional ray. The EP rule can also be described in terms of the cones defining the various 
coalitional preferences. The IP condition introduced here is equivalent to the requirement for the utility vectors of the 
individuals to be linearly independent. Linear independence of the utility vectors of each triplet of individuals was assumed 
in Baucells and Shapley (2008). However, the latter property is expressed in terms of the representation of the preferences 
and not in terms of the preferences themselves.

2. The main result

We consider a set of prospects M, which is a full-dimensional, closed, convex subset of Rm .2 An incomplete preference 
relation on M is a binary relation �⊆ M × M that is reflexive (∀p, p � p), transitive (∀p, q, r, if p � q and q � r, then 
p � r), continuous (the set {α : p � αq + (1 − α)r} is closed), and satisfies the axiom of independence (∀p, q, r and α �= 0, 
p � q iff αp + (1 − α)r � αq + (1 − α)r). The relations ∼ and � are defined as usual. The preference relation is complete
when for all p and q, either p � q or q � p. The trivial preference is the complete preference that satisfies p � q for all 
prospects p and q, and thus p ∼ q for all p and q.

Let N = {1, ..., n} be a set of individuals. Non-empty subsets of N are called coalitions. With some abuse of notation 
we write i for {i}. We implicitly assume that all individuals agree on M, which is the case when probabilities are objec-
tive.3

Definition 1. A coalition preference is an assignment of an incomplete preference relation to each coalition S , denoted by �S , 
such that for each individual i, �i is complete.

We assume that the coalition preference satisfies the following two properties:

Extended Pareto (EP)

For all disjoint coalitions A and B , and for all p, q ∈M, if p �A q and p �B q, then p �A∪B q, and if p �A q and p �B q, 
then p �A∪B q.

1 Their theorem is formulated for the grand coalition, but it trivially extends to any coalition S . Also, their condition appears to be stronger than (∗), 
since it is required to hold for certain small graphs. It is equivalent to the condition presented here, as we show in the discussion that follows Example 1
below. Their theorem also requires a technical “triplet linear independence” assumption, which we discuss below.

2 For example, M = {
p ∈R

m : ∑m
k=1 pk ≤ 1, pk ≥ 0

}
could represent probability mixtures between m + 1 outcomes. In this case and for m = 2, M is the 

Marshak triangle.
3 Having agreement on probabilities puts aside the dilemma between maintaining the Pareto rule but having no group beliefs (Hylland and Zeckhauser, 

1979; Mongin, 1995; Nau, 2006), or keeping group beliefs but violating the Pareto rule when individual beliefs differ (Gilboa et al., 2004).
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Fig. 1. The connected graph associated with E = {123, 234, 356, 47}. An edge connects any two nodes (coalitions) that have at least one individual in 
common.

Individual Prospect (IP)

For each individual i there exists a pair of prospects p, q ∈M such that p �i q and p ∼ j q for all j �= i.

The first property is called extended Pareto because it implies Harsanyi’s Pareto requirement that when all individuals 
agree on the preference between two given prospects, then this will be the preference of the grand coalition. The second 
property, which distinguishes this work from Baucells and Shapley (2008), requires that each individual has some prospects 
that only she cares about.

All our results consider a coalition preference satisfying EP and IP. The following proposition is the key to our main result.

Proposition 1. If �A and �B are complete and A ∩ B �= ∅, then �A∪B is complete.

We extend Proposition 1 to a set of coalitions E = {T1, ..., Tk} by associating E with a graph GE with k nodes, one for 
each coalition in E , where the edges are the pairs (Ti, T j) with i �= j for which Ti ∩ T j �= ∅. A set of coalitions E is connected
if its associated graph GE is connected.

Theorem 1. Let E be a connected set where for each T ∈ E , �T is complete. Then for S = ∪T ∈E T , the preference relation �S is 
complete.

Example 1. Let n = 7. We denote a coalition by the list of its members. Thus, for example, the coalition {1, 2, 3} is denoted 
by 123. Let E = {123, 234, 356, 47}. The edges of the associated graph are (123, 234), (123, 356), (234, 356), and (234, 37), 
yielding the connected graph shown in Fig. 1. If all the coalitions in E have complete preference relations, then 1234567
also has a complete preference relation.

Of course, Theorem 1 also applies to any connected set E ′ ⊆ E . In Example 1, the subgraph associated with E ′ =
{123, 356} is connected, and therefore 12356 also possesses a complete preference relation.

The main result of Baucells and Shapley (2008) concerns coalitions of size two with complete preference relations, and 
graphs with nodes that are individuals. Our main result, in Theorem 1, concerns coalitions of any size that have complete 
preference relations and the graphs with nodes that are coalitions. In order to compare these two results we consider the 
following three conditions.

1. There exists a connected set of coalitions E such that ∪T ∈E T = S , and for each T ∈ E , T has two members and �T is 
complete.

2. There exists a connected graph G S , the nodes of which are the individuals in S and the edges are pairs of individuals, 
such that for each edge {i, j} of the graph, �{i, j} is complete.

3. There exists a graph G S as in condition 2, with n − 1 edges.

These three conditions are equivalent. To see this, assume that 1 holds. Define a graph G S such that {i, j} is an edge 
when {i, j} = T for some T ∈ E . It is easy to see that this graph is connected and therefore 2 holds. When 2 holds, define 
E to be the set of all pairs {i, j} that are edges in E . Again, it is straightforward to see that E is connected and therefore 1 
holds. Finally, if 2 holds, then a spanning tree for G S satisfies 2 and it has n − 1 edges.

Both the main theorem of Baucells and Shapley (2008) and our Theorem 1 give conditions that guarantee the complete-
ness of �S . The stipulation in Baucells and Shapley (2008) is condition 3, while the stipulation in Theorem 1 is more general 
than condition 1 which is equivalent to 3. The weaker stipulation of Theorem 1 suffices to reach the same conclusion as 
Baucells and Shapley (2008) because of the additional assumption of IP.

3. Utility representation

Preference relations can be described in terms of linear functions on M. It is this description of preferences that we use 
to prove our claims.
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Any vector u ∈ R
m can be viewed as a linear function u : M → R by defining u(p) = 〈u, p〉, where the latter is the 

scalar product of u and p. The vector u, in its role as a linear function on M, is called a utility. A utility u defines a binary 
relation �u on M:

Definition 2. For utility u, the binary relation �u is defined by p �u q whenever u(p) ≥ u(q).

A non-empty, closed, and convex cone U ⊆ Rm is called a utility cone. A utility cone U defines a binary relation �U

on M:

Definition 3. For a utility cone U , the binary relation �U is defined by p �U q whenever for all u ∈ U , u(p) ≥ u(q) or 
equivalently, p �u q.

We can rephrase Definition 2 in terms of utility cones rather than utilities. We say that the utility cone U is a ray, if 
U = {tu | t ≥ 0} for some utility u. We say in this case that U is generated by u.

Observation 1. If the utility cone U is a ray generated by u, then �U =�u .

The following theorem, which expresses completeness and incompleteness of preference relations in terms of utility, 
is stated in Baucells and Shapley (2008), and is comparable to Aumann (1962), Shapley and Baucells (1998), Dubra et al. 
(2004), and Galaabaatar and Karni (2012).

Proposition.

• A preference relation � is incomplete if and only if �=�U for some utility cone U .
• A preference relation � is complete if and only if �=�u for some utility u, or equivalently, �=�U for a utility cone U generated 

by a utility.

Note, that the trivial preference relation, which is complete, is defined by u = 0 or equivalently by the cone generated 
by 0, namely {0}.

In view of this theorem, we can describe coalition preference in terms of utilities.

Corollary 1. An assignment of a binary relation �S on M to each coalition S is a coalition preference if for each S, �S =�U S for some 
utility cone U S , and for each singleton {i}, �i =�Ui for some utility cone Ui generated by a utility, or equivalently, �i =�ui for some 
utility ui .

The following characterization of the EP rule in terms of utility cones is a somewhat simplified version of the one given 
in Baucells and Shapley (2008). We recall that a vector u is in the relative interior of U , Ri(U ), if for each v ∈ U there exists 
α > 1 such that αu + (1 − α)v ∈ U .

Proposition. The EP rule holds if and only if for any two disjoint coalitions A and B,

U A∪B ⊆ U A + U B , and (1)

U A∪B ∩ Ri(U A + U B) �= ∅. (2)

IP can also be described in terms of individuals’ utilities.

Proposition 2. IP holds if and only if the utilities of the individuals are linearly independent.

In light of Proposition 2, in order for IP to hold, the dimension of the space of utilities and the set of prospects, m, 
should be at least as large as the number of individuals, n.

Since the trivial preference is defined by the 0 utility, we conclude from Proposition 2:

Corollary 2. The individuals’ preferences �i are not trivial.

The following proposition, which follows immediately from Corollary 2 and Lemma 3 in Section 5, extends Corollary 2.

Proposition 3. For each coalition S, �S is not trivial.

By Proposition 2, IP can hold only if the number of individuals n is not lower than the dimension of M, which we have 
assumed to be the case. In Baucells and Shapley (2008), where IP was not assumed, linear independence of the utilities of 
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Fig. 2. �12 and �234 are complete, but �1234 is incomplete.

each three individuals was assumed. However, this property was not described in terms of preferences. Here independence 
holds for the set of all individuals’ utilities, and this property is described by IP solely in terms of the preferences.

Finally, using the description of coalition preferences in terms of utility, we can strengthen Theorem 1 by relating the 
complete preference of the union of the elements of E with the complete preference associated with the union of the 
elements of any connected subset of E . Recall that a coalition preference assumes complete preferences for individuals, and 
hence a set of individual utilities, ui , i ∈ S .

Theorem 2. Let E be a connected set where for each T ∈ E , �T is complete. Then there are weights λi > 0, for all i ∈ S = ∪T ∈E T , such 
that uS = ∑

i∈S λiui generates the cone U S . Moreover, if E ′ ⊂ E is a connected set and S ′ = ∪T ∈E ′ T , then uS ′ = ∑
i∈S ′ λiui generates 

the cone U S ′ .

4. A counterexample

In the following example there are four individuals. The utilities of any three of them are independent, which is the 
assumption in Baucells and Shapley (2008). However, the utilities of all four individuals are dependent. In the example 
there is a connected set of coalitions each of which has complete preferences. The union of these coalitions is all four 
individuals. The conclusion of Theorem 1, that the grand coalition has a complete preference, fails to hold. This example 
demonstrates that the property of IP, which is equivalent to the independence of individual’s utilities, cannot be omitted in 
Theorem 1. Note, that the connected set in the example necessarily has a coalition with more than two players, because if 
all of them were pairs, the grand coalition would have complete preferences by Baucells and Shapley (2008).

Example 2. Consider a coalition preference with four individuals and a set of prospects in R3. Thus, the utility cones are 
also in R3. Obviously, the four utilities of the individuals cannot be linearly independent. However, any three utilities are 
independent, which is the requirement in Baucells and Shapley (2008). The utility cones of the coalitions are described by 
their intersection with a plane W that does not contain the origin, and is depicted in Fig. 2. We denote by uS the cones of 
coalitions S with complete preferences, namely all the singletons, as well as the coalitions 12 and 234, and denote by U S

the cones of coalitions S that have incomplete preferences, namely coalitions 123, 34, and 1234. The cones of the coalitions 
13, 14, 23, 24, 134, and 124 are not displayed, and we set for each S of this family, U S = ∑

i∈S Ui . Note, that the EP rule 
holds because U1234 is equal to the intersection of u1 + U234, u12 + U34, and U123 + u4. For all other decompositions of 
1234, to coalitions S and T which are not depicted, the sum U S + U T will be the cone generated by ui , i ∈ S , of which 
U1234 is a subset. Now, �12 and �234 are complete because their cone is defined by a single utility, but �1234 is incomplete 
because U1234 is not generated by a utility, that is, it is not a point in W . Thus, without linear independence the conclusion 
of Theorem 1 fails to hold.

5. Proofs

Proposition 1 is formulated in terms of the coalition preferences. However, to prove it we use the utility representation 
of these preferences, and in particular the linear independence of individual utilities stated in Proposition 2, which we prove 
first.

Proof of Proposition 2. Let L S be the linear space spanned by the vectors ui for i ∈ S .
Assume that IP holds but linear independence does not. Then, for some i, ui ∈ LN\{i} . Suppose that p ∼ j q for all j �= i. 

Then, for all j �= i, u j(p) = u j(q) and hence 〈u j, p − q〉 = 0. Thus, p − q ∈ L⊥
N\{i} . However, LN = LN\{i} , and thus p − q ∈ L⊥

N . 
Therefore, ui(p) = ui(q), and p ∼i q, contradicting IP.
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Suppose that linear independence holds. Then, for each i, the projection of ui on L⊥
N\{i} is different from zero. By the full 

dimensionality of M, we can choose p in the interior of M and q �= p in the ball around p such that p − q is collinear 
with this projection. Thus, 〈ui, p − q〉 > 0, and hence p �i q. However, since p − q ∈ L⊥

N\{i} , it follows that for all j �= i, 
〈u j, p − q〉 = 0 and hence p ∼ j q. Thus, IP holds. �
Lemma 1. For each S, U S ⊆ ∑

i∈S Ui and thus for each u ∈ U S there are λi ≥ 0 for i ∈ S such that u = ∑
i∈S λiui .

Proof. Prove by induction on the size of the coalition S , using the EP rule, Equation (1). �
Lemma 2. For each coalition S and T ⊂ S, if 

∑
i∈S λiui ∈ U S , then 

∑
i∈T λiui ∈ U T .

Proof. Suppose 
∑

i∈S λiui ∈ U S . By (1), U S ⊆ U T + U S\T . Therefore, 
∑

i∈S λiui = v + w , where v ∈ T and w ∈ S \ T . By 
Lemma 1, v = ∑

i∈T αiui with αi ≥ 0 for each i ∈ T , and w = ∑
i∈S\T αiui with αi ≥ 0 for each i ∈ S \ T . By linear indepen-

dence, λi = αi for each i ∈ S , implying that 
∑

i∈T λiui = v ∈ U T . �
Lemma 3. For each coalition S, there are λi > 0 for all i ∈ S, such that 

∑
i∈S λiui ∈ U S .

Proof. The proof is by induction on the size of the coalition. The claim holds trivially for |S| = 1. For |S| ≥ 2, assume it 
holds for coalitions smaller than S . Let ∅ ⊂ T ⊂ S . Then, S is the disjoint union of the smaller coalitions T and S \ T . By 
Equation (2), we can choose u ∈ U S ∩ Ri(U T + U S\T ). By Lemma 1, write u = ∑

i∈S αiui , with αi ≥ 0 for each i ∈ S . By the 
induction hypothesis, choose x = ∑

i∈T λiui ∈ U T , with λi > 0 for each i ∈ T ; and y = ∑
i∈S\T λiui ∈ U S\T , with λi > 0 for 

each i ∈ S \ T . Use x + y ∈ U T + U S\T and the definition of relative interior to conclude that αu + (1 −α)(x + y) ∈ U T + U S\T

for some α > 1. Thus, αu + (1 − α)(x + y) = v + w for v ∈ U T and w ∈ U S\T . Again, by Lemma 1, v = ∑
i∈S βiui and 

w = ∑
i∈S\T βiui with βi ≥ 0 for each i ∈ S . Thus, αu + (1 − α)(x + y) = ∑

i∈S βiui . By linear independence, for each i ∈ S , 
ααi + (1 − α)λi = βi ≥ 0. Therefore, αi = (βi + (α − 1)λi)/α > 0, i ∈ S , and the result follows. �
Proof of Proposition 1. Assume that A ∩ B �= ∅, and that the cones U A and U B are rays. By Lemma 3, there is a vector ∑

i∈A αiui in U A such that αi > 0, for all i ∈ A, and a vector 
∑

i∈B βiui in U B with βi > 0 for all i ∈ B . We show that U A∪B

is also a ray. Let u ∈ U A∪B . By Lemma 1, u = ∑
i∈A∪B λiui . By Lemma 2, 

∑
i∈A λiui ∈ U A and 

∑
i∈B λiui ∈ U B . Since U A and 

U B are rays, there are s, t ≥ 0 such that

∑

i∈A

λiui = s
∑

i∈A

αiui and
∑

i∈B

λiui = t
∑

i∈B

βiui .

By linear independence, λi = sαi for each i ∈ A, and λi = tβi for each i ∈ B . Let i∗ ∈ A ∩ B . Then, λi∗ = sαi∗ = tβi∗ . Since 
βi∗ > 0, t = sαi∗/βi∗ . Thus,

∑

i∈A∪B

λiui =
∑

i∈A

λiui +
∑

i∈B\A

λiui

= s
∑

i∈A

αiui + t
∑

i∈B\A

βiui

= s
∑

i∈A

αiui + s
∑

i∈B\A

αi∗

βi∗
βiui

Denote for i ∈ B \ A, αi = αi∗βi/βi∗ . Then, u = ∑
i∈A∪B λiui = s 

∑
i∈A∪B αiui . Therefore, each vector u in U A∪B is collinear 

with 
∑

i∈A∪B αiui , which shows that U A∪B is a ray. �
Proof of Theorem 1. We prove by induction on the size of E . The claim holds trivially for k = 1. Suppose the claim holds for 
k and consider a connected set E = {T1, ..., Tk+1}. We can assume without loss of generality that T1 ∩ T2 �= ∅. Consider the 
set E ′ = {T1 ∪ T2, ..., Tk+1}. By Proposition 1, T1 ∪ T2 has complete preferences. The graph associated with E ′ is connected 
and hence by the induction hypothesis for T = ∪k+1

i=1 Ti , �T is complete. �
Proof of Theorem 2. By Lemma 3 there are λi > 0 for all i ∈ S such that uS = ∑

i∈S λiui is in U S . Since, by Theorem 1, U S is 
generated by a utility vector, it is generated by uS . As S ′ ⊆ S , it follows by Lemma 2 that uS ′ = ∑

i∈S ′ λiui is in U S ′ and 
again, by Theorem 1, it follows that uS ′ generates U S ′ . �
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