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Abstract. Ceva’s theorem, which concerns triangles, is a central result of post-Euclidean
plane geometry. The three-dimensional generalization of a triangle is a tetrahedron, and the n-
dimensional generalization of these is an n-simplex. We extend Ceva’s theorem to n-simplices
and in doing so illustrate the considerations and choices that can be made in generalizing from
plane geometry to high-dimensional geometries.

1. CEVA’S THEOREM. Ceva’s theorem is a central result of post-Euclidean geom-
etry. The theorem was first formulated and proved in the 11th century by Yusuf al-
Mu’taman ibn Hud who was a king in Zaragoza. However, it became known in Europe
from the proof of the mathematician Giovanni Ceva in the 17th century. Evidence of
the centrality of this theorem is that it is the second theorem stated in the book Geom-
etry Revisited [2] by the famous geometers Coxeter and Grietzer.

The theorem concerns a triangle p0p1p2 with vertices p0, p1, and p2, which is
depicted in Figure 1. The points p01, p12, and p20 are on the sides p0p1, p1p2, and
p2p0, respectively. The line segments p0p12, p1p20, and p2p01 are called cevians. The
end point of the cevian that is on the side of the triangle is called the foot of the cevian.
The foot of a cevian divides the side on which it lies into two line segments. Thus,
for example, p01 divides the side p0p1 into the two line segments p0p01 and p01p1.
The ratio of the lengths of these two line segments is |p0p01|/|p01p1|. Ceva’s theorem
asserts that the three cevians concur at one point if and only if

|p0p01|
|p01p1|

|p1p12|
|p12p2|

|p2p20|
|p20p0| = 1.

Figure 1. Illustration of Ceva’s theorem.

Our purpose is to extend Ceva’s theorem, which is part of plane geometry, to high-
dimensional geometries. We emphasize the considerations and techniques that are used
for such an extension and present the alternative possible extensions of the notions of
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Figure 2. n-simplices for n = 0, 1, 2, 3.

plane geometry. Thus, in addition to the particular extension presented here, we aim to
provide terminology and tools that can help in thinking of plane geometry as a special
case of high-dimensional geometry. Knowledge of n-dimensional real space suffices
to follow the arguments of this article.

2. FROM TRIANGLES TO n-SIMPLICES. The object that Ceva’s theorem deals
with is a triangle. The first question we should ask when we try to extend the theorem
is what are the high-dimensional objects to which the extension will apply. For this
we look at the special properties of a triangle that distinguish it from other objects in
the plane, say squares or circles. As opposed to a circle, a triangle is a polygon. As
opposed to a square, a triangle is a two-dimensional polygon with the smallest number
of vertices. The vertices of the triangle are three points that are not collinear. The
extension of a polygon to three-dimensional space is a polytope. The minimal three-
dimensional polytope must have four vertices that do not lie on a plane. This object is
a tetrahedron and it can be easily visualized. There are four subsets of three vertices of
the tetrahedron. Each of them is a triangle and they form the sides of the tetrahedron.

An n-simplex is defined in a plane of dimension n in some real space, similarly
to a triangle in a plane and a tetrahedron in a three-dimensional space. An n-simplex
has n + 1 vertices, p0, . . . , pn, which do not lie in an (n − 1)-dimensional plane. This
is equivalent to saying that the n vectors p0 − p1, p0 − p2, . . . , p0 − pn are linearly
independent. Thus, a 3-simplex is a tetrahedron, a 2-simplex is a triangle, a 1-simplex
is a line segment, and a 0-simplex is a point (see Figure 2). Any subset of k + 1 vertices
of the n-simplex, for 0 ≤ k ≤ n, forms a k-simplex. We call such a k-simplex a k-face
of the n-simplex. Thus, the n-face of an n-simplex S is S. An (n − 1)-face is called
a facet. We say that a facet is opposite the vertex that is not included in the facet. An
n-simplex has n + 1 facets. A 2-simplex in S is called an edge of S. Finally, the 0-faces
of S are its vertices. The edges of a 2-simplex, i.e., a triangle, are also its facets. In a
3-simplex, i.e., a tetrahedron, the facets are four triangles and they are different from
the edges.

There are several extensions of Ceva’s theorem to n-simplices: see [1, 3–5].

3. CEVIANS. After fixing n-simplices as the objects to which we want to extend
Ceva’s theorem, we need to know how we define cevians for n-simplices. A cevian in
a 2-simplex connects a vertex to an edge and is 1-dimensional. We can define a cevian
in the n-simplex in exactly the same way. But after reflecting on this possibility, we do
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Figure 3. Two possible extensions of cevians. Left: In [3] and in this article. Right: In [1, 4, 5].

not see anything of interest that we can say for such cevians. Remembering that the
edges of the 2-simplex are also its facets, we can define a cevian to be a line segment
that connects a vertex with a point on the facet opposite the vertex. This is how [3]
defines a cevian in an n-simplex. Yet another alternative is to note that the dimension
of a cevian in a 2-simplex is one less than the dimension of the 2-simplex. Thus, we
can define a cevian in an n-simplex to be an (n − 1)-dimensional plane that connects
a vertex to the facet opposite the vertex. This is the way a cevian is defined in [4] and
[5] for n = 4 and in [1] for general n.

In this article, we adopt the approach of [3] and define a cevian in an n-simplex
S = p0 · · · pn to be a line segment that connects a vertex pi of S and a point, called
the foot of the cevian, in the interior of the facet opposite pi . The two ways of defining
cevians are depicted for tetrahedra in Figure 3.

4. FEET. Ceva’s theorem concerns three points, one in each of the interiors of the
sides of a triangle S. With an eye to the extension to an n-simplex, we refer to these
points as 1-feet because they lie on a 1-simplex. We say that these points are induced
by a point pS in the interior of the triangle when they are the feet of the cevians that
pass through pS . Ceva’s theorem gives a necessary and sufficient condition for such
three points to be induced by a point pS .

In the obvious extension to a tetrahedron S, we consider four points, one in each of
the interiors of the facets of S, and look for a necessary and sufficient condition for
these points to be induced by a point pS in the interior of S. Figure 4 depicts three
points out of the four. They are the feet of three cevians, depicted in red, which concur
at pS . That is, these points are induced by pS . In [3], n + 1 points are considered,
one in each of the interiors of the facets of an n-simplex. A necessary and sufficient
condition is given for such n + 1 points to be induced by a point inside the simplex.
However, the condition there is not formulated in terms of a product of ratios.

Here we consider a set of points larger than the set of n + 1 points studied in [3].
In our theory, the set that extends the set of three points in Ceva’s theorem includes
one point in each of the interiors of the k-faces of an n-simplex, for all 1 ≤ k ≤ n − 1.
We call such a set a multipede and define what it means for a point in the interior of
the simplex to induce a multipede. The set of three points on the sides of a triangle in
Ceva’s theorem is a special case of a multipede for n = 2.

We generalize Ceva’s theorem to n-simplices by giving a necessary and sufficient
condition for a multipede to be induced by a point in the interior of the simplex. This
condition is given in terms of a product of certain ratios defined by the points of the
multipede. Ceva’s theorem turns out to be a special case of our main theorem for n = 2.
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Figure 4. Feet induced by pS on various k-faces of a tetrahedron.

Before we formally define the inducement of a multipede by a point in the interior
of a simplex, we illustrate it in Figure 4 for a tetrahedron. The point pS in the inte-
rior of the tetrahedron induces four 2-feet on the 2-faces of the tetrahedron. Three of
these points are depicted. For example, the point p013 is the 2-foot of the cevian p2pS ,
depicted in red, on the 2-face p0p1p3. The point p013, being in the interior of the 2-
face p0p1p3, induces the point p03 on the 1-face p0p3, which is the foot of the cevian
p1p013, depicted in blue. The point p03 is also in the multipede induced by pS .

Next, we formally define multipedes and their inducement. We denote by F the
family of faces of S of dimension k with 1 ≤ k ≤ n − 1.

Definition. A multipede is a set of points {pF }F∈F where for each F , the point pF is
in the interior of F . A point pS in the interior of S induces the multipede if the feet of
the cevians in S that pass through pS are the points pG where G is a facet of S, and for
each face F ∈ F of dimension k > 1 the feet of the cevians in F that pass through pF

are the points pG where G is a facet of F .

For the case of a triangle (n = 2), any point in the interior of the triangle induces one
and only one multipede. The next proposition generalizes this claim for n-simplices.
Before we state and prove this proposition we explain why it is not as straightforward
for n ≥ 3 as it is for n = 2.

It seems at first glance that exactly as in the case for n = 2 we can construct the
unique multipede induced by pS . The construction is illustrated in Figure 4. The 2-feet
induced by pS on the facets of S are determined by pS . The foot on each facet of S, for
example p013 on p0p1p3, determines the 1-feet of the multipede in this facet. For larger
n, this construction can go on until the 1-faces are reached. While this construction
shows the uniqueness of the multipede induced by a point pS , that is, that there cannot
be more than one multipede induced by pS , it fails to show that there exists such a
multipede. The reason is that a k-face of an n-simplex can be reached by different
cevians. In Figure 4, for example, the 1-face p0p3 can be reached by the cevian p0p013

but also by the cevian p2p023. Since a multipede should contain only one point on
the 1-face p0p3, the two cevians should end at the same point in order to define a
multipede. In Figure 4, they do end at the same point p03, but this does not follow
straightforwardly from the construction.

We prove the existence of a multipede induced by a point pS by describing explicitly
the points of the multipede in terms of the barycentric coordinates of pS . First we
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recall the notion of barycentric coordinates. Let S = p0 · · ·pd be a d-simplex. Then
each point p in S can be written as a combination p = ∑d

i=0 βipi , where βi ≥ 0 for
i = 1, . . . , d and

∑d

i=0 βi = 1. The coefficients β0, . . . , βd are uniquely determined
by p and they are called the barycentric coordinates of p. The converse also holds: if
βi ≥ 0 for i = 1, . . . , d and

∑d

i=0 βi = 1, then p = ∑d

i=0 βipi is in S. A point p is in
the interior of S if and only if its barycentric coordinates are strictly positive.

Proposition 1. Each point pS in the interior of an n-simplex S induces one and only
one multipede.

Proof. We first prove the existence of a multipede induced by a point pS in the interior
of the n-simplex S = p0 · · ·pn. Let β0, . . . , βn be the barycentric coordinates of pS .
For each face F ∈ F , define

pF =
∑

pi∈F βipi∑
pi∈F βi

. (1)

Observe first that since pS is in the interior of S, βi > 0 for each i, and therefore
the multipede is well-defined. We show that {pF }F∈F is a multipede induced by pS .
Consider a face F of dimension d > 1 and facet G of F opposite the vertex pi ∈ F .
Then G ∈ F . Let α = ∑

pj ∈G βj/
∑

pj ∈F βj . Thus pF = αpG + (1 − α)pi . Hence pi ,
pF , and pG are collinear, and therefore the cevian pipG passes thorough pF .

To see that only one multipede can be induced by pS , note that the (n − 1)-feet of
the multipede are, by definition, the feet of the cevians that go through pS , which are
uniquely determined. For each facet F of S, the (n − 2)-feet in F are, by definition, the
feet of the cevians that go through pF , which are uniquely determined, and so on.

We return to Ceva’s theorem and prove the “only if” part of the theorem that makes
use of the barycentric coordinates of p012. This will lead us to the last two steps in
extending the theorem to n-simplices.

Ceva’s theorem (The “only if” part). If a multipede {p01, p12, p20} in the triangle
p0p1p2 is induced by a point p012 in the interior of the triangle, then

|p0p01|
|p01p1|

|p1p12|
|p12p2|

|p2p20|
|p20p0| = 1.

Proof. The proof is carried out in three steps.

Step 1: Let β0, β1, β2 be the barycentric coordinates of p012. By Proposition 1, p01 =
(β0/(β0 + β1))p0 + (β1/(β0 + β1))p1. Similar equations hold for p12 and p20.

Step 2: By Step 1, p01 divides the interval (1-simplex) p0p1 into two subintervals (1-
simplices) p0p01 and p01p1 with a ratio of lengths

|p0p01|
|p01p1| = β1

β0
. (2)

Similar equations hold for the other two sides of the triangle.

Step 3: By Step 2, multiplying the ratio of each side along the cycle of the sides results
in
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|p0p01|
|p01p1|

|p1p12|
|p12p2|

|p2p20|
|p20p0| = β1

β0

β2

β1

β0

β2
= 1.

5. LOBES. We now extend Step 2 in the proof to n-simplices. The 1-foot p01 divides
the 1-simplex p0p1 it lies on into two 1-simplices which we will call 1-lobes. In the
mulitpede of an n-simplex, with n > 2, we have k-feet for k > 1. Such feet also par-
tition the k-simplex they lie on into k + 1 k-lobes. Figure 5 illustrates a partition of a
1-simplex into two 1-lobes by a 1-foot, and a partition of a 2-simplex into three 2-lobes
by a 2-foot.

Lobes are defined in general as follows.

Figure 5. Partition into 1-lobes by a 1-foot on the left and into 3-lobes by a 2-foot on the right.

Definition. Let F ∈ F be a k-face with a vertex pi , and p a point in the interior of F .
Let Li be the k-simplex whose vertices are p and all the vertices of F other than pi .
We call Li the k-lobe of F at p, and say that Li is opposite vertex pi .

As 1-lobes are intervals, they have lengths, and the ratio of these lengths plays a role
in Ceva’s theorem. 2-lobes are two-dimensional and they have area. Thus, the natural
extension of the ratio of lengths of 1-lobes to 2-lobes is the ratio of their areas. The
extension of length and area to three-dimensional objects is volume, and we use this
word for n-dimensional objects.

We denote the volume of a k-simplex S by Vol(S). Note that if S is in a space of
dimension larger than k, then its volume in this space is 0. But S can be embedded
isometrically (that is, with distance preserved) in Rk. The volume of S we refer to
is its volume as a k-dimensional object in Rk. The volume of S can be computed
by a determinant as follows. We recall that the determinant is a real-valued func-
tion, which we denote by det, defined on arrays of k vectors in Rk. The function
det is multilinear in the following sense. For vectors v1, . . . , vk, scalar α and vec-
tor u, det(v1, . . . , vi + u, . . . , vk) = det(v1, . . . , vi, . . . , vk) + det(v1, . . . , u, . . . , vk),
and det(v1, . . . , αvi, . . . , vk) = αdet(v1, . . . , vi, . . . , vk). When two of the vectors vi

are the same, then the determinant is 0. These are the properties of the determi-
nant we use in the sequel. Now it turns out that if S = p0 · · · pk, then Vol(S) =
|det(p1 − p0, p2 − p0, . . . , pk − p0)|/k!.

Step 2 in the proof of Ceva’s theorem culminates in equation (2) which states that
the ratio of the lengths of two 1-lobes is the ratio of the barycentric coordinates of
the vertices of the 1-simplex containing these lobes. The extension of this property to
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k-lobes in equation (3) is well known and its short proof is included here for complete-
ness.

Proposition 2. Let Li and Lj be k-lobes of F at p opposite a vertex pi and pj , respec-
tively. Let βi and βj be the coordinates of pi and pj , respectively, in the barycentric
representation of p in F . Then

Vol(Li)

Vol(Lj )
= βi

βj

. (3)

Proof. Assume, without loss of generality, that F is the simplex p0 · · ·pk in Rk. Thus
Vol(F ) = |det(p1 − p0, p2 − p0, . . . pk − p0)|/k!. Suppose, without loss of general-
ity, that i = 1. The vertices of L1 are p and the vertices p0p2, . . . , pk, and therefore

Vol(L1) = ∣∣det(
k∑

l=0

βlpl − p0, p2 − p0, . . . , pk − p0)
∣∣/k!

= ∣∣det(
k∑

l=0

βl(pl − p0), p2 − p0, . . . , pk − p0)
∣∣/k!

= ∣∣
k∑

l=0

βldet(pl − p0, p2 − p0, . . . , pk − p0)
∣∣/k!

= ∣∣β1det(p1 − p0, p2 − p0, . . . , pk − p0)
∣∣/k!

= β1Vol(F ).

6. FANS. We are now ready to extend the third and final step in the proof of Ceva’s
theorem. We know by Proposition 2 that the ratio of the volumes of k-lobes behaves
similarly to the ratio of the lengths of 1-lobes. In Ceva’s theorem ratios of lengths of
1-feet are multiplied along a cycle of sides of the triangle. The order in which the ratios
are taken matters, or else the product will not be 1. We extend the idea of taking ratios
in some order along cycles of faces of an n-simplex. Here we call them fans.

Definition. Fix a multipede {pF }F∈F of an n-simplex S. A uniform m-fan of k-lobes,
for m ≥ 3 and k ≥ 1, is a set {(Fz, Lz, Mz) | z ∈ Z/mZ}, indexed by the integers
modulo m, such that for each z,

• Fz is a face of S, and Lz and Mz are lobes in Fz at pFz ;
• Mz ∩ Lz+1 is a (k − 1)-face.

We show later that the faces Fz in a uniform m-fan of k-lobes must satisfy, for each
z, that Fz �= Fz+1. Moreover, Fz ∩ Fz+1 is a facet of each of these two k-faces. Thus,
Fz+1 is obtained from Fz by replacing one vertex in Fz by another vertex that is not in
Fz.

We illustrate the notion of a uniform fan via several examples in the tetrahedron.
An example of a uniform 3-fan of 1-lobes is

(p0p1, p0p01, p01p1), (p1p2, p1p12, p12p2), (p2p0, p2p20, p20p0).
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Figure 6. A uniform 4-fan of 1-lobes.

Figure 7. Top: A uniform 3-fan of 2-lobes. Bottom: A mixed 3-fan obtained from the uniform fan at the top.

This fan is on the facet p0p1p2 of the tetrahedron, which is a triangle, and therefore
it is subject to the conclusion of Ceva’s theorem. Figure 6 depicts a uniform 4-fan
of 1-lobes. A uniform 3-fan of 2-lobes is depicted in Figure 7 at the top. The fan in
Figure 8 is a uniform 4-fan of 2-lobes. To visualize this fan more easily, the surface of
the tetrahedron, namely its four facets, is rolled flat in a plane by cutting the surface
along the edges p3p0, p0p1, and p1p2.

The uniformity of a fan refers to the fact that all the faces in the fan have the same
dimension. We next define a mixed fan in which faces may have different dimensions,
but must be obtained from a uniform fan as we define next.
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Figure 8. A uniform 4-fan of 2-lobes.

Definition. A mixed m-fan, for m ≥ 3, is a set {(Fz, Lz, Mz) | z ∈ Z/mZ} such that

• for each z, Fz is a face of S, and Lz and Mz are lobes in Fz at pFz ;
• there exists a uniform m-fan of k-lobes, {(F ′

z, L
′
z, M

′
z) | z ∈ Z/mZ}, such that for

each z, Lz and L′
z are opposite the same vertex, and Mz, and M ′

z are opposite the
same vertex.

The fan at the bottom in Figure 7 is mixed. It is obtained from the uniform fan at the
top by replacing the two-dimensional face p0p3p2 by the one-dimensional face p0p2,
and the pair of 2-lobes in the original face by a pair of 1-lobes in the new face. Both
pairs are opposite the vertices p0 and p2.

The generalized Ceva’s theorem. A mulitpede {pF }F∈F in an n-simplex S is
induced by a point in the interior of S if and only if, for each uniform or mixed
fan {(Fz, Lz, Mz) | z ∈ Z/mZ},

∏

z∈Z/mZ

Vol(Lz)

Vol(Mz)
= 1. (4)

Proof. We first prove the “only if” part. Suppose P is a multipede induced by pS in the
interior of S, and let β0, . . . , βn be the barycentric coordinates of pS . By Proposition 2,
the left-hand side of equation (4) for a mixed fan is the same as the left-hand side for
the uniform fan from which it was obtained. Thus it is enough to prove that (4) holds
for uniform fans. Let � be such a fan. Let piz and pjz be the vertices in Fz opposite Lz

and Mz, respectively. By Propositions 1 and 2,

Vol(Lz)

Vol(Mz)
= βiz

βjz

.

The number of times βi appears in the numerator of equation (4) is the number of z’s
for which i = iz and the number of times it appears in the denominator is the number
of z’s for which i = jz. We show that for each i these two numbers are the same, which
completes the proof of the “only if” part.

For each z, Fz �= Fz+1. Otherwise, Mz and Lz+1 are lobes in Fz, and hence they
have in common the point pFz which is not on a (k − 1)-face of S, contrary to the
requirement of the definition. Let Gz = Mz ∩ Lz+1. Then Gz is a (k − 1)-face. As
Fz ∩ Fz+1 ⊃ Mz ∩ Lz+1 = Gz, it follows that Gz is a facet of Fz and of Fz+1.

Thus, the vertices of Fz consist of pjz and the vertices of Gz. The vertices of Fz+1

consist of piz+1 and the vertices of Gz. That is, Fz+1 is obtained from Fz by replacing
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the vertex pjz by the vertex piz+1 in Fz. We need to show that each pi replaces a vertex
the same number of times it is replaced by a vertex.

Fix i and let f : Z/mZ → {0, 1} be defined by f (z) = 1 when pi ∈ Fz and f (z) =
0 when pi /∈ Fz. The number of times pi is replaced by another vertex is the number
of z’s for which f (z) − f (z + 1) = 1. The number of times pi replaces another vertex
is the number of z’s for which f (z) − f (z + 1) = −1. The number of times pi is
neither replaced nor replaces is the number of z’s for which f (z) − f (z + 1) = 0.
But, because of the cyclic structure of the group of integers modulo n,

∑

z∈Z/mZ

(f (z) − f (z + 1)) = 0,

and hence pi replaces a vertex the same number of times it is replaced by a vertex.
To prove the “if” part we assume that equation (4) holds for all fans and we construct

a point pS in the interior of S that induces the multipede. Denote by pij the point in
the multipede that is on pipj , and consider the ratio rij = |pjpij |/|pipij |. Obviously,
rji = 1/rij .

Starting with some c > 0, we define a point pS by its barycentric coordinates
β0, . . . , βn as follows:

β0 = c,

βk+1 = βkr(k+1)k for k ≥ 0.

Thus, for k > 0, βk = crk(k−1) · · · r10. The constant c is chosen to guarantee that∑
i βi = 1.
We show that for i �= j , βj/βi = rji . Since rij = 1/rji it is enough to consider

only j > i. If j = i + 1, then βj/βi = βi+1/βi = r(i+1)i = rji . If j > i + 1, then
βj/βi = rj (j−1) · · · r(i+1)i . By (4), rj (j−1) · · · r(i+1)irij = 1. Thus βj/βi = 1/rij = rji .
Therefore, by Proposition 1, pij is a point in the multipede induced by pS . This shows
that all the points of the multipede that are on the 1-faces of S are in the multipede
induced by pS .

Next, consider a point pF of the multipede on a k-face F for 1 < k < n. We show
that pF is induced by pS . Let γ be the vector of barycentric coordinates of pF . By
Proposition 2, for any pair of vertices pi and pj in F , Vol(Li)/Vol(Lj ) = γi/γj , where
Li and Lj are the k-lobes of F at pF opposite the vertices pi and pj , respectively. We
will further show that for any such pair Vol(Li)/Vol(Lj ) = βi/βj . This implies that γ

is proportional to β. That is, for some constant c and for each i such that pi ∈ F , we
have γi = cβi . Since γ is normalized, it follows that c = 1/

∑
pi∈F βi . Thus, by (1),

pF is induced by pS .
To complete the proof we need to show that Vol(Li)/Vol(Lj ) = βi/βj for all pi and

pj in F . For this we first create a uniform 3-fan of 1-lobes. We then create a mixed
fan by changing one of the elements of the uniform fan to (F, Lj , Li). We deduce the
required equality by applying equation (4) to both fans.

Let pk be a vertex not in F , and consider the uniform 3-fan of 1-lobes

(
(pipj , pipij , pjpij ), (pjpk, pjpjk, pkpjk)(pkpi, pkpki, pipki)

)
.

By (4), rij rjkrki = 1. Next consider the mixed 3-fan obtained from the previous one
by replacing (pipj , pipij , pjpij ) with (F, Lj , Li). By (4),

Vol(Li)/Vol(Lj )rjkrki = 1.
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This implies that Vol(Li)/Vol(Lj ) = rij = βi/βj , which completes the proof.

Remark. The condition in equation (4) in the main theorem is for all m-fans of k-
lobes. We can have m-fans with arbitrarily large m. For the “only if” part it makes
the claim strong. But for the “if” part we can make the claim stronger by requiring
that equation (4) holds only for some m’s. Indeed it follows from the proof that it is
enough to require equation (4) to hold only for simple uniform m-fans of k-lobes and
the mixed m-fans that are derived from them. By “simple” we mean that all m faces Fz

in the fan are distinct. Thus, m is bounded by the number of k-faces of the n-simplex.
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