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A learning process is belief affirming if the difference between a player's expected
payoff in the next period, and the average of his or her past payoffs converges to
zero. We show that every smooth discrete fictitious play and every continuous
fictitious play is belief affirming. We also provide conditions under which general
averaging processes are belief affirming. Journal of Economic Literature Classifica-
tion Numbers: C72, C73, D83. � 1997 Academic Press

1. INTRODUCTION

Consider players engaged in the repeated play of a finite game in
strategic form. In each period, each player, on the basis of the history of
past moves, forms a belief about the next joint move of the other players.
She then chooses an action that is a myopic pure best reply, that is, an
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action that maximizes her payoff in the next period according to her belief.
We call such a process a learning process.1

Learning processes are models of bounded rationality. The participants
in such processes think myopically and nonstrategically. Moreover, full
statistical analysis would prove their beliefs wrong, if they were to use one.
Yet blatant statistical inconsistency of beliefs should not be expected even
from players who are rationally bounded. Several conditions can be
imposed on learning processes that prevent them from being overly incon-
sistent. The oldest consistency condition is the convergence of the process,
namely the convergence of players' beliefs concerning their rivals' strategies.
Foster and Vohra [4] suggested calibration of the forecasts, in a learning
process, as a consistency condition (see Dawid [2]) and showed that in
calibrated processes the joint distribution of players' actions converge to
the set of correlated equilibria. Another consistency condition was
suggested by Milgrom and Roberts [9]. They defined and studied adaptive
learning process in which each player assigns a low probability to strategy
profiles that have not been used by the other players for many periods. All
these conditions are defined purely in terms of strategies.

In this paper we study a consistency condition, called belief affirming,
which relates beliefs about strategies to payoffs. The essence of this condi-
tion is as follows. At each point in time, t, a player's belief and action deter-
mine her expected payoff, E(t), in the next period. At the same time, the
player also observes her payoff history. If in the long run, these histories
seem to contradict her expected payoff then her confidence in her beliefs
will be shaken. If on the contrary, past and future payoffs fit, then the
process affirms the player's beliefs. This belief affirming, in terms of payoffs,
is the condition we study here.

The simplest way to examine the expected payoff, E(t), in light of payoff
history is to compute the average payoff, A(t), up to time t and compare
it with E(t). We say that the learning process is belief affirming (with
respect to average payoff) if limt � �(E(t)&A(t))=0, for each player.2

The results of this paper indicate that belief affirming in fictitious play
and even more general learning processes is the rule rather than the excep-
tion. We consider first, in Section 2, the classical fictitious play in which
time is discrete. Most of our results are obtained for a player who is
engaged individually in a fictitious play. That is, the player chooses in each
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1 Such processes are to be distinguished from evolutionary and psychological models of
learning in which agents do not form beliefs about future moves, but rather choose their
actions according to previous payoffs associated with the actions. See e.g., Roth and Erev
[14], and the references listed there, for a discussion of a variety of such processes.

2 Fudenberg and Levine [6] define ``universal consistency,'' which is the same as belief
affirming but applies to a slightly more general environment.
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period a best response against the average action of the past, while other
players are not restricted in the way they play.

Our first key result, The Rosy Theorem, is a simple and potent observa-
tion. It states that a player engaged in a fictitious play is always optimistic
and expects to be paid no less than what he has been paid on the average
in the past. That is, for each t, E(t)�A(t). This simple theorem is enough
to guarantee that, in zero-sum two-player games, fictitious play is always
belief affirming. The convergence of fictitious play in such games was
proved by Robinson [13]. We show, moreover, that the average payoff
converges to the value of the game.

For non-zero-sum games belief affirming of fictitious play does not
generally hold. We prove, though, that any smooth fictitious play is belief
affirming. A path is smooth for a player if the proportion of time, up to
time t, she switches from one action to another, converges to zero when t
approaches infinity.3 This theorem fails without the smoothness condition,
as the first example in Section 4 demonstrates. Though we do not have
a formal characterization of smooth processes, it seems that generically
fictitious play processes are smooth. This can be easily shown for 2_2
games.

The Rosy Theorem turns out to be an efficient tool in proving non-
convergence of fictitious play. We demonstrate it by providing a very short
proof to the non-convergence of the fictitious play in Shapley's [15]
famous example.

In Section 3 we introduce continuous fictitious play in which time flows
continuously. For these processes, we have an unqualified result. Continuous
fictitious plays are always belief affirming. Continuous fictitious plays
share many properties with discrete ones. The main difference is that in the
continuous process, all switches are on a tie, that is, a player who switches
is indifferent between the two actions. If it happens in a discrete fictitious
play that all switches are on ties then there is a corresponding continuous
process that is completely analogous to the discrete one.4

In Section 4 we study the relation between belief affirming and the
convergence of fictitious play, i.e., convergence of beliefs. We show that
neither condition implies the other. A very simple two-person game demon-
strates how a converging process fails to be belief affirming. Shapley's
example of fictitious play that does not converge shows the opposite, since
the process in his example is smooth and therefore, by our result, is belief
affirming. If however, a two player fictitious play is belief affirming and it
does converge, then average payoffs converge to the equilibrium payoffs.
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3 This theorem was independently proved by Fudenberg and Levine [14].
4 See Monderer and Sela [11] for a discussion of the sensitivity of fictitious play to tie

breaking rules.
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In Section 5 we explore generalizations of continuous fictitious play. We
allow players to average action history nonuniformly using general averaging
functions. Similarly, we generalize the notion of belief affirming such that
expected payoff is compared with average payoff where the average is com-
puted using the same averaging function with which beliefs about actions
were formed. We then show that if the following two conditions hold then
the process is belief affirming. First, enough weight must be given to recent
history (we call such a process non-nostalgic). Second, averaging in each
point of time is derived from an all-times-embracing averaging function (a
condition we call time-consistency).

In this paper we adopt the approach that player i 's belief is a probability
distribution over the next joint move of the other players. In particular, our
definition of fictitious play for more than two players coincides with the one
given in Fudenberg and Kreps [5], and not with Monderer and Shapley
[12], where player's beliefs about different players are independent. Our
theorems do not seem to apply to the latter process.

2. BELIEF AFFIRMING IN DISCRETE PROCESSES

Let N=[1, 2, ..., n] be the set of players. For each i # N, Si is a finite
strategy set of Player i. Let S=_i # N S i, and for each i, denote
S&i=_j # N "[i] S j. Let ui : S � R be i 's payoff function. For each finite set
A we denote by 2(A) the set of probability measures over A. The set of
Player i 's mixed strategies 2(S i ) is denoted by 2i, and the set of i 's beliefs,
concerning her rivals' joint moves, 2(S&i ), is denoted by 2&i. For each
si # Si and b&i # 2&i we denote by U i (si, b&i ) Player i 's expected payoff,
according to her belief b&i, when she plays si.

A path in S is a sequence _=[_(t)], for t=0, 1, 2, ... of elements in S.
We think of _i (t) and _&i (t) as being (extreme) points in 2i and 2&i

correspondingly. Thus, these points being elements of a linear space, we
can average pure strategies or beliefs of the same player.

A belief sequence for player i is a sequence, b&i=(b&i (t)), for t�1, of
elements in 2&i.

A belief sequence, is a vector b=(b&1, b&2, ..., b&n) of belief sequences
for all players.

A myopic learning process for player i (in short, a learning process for
player i ) is a pair (_, b&i ) where _ is a path in S, and b&i is a belief
sequence for player i such that for every t�1, the strategy _i (t) is a best
reply according to b&i (t). A myopic learning process (in short a learning
process) is a pair (_, b) such that (_, b&i ) is a learning process for player
i for every i.
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A learning process for player i, (_, b&i ) is a fictitious play for i, if

b&i (t)=
1
t

:
t&1

{=0

_&i ({).

A learning process is a fictitious play, if it is a fictitious play for every
player.

Given any learning process for player i, (_, b&i ), we denote by E i (t), for
t�1, i 's expected payoff at period t. That is,

Ei (t)=Ui(_i (t), b&i (t)).

Note that if (_, b&i ) is a fictitious play for i then by the linearity of
expectation

Ei (t)=Ui \_i (t),
1
t

:
t&1

{=0

_&i ({)+
=

1
t

:
t&1

{=0

ui(_i (t), _&i ({)).

We denote by Ai (t), i 's average payoff up to time t. That is,

Ai (t)=
1
t

:
t&1

{=0

ui(_({)).

We say that the learning process for i, (_, b&i ), is belief affirming for i
(with respect to average payoff ) if

lim
t � �

(E i (t)&Ai (t))=0. (1)

We say that a learning process is belief affirming if it is belief affirming for
every player.

To study belief affirming in fictitious plays we show first that ``fictitious
players'' are chronically optimistic and always expect to receive in the next
period more than experience has taught them. We use this property in
studying belief affirming in Theorems B and C, as well as in providing a
straightforward proof for the nonconvergence of the fictitious play in
Shapley's example.

Theorem A (The Rosy Theorem). For each player i and each fictitious
play for i

Ei (t)�Ai (t) for every t�1. (2)
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Proof. Note that for every t�1, and si # Si

:
t&1

{=0

ui(_i (t), _&i ({))� :
t&1

{=0

ui(si, _&i ({)). (3)

Denote at, {=ui (_i (t), _&i ({)). Denote also by :t the left hand side of
(3). Substituting _i (t&1) for si in the right-hand side of (3), we can write
it as :t&1+at&1, t&1. Thus (3) is: :t�:t&1+at&1, t&1 , for each t�1.
Therefore, :t��t&1

{=0 a{, { . Dividing this inequality by t yields,

Ei (t)�Ai (t). K

While optimism is a good recipe for life, it is unrealistic when
exaggerated. Someone who expects every day to gain millions of dollars,
and finds at the end of the day that he has got nothing, is certainly
unrealistic and can hardly be thought of as someone who learns from past
experience. Belief affirming is the right balance for the ever-optimistic
fictitious player. Such a player when engaged in a belief affirming play, is
in the long run realistic.

In Theorem C we give a condition under which fictitious players are
indeed realistic. In the next section we show that without this condition
fictitious players can be unrealistically optimistic and the play may fail to
be belief affirming. However, using the Rosy Theorem, we show now that
for two-person zero-sum games no condition is required��fictitious plays in
such games are always belief affirming. The intuition here is quite simple.
By the Rosy Theorem both players are optimistic. But in a zero-sum game,
the optimism of one player is the pessimism of the other. Hence both
players are pessimistic as well. Being both optimistic and pessimistic boils
down to being realistic.

In particular, this result implies a hitherto unknown fact, that in a two-
person zero-sum games the average payoff of player 1 converges to the
value of the game.

Theorem B. Every fictitious play in a two-person zero-sum game is
belief affirming. Moreover, limt � � A(t)=v, where A(t) is the average
payoff to the first player and v is the value of the game.

Proof. Let N=[1, 2] be the set of players. By Theorem A, E1(t)�
A1(t) and E2(t)�A2(t)=&A1(t) for each t. By Robinson's Theorem,
limt � � E1(t)=v and limt � � E2(t)=&v. Thus lim supt � � A1(t)�v and
lim supt � � A2(t)�&v. As lim inft � � A1(t)=&lim supt � � A2(t), it
follows that limt � � A1(t)=v. K
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File: 642J 224507 . By:DS . Date:16:04:97 . Time:11:40 LOP8M. V8.0. Page 01:01
Codes: 2796 Signs: 1646 . Length: 45 pic 0 pts, 190 mm

We next give a sufficient condition that a fictitious play for a player is
belief affirming for her. The same condition was independently proved by
Fudenberg and Levine (1994).

A path _ is (asymptotically) smooth for player i if limt � �(1�t) Mi (t)=0,
where Mi (t) is the number of periods k, such that 1�k�t, and
_i (k){_i (k&1). A path is smooth if it is smooth for every player.

Theorem C. Every smooth fictitious play for a player is belief affirming
for the player.

Proof. Substitute _i (t+1) for si in (3). Then the right-hand side of (3)
is :t+1&at+1, t . Hence (3) is: :t�:t+1&at+1, t , or :t+1�:t+at+1, t for
each t�1. Therefore,

:t� :
t&1

{=0

a{+1, {

= :
t&1

{=0

a{, {+ :
t&1

{=0

(a{+1, {&a{, {).

Dividing this inequality by t yields,

Ei (t)�Ai (t)+
1
t

:
t&1

{=0

(a{+1, {&a{, {) (4)

but the last term is just (1�t) �t&1
{=0 (ui (_i ({+1), _&i ({))&ui (_({))), which

by the smoothness assumption converges to 0. Hence,the required equality
follows from Theorem A and (4). K

Finally, using the Rosy Theorem, we give a simple proof for the noncon-
vergence of the belief sequence in Shapley's example [15].5

Consider a typical symmetric Shapley's example

(0, 0) (x, y) ( y, x)

\( y, x) (0, 0) (x, y)+(x, y ) ( y, x) (0, 0)

where x> y>0. According to the improvement principle of Monderer and
Sela [10], if the initial move of the players is one of the non-zero entries
of the bimatrix, then the process runs through the unique better reply cycle
defined by Shapley and in particular, the players' payoff vector at each t is
either (x, y ) or ( y, x). If the process converges, then it must converge to
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5 Other proofs, based on different ideas are given by Deschamps [3] and by Monderer and
Sela [10].
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the unique equilibrium of this game where each player uses each pure
strategy with equal probability of 1

3 . Hence, the expected payoff E i (t) of
each player i must converge to the equilibrium payoff (x+y)�3. By
Theorem A, the average payoff of each player i, Ai (t), cannot exceed her
expected payoff Ei (t). Hence for i=1, 2:

lim sup
t � �

Ai (t)�
x+y

3
.

But for each t, A1(t)+A2(t)=x+y. Thus we obtain the contradictory
inequality:

x+y�lim sup
t � �

A1(t)+lim sup
t � �

A2(t)�
2(x+y )

3
.

3. BELIEF AFFIRMING IN CONTINUOUS PROCESSES

Lately the literature on fictitious play focuses on the continuous process
that was defined by Brown [1]. In some cases such processes are more
``natural.'' For example, the convergence of fictitious play in zero-sum
games, which requires an intricate proof for the discrete process (Robinson
[13]) can be proved easily for the continuous case (Hofbauer [7]). Also,
results of Krishna and Sjo� stro� m [8] concerning the cyclical structure of a
converging continuous fictitious play seem to be difficult to prove for the
discrete process. There are no formal results relating discrete and con-
tinuous processes, though it seems that whenever the continuous fictitious
play exists, the discrete process path behaves similarly to the continuous
one.

In this section we show that in the continuous framework, fictitious plays
are always belief affirming and, unlike Theorem C, the smoothness assump-
tion is not required. We also show that players cannot deviate from
optimism by more than c�t for a positive constant c.

In defining the continuous version of learning process and fictitious play,
we skip, for simplicity, the individual versions (``... for player i'') and define
it directly for all the players. However, all theorems can be stated and
proved in individualistic terms as in Section 2.

A path _ in S is a right continuous function _ : [0, �) � S such that the
discontinuity points of _ have no (finite) accumulation points. A belief path
is a pair (b, t1) where t1>0, and b is a function b: [t1 , �) �_i # N 2&i.
That is, b(t)=(b&1(t), b&2(t), ..., b&n(t)), for t�t1 .

A continuous learning process is a pair (_, (b, t1)) where _ is a path in S
and (b, t1) is a belief path such that _i (t) is a best reply according to b&i (t)
for each t�t1 and for every player i.

445BELIEF AFFIRMING
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A continuous learning process (_, (b, t1)) is a continuous fictitious play if
for every player i

b&i (t)=
1
t |

t

0
_&i ({) d{,

for t�t1 . Note that b&i (t) satisfies the differential inclusion

�b&i (t)
�t

#
1
t

(_j{i BR j (b&j (t))&b&i (t)),

where BR j is j 's best response correspondence, and ���t is the right
derivative. This differential inclusion can be used to define continuous
fictitious play.

Given any continuous learning process (_, (b, t1)), we denote by Ei (t),
for t�t1, i 's expected payoff at period t. That is,

Ei (t)=Ui (_i (t), b&i (t)).

We denote by Ai (t), i 's average payoff up to time t. That is,

Ai (t)=
1
t |

t

0
ui (_({)) d{.

Note that if (_, (b, t1)) is a fictitious play, then by the linearity of expec-
tation,

Ei (t)=Ui \_i (t),
1
t |

t

0
_&i ({) d{+

=
1
t |

t

0
ui (_i (t), _&i ({)) d{.

As in the discrete case, we say that a continuous learning path (_, (b, t1))
is belief affirming if for every i

lim
t � �

(E i (t)&Ai (t))=0.

Theorem D. Every continuous fictitious play is belief affirming.

Proof. First we note that the function tE i (t) is continuous in the inter-
val [t1 , �]. To see this, define for each si # Si a function us i

(t)=
�t

0 ui(si, _&i ({)) d{. Clearly the functions usi
are continuous, and for each

t�t1 , tE i (t)=max[us i
(t) | si # S i]. Hence tE i (t) is continuous in [t1 , �].

446 MONDERER, SAMET, AND SELA
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Moreover, if _ is continuous at t then _i (t) is fixed in a neighborhood
of t and thus the derivative of tEi (t) at t is just the integrand at this point,
namely, ui (_(t)). But this is precisely the derivative of tAi (t) at t. Thus
tEi (t)&tAi (t) is constant in each interval in which _ is continuous. But
tEi (t)&tAi (t) is continuous and therefore

tEi (t)&tAi (t)=C,

for all t�t1 , where C=t1 Ei (t1)&t1 Ai (t1). Dividing by t yields the desired
result. K

Corollary 1 (The Rosy Theorem for Continuous Processes). Let
(_, (b, t1)) be a continuous fictitious play. Then, there exists a constant c>0
such that for every player i

Ei (t)&Ai (t)�&
c
t

for every t�t1 .

Proof. By the proof of Theorem D, this corollary holds with

c=max[t1 | (Ei (t1)&Ai (t1)) | : 1�i�n]. K

4. CONVERGENCE OF BELIEFS AND BELIEF AFFIRMING

Neither of the two properties of learning processes, convergence of beliefs
and belief affirming, implies the other. First we show a converging discrete
fictitious play which is not belief affirming.

Consider the two-person game where each player can choose : or ;. If
they coordinate on the same action then each gets 1, if they fail to coor-
dinate, each gets 0. If players fail to coordinate in the first period and play
(:, ;) then a fictitious play path is:

(:, ;)(;, :)(;, :)(:, ;)(:, ;)(;, :)(;, :) } } } .

Players' beliefs, (b&1(t), b&2(t)), converge in this process to the mixed
strategy equilibrium (0.5, 0.5), (0.5, 0.5). Thus each player i 's expected
payoff, Ei (t), converges to her equilibrium payoff 0.5. But the players fail
to ever coordinate and their average payoff Ai (t) is 0 for all t.

Observe that this process is not smooth which shows that without the
smoothness condition, Theorem C is not true. Note also that there is no
continuous fictitious play in which players play (:, ;) at time 0. The
anomaly of this example can be avoided if we amend slightly the definition
of fictitious play to allow players beliefs to be constructed as if at time 0

447BELIEF AFFIRMING
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players played a mixed strategy. It can easily be seen that in such processes,
for almost all initial beliefs, the resulting discrete fictitious play is belief
affirming and continuous fictitious play (which is always belief affirming)
does exist.

Shapley's famous example (see Section 3) of nonconverging fictitious
play demonstrates that the condition of belief affirming does not imply
convergence of the process. The process in this example is smooth since the
time between consecutive changes of strategies grows exponentially. Hence
the process is belief affirming by Theorem C.

When a process is both belief affirming and converging then it also
enjoys the convergence properties of payoffs. Recall that if the process of a
two-person game converges, then there exists an equilibrium s such that for
each player i, her beliefs, b&i (t), converge to si. Thus, Ei (t) converges to
Ui (s), which is i 's equilibrium payoff. Hence, by belief affirming, Ai (t)
converges to i 's equilibrium payoff. Thus it follows immediately from
Theorem C.

Corollary 2. If a smooth fictitious play of two-person game converges,
then for each player i, the average payoff Ai (t) converges to i 's payoff in the
equilibrium to which the process converges.

Remark. In a two-person game, a fictitious play approaches equilibrium,
if every limit point of the belief sequence b, is an equilibrium. It is not
known whether Corollary 2 continues to hold if the convergence assump-
tion is replaced by the assumption of approaching equilibria.

5. GENERAL AVERAGING PROCESSES

In this section we consider continuous learning processes which we call
averaging processes. As in fictitious play, players' beliefs are generated by
averaging history, except that now we allow very general schemes of
averaging, other than the uniform one used in fictitious play. We study
conditions on general averaging processes that guarantee belief affirming.
As in Section 4, we (unnecessarily) assume that all playersare learning.

A function f : [(t, {) | 0�{�t, t>0] � R+ is an averaging function if it
satisfies the following conditions for all t and { in its domain

(1) f (t, {)�0.

(2) for each t>0, f (t, } ) is continuous in the interval [0, t], and
�t

0 f (t, {) d{=1.

That is, for each t, f (t, } ) is a continuous density function on the interval
[0, t].

448 MONDERER, SAMET, AND SELA
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An averaging process is a triple (_, (b, t1), ,), where (_, (b, t1)) is a
continuous learning process, ,=( f 1, ..., f n) is a vector of averaging
functions��one for each player��and for each player i and time t�t1 ,

b&i (t)=|
t

0
_&i ({) f i (t, {) d{.

Clearly a continuous fictitious play is an averaging process where
f (t, {)=1�t for 0�{�t.

Player i 's expected payoff at time t is

E i (t)=Ui (_i (t), b&i (t))

=|
t

0
ui (_i (t), _&i ({)) f i (t, {) d{.

In a general averaging process the ``right'' way for a player to summarize
her payoff history is by using her averaging function. Thus we define Player
i 's average payoff at time t as

Wi (t)=|
t

0
ui (_({)) f i (t, {) d{.

An averaging process is belief affirming (with respect to the given aver-
aging functions) if limt � � (Ei (t)&Wi (t))=0.

Continuous fictitious play, viewed as an averaging process, are indeed
belief affirming, according to this definition, since for fictitious play
Wi=Ai. But all general averaging processes are not belief affirming as the
examples, following Theorem C, show.

We study now properties of averaging processes that guarantee that the
process is belief affirming. The value f (t, t) of an averaging function reflects
the weight given to recent history at time t. (Here we use the continuity of
f (t, } ) in [0, t]. If f were only an L1 function, then its value at one point
would not be well defined.) We refer to putting much weight on past
history and little weight on recent history as nostalgia. Therefore a non-
nostalgic player gives a considerable weight to recent history, which reflects
in high values of f (t, t). We define an averaging function f as non-nostalgic
if ��

d f ({, {) d{=�, for some d>0 (or equivalently for all d>0).6

Time consistency of averaging function requires that averages of history
made at different points in time are all tied together by an overall view of
time. Formally, we say that an averaging function f is time-consistent if
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there exists a continuous function F : R+ � R+ , such that �t
0 F(x) dx>0,

for each t>0, and for 0�{�t,

f (t, {)=
F({)

�t
0 F(x) dx

.

An averaging process (_, (b, t1), ,), is time consistent and non-nostalgic
if for each i, f i has these properties.

Theorem D. A non-nostalgic, time-consistent averaging process is belief
affirming.

Proof. Observe that by definition, if an averaging function f is time
consistent, then f ( } , {) is continuous in [{, �). It follows that the average
payoff function Wi is continuous. The same proof as in Theorem C shows
that the expected payoff function Ei is also continuous for t�t1 . Note that
for each i, t>0 and 0�{�t, the function f i is differentiable at (t, {) with
respect to t, and

�f i

�t
(t, {)=&f i (t, t) f i (t, {).

Using this equality and differentiating Wi we obtain

dWi

dt
(t)=ui (_(t)) f i (t, t)&|

t

0
ui (_i ({), _&i ({))

�f i

�t
(t, {) d{

=ui (_(t)) f i (t, t)&f i (t, t) W i (t).

Similarly, differentiating Ei at a point t in which _ is continuous (and
hence _i is constant in a neighborhood of t), we obtain

dEi

dt
(t)=ui (_(t)) f i (t, t)&|

t

0
ui (_i (t), _&i ({))

�f i

�t
(t, {) d{

=ui (_(t)) f i (t, t)&f i (t, t) Ei (t).

Thus for each interval in which _ is continuous

d(Ei&Wi)
dt

(t)=&f i (t, t)(Ei&W i)(t).

Choose d>0. Then, for each such an interval there exists a constant C
such that

Ei (t)&Wi (t)=C exp \&|
t

d
f i ({, {) d{+ . (5)
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Since Ei&Wi is continuous for all t�t1 , then (5) holds with the same
constant C for all t�t1 . The theorem follows since the process is non-
nostalgic. K

In the following two examples we show that neither of the two condi-
tions in Theorem D, can be omitted. Note that the averaging function
f (t, {) in both example is not continuous in one point in the interval [0, t]
and hence does not satisfy our definition of averaging function. It is easy,
though , to see how these functions can be slightly changed to make them
continuous while keeping the main feature of the examples, namely the lack
of belief affirming.

Example 1. Consider the zero-sum game ``matching pennies.'' Each
player has two strategies H and T. Players' payoffs are: u1(H, H)=
u1(T, T)=1, u1(H, T )=u1(T, H)=&1, and u2=&u1. Let _ be the path in
which players play successively

(H, H ), (H, T), (T, T ), (T, H ), (H, H) } } } ,

where each pair of of strategies is played for interval of time of length 1,
which we call a round. That is, (H, H ) is played in [0, 1), (H, T) in [1, 2)
and so on. Both players use the same averaging function f, according to
which they average history uniformly, starting with the beginning of the
previous round. Thus, for n=1, 2, ..., and n�t<n+1,

f (t, {)=
1

t&(n&1)

for n&1�{�t.

It is easy to see that when players form their beliefs according to f,
starting at t1=1, then the process is a learning process, that is, the
strategies they choose in _ are indeed best responses according to their
beliefs.

If a player changes her strategy at t=n, then her rival keeps the same
strategy, say X, in [n&1, n+1), and hence the player believes with prob-
ability 1 that X is her rival's strategy. Therefore her expected payoff is 1 at
all times in [n, n+1). But this player's payoff drops from 1 at t=n to 0,
when t approaches n+1. Therefore the difference between her expected
payoff and her average payoff has no limit, and the process is not belief
affirming. The averaging function f is non-nostalgic but is not time-
consistent.
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Example 2. Consider again the game ``matching pennies'' with the path

(H, H ), (H, T ), (H, T ), (H, T ), ...,

where each pair of strategies is played in a round of length 1. The players
use the same averaging function f (t, {)=1 for 0�{�1 when t�1. With
t1=1, the described process is a learning one. At each time t�1, player 2
expects to receive 1, while her average payoff is &1. Hence the process is
not belief affirming. The averaging function f is time consistent but is not
non-nostalgic.
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