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Summary

According to the standard definition, a Bayesian agent is one who
forms his posterior belief by conditioning his prior belief on what
he has learned, that is, on facts of which he has become certain.
Here it is shown that Bayesianism can be described without
assuming that the agent acquires any certain information; an agent
is Bayesian if his prior, when conditioned on his posterior belief,
agrees with the latter. This condition is shown to characterize
Bayesian models.  1999 Academic Press
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1. Introduction

This paper studies the dynamics of beliefs, that is, the way
agents change their prior belief into posterior belief. The standard
assumption made in economics and game theory is that agents
are Bayesian, which means that posterior beliefs are formed
from prior beliefs by conditioning on acquired knowledge. The
most commonly used models for Bayesian agents are Harsanyi
type spaces. It is shown here that Bayesianism, as expressed
by type spaces, can be interpreted differently. A change of belief,
according to the suggested interpretation, is not necessarily a result
of acquiring new information or knowledge. The only knowledge
that is necessarily involved is knowledge of the change itself. We
show that the description of Bayesian agents by type spaces can be
characterized without assuming the acquisition of any knowledge
leading to the change.

† The author acknowledges helpful comments by Pierpaolo Battigalli, Giacomo
Bonanno, Joseph Halpern, Aviad Heifetz, Ehud Lehrer, Barry O’Neill, and Daniel
Osherson.
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After deriving these results, I discovered that similar results
have already been obtained by Gaifman (1988). Here we put these
results in the context of the economic literature on type spaces,
and stress their implications to the nature of Bayesian change of
belief. We discuss Gaifman’s work, as well as other related works
in Subsection 1.5.

1.1. BAYESIANISM DEFINED BY LEARNING

The Bayesian paradigm deals with the relation between an
agent’s present (posterior) and former (prior) belief. The common
interpretation of Bayesianism, in a nutshell, is that beliefs change
by learning: the agent comes to know, or at least becomes certain
of, some facts. He, then, forms his posterior belief by conditioning
his prior belief on these facts. There are several expressions, or
metaphors, that are used to describe the agent’s learning of facts.
In the economics and decision theory literature an agent is said to
observe a signal; in models of games with incomplete information
a player is said to learn his type.

A formal model that depicts the relationship between the prior
and the posterior belief of a Bayesian agent consists of a state
space with a probability distribution on it which describes prior
belief. Learning is introduced into the model by adding a certain
partition to the state space. The posterior belief in a given element
of the partition is the prior conditioned on this element. According
to the common interpretation of Bayesianism, an element of the
partition consists of all the states in which the agent observed a
certain signal; each such element is an event that formalizes the
notion ‘‘all the information that the agent has acquired’’.

The underlying assumption of this interpretation of Bayesian-
ism—that beliefs change as a result of becoming certain of some
facts—has been questioned and criticized by many students of
subjective probability. Experience tells us, according to the critics’
argument, that sometimes we change our beliefs without being able
to specify any relevant facts, of which we became certain. Thus, for
example, we may have some prior belief concerning the honesty
of a person and change it considerably after a short conversation
with him, in which no new facts are revealed to us. The change is
the result of an immediate impression that cannot be reduced to
or explained by the learning of any new fact about the person in
discussion.

It seems that the very definition of a Bayesian agent, and the
formal model of type space, cannot describe any change of belief
that is not the result of gaining certainty concerning some facts.
This model presumes the existence of events—the elements of the
partition—of which the agent is certain. How can conditioning be
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carried out without such events? What would be the meaning of
Bayesianism without conditioning one’s belief on what has been
learned?

This paper suggests that Bayesianism can be interpreted in a
way that does not require that beliefs change as a result of learning.
This interpretation is made possible by an alternative definition of
a Bayesian agent, one which does not assume that the agent has
learned and become certain about any facts or events. We show
that the structure of the Bayesian model, as described above, is
implied by our definition of a Bayesian agent, rather than being
assumed. In particular, this new definition implies that our agent
must be certain of some facts—he must be certain of his own belief.
The elements of the partition can now be interpreted as describing
the certainty the agent has about his own posterior belief. Thus,
certainty under this interpretation is not the cause of the change
of belief, but its result.

1.2. BAYESIANISM DEFINED WITHOUT LEARNING

We discuss now, informally, our proposed characterization of a
Bayesian agent. We start by showing how such a characterization
can be derived from the standard formulation of Bayesianism,
which assumes that posterior beliefs are derived by conditioning
prior beliefs on learned information. The latter can be roughly
expressed by,

posterior belief D prior belief as modified by the information
the agent has learned.

But the information the agent has learned is just what led him to
revise his prior belief, by conditioning, to the posterior one. Thus
we can write,

posterior belief D prior belief as modified by the information
that made the agent change his prior to his posterior belief.

Now, the case that the agent has learned the information that
makes him change his prior belief to some specified posterior belief
is precisely the case that he holds this posterior belief. Indeed, the
information leads to the posterior belief, but also conversely; this
belief includes what the agent knows, or is certain of, that is, the
information he has learned.

Thus, the event over which we condition is just the event that the
agent holds his present posterior belief, and we can reformulate
the relationship between prior and posterior beliefs as,

posterior belief D prior belief as modified by the posterior belief.
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We derived this latter relationship between prior and posterior
from the standard definition of Bayesianism. But note that
the formulation of this relationship does not assume learning,
certainty, or knowledge of any event. It describes a certain kind
of consistency that posterior and prior beliefs should satisfy, but
not the way by which the posterior is derived from the prior.
In this paper we show that this latter relationship can be used
to characterize, or equivalently, to define Bayesianism. We prove
that it implies the standard model of Bayesian agents.

1.3. AN ILLUSTRATION

To illustrate the proposed alternative definition, consider the
following question we pose to John.

‘‘Given that next month you will believe the probability of Clinton
completing a full term to be at least 0Ð3 and the probability of
Saddam Hussein continuing to reign until the year 2010 to be at
least 0Ð8, do you agree, now, that the probabilities of these events
are at least 0Ð3 and 0Ð8, respectively?’’

We ask John to evaluate his prior concerning two events given
some bounds on his posterior belief concerning the same events.
What we expect John to answer, according to the definition of
Bayesianism proposed here, is just: ‘‘Yes.’’ That is, the conditioned
prior should conform with the given posteriors.

The reasoning that would lead John to give us this answer is
simple. By conditioning on the belief he may have in a month, John
puts himself, right now, in the same position he is conditioning on.
What other answer could we expect?

Our characterization of Bayesianism is a straightforward
formalization of the above dialogue with John; an agent is Bayesian
if he answers in the affirmative to all questions of this form, as
John does.†

1.4. THE MODEL

Formalizing the previous illustration requires a model in which
we can identify the event that the posterior of a given event E is
greater than or equal to some number p. This, in turn, is made
possible by making the posterior depend on, and vary with, the
points of the model. This is precisely the main feature of type spaces
as defined by Harsanyi (1967–68); the type of an agent, that is, his

† The question posed to John concerns two events. As we show in Section 4,
we can equivalently require that he answers in the affirmative when asked about
any number of events. But it is not enough to ask him about only one event at a
time.
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(posterior) probability over the state space, depends on the state.
In Harsanyi’s type spaces, or other similar Bayesian models, it is
assumed that the agent knows, or is certain of, his type. Here we
do not want to make any assumption of this kind, because we want
to derive the structure of Bayesian models, rather than assume it.
Thus our models, which we call belief spaces, are simpler and more
general. A belief space is a measurable space each point (or state)
of which is associated with a probability measure on the space; no
further restrictions other than simple measurability conditions are
imposed.

1.5. RELATED LITERATURE

An important element of the principle introduced in the previous
two sections is a conditional probability p.EjC/ where C describes
the probability of some events for a probability measure q. Several
authors studied principles that involve such conditioning. These
principles, like the one we state here, require that the conditional
probability be consistent with the probabilities described by C.
Such principles are sometimes called Miller’s principle, although
Miller (1966), who first introduced a principle of this kind,
considered it paradoxical.†

The various principles in this category differ in the interpretation
of the probabilities p and q, and the specification of the condition
C.‡ Here, p and q are the prior and posterior probabilities of an
agent. This is also the interpretation given to these probabilities
by van Fraassen (1984) who calls this principle Reflection. Lewis
(1980) studied what he calls the Principal Principle, in which
p is subjective probability, while q is objective probability. In
Skyrms (1980), Halpern (1991, 1998), and Samet (1997, 1998b),
the probabilities p and q are the same. Gaifman (1988) labels p as
the probability of an agent, and q as that of an expert.

In this work, as well as in Gaifman (1988), C describes the
probabilities of two (or more) events, one of which is E. In some
works it is a full description of the probability q. In Skyrms (1980),

† Miller claimed that the principle, now bearing his name, contradicts the
calculus of probability. Popper (1966), in a comment that follows Miller’s short
note, hailed the ‘‘important and indeed brilliant discovery described by Miller,’’
and concluded that it entails the ‘‘complete abandonment of the philosophical idea
that there is an ‘inductive logic’ which is, formally, identical with the calculus of
relative probabilities—that is, with the probabilistic generalization of deductive
logic.’’ When the principle is stated in a rigorous mathematical model, the paradox
seems to vanish.

‡ It is possible to state similar principles for non-quantitative beliefs. See, for
example, Battigalli and Bonanno (1997) who study the condition that believing
an event is equivalent to believing that it will be believed at a later time.
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Halpern (1991, 1998), and Samet (1997, 1998b), where p and q
coincide, C describes only the probability of E.

The way C describes the probability of an event also varies. Here
it is given as a lower bound on the probability. In Gaifman (1988)
and Halpern (1991, 1998) it is given by lower and upper bounds,
and in Skyrms (1980) C describes the exact probability. These
differences are technical and of minor importance.

Until Gaifman (1988), none of the works that discussed Miller’s
principle in its various forms proposed any set-theoretic model
in which such principles can be studied rigorously. The main
problem facing such modelling is the identification of C, which
describes certain probabilistic statements, with an event. Harsanyi
(1967–68) faced the same problem when he analysed games with
incomplete information. The difficulty there stemmed from the
need to describe beliefs of players about other players’ beliefs.
Hence, such beliefs have to be described by an event. His model,
the type space, is defined as the product of type sets, one for
each player, where a type of a player is defined as a probability
distribution on the type of other players (or even the whole space
with the restriction that the player is certain about his type). This
model has been modified and simplified by Mertens and Zamir
(1985) under the name belief space. Here we adopt a somewhat
less restrictive model than theirs under the same name. In his
modelling, Gaifman, unaware of the solution proposed by Harsanyi,
arrived at the same solution, a model in which beliefs, given as
probability distributions over a probability space, or using another
terminology, a state space, vary with the states.

Although very similar results were obtained previously by Gaif-
man (1988), it is worthwhile to present this work for the following
reasons. First, it is appropriate to restate these results in the con-
text and terminology of type spaces and belief spaces; a model which
has become so common in economics and game theory over the last
three decades, and is the main tool for describing Bayesianism in
these fields. Philosophers too could benefit greatly by using these
models. Although Gaifman introduced his set-theoretic model in the
philosophy literature, only a few papers in this area have used it.

Second, it is important to state the implications of these results
for the dynamics of belief change in general and for learning in
Bayesian theory in particular. Students of the dynamics of belief
change have not been aware of these implications. For example,
Maher (1993) dedicates a whole chapter in his book to belief change,
but he does not make any reference to Gaifman (1988). Contrary
to the result of Gaifman’s work, he concludes that ‘‘It is possible
for the shift from p to q to satisfy Reflection without it being the
case that there is a proposition E such that q.Ð/ D p.Ð j E/.’’ In light
of the interpretation we suggest here, a conclusion like this needs
at least to be restricted appropriately.
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1.6. SYNOPSIS

In the next section we formally introduce belief spaces. The first
two subsections of Section 3 discuss the two features that make
belief spaces Bayesian: that the agent knows his type, and that
he forms his posterior belief by conditioning his prior on his
type. Propositions 1 and 2 suggest new ways to express the
well-known notions of type and of knowing-the-type, in terms
of belief-describing events. The usefulness of such expressions is
demonstrated in the proof of the main theorems. In theorems 1 and
2 in Section 4 we present two variants of the characterization of
Bayesianism without learning. The proofs are given in Section 5.

2. Belief spaces

The model we use to formalize prior and posterior beliefs is a
probability space—the probability being the prior—in which each
point is associated with a probability over the space which is the
posterior at that point. The association of points, or states, with
probabilities is the basic idea that underlies Harsanyi type spaces.
The details, as well as the name belief spaces, are more in tune
with the account of type spaces in Mertens and Zamil (1985).
Our model is simpler than theirs and than most type spaces in
the literature, as no topology on the type space or the space of
probability measures is required, in the spirit of the model in
Heifetz and Samet (1998).

DEFINITION 1: a type space is a quadruple (�,,�, t) where,

(1) � is a measurable space with a �-field , generated by a
countable field 0. The members of � are called states, and the
members of  are called events.

(2) � is a �-additive probability measure on �, called the prior.
(3) t is a map from � to (�) —the set of all �-additive probability

measures on�—such that for each E 2 , t(Ð)(E) is a measurable
real function. For a state ω, t(ω) is called the type, or the
posterior of the agent at ω.

A special role is played here by events that describe the agent’s
belief. For each event E and real number p,

Bp.E/ D f! j t.!/.E/ ½ pg
is the event that the probability ascribed by the agent to E is at
least p, or in short, the event that the probability of E is at least
p. Events of the form B1.E/ are important and deserve a special
name. We call B1.E/ the event that the agent is certain of E.
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The measurability condition on t is tantamount to saying that
for each E and p, Bp.E/ is a measurable set. When a type space,
as well as .�/, are endowed with a topology, it is the standard
requirement that the function t be continuous that guarantees the
measurability requirement on t.

Belief spaces as defined here are very general objects. No
restrictions are imposed on the way beliefs are associated with
different states. No requirements are imposed on what the agent
should know, or be certain of. No relation between the prior and
posterior beliefs is specified. Further structure is required in order
to turn belief spaces into the Bayesian models used in economics
and game theory. We adopt a general definition of belief spaces in
order to show how our new definition of Bayesianism implies the
structure of Bayesian belief spaces.

3. Bayesian belief spaces

There are two requirements on a belief space that make it a model
of a Bayesian agent. Namely, that the agent is certain of his type
and that his posterior belief is generated by conditioning his prior
belief on his type. In the next two subsections we discuss and
formulate these two requirements, and in the last subsection we
formally define Bayesian belief spaces.

3.1. BEING CERTAIN OF ONE’S TYPE

We now express formally the phrase ‘‘the agent is certain of (or
knows) his type.’’ As the agent is certain of events, we need, first,
to describe ‘‘his type’’ by an event. We denote by T.!/ the set of all
the states in which the agent’s type is t.!/, that is,

T.!/ D f!0 j t.!0/ D t.!/g. .1/

The set T.!/ is the natural candidate for the event ‘‘the agent’s
type is t.!/,’’ but we still need to show that this set is indeed
an event, that is, a measurable set. This follows from the next
proposition.

PROPOSITION 1: for each state ω,

T(ω) D
⋂

f(p,E)jω2Bp(E)g
Bp(E), (2)

where the intersection is taken over all pairs of real number p and
E 2 , that satisfy the required condition. This equality also holds
when the intersection is restricted to pairs of rational p and E 2 0,
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that satisfy the condition. Therefore, as a countable intersection of
events, T(ω) is an event.

In addition to showing that T.!/ is an event, this proposition
suggests an alternative description of the event that the agent is
of type t.!/: it is the intersection of all the events that describe the
agent’s belief at !.

Now, with T.!/ being the event that the agent’s type is his type
at !, we can define what it means for the agent to be certain of his
type in a given state.

DEFINITION 2: the agent is said to be certain of his type at ω when

t(ω)(T(ω)) D 1. (3)

Let us denote by C the set of all states in which the agent is
certain of his type, that is,

C D f! j t.!/.T.!// D 1g.
We show that C is a measurable set, and thus it is the event

that the agent is certain of his type. This follows from the next
proposition, which is used also in the proof of the main theorem.
We denote by :X the complement of the event X.

PROPOSITION 2: the set C of all states in which the agent is certain
of his type satisfies

C D
⋂
p,E

(:Bp(E) [B1(Bp(E))
)

(4)

where the intersection is taken, either over all p and E 2 , or over
rational p and E 2 0. Thus, C is an event.

We can now define the condition that the agent is certain of his
type, which is the first requirement that Bayesian spaces should
satisfy.

DEFINITION 3: the agent is certain of his type in a belief space with
a prior �, if he is certain of his type almost everywhere with respect
to �, that is, if �(C) D 1.

Note that :Bp.E/ [ B1 .Bp.E// is the event that either the
probability ascribed by the agent to E is less than p, or else, if
it is at least p, then the agent is certain that the probability he
ascribes to E is at least p. In short, this is the event that if the
probability he ascribes to E is at least p then he is certain of this
fact. Proposition 2 says that the event that the agent is certain
of his type is the event that he is certain of any belief of his that
he holds.
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3.2. CONDITIONING ON ONE’S TYPE

Before we express formally the requirement that the posterior of
the agent is formed by conditioning the prior on his type, we discuss
the simple case in which the state space � is countable. In this
case the requirement of conditioning says that in each state !, for
which the prior probability of the event T.!/ is positive, and for all
events E,

t.!/.E/ D m .E j T.!// . .5/

But (5) cannot serve as a general definition for all belief spaces,
including the uncountable ones, as in such spaces m.T.!// may be
zero for a set of !’s of positive m-probability. Therefore we adopt
a non-local definition (i.e., one which is not defined, like (5), for a
single state) of conditioning on type. We first describe the logic of
this definition for the countable case.

Multiplying both sides of (5) by m.!/, and summing over states
for which the right hand side is defined, we have,∑

!

t.!/.E/m.!/ D
∑
!

m .E j T.!//m.!/. .6/

After grouping terms in the right hand side of (6), corresponding
to states in the same T.!/, it can be rewritten as

∑
m.E j

T.!//m.T.!//, where the summation is over the T.!/’s. By the
Theorem of Total Probability, this is just m.E/. Thus, if (5) is
satisfied for m-almost all !, then,

m.E/ D
∑
!

t.!/.E/m.!/. .7/

It is easy to see that when the agent is certain of his type,
then (7) implies that (5) holds for m-almost all !. Indeed,
suppose that (3) holds for ! for which m.!/ > 0. By (7), for
any E, m.E \ T.!// D !0t.!0/.E \ T.!//m.!0/. By (3), this sum is
!02T.!/t.!0/.E/m.!0/. By (1), all the terms are constantly t.!/.E/,
and therefore the latter sum is t.!/.E/m.T.!//, which is (5).

Condition (7), unlike (5), is a global condition which is easily
generalized to all belief spaces in the following definition.

DEFINITION 4: we say that the prior � is invariant if for each
event E,

�(E) D
∫

t(ω)(E) d�(ω). (8)

Observe that the invariance of m does not imply that the agent
is certain of his type, as the following example demonstrates.
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EXAMPLE 1: let � D f!1,!2g, t.!1/ D .1/3,2/3/, t.!2/ D .2/3,1/3/,
and m D .1/2,1/2/. Then, m is invariant but the agent is not certain
of his type in either state, as t.!i/.T.!i// D 1/3, for i D 1,2.

Thus, in order that invariance implies conditioning on the agent
type, we have to assume also that the agent is certain of his type,
as explained above for the countable case.

The term invariance was chosen to describe a prior that satisfies
(8), because formally the function t can be thought of as a transition
function of a Markov chain on �. Formula (8) says that m is an
invariant probability measure of this Markov chain. (See Samet,
1998a, for implications of this observation.) Mertens and Zamir
(1985) and Feinberg (1996) also use (8) to describe Bayesian priors.

3.3. DEFINING BAYESIAN BELIEF SPACES

We are ready now to define Bayesian spaces in terms of the two
properties discussed above.

DEFINITION 5: a belief space is Bayesian if

(1) The agent is certain of his type.
(2) The prior is invariant.

Bayesian agents are described, in the economic and game
theoretic literature, almost exclusively by using Bayesian spaces,
as defined here—except, perhaps, for small variations and
differences in formulation.

4. Characterizing Bayesian agents

Our main result provides a characterization of Bayesian spaces
which does not make use of properties 1 and 2 in definition 5. We
show that a belief space is Bayesian if and only if whenever the
prior is conditioned on some specification of the posterior belief,
it agrees with this specification. A posterior belief is specified, in
this theorem, by events of the form \n

kD1Bpk.Ek/, which put bounds
on the probability of finitely many events. Events like this can
approximate the posterior probability of any finite list of events to
any accuracy, as Bp.E/ \ Bq.:E/ bounds the probability of E to be
in the interval [p,1� q].

THEOREM 1: a belief space with a prior � is Bayesian iff for each
n ½ 1, all events E1, . . . ,En, and all numbers p1, . . . ,pn,
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�

(
Em j

n⋂
kD1

Bpk(Ek)

)
½ pm, (9)

for 1 � m � n, whenever this conditional probability is defined.

No assumption is made in this condition that the agent acquires
any information with certainty. That is, (9) does not depend
on there being some non-trivial event of which the posterior
probability is 1. It suggests an interpretation of Bayesianism as
a simple requirement of consistency between prior and posterior,
rather than a description of the mechanism by which the posterior
belief is derived from a prior one, namely conditioning on acquired
certain information. Yet, (9) implies, by theorem 1, that the
agent is certain of his type. Being so, according to the suggested
interpretation, does not represent the learning with certainty, of
any new facts (signals, in the vernacular of economists) which
initiate the updating of the prior. Rather, certainty of type reflects
the capacity of the agent to be certain of his own (posterior) belief,
(in concert with the presentation of T.!/ in proposition 2) and as
such it is the result of the updating, and not its cause.

The following theorem states that even with the restriction n D 2,
the condition (9) is sufficient for a belief space to be Bayesian.

THEOREM 2: a belief space with a prior � is Bayesian iff for any
two events E and F, and numbers p and q,

�(E j Bp(E) \ Bq(F)) ½ p, (10)

whenever this conditional probability is defined.

Next, we consider a restriction of (10) to conditioning events
of the form Bp.E/ \Bq.:E/. Conditioning both E and :E on this
event, yields by (10),

1� q ½ m.E j Bp.E/ \ Bq.:E// ½ p. .11/

This is a natural requirement, as the probability of E is conditioned
in (11) on an event which concerns just the posterior belief on E.
The stronger requirements, (9) and (10), allow including in the
conditioning event information about the posterior of events other
than E. These conditions add to (11) the requirement that the only
part of the posterior belief which is relevant as condition for the
prior of E is the posterior probability of E.

It turns out that the weaker condition (11) is not sufficient to
guarantee that a belief space is Bayesian. We can still state the
following implication of (11).
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PROPOSITION 3: if in a belief space with a prior �, (11) holds
for any event E and numbers p and q, whenever this conditional
probability is defined, then � is invariant.

The following example demonstrates that (11) does not imply
that a belief space is Bayesian.

EXAMPLE 2: let � D f!1,!2,!3g. The agent’s type function is:
t.!1/ D .0,1/2,1/2/, t.!2/ D .1/2,0,1/2/ and t.!3/ D .1/2,1/2,0/,
and the prior is m D .1/3,1/3,1/3/. It is easy to check that (11)
holds for all E, p and q. Yet, this space is clearly not Bayesian, as
the agent is not certain of his type in any of the states.

5. Proofs

PROOF OF PROPOSITION 1

Suppose !0 2 T.!/. Then, for any E and p,! 2 Bp.E/ iff !0 2 Bp.E/
and therefore !0 is in the set on the right hand side of (2).
Conversely, suppose !0 is in the set on the right hand side of (2). Fix
E 2 0. Then, whenever ! is in Bp.E/ \B1�q.:E/ for some rational
p < q,!0 is also in this event. Thus t.!/.E/ and t.!0/.E/ belong
to the same intervals [p,q] with rational ends. But this implies
that t.!/.E/ D t.!0/.E/. Hence, t.!/ and t.!0/ are two probability
measures that agree on 0 and therefore the same probability
measure. Hence !0 2 T.!/. �

PROOF OF PROPOSITION 2

Suppose the agent is certain of his type in state !, that
is, ! 2 C. Fix E and p. Then, either ! 2 :Bp.E/, or else, by
proposition 1, t.!/.Bp.E// D 1, that is ! 2 B1.Bp.E//. Thus, ! 2
:Bp.E/ [B1.Bp.E//.

Conversely, suppose that ! belongs to the event in the right
hand side of (4), where the intersection is taken over rational p
and events E 2 0. Then, for each such p and E, if ! 2 Bp.E/, then
! 2 B1.Bp.E//. This means that

! 2
⋂

f.p,E/j!2Bp.E/g
B1 (Bp.E/

)
,

where the intersection is over rational p and E 2 0 that satisfy the
required condition. But B1 commutes with countable intersections
and thus,
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! 2 B1

 ⋂
f.p,E/j!2Bp.E/g

Bp.E/

 .
By proposition 1, this is equivalent to saying that ! 2 B1.T.!//.
Therefore t.!/.T.!// D 1, and thus ! 2 C. �

PROOF OF PROPOSITION 3

To simplify the notation, we introduce an abbreviation for the
event that the agent’s posterior probability of E is in the interval
[p,q), as follows:

Bp,q.E/ D Bp.E/ n Bq.E/.

We assume that (11) holds, and show that for any given e > 0
the two sides of (8) can differ by e at most.

Choose a sequence of numbers 0 D p0 < p1 < Ð Ð Ð < pm > 1, such
that jpk � pk�1j � e for k D 1, . . . ,m. Clearly, the events Bpk�1,pk.E/
for k D 1, . . . ,m form a partition of � and therefore,

m.E/ D
m∑

kD1

m
(
E \ Bpk�1,pk.E/

)
, .12/

and ∫
t.!/.E/dm.!/ D

m∑
kD1

∫
Bpk�1,pk .E/

t.!/.E/dm.!/. .13/

To evaluate the k term in (12) we consider an event Fr D
Bpk�1.E/ \ B1�r.:E/ for pk�1 < r < pk. This is the event that
the posterior probability of E is in the interval [pk�1, r]. By
(11), rm.Fr/ ½ m.E \ Fr/ ½ pk�1m.Fr/. When r converges to pk the
events Fr converge monotonically to Bpk�1,pk.E/, and hence, by the
continuity of m, we have,

pk�1m
(
Bpk�1,pk.E/

) � m
(
E \Bpk�1,pk.E/

) � pkm.Bpk�1,pk.E//

To evaluate the k term in (13) we note that for ! 2 Bpk�1,pk.E/,
t.!/.E/ 2 [pk�1,pk/, and thus

pk�1m
(
Bpk�1,pk.E/

) � ∫
Bpk�1,pk .E/

t.!/.E/dm.!/ � pkm
(
Bpk�1,pk

i .E/
)
.

Therefore, the k terms in (12) and (13) have the same bounds
and they can differ by at most the difference between these bounds,
which is bounded by em.Bpk�1,pk.E//. Thus, by (12) and (13), the two
sides of (8) can differ by e at most. �
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PROOF OF THEOREMS 1 AND 2

Suppose that the prior m satisfies (10). By proposition 3, m is an
invariant prior, and therefore to show that the space is Bayesian,
it is enough to prove that the agent is certain of his type. Assume,
to the contrary, that he is not. Then the m-probability of the
complement of C is positive. By proposition 2, this means that,

m

⋃
p,E

Bp.E/ \ :B1.Bp.E//

 > 0,

where the union is countable. Therefore, for some p and E,

m
(
Bp.E/ \ :B1.Bp.E//

)
> 0.

But :B1.Bp.E//—the event that the agent is not certain of
Bp.E/—is the same as the event that he ascribes positive
probability to :Bp.E/. Hence :B1.Bp.E// D [r>0Br.:Bp.E//, where
r is rational. Thus, for some r > 0,

m
(
Bp.E/

) \Br (:Bp.E/
)
> 0 .14/

Applying (10), as the conditional probability is well defined by (14),
yields

m
(:Bp.E/

) j Bp.E/ \Br (:Bp.E/
) ½ r > 0.

But this is a contradiction, since:Bp.E/ and the conditioning event
are disjoint.

Conversely, suppose that m is a prior in a Bayesian belief space.
We show that (9) holds. Applying the invariance condition (8) to
\n

kD1Bpk.Ek/ \Em, we have

m

(
n⋂

kD1

Bpk.Ek/ \Em

)
D
∫

t.!/

(
n⋂

kD1

Bpk.Ek/ \Em

)
dm.!/. .15/

Now, if! 2 \n
kD1Bpk

i .Ek/, then T.!/ � \n
kD1Bpk

i .Ek/, and otherwise,
T.!/ � : \n

kD1 Bpk
i .Ek/. Hence, if the agent knows his type at

!, then t.!/.\n
kD1Bpk.Ek// is 1 in the first case, and 0 in the

other. Therefore, t.!/.\n
kD1Bpk.Ek/ \ Em/ D ti.!/.Em/ ½ pm, in the

first case, and t.!/.\n
kD1Bpk.Ek/ \ Em/ D 0, in the other.

As the agent knows his typem-almost everywhere, we can rewrite
(15) as,

m

(
n⋂

kD1

Bpk.Ek/ \ Em

)
D
∫
\n

kD1Bpk .Ek/\Em

t.!/.Em/dm.!/.
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Since the integrand is no less than pm, we conclude that,

m

(
n⋂

kD1

Bpk.Ek/ \Em

)
½ pmm

(
m⋂

kD1

Bpk.Ek/

)
,

which proves (9). �
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