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Agreeing to Disagree in Infinite Information Structures 

D. Samet 1 

1 Introduction 

Several authors have recently studied the game theory aspects of generalized infor- 
mation structures, that is, information structures that are not partitions. Such struc- 
tures are needed when we wish to impose some restrictions on the concept of knowl- 
edge or bound rationality (see [3] and [4]). Some theories that were developed for 
partitions do not hold for generalized information structures or at least require 
changes and adjustments (e.g., correlated equilibria in [2] and the 'no-trade' the- 
orem in [5]). Other results continue to hold for some families of generalized infor- 
mation structures. Thus, for example, it has been shown in [4] that the impossibility 
of 'agreeing to disagree', which was proved in [1] for partitions, also holds for more 
general information structures. 

We want to draw attention to some non-trivial differences between finite and 
infinite structures where generalized information structures are concerned. For par- 
titions, there is almost no interesting distinction between finite structures and infi- 
nite ones. Theorems for the finite case can be repeated and proved almost verbatim 
for the infinite, countable case. We show here that this is no longer true for gener- 
alized structures. More specifically, we show that the impossibility of 'agreeing to 
disagree', which holds invariably for finite and infinite partitions, holds generally 
for refl.exive-transitive structures only in the finite case. For infinite structures one 
has to impose some restrictions on the infiniteness of the structure. Thus in [4], in 
order to prove the 'agreeing to disagree' theorem an assumption is made that agents' 
knowledge is finitely generated. This means that for each state and each agent there 
is a finite number of facts from which everything he knows is implied. Here we 
show, by constructing a counter-example, that with no restriction on the infinite 
structure the 'agreeing to disagree' theorem fails. 

Infinite information structures are by no means a mathematical luxury. They 
are indispensable in the theory of information and knowledge in many cases. For 
example, in developing models in which the description of a state of the world in- 
cludes the state of knowledge of various agents (as in [1], [4] and many others) we 
can hardly avoid using infinite information structures. This is also the case for mod- 
els of the 'coordinated attack' type in which communication is iterated with no 
bound on the number of iterations (see [6]). Finally, we should note that models 
with infinite information structures are commonplace in the literature of economic 
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theory and game theory. Such, for example, are models in which agents are in- 
formed by observing a random variable with infinitely many values, or models in 
which agents are of  infinitely many types. 

2 R T  Information Structures 

Let f2 be a state space with a a-field s  We define a reflexive transitive (R T) infor- 
mation structure to be a function P :  f]--,E which satisfies for each co in f2: 

ogeP(og), (1) 

for each 

og, ~p(og), p(og,)cp(og). (2) 

P(o9) is interpreted as the set of  all states which are considered possible to the agent 
when state o9 is realized. The relation 'o9' is possible at o9' is reflexive and transitive 
by (1) and (2). These properties can be shown to be equivalent to the claims that 
whatever is known by the agent is true, and that the agent always knows that he 
knows a fact, when this is the case (see [3], [4]). 

If  we require that the possibility relation is also symmetric then P represents a 
partition, that is, the range of  P is a partition of  f]. We call P finite when its range is 
finite. We say that P is finitely nested if there is no infinite sequence in the range of  
P that is strictly decreasing with respect to inclusion. 

Consider now two agents 1 and 2, with information structures P1 and P2 respec- 
tively. We say that event E is common knowledge at o9 if there exists some event C 
such that o9 ~ C c_E and for each og 'e  C, P~(o9')c_ C for i = 1,2. When the range of  P 
is a partition, this definition is equivalent to the one given in [1]. See also [3] and [4] 
for equivalent definitions of  common knowledge in terms of  iterated knowledge 
operators. 

3 Agreeing to Disagree in Infinite R T  Information Structures 

Suppose the agents have a common prior probability distribution p over Z. For a 
given event X and number r let Ei(X, r) for i=  1,2, be the event that the posterior 
probability that agent i assigns to X is r, i.e., Ei(X, r )=  { o9[p (X[ P;(o9))= r}. 

We can now state a general theorem, for R T  structures, about the impossibility 
of  agreeing to disagree. 
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Proposition 1. I f  P~ and P2 are finitely nested R T  information structures with a 
countable range, and for  some event X and numbers r and s, E~ (X, r)c~E2(X, s) is 
common knowledge at some state, then r= s. 

A similar theorem is proved in [4] for a model in which the information struc- 
tures Pi are derived from propositional knowledge operatiors. I f  we assume in this 
model that knowledge acquired by an agent, even if it is infinite, is a logical conse- 
quence o f  finitely many propositions, then the countability and the finite nestedness 
of  the derived information structures is guaranteed. The proof  of  Proposition 1 is 
similar to that given in [,~]. Note that finite information structures are trivially finite- 
ly nested and of  countable range, and therefore the proposition holds for them. 

Proposition 2. The claim of  Proposition 1 does not hold in general for infinite R T  
information structures even when the ranges are countable. 

Proof." We construct an example with two agents in which both information struc- 
tures are countable though one of  them is not finitely nested, and where a disagree- 
ment of  the agents about the prior of  a given event X is common knowledge. Let f~ 
be the unit interval [0,1] and p the Lebesgue measure on it. We define two RT- 
information structures P~ and Pz and an event X as follows. 

The information structure P2 is trivial: P2(09) = f~ for all 09. The event X will be 
constructed such that p ( X ) =  � 8 9  for some d >  0, and therefore for each 09: 

1 
u(X[Pz(09)) = - - d. 

2 

The information structure P1 will be chosen such that for each coef~: 

1 
g (X I P ,  (o9)) = - .  (3) 

2 

Before we construct X and P1 formally we give a sketch of  the construction. 
Suppose we define P1(09)=[0,~) for each 09e[0,1) and P1(09)=(�89 for each 
09e(~, 1]. We choose X such that 

P ( X I  [O, 1 ) ) = P ( X [ ( 2 , 1 ] ) = I - 3 d ,  

while 

1 3d.  

1 1 2 Clearly p ( X ) = ~ - d  and (3) is satisfied for each co~[0,~)w(~, l ] .  To take care of  
09's in (�89 z) s we have to define P1 and X over this interval. This problem is analo- 
gous to the one we started with. We could devide the interval into three parts, de- 
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crease the amount  of mass in the middle one by d and add d in each of the other two 
intervals. But we can not continue this construction by induction since d is fixed and 
the interval length approaches zero. This can be solved if in each step we Construct 
more and more overlapping components of P1. In this case the amount  of mass that 
we have to remove and add also diminishes. The formal construction is as follows. 

Let (hi)i>_ ~ be an increasing sequence of positive integers. Denote 

i 1 
Si = I ~  - -  

k=~ n k + l  

and 

i 1 
ti  = I I  - - "  

k = a  n e - 1  

Further, let to = 1. The sequence (si/t3~_ 1 is decreasing, but by allowing (n,)~_> 1 to 
increase fast enough we can guarantee that lim sJ t i  = L > O. (Indeed L can be chosen 
to be as close as we wish to 1). Let d = L / 2 .  

We now construct sets B i, A~ for i _  1 and j =  1 . . . . .  ng by induction on i, as 
follows. B 1 = f L  When B i is constructed, the sets A~I . . . . .  A i , ,  B ~+1 are chosen to 
be a partit ion of B ~ into ng+ 1 sets of equal measure. Clearly for all i > 1  and 

j =  1 ,  . . . ,  n i :  

u(A}) =B(B ~+') =si .  (4) 

Moreover, we choose the decreasing sequence of sets B i such that n Bi=O and 
i>_1 

therefore {Aj-[ i>_ k, j = 1 . . . . .  hi} is a partition of B k. For each i_> 1 a n d j  = 1 . . . . .  ni 
let 

c j i  A i h i +  1 
= ' A j k . ) l J  . 

We define the information structure P1 as follows: For a~eA}, 

P,  (~o) = c} .  

Since { A j [ i _  1, j =  1 . . . . .  ni} is a partit ion of f~, the information structure P1 is 
defined for all ~o and it is easy to see that P1 is an R T information structure. 

To demonstrate that 1 and 2 can agree to disagree with these information struc- 
tures we construct an event X such that at each o9 the posteriors of 1 and 2 are 
different and yet are common knowledge. For i _  1 and j = 1 . . . . .  n,- let X} be a 
subset of A j  with 

lt (A ~) 
lu(X~j .) = + ( -  1 )%d.  

2 
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To prove that such sets exist we have to show that 6d<_p(Aj)/2. This follows f rom 
(4) and the fact that si/6 is decreasing. Define 

x =  U x~. 
i_>1 

j = l ,  . . . , h i  

To compute p (XIP1 (o9)) we note first that: 

e~ 

l t (XnBi+l)  = ~. nk(--1)ktkd+ 12(Bi+~) (5) 
k = i + l  2 

To evaluate the series on the right hand side of  (5) we observe that for each k >  1 

nkt~ = tk- 1 + tk. 

Thus the series is reduced to ( - 1 )  i +  Itid. Now for o9 eA~-: 

U (XnP1 (o9)) = p (Xn G )  

=- U ( X n A j )  +U ( XnB '§  1) 

= u(AJ ) + ( -  1)itid q f I (B i+I  ) _[_ ( -  1)'+ltid 
2 2 

2 

(6) 

Hence for each co~f~: 

1 
u ( X ] P ~  (o9)) = - .  

2 

For i = 0, in (5), we have p (X) = 1 r - d ,  and therefore for each o9: 

p(X[P2(O9)) =-1 _ d.  
2 

We have shown that El (X, �89 = E2 (X, � 8 9  d) = s and therefore E1 (X, 1) n 
Ez(X, � 8 9  is common knowledge but 1 # ~ -  d, and thus it is possible to agree to 
disagree in f2. [] 
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