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PROBABILITIES AS SIMILARITY-WEIGHTED FREQUENCIES

BY ANTOINE BILLOT, ITZHAK GILBOA, DOV SAMET, AND
DAVID SCHMEIDLER1

A decision maker is asked to express her beliefs by assigning probabilities to certain
possible states. We focus on the relationship between her database and her beliefs. We
show that if beliefs given a union of two databases are a convex combination of beliefs
given each of the databases, the belief formation process follows a simple formula:
beliefs are a similarity-weighted average of the beliefs induced by each past case.
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1. INTRODUCTION

A PHYSICIAN ADMINISTERS A CERTAIN TREATMENT to her patient. She is asked
to describe her prognosis by assigning probabilities to each of several possible
outcomes Ω = {1� � � � � n} of the treatment. The physician has a lot of data on
past outcomes of the treatment, and she can readily quote the empirical fre-
quencies of these outcomes. Yet, patients are not identical. They differ in age,
gender, heart condition, and several other measurable variables that may affect
the treatment outcome. Let us assume that these form a vector of real-valued
variables X = (X1� � � � �Xk) and that X was measured for all past cases. Thus,
case j is a (k + 1)-tuple (xj�ωj) ∈ Rk × Ω, where xj ∈ Rk is the value of X
observed in case j and ωj ∈ Ω is the observed outcome of the treatment in
case j. The new patient is defined by the values xt ∈ Rk of X . How should
these measurements affect the probability assessment of the physician?

It makes sense to restrict attention to those past cases that had the same X
values as the one at hand and to compute relative frequencies only for these
data. That is, to estimate the probability of state ω by its relative frequency in
the sub-database that consists of all cases j for which xj = xt . However, large
as the original database may be, the sub-database of patients whose X value is
identical to xt might be quite small or even empty. Therefore, we wish to have a
procedure for assessments of probabilities over Ω that makes use of data with
different X values, while taking differences in these values into account.

Assume that the physician can judge which past cases are more similar to
the one at hand and which are less similar. In evaluating the probability of
a state, she may assign a higher weight to more similar cases. Formally, sup-
pose that there exists a function s : Rk × Rk → R++, where s(xt� xj) measures
the degree to which, in the physician’s judgment, a patient whose presenting

1We are grateful to Larry Epstein, David Levine, Offer Lieberman, and three anonymous
referees for their comments. Gilboa and Schmeidler gratefully acknowledge Israel Science Foun-
dation grant 975/03, Samet acknowledges Israel Science Foundation grant 891/04, and Samet and
Schmeidler acknowledge The Henry Crown Institute of Business Research in Israel for financial
support.
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conditions are given by xt ∈ Rk is similar to another patient whose presenting
conditions are xj ∈ Rk. Given a database of past cases ((xj�ωj))j , we suggest
to assign probabilities to the possible outcomes of treatment for a new patient
with conditions xt by the formula

pt =
∑

j s(xt� xj)δ
j

∑
j s(xt� xj)

∈ ∆n−1�(1)

where δj ∈ ∆n−1 is the unit vector that assigns probability 1 to ωj .
Observe that (unqualified) empirical frequencies (of states in Ω) constitute a

special case of this formula, where the function s is constant.2 Another special
case is given by s(xt� xj) = 1{xt=xj }.

3 In this case, (1) boils down to the em-
pirical frequencies (of states in Ω) in the sub-database defined by xt . Thus,
formula (1) may be viewed as offering a continuous spectrum between the un-
conditional empirical frequencies and the conditional empirical frequencies
given xt .

In this paper we study the probability assignment problem axiomatically. We
consider the relationship between various databases, modeled as sequences of
cases, and the probabilities they induce. We impose two axioms on the proba-
bility assignment function. The first, invariance, states that the order of cases in
the database is immaterial. This axiom is not very restrictive if the description
of a case is informative enough, including, for instance, the time of occurrence
of the case. The second axiom, concatenation, requires that, for every two data-
bases, the probability induced by their concatenation is a convex combination
of the probabilities induced by each of them separately. In behavioral terms,
this axiom states that if each of two databases induces a preference for one
act over another, then the same preference will be induced by their concatena-
tion. Under a minor additional condition, these two axioms are equivalent to
the existence of a similarity function such that the assignment of probabilities
is done as a similarity-weighted average of the probabilities induced by single
cases. Two additional assumptions then yield the representation (1).

In our theorem, the function s is derived from presumably observable prob-
ability assignments given various possible databases. We interpret this function
as a similarity function. Yet, it need not satisfy any particular properties, and
may not even be symmetric. One may impose additional conditions, as in Billot,

2One may argue that no two cases are ever perfectly identical. According to this view, standard
empirical frequencies involve cases that are considered to be equally similar to each other, as if
applying formula (1) with a constant function s.

3We assumed that the function s is strictly positive. This simplifies the analysis as one need not
deal with vanishing denominators. Yet, for the purposes of the present discussion it is useful to
consider the more general case, allowing zero similarity values. This case is not axiomatized in
this paper.
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Gilboa, and Schmeidler (2004), under which there exists a norm v on Rk such
that

s(xt� xj)= e−v(xt−xj)�(2)

Such a function s satisfies symmetry and multiplicative transitivity (that is,
s(x� z)≥ s(x� y)s(y� z) for all x� y� z).4

The Bayesian approach calls for the assignment of a prior probability
measure to a state space and for the updating of this prior by Bayes’ law
given new information. Ramsey (1931), de Finetti (1937), Savage (1954),
and Anscombe and Aumann (1963) provided compelling axiomatizations that
justify the Bayesian approach from a normative viewpoint. However, these
axiomatizations do not help a predictor to form a prior if she does not al-
ready have one. In this context, our approach can be viewed as providing a
belief-generation tool that may be an aid to a predictor who wishes to develop
a Bayesian prior.

Such a predictor may be convinced by our axiomatization that, in certain sit-
uations, it might be desirable to generate beliefs according to formula (1). Yet,
just as Bayesian axiomatizations do not serve to choose a prior, our axiomati-
zation does not provide help in choosing the similarity function. Even if one
adopts a certain functional form as in (2), the question still remains, Which
specific similarity function should we choose?

We believe that this question is, in the final analysis, an empirical one. Hence,
the similarity function should be estimated from past data. Gilboa, Lieberman,
and Schmeidler (2004) axiomatize formula (1) for the case n = 2 (not dealt
with in this paper) and develop the statistical theory required for the estimation
of the function s, assuming that such a function governs the data generating
process. The present paper provides an axiomatization for the case n > 2. In
certain situations, it allows us to reduce the question of belief formation to
the problem of similarity assessment, where the latter may be addressed as an
empirical problem. Developing the corresponding statistical theory is beyond
the scope of this paper.

2. MODEL AND RESULT

Let Ω = {1� � � � � n} be a set of states of nature, n ≥ 3.5 Let C be a non-
empty set of cases. Set C may be an abstract set of arbitrarily large cardinality.

4Billot, Gilboa, and Schmeidler (2004) deal with a similarity-weighted average for a single real-
valued variable. Their axioms may be applied to any single component of the probability vector
discussed here.

5Our result only holds when the range of the probability assignment function is not contained
in a line segment. The condition n ≥ 3 is obviously a necessary but insufficient condition for this
requirement to hold. We mention it here to highlight the fact that the case n = 2 is not covered
by our result. See Gilboa, Lieberman, and Schmeidler (2004).
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A database is a sequence of cases, D ∈ Cr for r ≥ 1. The set of all data-
bases is denoted C∗ = ⋃

r≥1 C
r . The concatenation of two databases, D =

(c1� � � � � cr) ∈ Cr and E = (c′
1� � � � � c

′
t) ∈ Ct , is denoted by D ◦ E and is defined

by D ◦E = (c1� � � � � cr� c
′
1� � � � � c

′
t) ∈ Cr+t .

Observe that the same element of C may appear more than once in a given
database. This structure implicitly assumes that additional observations of the
same case do in fact add information.6 Indeed, when one estimates probabili-
ties by relative frequencies, one subscribes to the same assumption.

For the statement of our main result we need not assume that C and Ω are
a priori related. We therefore impose no structure on C , simplifying notation
and obtaining a more general result. Yet, the intended interpretation is as in
the Introduction, namely, that C is a subset of Rk ×Ω. The prediction problem
at hand, described above by xt ∈ Rk, is fixed throughout this discussion. We
therefore suppress it from the notation when no confusion is likely to arise. As
usual, ∆(Ω) denotes the simplex of probability vectors over Ω.

For each D ∈ C∗, the predictor has a probabilistic belief p(D) ∈ ∆(Ω) about
the realization of ω ∈Ω in the problem under discussion.

For r ≥ 1, let Πr be the set of all permutations on {1� � � � � r}, i.e., all bijections
π : {1� � � � � r} → {1� � � � � r}. For D ∈Cr and a permutation π ∈ Πr , let πD be the
permuted database, that is, πD ∈ Cr is defined by (πD)i = Dπ(i) for i ≤ r.

We formulate the following axioms.

INVARIANCE: For every r ≥ 1, every D ∈ Cr , and every permutation π ∈ Πr ,
p(D) = p(πD).

CONCATENATION: For every D�E ∈ C∗, p(D ◦ E) = λp(D) + (1 − λ)p(E)
for some λ ∈ (0�1).

The Invariance axiom might appear rather restrictive, because it does not
allow cases that appear later in D to have a greater impact on probability as-
sessments than do cases that appear earlier. However, this does not mean that
cases that are chronologically more recent cannot have a greater weight than
less recent ones. Indeed, should one include time as one of the variables in X ,
all permutations of a sequence of cases would contain the same information. In
general, cases that are not judged to be exchangeable differ in values of some
variables. Once these variables are brought forth, the Invariance axiom seems
quite plausible.

The Concatenation axiom states that the beliefs induced by the concatena-
tion of two databases cannot lie outside the interval connecting the beliefs in-
duced by each database separately. If an expected payoff maximizer is faced
with a decision problem where the states of nature are Ω, the Concatenation
axiom could be restated as follows: for every two acts a and b, if a is (weakly)

6An element c may thus be viewed as a case type rather than as a specific case.
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preferred to b given database D as well as given database E, then a is (weakly)
preferred to b given the database D ◦ E, and a strict preference given one of
{D�E} suffices for a strict preference given D ◦E.

We can now state our main result.

THEOREM 1: Let there be given a function p :C∗ → ∆(Ω). The following are
equivalent:

(i) The function p satisfies the Invariance axiom, the Combination axiom, and
not all {p(D)}D∈C∗ are collinear;

(ii) There exists a function p̂ :C → ∆(Ω), where not all {p̂(c)}c∈C are collinear,
and a function s :C → R++ such that, for every r ≥ 1 and every D = (c1� � � � �
cr) ∈ Cr ,

p(D) =
∑

j≤r s(cj)p̂(cj)∑
j≤r s(cj)

�(3)

Moreover, in this case the function p̂ is unique and the function s is unique up to
multiplication by a positive number.

This theorem may be extended to a general measurable state space Ω with
no additional complications, because for every D only a finite number of mea-
sures are involved in the formula for p(D).

Theorem 1 deals with an abstract set of cases C . Let us now assume, as
in the Introduction, that a case cj is a (k + 1)-tuple (xj�ωj) ∈ Rk × Ω and
that the function p is defined for every database D, and a given point xt ∈ Rk.
The theorem then states that, under the noncollinearity condition, a function
p(D) = p(xt�D) on C∗ satisfies the Invariance and Concatenation axioms if
and only if there are functions s(cj)= s(xt� cj) and p̂(cj)= p̂(xt� cj) on C such
that (3) holds for p(D) = p(xt�D).

This application of formula (3) is more general than formula (1) in two ways.
First, p̂(xt� cj) need not equal δj , namely, the unit vector that assigns probabil-
ity 1 to state ωj . Second, s(xt� cj) may depend on ωj and not only on (xt� xj). To
obtain the representation (1), one therefore needs two additional assumptions.
First, assume that a state ω that has never been observed in the database is as-
signed probability zero. This guarantees that p̂(xt� cj) = δj . Second, assume
that if the names of the states of nature are permuted in the entire database,
then the resulting probability vector is accordingly permuted. This would guar-
antee the independence of s(xt� cj) on ωj .

Limitations

Formula (1) might be unreasonable when the entire database is very small.
Specifically, if there is only one observation, resulting in state ωi, pt assigns
probability 1 to ωi for any xt . This appears to be quite extreme. However,
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for large databases it may be acceptable to assign zero probability to a state
that has never been observed. Moreover, a state that has never been observed
may not be conceived of to begin with. That is, for many applications it seems
natural to define Ω as the set of states that have been observed in the past. In
this case, (1) assigns a positive probability to each state.

The intended application of formula (1) is for the assignment of probabilities
given databases that are large, but that are not large enough to condition on
every possible combination of values of (X1� � � � �Xk). Indeed, one may assume
that the function p is defined only on a restricted domain of large databases,
such as C∗

L = ⋃
n≥L C

n for a large L ≥ 1. It is straightforward to extend our
result to such restricted domains.

The Concatenation axiom that we use in this paper is very similar in spirit
to the Combination axiom used in Gilboa and Schmeidler (2003). Much of the
discussion of this axiom in that paper applies here as well. In particular, there
are two important classes of examples wherein the Concatenation axiom does
not seem plausible. The first includes situations where the similarity function is
learned from the data.7 The second class of examples involves both inductive
and deductive reasoning. For instance, if we try to learn the parameter of a
coin and then use this estimate to make predictions over several future tosses,
the Concatenation axiom is likely to fail.
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APPENDIX: PROOF

It is obvious that (ii) implies the Invariance axiom. Hence we may restrict
attention to functions p that satisfy the Invariance axiom and show that for
such functions, (ii) is equivalent to the Concatenation axiom combined with
the condition that not all {p(D)}D∈C∗ are collinear.

7The estimation procedure in Gilboa, Liebermen, and Schmeidler (2004) estimates the sim-
ilarity function from the data, but assumes that these data were generated according to a fixed
(though unknown) similarity function. However, when the data generating process itself involves
an evolving similarity function, our formulae and estimation procedures are no longer valid.



PROBABILITIES AS SIMILARITY-WEIGHTED FREQUENCIES 1131

In light of the Invariance axiom, a database D ∈ C∗ can be identified with
a counter vector ID :C → Z+, where ID(c) is the number of times that c ap-
pears in D. Formally, for D = (c1� � � � � cr) let ID(c) = #{i ≤ r|ci = c}. The set
of counter vectors obtained from all databases D ∈ C∗ is I = {I :C → Z+|0 <∑

j∈C I(j) < ∞}. For I ∈ I , define p(I) = p(D) for a D ∈ C∗ such that I = ID.
It is straightforward that for each I ∈ I such a D exists and that, due to the
Invariance axiom, p(D) is well defined.

We now turn to state a version of our theorem for the counter vector set-
up. Observe that the concatenation of two databases D and E corresponds to
the pointwise addition of their counter vectors. Formally, ID◦E = ID + IE . The
Concatenation axiom is therefore restated as the following.

COMBINATION: For every I� J ∈ I , p(I + J) = λp(I)+ (1 − λ)p(J) for some
λ ∈ (0�1).

THEOREM 2: Let there be given a function p :I → ∆(Ω). The following are
equivalent:

(i) The function p satisfies the Combination axiom and not all {p(I)}I∈I are
collinear;

(ii) There are probability vectors {pj}j∈C ⊂ ∆(Ω), not all collinear, and positive
numbers {sj}j∈C such that, for every I,

p(I)=
∑

j∈C sjI(j)p
j

∑
j∈C sjI(j)

�(4)

Moreover, in this case the probabilities {pj}j∈C are unique and the weights {sj}j∈C
are unique up to multiplication by a positive number.

Observe that Theorems 1 and 2 are equivalent. We now turn to prove
Theorem 2. It is straightforward to see that (ii) implies (i). Similarly, the
uniqueness part of the theorem is easily verified. We therefore only prove
that (i) implies (ii).

We start with the case of a finite C , say, C = {1� � � � �m}.

REMARK: For every I ∈ I , k≥ 1, p(kI)= p(I).

PROOF: Use the fact that p(I + J) ∈ [p(I)�p(J)] inductively.8 Q.E.D.

This remark allows an extension of the domain of p to rational-coordinate
vectors. Specifically, given I ∈ QC

+� choose k such that kI ∈ ZC
+ and define p(I)

8Throughout this paper, the interval defined by two vectors, p and q, is given by [p�q] =
{λp+ (1 − λ)q|λ ∈ [0�1]}.
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as identical to p(kI). The remark guarantees that the selection of k is imma-
terial. It follows that one may restrict attention to p(I) only for I ∈ QC

+ ∩∆(C),
that is, for rational points in the simplex of the case types. Restricted to this
domain, p is a mapping from QC

+ ∩∆(C) into ∆(Ω). We now state an auxiliary
result that will complete the proof of (ii).9

PROPOSITION 3: Assume that p : Qm
+ ∩ ∆m−1 → ∆n−1 satisfies the conditions:

(i) for every q�q′ ∈ Qm
+ ∩∆m−1 and every rational α ∈ (0�1), p(αq+ (1 −α)q′)=

λp(q) + (1 − λ)p(q′) for some λ ∈ (0�1), and (ii) not all {p(q)}q∈Qm+∩∆m−1 are
collinear. Then there are probability vectors {pj}j≤m ⊂ ∆n−1, not all of which are
collinear, and positive numbers {sj}j≤m such that, for every q ∈ Qm

+ ∩∆m−1,

p(q)=
∑

j≤m sjqjp
j

∑
j≤m sjqj

�(5)

PROOF: For j ≤ m, let qj denote the j unit vector in Rm, i.e., the jth ex-
treme point of ∆m−1. Obviously, one has to define pj = p(qj). Observe that
since p(αq + (1 − α)q′) is a convex combination of p(q) and p(q′), not all
{p(qj)= pj}j≤m are collinear.

We have to show that there are positive numbers {sj}j≤m such that (5) holds
for every q ∈ Qm

+ ∩∆m−1.

Step 1: m = 3. Let q∗ = 1
3(q

1 + q2 + q3). Choose positive numbers s1� s2� s3

such that (5) holds for q∗. Observe that such s1� s2� s3 exist and are unique up
to multiplication by a positive number. Define ps(q) = ∑

j≤m sjqjp
j/

∑
j≤m sjqj

for all q ∈ Q3
+ ∩ ∆2. Denote E = {q ∈ Q3

+ ∩ ∆2|ps(q) = p(q)}. We know that
{q1� q2� q3� q∗} ⊂E and we wish to show that E = Q3

+ ∩∆2.

Step 1.1: Simplicial Points Are in E. The first simplicial partition of Q3
+ ∩∆2

is a partition to four triangles separated by the segments connecting {( 1
2q

1 +
1
2q

2)� ( 1
2q

2 + 1
2q

3)� ( 1
2q

3 + 1
2q

1)}. The second simplicial partition is obtained by
similarly partitioning each of the four triangles to four smaller triangles, and
the kth simplicial partition is defined recursively. The simplicial points of the
kth simplicial partition are all the vertices of triangles of this partition.

CLAIM: If the vertices and the center of gravity of a simplicial triangle are in E,
then so are the vertices and center of gravity of all of its four simplicial subtriangles.

9The following proposition is a manifestation of a general principle, which states that functions
that map intervals onto intervals are projective mappings. Another manifestation of this principle
in decision theory can be found in Chew (1983).
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FIGURE 1.—The vertices and center of gravity of four subtriangles. The point m1 is the inter-
section of the lines q2q3 and q1c. The points m2 and m3 are similarly constructed. The point n3

is the intersection of m1m2 and q3c. The point n1 is similarly constructed. The point o2 is the
intersection of n1n3 and q2q3. Finally, the center of gravity of m1m2q3 is the intersection of m2o2

and q3m3 at c′.

PROOF: If four points that are not collinear, a�b� c�d, are in E, then the
point defined by the intersection of the segments [a�b] and [c�d] is also in E.
The proof is conducted by applying this fact inductively as suggested by Fig-
ure 1.

Explicitly, let {q1
k� q

2
k� q

3
k} be the vertices of a triangle in the kth simplicial

partition. Assume that q1
k� q

2
k� q

3
k�

1
3(q

1
k+q2

k+q3
k) ∈ E. We first show that ( 1

2q
1
k+

1
2q

2
k)� (

1
2q

2
k + 1

2q
3
k)� (

1
2q

3
k + 1

2q
1
k) ∈ E. Indeed, ( 1

2q
1
k + 1

2q
2
k) is the intersection of

the line connecting q3
k and 1

3(q
1
k + q2

k + q3
k), and the line connecting q1

k and q2
k.

Hence both p( 1
2q

1
k + 1

2q
2
k) and ps(

1
2q

1
k + 1

2q
2
k) have to be the intersection of the

line connecting p(q3
k)= ps(q

3
k) and p( 1

3(q
1
k + q2

k + q3
k))= ps(

1
3(q

1
k + q2

k + q3
k)),

and the line connecting p(q1
k) = ps(q

1
k) and p(q2

k)= ps(q
2
k). Since not all p(q)

are collinear, this intersection is unique. Hence ( 1
2q

1
k + 1

2q
2
k) ∈ E. Similarly, we

also have ( 1
2q

2
k + 1

2q
3
k)� (

1
2q

3
k + 1

2q
1
k) ∈ E.

Next consider the center of gravity of the four subtriangles. For the triangle
conv{( 1

2q
1
k + 1

2q
2
k)� (

1
2q

2
k + 1

2q
3
k)� (

1
2q

3
k + 1

2q
1
k)}, the center of gravity is equal to

that of conv{q1
k� q

2
k� q

3
k}, which is already known to be in E. Next consider the

center of gravity of one of the three subtriangles that have a vertex is com-
mon with conv{q1

k� q
2
k� q

3
k}. Assume, without loss of generality, that it is the

triangle defined by {q3
k� (

1
2q

1
k + 1

2q
3
k)� (

1
2q

2
k + 1

2q
3
k)}. We first note that 1

2(
1
2q

1
k +
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1
2q

3
k) + 1

2(
1
2q

2
k + 1

2q
3
k) is in E because it is the intersection of [q3� ( 1

2q
1
k + 1

2q
2
k)]

and [( 1
2q

2
k + 1

2q
3
k)� (

1
2q

3
k + 1

2q
1
k)]. Similarly, 1

2(
1
2q

1
k + 1

2q
3
k) + 1

2(
1
2q

1
k + 1

2q
2
k) is

in E. The point 1
2q

3
k + 1

2(
1
2q

2
k + 1

2q
3
k) = 3

4q
3
k + 1

4q
2
k is on the line connecting

1
2(

1
2q

1
k + 1

2q
3
k) + 1

2(
1
2q

2
k + 1

2q
3
k) and 1

2(
1
2q

1
k + 1

2q
3
k) + 1

2(
1
2q

1
k + 1

2q
2
k), and on the

line connecting q2
k and q3

k. Hence 3
4q

3
k + 1

4q
2
k is in E. The center of gravity of the

triangle conv{q3
k� (

1
2q

1
k + 1

2q
3
k)� (

1
2q

2
k + 1

2q
3
k)} is the intersection of [q3� 1

2q
1
k + 1

2q
2
k]

and [( 1
2q

1
k + 1

2q
3
k)� (

3
4q

3
k + 1

4q
2
k)]. Hence the center of gravity of the triangle

conv{q3
k� (

1
2q

1
k + 1

2q
3
k)� (

1
2q

2
k + 1

2q
3
k)} is in E.

Applying the claim inductively, we conclude that E contains all points that
are vertices of simplicial subtriangles of conv{q1

k� q
2
k� q

3
k}. Q.E.D.

Step 1.2: Completion. Observe that, if q ∈ Q3
+ ∩ conv(q�q′� q′′), then p(q) ∈

conv(p(q)�p(q′)�p(q′′)). Consider an arbitrary q ∈ conv{q1� q2� q3}. Take a se-
quence of simplicial triangles, conv{q1

k� q
2
k� q

3
k}, such that q ∈ conv{q1

k� q
2
k� q

3
k}

and that limk→∞ q
j
k = q for all j = 1�2�3. Since ps is a continuous function,

limk→∞ ps(q
j
k) = ps(q) for all j = 1�2�3. Moreover, because both p and ps

satisfy the Combination axiom, it follows that p(q)�ps(q) ∈ conv{p(q1
k) =

ps(q
1
k)�p(q

2
k)= ps(q

2
k)�p(q

3
k)= ps(q

3
k)}. This is possible only if p(q)= ps(q).

Hence q ∈ E. Since the choice of q was arbitrary, E = Q3
+ ∩∆2.

Step 2: m> 3.

Step 2.1: Defining sj . Consider a triple j�k� l ≤ m such that {pj�pk�pl} are
not collinear. Apply Step 1 to obtain a representation

p(q)=
∑

ν∈{j�k�l}
s{j�k�l}
ν qνp

ν({j�k� l})
/ ∑

ν∈{j�k�l}
s{j�k�l}
ν qν

for all q ∈ Qm
+ ∩ conv({qj� qk�ql}). Moreover, for all ν ∈ {j�k� l}�pν({j�k� l}) =

p(qν) = pν and the coefficients {s{j�k�l}
ν }ν∈{j�k�l} are unique up to multiplication

by a positive number.
Next consider all triples j�k� l ≤ m such that {pj�pk�pl} are not collinear.

We argue that, for given j�k, s
{j�k�l}
j /s

{j�k�l}
k is independent of l. To see this,

assume that l and l′ are such that neither {pj�pk�pl} nor {pj�pk�pl′ } are
collinear. Restricting attention to rational combinations of qj and qk, one ob-
serves that s{j�k�l}

j /s
{j�k�l}
k = s

{j�k�l′}
j /s

{j�k�l′}
k . Denote this ratio by γjk. Observe that it

is defined for every distinct j�k≤m, because for every j�k there exists at least
one l such that {pj�pk�pl} are not collinear. Further note that if {pj�pk�pl}
are not collinear, then γjkγklγlj = 1.

Define s1 = 1 and sj = γj1 for 1 < j ≤ m. We wish to show that, for every
triple j�k� l ≤ m such that {pj�pk�pl} are not collinear, {s{j�k�l}

ν }ν∈{j�k�l} is pro-
portional to {sj� sk� sl}. Without loss of generality, it suffices to show that
s

{j�k�l}
j /s

{j�k�l}
k = sj/sk or that γjk = sj/sk. If {p1�pj�pk} are not collinear, then
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this equation follows from γ1jγjkγk1 = 1. If, however, {p1�pj�pk} are collinear,
then {p1�pj�pl} and {p1�pk�pl} are not collinear. Hence γkl = sk/sl and
γlj = sl/sj . In this case, γjk = 1/γklγlj = sj/sk.

Given s = (sj)j≤m, define ps(q) = ∑
j≤m sjqjp

j/
∑

j≤m sjqj . Thus, we wish to
show that p(q)= ps(q) for all q ∈ Qm

+ ∩∆m−1.

Step 2.2: Completion. We prove the following claim by induction on k, 3 ≤
k≤ m.

CLAIM: For every subset K ⊂ {1� � � � �m} with |K| = k, if {pj}j∈K are not
collinear, then p(q) = ps(q) holds for every q ∈ ∆K ≡ Qm

+ ∩ conv({qj|j ∈ K}).
PROOF: The case k = 3 was proven in Step 1. We assume that the claim

is correct for k ≥ 3 and we prove it for k + 1. Let there be given K ⊂
{1� � � � �m} with |K| = k + 1, such that {pj}j∈K are not collinear. Let J = {j ∈
K|{pl}l∈K\{j} are not collinear}. Observe that, for every j ∈ J, p(q) = ps(q)
holds for every q ∈ ∆K\{j}.

We argue that |J| ≥ k. To see this, assume that there were two distinct ele-
ments j and k in K\J. Then all {pl}l �=j are collinear, as are all {pl}l �=k. Since
|K| = k + 1 ≥ 4, there are at least two distinct elements in K\{j�k}. Both
pj and pk are collinear with {pl}l �=j�k, and it follows that all {pl}l∈K are collinear,
a contradiction.

Consider a rational point q ∈ Qm
+ in the relative interior of conv({ql|l ∈ K }).

Denote q = ∑
l∈K αlq

l with αl > 0. For every j ∈ J, let q(j) be the point in
conv({ql|l ∈ K\{j}}) that is on the line connecting qj and q, that is, q(j) =∑

l∈K\{j}(αl/(1 − αj))q
l. Obviously, ps(q

j)= p(qj)= pj . Moreover, since j ∈ J,
one may apply the claim to K\{j}, yielding ps(q(j)) = p(q(j)). Since ps sat-
isfies the Combination axiom, it follows that both p(q) and ps(q) are on the
interval [ps(q

j)�ps(q(j))] = [pj�p(q(j))].
Next we wish to show that, for at least two elements j�k ∈ J, the intervals

[pj�p(q(j))] and [pk�p(q(k))] cannot lie on the same line. Assume not, that
is, that all intervals {[pj�p(q(j))]}j∈J lie on a line L. If J = K, this implies that
all {pj}j∈K are collinear, a contradiction. Assume, then, that there is an i such
that J =K\{i}. In this case, pi is not on L. For j ∈ J, consider q(j) as a convex
combination of qi and a point q′ ∈ conv({ql|l ∈ K\{i� j}}). By the Combination
axiom, p(q′) is on the line L. Moreover, since pi �= p(q′), p(q(j)) is in the
open interval (pi�p(q′)) and therefore not on L. However, this contradicts
the assumption that all intervals {[pj�p(q(j))]}j∈J lie on L.

It follows that there are distinct j�k ∈ J for which the intervals [pj�p(q(j))]
and [pk�p(q(k))] do not lie on the same line. Hence these intervals can in-
tersect in at most one point. Since both p(q) and ps(q) are on both intervals,
p(q)= ps(q) follows.

We conclude that p(q)= ps(q) holds for every rational q in the relative inte-
rior of conv({qj|j ∈ K}), as well as for all rational points in conv({ql|l ∈ K\{j}})
for j ∈ J. It is left to show that p(q) = ps(q) for rational points in conv({ql|l ∈
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K\{i}}) for i ∈ K\J. Assume not. Then, for some q ∈ Qm
+ ∩conv({ql|l ∈ K\{i}})�

p(q) �= ps(q). However, p(qi) = ps(q
i) = pi. Hence the interval (qi� q) is

mapped by p into (pi�p(q)) and by ps into (pi�ps(q)). Note that these two
open intervals are disjoint, but for any q′ ∈ (qi� q) we should have p(q′) =
ps(q

′), a contradiction. Q.E.D.

It is left to complete the proof of the sufficiency of the Combination axiom
in case C is infinite. For every B ⊂ C , let IB be the set of databases I ∈ I such
that

∑
j /∈B I(j) = 0. For every j ∈ C , define pj by p(Ij), where Ij is defined

by Ij(j) = 1 and Ij(k) = 0 for k �= j. For every finite B ⊂ C , for which not all
{pj}j∈B are collinear, there is a function sB such that (4) holds for every I ∈ IB.
Moreover, this function is unique up to multiplication by a positive number.
Fix one such finite set C0 and choose a function sC0 . For every other finite
B ⊂ C , for which not all {pj}j∈B are collinear, consider B′ = C0 ∪ B. Over B′

there exists a unique sB′ that satisfies (4) for all I ∈ IB′ and that extends sC0 .
Define sB as the restriction of sB′ to B. To see that this construction is well
defined, suppose that B1 and B2 are two such sets with a nonempty intersection.
Consider B = B1 ∪ B2. Since sB1 and sB2 are both restrictions of sB, they are
equal on B1 ∩B2. Q.E.D.
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