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Strict commeon knowledge seems almost impossible; we can never be sure what
others know, It is shown that common knowledge can be approximated by the
weaker and more easily obtained condition of common belief. This approximation
justifies the standard assumption in game theory that the description of the game is
common knowledge. Aumann’s result on the impossibility of agreeing to disagree
can also be approximated when common knowledge is replaced by common be-
lief. © 1989 Academic Press, Inc.

INTRODUCTION

In most models in game theory it is assumed, either explicitly or implic-
itly, that common knowledge regarding certain facts is shared by the
agents. How crucial is this assumption? Do these theories collapse when
common knowledge is absent, or is there any concept weaker than com-
mon knowledge that is sufficient to sustain the conclusions of the theories
or at least some closely related conclusions? We show that the weaker
concept of “‘common belief ™ can function successfully as a substitute for
common knowledge in the theory of equilibrium of Bayesian games. We
also show that Aumann’s (1976) no-agreement theorem can be general-
ized to common belief.

To illustrate the need for a notion weaker than common knowledge we
look at the following cases. The most frequent cases of common knowl-
edge are public announcements. Consider, for example, an auction. Once
the auctioneer has publicly announced a price, it is assumed by most
suppliers of auction models to be common knowledge to the participants
of the auction. But is it really? One should always allow for some small
probability that a participant was absentminded or deaf at the time of the
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announcement. No matter how small that probability is, the price is
not common knowledge. Nobody knows for sure that the others
know the price. We cannot even build the first story of this formidable
tower of hierarchies of knowledge, “I believe that you believe that 1 be-
lieve . . . ,” that is required for common knowledge. One might say, if
the probability is very small, why not simply assume it is zero? Such a
procedure would be valid only if, by making such an assumption, the
conclusions regarding the outcomes of the process do not change dramati-
cally. A stimulating example by Rubinstein (1987) indicates that this might
not be the case. In this example, which is a game theoretic formulation of
the “*coordinating attack’ problem (see Halpern, 1986), Nature chooses
one of the two two-person games G' and G* with equal probabilities.
Player 1 is informed which game is to be played. He then sends a message
to player 2 telling him this information. They then send messages back
and forth acknowledging, each in his turn, the previously received mes-
sage. Fach message has a small probability r of being lost, in which case
the whole process stops. When the process stops, neither of the players
knows whether it was his message that got lost or his partner’s acknowl-
edgment. In this example the players climb, with high probability, the
tower of knowledge hierarchy and scem to be closer to common knowl-
edge than the participants of our auction example, Unfortunately, as opti-
mizing agents the players cannot behave as if the games G and G2 were
common knowledge; i.e., they cannot play the “natural’ Nash equilibria
in G'! or G2. Indeed, one can show that even if the players were only e-
optimizers (they do not care about pennies) they still cannot pretend that
the games G' and G? are common knowledge.

How different then are auctions and public announcements in general
from the game theoretic version of the coordinated attack problem? Are
public announcements stylized but useless fiction? To answer these ques-
tions we develop a precise measure of their proximity to common knowl-
edge.

When one examines a truncated hierarchy of knowledge one observes
that all is not lost. After several iterations of **I know that you know that I
know . . . ., one stops and “‘he does not know that . . ."" from then on.
But certainly in this case he may still ‘*believe that . . ."" with some
certainty. And then he may believe that the other does, and so on. So
hierarchies never die; they always extend ad infinitum where beliefs re-
place knowledge. This opens the door to an iterative definition of a com-
mon belief similar to that of common knowledge. The shortcomings of the
iterative definitions are that they lack some explanatory and descriptive
power. Clearly not even homo rationalis checks the validity of infinitely
many statements one by one. Still everybody understands public an-
nouncements to common knowledge. We seek to capture this intuitive
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understanding with our definition of an “*evidently known" event, as
reflected in Aumann’s original definition of common knowledge.

We use exactly the same type of events, evidently believed events, to
define common beliefs. We find this definition more compelling and even-
tually most useful in deriving theorems. The difference between these
definitions may be of some importance from the viewpoint of the interpre-
tation of the theory of common knowledge and common beliefs. From the
formal point of view we show that the two are equivalent.

The model we use is the same as Aumann’s, in which knowledge is
given by a partition and beliefs are simply posterior probabilities. The
definitions of common knowledge and common belief in such a model are
strikingly similar. The similarity is that they are both *“‘common.” The
property of common, which is the same in both models, is expressed by
the hierarchies being infinite and by the similarity of evidently known and
evidently believed events. The difference between the notions is that
belief replaces knowledge.

In the same way the intensity of beliefs can be quantified, using proba-
bilitics, common belief can be guantified. A common p-belief will be
defined for each p in [0, 1]. For p = 1, common 1-belief is almost the same
as common knowledge. For our purposes the differences are irrelevant
(common 1-beliefs were studied by Brandenburger and Dekel (1987)). So
the concept of common p-belief generalizes the concept of common
knowledge. Notions similar to belief and common belief were studied in
the framework of logical deductive systems by Gaifman (1986) and Fagin
and Halpern (1988).

Does common p-belief approximate common knowledge when p ap-
proaches 17 We answer this in the affirmative in Sections 4 and 5.

In Section 4 we consider Aumann’s (1976) agreeing to disagree theo-
rem. If agents have the same prior distribution and their posterior proba-
bilities for a certain event are common knowledge then these posteriors
must coincide. The theorem can be generalized. If the posteriors are
common p-belief then they may differ by at most 2(1 - p).

In Section 5 we cxamine the standard assumption in game theory that
for the players to play a Nash equilibrium, the description of the game
must be common knowledge. We do this by studying Bayesian games.
Nature selects a state. In each state of the world one of finitely many
games in normal form is played. Information structures determining what
the players know about Nature’s choice are given by partitions. If it is
common knowledge among players which game is to be played then play-
ers can play any Nash equilibrium in each of them. We examine the case
where there is only 2 common p-belief of what game is to be played and
where such common beliefs do not necessarily exist in each state but only
ina “*big" set of measure 1 — 6. We show that in this case if players are e-
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optimizers at each state w, they can almost mimic the behav_ior of players
to whom the game played is common knowledge. That is, both their
strategies and their payoffs are very close to the strategies and payoffs
that would be played if the games played were common knowledge.

1. PrRELIMINARIES: COMMON KNOWLEDGE

The resulis of this section are well known in the literature of common
knowledge (see, ¢.g., Binmore and Brandenburger, 1987; Brandenburger
and Dekel, 1987: Geanakoplos, 1988; Tan and Werlang, I988)_._

Let [ be a finite set of agents and let (£}, %, u) be a pmhgbmty space,
where 1} is the space of states, X is a o-field of events, an-:} pis a probabil-
ity measure on . For each i € I, [, is a partition of () into measurable
sets with positive measure, and therefore a countable g@;utmn, Forw e 1
we denote by IT;(w) the element of IT; containing w. I1;is :nterprﬂe(! as the
information available to agent i; IT;{w) is the set of all states which are
indistinguishable to i when @ occurs. We denote by F, the o-field gener-
ated by IT;. That is, F; consists of all unions of elements of H;:l?-'e say
that i knows event E at w, if [I;{w) C E. Let K;(E) be the event i knows

E." That is,
Ki(E) = {w: ITj(w) C E}.
Recall that an event C is common knowledge at w, if there exists an event

Esuchthat w € EC C,and E € F;for each i € 1 {AumaEnD, 1976).
Alternatively, one can show that € is common knowledge at w iff for each

n=1 and agents i, 2, . . . ;i
w = KhKf: i 'K;_(C.L [”

That is, when @ occurs then for all 7 = 1 and for all agents iy, iz, . . . ,isit
is true that

(iy knows that [iz knows that
[. . . i, knows that [i, knows C1] . . .]).

A different way of expressing the iterative nature _ot‘ common knowl-
edge is by considering the intersections of the following events:

C1: Every agent knows C.
C?: Every agent knows C.
C*: Every agent knows C?, etc.
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Provosimion 1. Let E(C) = Maz €7, where C" = Mg Ki(C™') for
all n =1, and C® = C. Then,

C is common knowledge at w iff w € E(C).

Proof. Note the following properties of the knowledge operators K;:
For all events A C B, Ki((A) C A, Kj(A) = Aiff A € &, and K(d) C
K,(B). Also, for all sequences of events (A"), Ki(M,(4") = M, Ki{A").

Suppose C is common knowledge at w. Then there exists w EEC C
suchthat E€ F forallie . Leti e I. As EC C, E = K;(E) C K;(C).
Therefore,

Ec ) Kk(c)=c
(=)

Continue to prove by induction on n that E C C*foralln = [. Thatis, E C
E(C). Therefore w € E(C).

Conversely, it suffices to prove that E(C) C C and that E(C) € ¥, for all
i € I. Obviously, E(C) C C' C K,(C} € C. To show that E(C) € &,
observe that forall n = 1

E(C) g €™ C Ki(C").
Hence,

) c N Kien = k(N ¢7) = K(E©) c Ec). =

mEl A=l

We say that the event E is evident knowledge if for each i € [
E C K((E). (2)

An event is evident knowledge if whenever it occurs all agents know it.
The typical evident knowledge events are public announcements. When
the event E is ‘‘the teacher says in class that at least one student has a red
spot on his head,”” then this event, just by its occurrence, implies that
every agent (student) knows it. Note that (2) is equivalent to K(E) = E,
but it is the one-sided implication of (2) that captures the nature of evident
knowledge. The other implication K;(E) C E is a property of knowledge
not related to evident knowledge. It is easy to see now that the following
proposition holds.

ProposiTION. € is common knowledge at w iff there exists an evident
knowledge event E such that w € E and for alli € 1

E C Ki(C). (3)
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The interpretation of common knowledge as stated in (3) is the follow-
ing: The event C is common knowledge in a certain state of affairs w if a
certain event (E) occurs in this state, which is cvidently known, and
which implies that everyone knows C. As an illustration, let C be the
event ‘‘the price of the picture is $1000," and let E be the event “‘the
auctioneer announces that the price of the picture is $1000."" w is one of
the states of the world in which E occurs. Obviously, when E occurs
everyone knows that it has occurred (E C K (E)). Moreover, once E
occurs everyone knows C (E C K;(C)). Thus, C is common knowledge at
each state of the world w in which E occurs (w € E). Note that C itself is
not evident knowledge; the fact that the price is $1000 is not necessarily
known to all agents, whenever this is indeed the price. The two alterna-
tive definitions of common knowledge, the iterative definition given in
Proposition 1 (or in (1)) and that given in (3), represent two different
aspects of this notion. The iterative definition is considered by many as
the natural definition of common knowledge. On the other hand, it is hard
to believe that people identify common knowledge by checking the infi-
nitely many conditions imposed by (1) one by one, or even any finite
number of them beyond n = 3 (see, e.g., Clark and Marshall, 1981). The
definition given in (3) (which is basically Aumann’s definition), with its
economic means, is the one that is used to recognize and understand
common knowledge.

2. BeLIEFs aND CoMMON BELIEFS

As before, (12, £, u) is a probability space, [ is a finite set of agents, and
the information available to agent i is given by a partition [I; of () to
measurable sets with positive probabilities. We start by replacing the
phrase **f knows E at @' by the phrase **i believes E with probability at
least p at w,”" where 0 = p = 1, abbreviated to i p-believes E at w.”’
Formally, i p-believes E at o if u(E[[1;{w)} = p, i.e., if the posterior of E
given that @ has occurred is at least p (for agent i). We denote by BY(E)
the event “'i p-believes E."" Thal is,

BIE) = {w: p(E|l(w)) = p}.

We now record the following properties of Bf for later use. The proof of
these properties is straightforward, and therefore will be omitted.

ProprosiTioN 2. ForeachO=p=1,iel, and E,FE L,

BY(E) € F,. )
If E € F, then BY(E) = E. (5)
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BY(BY(E)) = BY(E). (6)
If E C F then BY(E) C BY(F). 7
If (E™) is a decreasing sequence of events then (8)
B (N £) = N BrEn).
W(E|BJ(E)) = p. )

Note that (4)-(8) of Proposition 2 hold if one substitutes K; for Bf. K,
also has the property K;(E) C E for each E, which is the hallmark of
knowledge; whenever one knows E then E (is true). Property (9) general-
izes this axiom of knowledge. It states that given that one believes E with
a probability of at least p (this is the event B (E)) then the probability of E
is indeed at least p.

The case p = 1 is very similar to knowledge. We say that E = F a.s.
(respectively E C F a.s.) if p(EAF) = 0 (respectively w(F\E) = 0). With
this notation, (9) implies that

BNE)CE as. (10)

While in finite models there is no point in distinguishing between knowl-
edge and 1-belief, one may wish to preserve the distinction in continuous
models. For example, we 1-believe that a number picked at random from
the interval [0, 1] will be irrational, but we do not know it.

E is an evident p-belief if for each i € I

E C BY(E). (1

That is, whenever E occurs everyone assigns a probability of at least p to
its occurrence (cf. (1)).

We now define common p-belief, generalizing the definition of common
knowledge in (3).

DerFmviTioN 1. An event C is common p-belief at w if there exists an
evident p-belief event E such that w € E, and for all i € [,

E C B¥(C). (12)

To illustrate the notions of evident p-belief and common p-belief let us
reconsider auctions. Let C be the event “the price of the picture is
$1000."" Let E be the event ‘““the auctioneer announces that the price of
the picture is $1000.”" If everyone must hear the announcements of the
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auctioneer, then E is evident knowledge. That is, whenever E occurs
everyone knows that it has occurred. However, if there is some positive
(possibly small) probability & that not all the audience are hearing, then E
is not evident knowledge. Moreover, E may not be evident p-belief for
high p. This is the case, for example, if E occurs and one of the agents
who assigns a low probability to € does not hear the announcement.
However, if F is the event “‘the audience are all hearing, and the auction-
eer announces that the price of the picture is $1000,"" then F is evident
(1 — g)-belief. Therefore, C is common (1 — g)-belief al each state of the
world in which F occurs.
Common p-beliefs also have the following iterative interpretation:

DeFiniTION 2. For every event Cand every 0 = p = 1 let

E*C)= ) ", (13)

where C% = C, and, forn = 1, C" = Mg BIC™ ).
The following proposition is a counterpart of Proposition 1.

ProrosiTioN 3. For every event C and for everv 0 = p = 1,

(I} EF(C) is evident p-belief, and EP(C) C BYNC) for all § € 1.
(II) C is common p-belief at w iff w € EAC).

Proof. (1) First we show that (C")5=; is a decreasing sequence. In-
deed, for each i and for each n = 1, C" C BY(C""). Therefore by (7) and
(6)

BR(C") C BY(BY(C™ ")) = BY(C™).
Hence forall n = 1,

c =) Bricm c ) BoC™ Y = €™

et et
Leti€l. Foralln =1,
EF(C) C C™*' C BI(C").
Therefore,
E2(©) ¢ ) BI(CY),
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which implies (by (8)) that
e c B (N ¢) = BrE .

Thus, we have proved (11).

Clearly, EP(C) C C' C BY(C).

(II) If @ € EP(C), then by (I} C is common p-belief at w. As for the
converse, suppose C is common p-belief at w. Let w € E and E satisfies
(11) and (12). We show by induction on n that E C C" for all n = 1. This
will imply that w € EP(C). By (1) EC C'. IfEC C*, then by (11) and (7)
E C BY(E) C BY(C"). As this is true for each i € I,

Ec () BXC" =cC'. =
MES

By (I}, EP(C) is the event **C is common p-belief,” and by (I) we find
that this event itself is common p-belief at each of its states.

At this point it is useful to illustrate the new definitions with an exam-
ple.

ExampLE 1. There are two agents | and 2 (f = {1, 2}). The agents
cither hear (H) or do not hear (D) a given announcement. The probability
that an agent hears is 1 — &. Thus (assuming independence between the

players),
} = {HH, HD, DH, DD},

p(HH) = (1 — &), u(HD) = u(DH) = &(1 — &), and u(DD) = &2
Each agent knows his type only. That is,

I, = {{HH, HD}, {DH, DD}}

and

I; = {{HH, DH}, {HD, DD}}.

Let A = {HH}. That is, A is the event “*everyone hears.”" A is not com-
mon knowledge at any w € () (as there does not exist a w in which even
one of the agents knows that A occurs). However, A is common (1 — &)-
belief at HH. To verify this, note that Bf(A) = Afori=1,2andp=1— &,
and therefore EF(A) = A.

Although the notion of common p-belief is defined forevery 0 = p = 1 it
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is not of much interest unless p > 0.5. When we know that an event
occurs with probability 0.1 we are not likely to say that we believe in this
event. Indeed, if p = 0.5 we may p-believe (and even common p-believe)
in two contradictory events. For example, in the current example let & =
0.5 = p, and let E = {HD, DH} and F = {HH, DD}. Then, E*(E) = E*(F)
= (1. That is, at every w € {1 it is common p-belief that both agents have
the same type, and it is also common p-belief that both agents do not have
the same type.

We end this section with simple observations about the relations be-
tween common knowledge and common belief. If C is common knowl-
edge at w, then C is common p-belief at w for every0=p=1.IfCis
common |-belief at w, then there exists an event D which is common
knowledge at w such that C = D) a.s. However, note that for a given event
C, the event “'C is common knowledge™ does not necessarily coincide
a.s, with the event *'C is common I-belief.”

3. A DiGression: THE AXIOMATIC APPROACH

In this section we view the previous results from a different perspec-
tive. In Sections I and 2 the operators K; and B” were derived from a
given partition. Now we assume that these operators are given as primi-
tives and that they are referred to as knowledge and belief because of
some axioms they satisfy. Analysis of abstract knowledge operators on
events is used by Bacharach (1985) and by Brown and Geanakoplos
(1987). A different axiomatic approach is suggested by Samet (1987) and
by Shin (1987).

Let (£}, %) be a measurable space. An operator B: 3 — ¥ is called
a fe.'ief operator if the following conditions are satisfied for all E, F, E,
ORI [y FRPR | .

B(B(E)) C B(E), (14)
B(E) C B(F)  whenever E C F, (15)

B (ﬂ E") = N s, (16)

whenever (E") is a decreasing sequence.

B(E) is interpreted as the event that one believes E.

Several remarks are in order: (14) states that if one believes that he
believes E, then he believes E. That is, one’s beliefs concerning his beliefs
are always correct. Equation (15) states that if one believes in the event E
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and E implies F, then he believes F. For finite models (16) is equivalent 1o
(15). Therefore (16) is just a continuity axiom.

Let I be a finite set of agents. For each i € I let B; be a belief operator
interpreted as the belief operator of i. Let E € £. Eis evident belief if E C
Bi(E)foralli= I. Let C € X and let w € (). C is common belief at w if
there exists an evident belief event E such that w € E and E C B;(C) for all
iEL

ProrosiTioN 4. Let E(C) = M= C", where C* = C and for all
n= ]'r cr = H;E;B;[C"_']. Tﬁfﬂ,

C is common belief at w iff w = E(C).

Proof. The proof is very similar to the analogous proof of Proposition
3 and therefore will be omitted. =

The p-beliefs are less general than abstract belief operators, but they
allow us to quantify beliefs. In the following sections we show that in
many applications common p-belief is a good approximation to common
knowledge when p is close to 1.

4. AGREEING TO DISAGREE: THE CASE OF BELIEFS

Aumann (1976) has shown that two agents with common priors cannot
agree to disagree. That is, if the posteriors of a certain event are common
knowledge, then these posteriors must coincide. We will show that if the
posteriors are common p-belief for large enough p, then these posteriors
cannot differ significantly.

Fix an event X and define functions f; for all agents i by

file) = p(X|IT;(w)).

Let r:, i € I, be numbers in the interval [0, 1], and consider the event C =
Nier fu € O fi(u) = r;}. We say that the posteriors of X are common p-
belief at w if € is common p-belief at w.

THEOREM A. If the posteriors of the event X are common p-belief at
some o € ), then any two posteriors can differ by at most 2(1 — p).

Proof. As C is common p-belief at w, there exists an event E such that
w € E, EC B?(E), and E C BY(C) for all i € I. Since f;is IT,-measurable, f;
has a constant value on each § € I1,. But f; is constantly r, on C and
therefore fi(u) = r; for every u € § whenever § € Il;and § N C # @. Since
for every u € B?(C), I1;(u) N C # @ (since w(C|I1;(x)) = p), it follows that
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fi = r;on BY(C). Therefore f; = r; on E. Applying the previous arguments
once more yields f; = r; on BY(E).
As BY(E) is a union of sets § from II; for which p(X |S) = r;, we have

w(X|BJ(E)) = 1.
Let
- _BXNE)
x = p(X|E) —E)
Then,
L - X0 BUE)  pX 0 [BHE)ED
B(E) u(E)
o B r(BI(E)) pX N [BI{ENE]
nXIBRED = oy w(E) ‘
Hence,

p(BI(E)) _ w(X N [BIENE]
B(E) R(E)

Since w(B{(E)) = p(E) = pu(Bf(E)) we get
xp=n=x+1-p
or
—xll-pl=r-x=1-p.

Hence,

In—xz|=1-p.
Since the last inequality-holds for all § € I,

i —nl = 2(1 - p)

foralli, jEl. ™
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5. CommoON p-BELIEFS IN BAYESIAN GAMES

Let $ =1{1,2,...,m} Let 6", 8, _ . . % be finite games in
strategic (normal) form. For every j € § the players setisf = {1,2,. . . ,
n}, the pure and mixed strategies sets of player i are A; and A;, respec-
tively, and the payoff function of player i is i}: A— R, where A = @, A,
and R is the set of real numbers. Let (1, Z, u) be a probability space. For
a random variable f we will denote the integral [q flu)du(u) either by
E(f)or by E,(f). Similarly, for § C 0 with x(5) > 0 we will denote the
expression (1/u(S)) [s flu)du(u) by E(f|S) or by E,(f]S). Let J: ) —
{1, 2, ..., m} be a random variable that determines the game to be
played. That is, if J(w) = j, then %/ is played when w occurs. A partition I]
+ of {} into measurable subsets with positive probabilities is called an infor-
mation structure,

Given information structures I1;, i € I, we define a game I as follows:
The players set is /. For each i € [ the strategies set of player i is 4,
where A; is the set of all I1,-measureable functions o;: {t — A;. For each
o; € 4; and each § € II; we denote oy(5) = o(w), where w is an arbitrary
state in 5. Let A = @y A, be the set of strategy profiles. The payoff of
player i in the game I is the function F;: A — R defined by

Fi(o) = E(H{(0)),

where for @ € 2, olw) = (oy(w), o2{w), . . . , oy(w)). That is,

Fi@) = [ H9@ @), o2, . . ., op@dute).  (7)

Let o, € Ay, let o E E_; =® s A;, and let w € 0. We say that o is a
best response sirategy (b.r.s) against o_; at w if

E, (H]-'{r:r.—{w}, m.-)IIL{m}]
maximizes
E, (Hf‘:&'j ’ U—f]lni[ﬂ]]

over all 5, € A;.
F,‘Ibviuusly, o;is a b.r.s against o, iff it is a b.r.s at each & € ). That is,
o Is an ex ante equilibrium point iff o is an ex post equilibrium point.
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We now consider g-equilibrium points. We say that o is an ex ante e-
equilibrium poiny if forall i € 1

E.(H(oi(w), 0-) = E(H!(s;, 0-)) — &

for all 5 E A
We say that o is an ex post e-equilibrium point if for all § € I and for all
w € 1}

E, (H{(z{w), o_)|[li{w) = E, (H{(s;, o_)Li{w) — &

for all 5; € Ay

Clearly every ex post e-equilibrium point is an ex ante s-equilibrium
point, but not vice versa.

Let G/ be the set of all states w in which the game played is %/, That is

&/ = {w € {}: Jw) = j}.

Let G={G", G, . .. ,G™}and let p = 0.5. We say that the game ‘& is
common knowledge (common p-belief ) at w, if the event G/ is common
knowledge (common p-belief) at w. Note that if the game % is common
knowledge at @, then %/ is played at w (i.e., J{w) = j), while if 6/ is
only common p-belief at @, then the game played at w may be different
from 6,

Set pf = p(GV). For cach j € § let s/ € A be an equilibrium point in the
game %' with the associated payoff

H' = (H\(s)), His"), . . ., Hi(s)). (18)
Define a function (not necessarily a strategy profile!) o*: {1 — A by
o) = (oilw), oa(@), . . ., oul®@) = (1™, 51, . . ., 51 (19)
Obviously,
E(H/(o*)) = X, p'HI.
-
If the game played is common knowledge at each w € {1, then each of
the partitions II;, i € I, refines G, and therefore o is a strategy for player
i(i.e., o] is [1;-measurable). Obviously o* turns out to be an equilibrium

point with the associated payoffs Fla*) = Z; p/ /.
We now examine the common p-belief case.
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THEOREM B. Let p = 0.5. Set

1 — & = uiw € : For some j, G/ is common p-belief at w},

and let

M = max|Hi(s)|. (20

ij.s

Then there exists £} C £} with pw(f}') = (2p — 1M1 — &) such thar the
following holds: For any selection (57);ey of equilibrium points in the
games () cq there exisis a strategy profile o € A sarisfving:

B-1: o=sonill.

B-2: |Filo) — Z; p/Hi(s7)| = 2M[1 — (2p — IX1 — &)] foralli € I.

B-3: o is an ex post e-equilibrium point whenever & = 2M(1 —

(Zp — ).
Proof. For each j € § denote E/ = E*(GY). That is, by Proposition 3

El = {w € {}: / is common p-belief at w}.

Leti € 1. If w € BY(E'), then pw(E/|I1;{w)} = p > 0.5. Therefore, for [ # j,
w(E'|[ITj(w)) < 0.5, which implies w & BY(E’). Thus the sets Bf(E/), j € 3,
are mutually disjoint. Set ; = U, BY(E'). Define o;(w) = s{ whenever w
& BY(E'). Later we will define o;(w) for @ in the complementary set {}f of
{};, but whatever our definition may be, we are now able to prove B-1 and
B-2 with &' = U,(E/ N GY). Indeed, since for all i € I, E/ C BY(E’), then
foreachw € E' N G/, o{w) = 57 Asforalliel, B/ C BYG) and BV C
BY(EY), it is easily verified that £/ C B¥ "(E' N G') and therefore E/ N GV
C B¥ (E/ N GY). Hence by (9),

pE NGB NE NG)Y) =2p - L.
Therefore,
wWENG)=2p — DB (E N G =(2p - Du(E). (21)
Thus,

p(Q)) = ; pENG)=2p-1) ,J‘E w(E) = (2p — 1)1 - §).
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This proves B-1. To prove B-2 note that
|Fi@) — 2 plHi(s)
= |E(H{(0)) — E(H{(s')] = 2M[1 - (2p = 1)(1 — 8)]

since o = s/ on ()",

We now define o; on (1. Define a new game [ as follows. The players’
setis I' = {i € I' 1] + @}. A strategy for player { is a II,-measurable
function 7: £}f — A;. Given a strategy profile 7 = (r)ier the payoff for
player i is F;(7), where for k € I, Tilw) = oylw) for w € {4, and Tylw) =
Ti{w) for k € £1f. Let 7 be an equilibrium point in the game [, (such an
equilibrium necessarily exists because the strategy seis are convex com-
pact metric spaces, and the payoff functions are multilinear). Extend o 1o
0 by letting o;(w) = 7;(w) for all @ € 0f. We now proceed to prove B-3:

If @ € {1f, then oy is a b.r.s. of player i at @ (not merely e-b.r.s.).
Suppose @ € £); and let 5; € A;. For u € E/ N G/ we have

HY W a(w), o_i(u)) — H'¥)(s;, o_i(u)) = Hi(s)) — Hi(si, sL) =0

because s/ is an equilibrium point in the game %/,
As p(@|1(@) = 2p — 1 (because » € B?(E’) and therefore w €
B?(GY), which implies that @ € B¥ (E/ N GY)), we have

E(H](@)| (@) = E,(H(s;, o-)|ll{w)) — 2M(1 = (2p — 1)). =

Alternatively, we can state Theorem B as follows:

Tueorem B*. Let & > 0 and let M > 0. Then there exist p® < | and
5° > 0 such that for all p > p° and for all & < 8° the following holds: For
every n = 1 and a set of n players I, for every m = 1 and m n-person
games G, 6%, . . . , 6™ with max,;; |H|(s)| = M, for every selection of
equilibrium points (s') in the games (%), for every probability space (£},
%, p) and a random variable J: 2 — {1, 2, . . . , m}, and for every n
information structures (IL), if

plw € Q: For some j, GV is common p-belief at w} > 1 — 8,

then there exists a strategy profile o € A such that:
B*-1; plo(w) =) >1-e
B*2: |Filo) = Z; piHis))| < eforalli€ I
B*3: o is an ex post e-equilibrium point.
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We say that the game 6/ (or the event GY) is p-believed by the players at
w, if GV is p-believed at w by each i = I.

THEOREM C*. Let & > 0 and let M > 0. Then there exist p® < 1 and
8° > 0 such that for all p > p® and for all 5 < §° the following holds: For
every n = | and a set of n players I, for every m = 1 and m n-person
games ', 6%, . . ., G™ with max,;, |Hl(s)| = M, for every selection of
equilibrium points (s7) in the games (‘9), for every probability space (11,
Z, p) and a random variable J: ©2 — {1, 2, . . . , m}, and for every n
information structures (I1;), if

wlw € Q: For some j, GV is p-believed by the players at w} > 1 = &,

then there exists a strategy profile o € A such that:
B*1: plo(w) = s >1— g
B*-2: |Filo) - Z; p/His))| < eforalli € I.
C*-3: o is an ex ante e-equilibrium point.

Proof. Foralli€ Ilet {}; = U; BYf(GY). Define oy(w) = s/ whenever
w € BY(G') and define o, arbitranly for @ € (1,
It is obvious that o({w) = 57 for w € 01*, where

o= U [e/n (N B267)]

If 1 — p and & are sufficiently small, then p((}*) is close to 1, which
simultaneously proves B*-1, B*-2, and C*3. =

As there are only finitely many players, Theorem C* ensures that if the
partition to games is p-believed by each of the players at a large set, where
p is sufficiently close to 1, then the players (using ex ante e-equilibrium
strategies) can almost correlate their strategies according to a given selec-
tion of equilibrium points in the games 4, j € §.

Theorem B* ensures that if the partition to games is common p-belief at
a large set, then the players can almost correlate their strategies using ex
post g-equilibrium strategies.

We conclude this section by pointing out the obvious but interesting
fact that we can dispose of the assumption of common priors in Theorems
B, B*, and C*. First note that one can define the belief operators BY by
using a different prior for each agent i. Then one can use the results of
Section 3 to define common p-belief. Finally, instead of requiring that
with high probability the games be common p-belief, we can require that
each of the players, using his own priors, assigns a high probability to the
cvent that the games are common p-belief.
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To illustrate the results of this section we adopt (with minor changes) an
example of Rubinstein (1987).

ExaMpLE 2. Nature chooses in equal probabilities one of two two-
person games §' and % with the same strategies sets, Player 1 is informed
which game is to be played. If the game chosen is %* he sends a message
to player 2 telling him that “§° is to be played. They then send messages
back and forth acknowledging, each in his turn, the previously received
message. Each message has a probability = < 0.5 of being lost, in which
case the whole process stops, and the players knowing the number of
messages they sent choose’ their strategies. Note that the process stops
with probability 1 after a finite number of steps and that the whole process
is not part of the strategic decisions of the players, but is given to them.
We now analyze the game [, just described with

[ (1,0 _[©,0 ® -2
‘ﬂ"[m,m ©,0) and ‘5’—[1—2,{:-} (a,n

The set of states is £t = {0, 1, 2, . . .}, where each k in {} represents the
event “k messages had been sent until the process stopped.’” Therefore,
p(0) = 0.5 and, for k = 1, p(k) = 0.57(1 — 7)*~'. Also, §' is played iff k =
0. That is, the partition to games is G = {G', G*}, where G' = {0} and G*
={1,2,3,.. }ie,J0) =1, and, for k = 1, J(k) = 2).

When the process stops neither of the players knows whether it was his
message that got lost or his partner’s acknowledgment. Therefore the
information structures are

I, = {o}, {1,2}, 3,4}, . . .}
and
I, = {0, 1}, {2, 3}, 4, 5}, . . .}
Let p, = 1/(1 + 7). It is easily verified that
BY(G") N BY(G") = {0}

and that
BMGHNBYGH=1{2,3,.. .}

Therefore the game played is p.-believed by the players at each k # 1. Let
s' = (R1, C1) and s? = (R2, C2), where Ri and Cj stand for row i and
column j, respectively. Obviously s' and s? are equilibrium points in the
games 4! and 42, respectively. As both p,— 1and p({1}) = 0.5 — 0 when
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T 0, Theorem C* ensures (for any £ > 0 and sufficiently small 7) the
existence of an ex ante g-equilibrium point o with

pHkE Do k) =50 > 1 — . [feed]

Since p({0}) = 0.5, (22) implies that o({0}) = 5' and tha
) . — ta(k) = s fork
ﬂhgdilaz,:i,,,.}.withp{n‘}}u.s——s, pmirk
» such an equilibrium is obtained for = < g if both
: ) players choo
s/ whenever they p-believe G/, That is, o(0) = o3(0) = 1;';g([:I = ;IE
(1) = 5%, and or(k) = (5%, sH) forall k = 2. ;
However, for £ < § the above selection of strategi i
weve : _ gies o is not an ex post
e-equilibrium point, To verify this consider the information set {1, ]ZF; of
player 1. If o was an ex post e-equilibrium point, then

H3(R2, C1) ﬁ + Hi(R2, C2)

1—=
2=-7

> Hi(R1, C2) 1,'Tr + H}(R1, C2)

1—-7
— - B

2

Therefore (1 - T2 —7)<e andas 7 < 0.5 wegete >4
Moreover, it can be shuwn {using similar arguments) that if £ < +, then
for every ex post e-equilibrium o, the players will (at any state k) choose

row 2 and column 2, respectively, with a probabili .
if for all k = 0 ¥ probability of at most §. That is,

a(k) = ((p}, P, (g1, g,

then for all k = 0, p4 = } and g% = 1. So, by Theorem B*, there exists pp <
land ay < 1 sqch that no matter how small 7 is, for p = py, the amount of
common p-belief at the game I', is at most ap. Indeed, for p > }it is easily
verified that EF(G?) = 8 and EF(G") C {0}, and therefore

pdk € £): For some j, G/ is common p-belief at &} = 0.5.

However, if player 2 is not su ituati
r, 3 pposed to acknowledge, then the situation is
totally different. In this case {t = {0, INR, IR}, where IR stands for

¢ 'Player | sends a message and it is received by player 2,”" and INR stands

the case that the message has not been received. Hence, p(0) = 0.5,

BNR) = 0.57, u(IR) = 0.5(1 — 7), and the information structures are II,
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— {0}, {INR, 1R} and TI, = {{0, INR}, {IR}}. It is easily checked that
EM(G") = {0} and that EP(G?) = {IR}, and hence

ik € (1: For some j, G/ is common p-beliefatk} =1 — 0.57— 1

when 7 — 0.

Thus, by Theorem B*, for any & > 0, for sufficiently small 7 we can find
an ex post e-equilibrium point ¢ in which the players play according to s'
and s? in a probability of at least 1 — &. Indeed, such a strategy profile o is
given by o(0) = 5' and o(IR) = 5%, which uniquely defines a strategy

profile.

6. CoNCLUSION

We proposed the notion of common p-belief as an approximation to
common knowledge and showed that theories that use common knowl-
edge can be approximated when common p-belief replaces common
knowledge. The concept of common p-belief can be considered a formal
definition of almost common knowledge. A priori there are two possible
ways to define it. We have chosen to weaken the ““knowledge™ part of
common knowledge, requiring that it be only a belief that is shared by the
agents. Thus we defined almost common knowledge to be common al-
most-knowledge, leaving intact the “‘common,” that is, the way agents
share what they share. We could instead weaken the “‘common”’ part of
common knowledge, defining almost common knowledge to be almost-
common knowledge. Viewing common knowledge from the iterative
viewpoint suggests that this can be done by truncating the hicrarchy of
knowledge. The coordinating attack game shows that as far as equilibrium
theory is concerned this approach fails. The reason seems to be that a
complete analysis cannot be carried out on the basis of truncated hierar-
chies. Two situations in which truncation takes place after the same num-
ber of iterations may differ dramatically because different beliefs are held
beyond the truncation point. One is necessarily led to consider an infinite
hierarchy of beliefs which results in the approach we adopted.
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