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Abstract

A solution to bargaining problems is ordinal when it is covariant with respect to order-preserving
transformations of utility. Shapley has constructed an ordinal, symmetric, efficient solution to three-
player problems. Here, we extend Shapley’s solution in two directions. First, we extend it to more
than three players. Second, we show that this extension lends itself to the construction of a contin-
uum of ordinal, symmetric, efficient solutions. The construction makes use of ordinal path-valued
solutions that were suggested and studied by O'Neil et al. [Games Econ. Behav. 48 (2004) 139-153].
0 2004 Elsevier Inc. All rights reserved.
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1. Introduction
1.1. Ordinal solutions

A bargaining problem is described here, as in Nash’s (1950) bargaining theory, by the
set of all utility vectors that arise from possible agreements. A solution is a function that
selects for each problem a vector of utilities.
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The utility functions in Nash'’s theory are assumed to be derived from the von Neumann—
Morgenstern representation of preferencdssTepresentation is determined up to linear
positive transformations of the utility functions. Therefore, any two problems obtained
from each other by such transformations skidug considered equivalent. Thus, a solution
in this theory must be covariant with respect to such transformation. Namely, it should
assign to any two equivalent problems the same solution, up to the required transforma-
tion. Indeed, one of the axioms which characterizes Nash’s solution spells explicitly this
requirement.

Suppose, that contrary to Nash’s theony,assumption is madendhe utility functions
other than that they represent preferences the more preferred outcome has a higher
utility). In this case the presentation of preferences is determined up to order-preserving
(i.e. monotonically increasing) transformatis of ility functions. Hence, a solution in
this bargaining theory should be covariant with respect to these transformations. We say
that such a solution isrdinal.

1.2. Shapley’s solution for three players

Shapley (1969) has shown that there is no ordinal, symmetric, and efficient solution
for bargaining problems of two players. However, he has constructed such a solution for
three-player problems (see Shubik, 1982).

The construction is based on the following observation. Suppose tadt, a2, a3) is
the disagreement point of a bargiaig problem with a Pareto surfage Then there exists
a unique poink = (x1, X2, X3), such that the points,

(a1, X2, x3), (¥1,a2,%3), and (X1, X2,a3),

are all inS. In the terminology of Kalai and Smorodinsky (1975) the pains$ the ideal
point for x.2 Reversing the order we say that the painis the ground point for a. (See
Fig. 1.)

The relation between a point and its unique ground point is ordinal. Thus, assigning
to each problem the ground point of its disagreetnpoint is an ordinal solution. This
solution is also symmetric, but it is not on the Pareto surface of the problem.

To fix this latter deficiency Shapley useddtsolution iteratively, applying it in each
step to the problem with the same Pareto surfacend a disagreement point which is the
solution obtained in the previous step. The sequence of points generated this way can be
shown to converge to a point on the Paratdace, which is the desired solution.

The construction of Shapley’s solution hinges on both the existence and the uniqueness
of the ground poink for any givena. For more than three players the construction cannot
be carried out since the uniqueness of a ground point is not guaranteed, as was shown
by Sprumont (2000). However, Safra and Samet (2004) proved for any number of players
the existence of at least one ground point for each poirithey used theetof ground

1 Recently, Kibris (2003) has proposed an axioméitinaof the three-player Shapley solution.

2 Kalai and Smorodinsky (1975) defined the ideal point féeasible disagreement point. However, the feasi-
bility assumption is not used in their definition, and therefore it can be applied also to infeasible pointilike
this example.
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Fig. 1. The unigue ground point for a three-player problem.

points for a given disagreement point to generate an auxiliary ordinal, symmetric solution.
This solution was used iteratively, as in the three-player case, to define a solution with
the desired properties. For the three-player case this construction coincides with Shapley’s
solution, since the auxiliary solution imis case yields the unique ground point of the
disagreement point.

Here, we present another way to extend Shapley’s solution to more than three players.
This extension, which we call the basic extension, has the advantage of serving in turn
as the basis for a further extension to a continuum of ordinal, symmetric, and efficient
solutions® Like Shapley’s solution and its extension in Safra and Samet (2004), all the
solutions proposed here are based on thetooction of an auxiliary solution which is
applied iteratively. We first describe in broad strokes and without proofs the basic extension
of Shapley’s solution to more than three players and then turn to the construction of a whole
family of solutions.

Recently, Calvo and Peters (2002) presdraeother ordinal solution, suggested by
Shapley, which does not require an iterative process like all the solutions studied here.

1.3. The basic extension of Shapley’s solution

Consider a bargaining problem for the set of play€rs: {1, 2, 3} with a Pareto surface
S and disagreement poiat This problem induces a family of bargaining problems for
players 1 and 2 as follows.

We consider the plane where 3’s utility is fixed at her disagreement uigitfFor any
given utility level x3 of 3 we consider the projection on the said plane, of the points in
S where 3's utility isx3. The projection of these points forms a Pareto line of bargaining
problem for 1 and 2, as depicted in Fig. 2. Lgt(x3) be the ideal point of: for this

3 The extension here is also simpler than that of SafthSamet (2004) in that it is more constructive and does
not require the use of a fixed point argument.
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Fig. 2. Constructingi3.

The set of players iV = {1, 2, 3}. The plane where 3's utility is fixed ai3 is depicted. For a fixeds, the
projection of all the points ir§ whose third coordinate isg form a Pareto line of a bargaining problem of 1
and 2. Three such Pareto lines are drawn, for the valgess andag. The latter line is the intersection Sfwith
the plane. The ideal point for the problem definedryis p3(x3). The pathp3 intersectsS at A3, for %3 . The
point A3 is the projection of the ground poifiton the plane, as depicted in Fig. 1.

bargaining problem of 1 and 2. When the utility lewglvaries, we obtain a patp® in the
plane, parameterized by. The path intersects the Pareto surfacat a single pointA®,
obtained for 3's utility levelts. The pointsA2 and A® are similarly defined. It is easy to
see that these three points are the projectiensry, x3), (X1, az, x3), and(x1, X2, az), of
the ground poink of a.

The same construction can be carried out for bargaining problems with larger number
of players. For eachwe consider a family of bargaining problems for the players'i;.
This family is parameterized bi/s utility x;, and it is embedded in the hyperplane at
whichi’s utility is fixed at her disagreement utility;. The Pareto surface of the problem
associated with; is the projection on the said hyperplane of all the point§ it which
i’s utility is x;. The ideal point of the bargaining problem associated wijtis denoted
by p’(x;). The pathp’ thus defined intersect$ at one point denoted’. This construc-
tion is symmetric in all the players itV \ i and being defined by ideal points afidt is
ordinal.

For problems with more than three players, the paititsre not necessarily the projec-
tion of a ground point for. We use them to define a poiét, whered; is the minimum of
i’s payoffs at the pointst/ for j # i. When the disagreement poinis on the other side
of S, maximum, rather than minimum, is used in the definitiomof

In the three-player case the poihtis obviously the ground point for a.

The construction o is symmetric in the players. Being constructed from the ordinally
constructed pointg’, using the order-preserving functions min and mas, construction
is also ordinal. Using iteratively the auxiliary solution described by the constructign of
as in Shapley’s solution, yields a solution with the required properties.

1.4. A family of solutions

The pointp’ (x;), used in the construction of the basic solution, is the ideal point of some
bargaining problem. We generalize the solution in the previous subsection by extending the
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Fig. 3. Defining a pattp3 with respect to guidelines.

The set of players i/ = {1, 2, 3}. The guidelinep3! and p32 are ordinal paths. The paj® consists of ideal
points for the projected bargaining problems with respect to these guidelines.

notion of ideal point. Compare Fig. 3 and Fig. 2. Figure 3 includes two extra pathand
p32, which we call the guidelines for player 3. We interpret the ppit(x3), which is on
the Pareto line of the bargang problem associated witts, as the best point player 1 can
expect in this problem. The poip2(x3) is similarly interpreted. Thus the poip(x3)
provides both players 1 and 2 their best payoffs, and it is the ideal point with respect to the
given guidelines. The guidelines in the basic solution described in the previous subsection
are obviously the two axes that pass through

Given the pathg’, the rest of the construction is the same as in the basic solution.
Obviously, in order for this construction to be ordinal, the guideline themselves should be
ordinal. Here we use a result of O’'Neill et al. (2004) who studied bargaining situations in
which players face a family of increasing bairgag problems ordexd by time, rather than
a single bargaining problem. A solution for such a problem is a path, parameterized by
time, which specifies an agreement for eacthef problems in the given family. O’Neill
et al. (2004) characterized axiomatically such a solution which turns out to be covariant
with respect to order-preserving transformations of both utility and time for any number of
players.

We employ here ordinal path-valued solution for the family of bargaining problems for
N \ i which are parameterized hys utility level, rather than time. A weighted version
of the path-valued ordinal solution of O’Neill et al. (2004) provides us with a plethora of
ordinal paths that can be used as guidelines.

1.5. The paper plan

In Section 2 we introduce Pareto surfaces, oqgleserving transformations, and solu-
tions to bargaining problems. We discuss path-valued solutions in Section 3. The construc-
tion of the family of ordinal solutions is carried out in Section 4. In Section 5 we focus on
one solution from this family, the basic extension, which coincides with Shapley’s solution
to three-player problems. The constructidnother families of solutions is proposed in
Section 6. The proofs are in Section 7.
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2. Preliminaries
2.1. Pareto surfaces

Consider a finite seV of n players, withn > 2. A point in RV describes the utility
levels of the players. For = (x;);ey andy = (y;)ieny in RY we writex > y whenx; >
for eachi € N, x > y whenx = y andx # y, andx > y if x; > y; for eachi € N. The
inequalities<, < and < are similarly defined. For each proper subgebf N, we denote
by x_u a generic pointilR¥\M _ Forx = (x;);eny in RV, the vector_, is the projection
of x on RM\M j.e., the vectotx;);en\m . WhenM is a singleton we omit the curly brackets
and writex_; andN \ i.

Definition 1. A subsetS c R is a Pareto surface(a surface for short) when for all
x,y €S, x> yimpliesx =y, and for eachi, the projection ofs on RN\ is RN\,

The following properties of Pareto surfaces are proved in Safra and Samet (2094). If
is a Pareto surface, then for eachndx € R there is a unique number calléd Pareto
payoffatx, and denoted by (x) such thatx_;, 7 (x)) € S. The functionz : RN — R!
thus defined is continuous, it is strictly decreasing jfior j # i, and constant witk;. We
omit the superscrip§ from nis, when the surfacd is clear from the context. Using the
terminology of Kalai and Smorodinsky (1975), we callx) = (7; (x));cn theideal point
of x. We say thak is aground pointfor 7 (x).

The relation between the pointsandz (x) defines the position of with respect taS.

If x <m(x) we say thatr is belowsS and denote it by < S or § > x; if x > 7(x) we say
thatx is aboveS and denote it byt > S or § < x; if x =7 (x), thenx € S. These three
possibilities are exhaustive. We write= S when eithe > S ora € S. The relation= is
similarly defined.

We assume that the Pareto surfaces are smooth in the following sense.

Definition 2. A surfaceS is smoothf the following hold for each:

(1) the functionr; is continuously differentiable;
(2) foreachj #i, dm;/9x; <O;
(3) Vr; is Lipschitz on any bounded subset®Y .

2.2. Bargaining problems and solutions

A bargaining problenfaproblem for short) for a set of players is a pair(a, S), where
S is a smooth Pareto surface RY anda € R". The pointa is called thedisagreement
point The set of all problems is denoted By A solutionis a function¥ : B — RV .

We are interested in solutions that depend on representation of preferences by utility
functions, but not on any specific choice of these functions. Such a solution should be
covariant with order-preserving transfioations of utility functons, which we introduce
next.
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An order-preserving transformatiois a vector of functiong. = (u;);eny such that for
eachi, u; is a function fromR onto R, with strictly positive derivative. The vectqr
defines a map frorR”Y onto RY by u(x) = (1; (x;))ien-

An order-preserving transformatignpreserves the properties of Pareto surfaces as we
state now.

Observation 1 (Safra and Samet, 2004).5fis a Pareto surface andan order-preserving
transformation, then the sgt(S) = {i(x) | x € S} is also a Pareto surface;< S (a > S)
iff p(a) < n(S) (n(a) > n($)); and

7" (w(@) = u(w s (0). (1)

Definition 3. A solution to bargaining problems @&dinal if for each problem(a, S) and
order-preserving transformation

¥ (@), u(8)=pn(¥(a,s).

Here we construct a family of ordinal solutions which are also symmetric and efficient.
A solution¥ is symmetriovhen it is covariant with respect to any permutation of players.
It is efficientwhen it satisfiesV (a, S) € S for each problenta, S). Finally, the solution is
individually rationalif for each problenia, S) such that: is belowS oronS, ¥ (a, S) = a.

3. Path-valued solutions
3.1. Gradual bargaining

We associate with each bargaining problems) and playet a family of bargaining
problems for the players iv\i, parameterized by’'s utility. Following O’Neill et al.
(2004) we call such a family gradual bargaining problem.

Consider the hyperpland = {x | x; = a;} wherei’s utility is fixed atq;. Sincei’s
utility is fixed in H, it can be viewed as representipgssible agreements between the
players other than. Each valuey; of i’s utility defines a Pareto surfack, in H of all
the pointsy in H such thatr® (x) = ¥;.% In other words S, is the projection orH of the
setS N {x | x; = x;}. The gradual bargaining problem consists of all bargaining problems
(a,Sz)in H.

A pathfor this gradual bargaining problem is a functipnR? — H, which assigns a
point in H to each value; of i’s utility. A path-valued solutiossigns to each problem
(a, S) a pathp(a, S).° For our purpose we neeatdinal path-valued solutions which we
define next.

4 We are a little bit sloppy here, because Pareto surfaces were defined in full dimensional spaces. The precise
statement is that when we omit the fixedoordinate these sets are Pareto surfacaiv .

5 Here, unlike O'Neill et al. (2004), theerm path-valued solution is used to describe a solution for bargaining
problems rather than gradual bargaining problems.
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Definition 4. A path-valued solutiofia, S) — p(a, S) is ordinal if for each smooth prob-
lem (a, S), order-preserving transformatien andx;,

p(r@), u(9))(ni(x)) = u(pa, $H(x)).

In the next subsection we describe a family of ordinal path-valued solutions which are
defined by certain differential equations. These solutions are weighted versions of the so-
lution characterized axiomatically in O’Neill et al. (2004).

3.2. A family of ordinal path-valued solutions

In Fig. 4 we illustrate the meaning of the differential equation that defines the ordinal
path-valued solutions.

Consider a bargaining probleqa, S) for N = {1, 2, 3}. We depict in this figure the
plane H in RY, where player 3 is bound toer disagreement utilityz. The curveSs,
consists of all the points in H wherenz(x) = x3. Thus, it is the projection o/ of the
points inS where player 3's utility is fixed at levels.

Suppose now, that a pointon this curve is on the path assigned by the solution to
this problem. The path is parameterized by 3's utility. When we increase it, the resulting
curve gets closer to the poiat The arrow in this figure describes the direction of the path
atx. The slope of this arrow is the ratio of the marginal losses of 1 and 2 as a result of the
increase in 3’s utility. This ratio is required to be the rate of exchange of 1 and 2’s utilities
at the pointc on the given curve. This rate is the negative of the slope of the tangent to the
curve atx, namely,

oms oS
3 3
e / T (@),

x2

Szz = {z € H | m3(z) = 23}

Z1

Fig. 4. The direction of the path at point

The planeH, wherexz = ag, is depicted. The Pareto surfafg,, corresponding to the utilit¥z of player 3, is
drawn. The arrow indicates the direction of the path at a poon it. The ratio of the marginal losses of players 1
and 2 in this direction is the rate of utility exchangevalong the curvesy, . Thus, the slope of the direction is
the negative of the slope of the tangentSto at.x.
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The generalization to more than three m@eyis straightforward. The direction of the
path atx is such that the ratio of marginal lossesamfytwo players is defined by the rate
of their utility exchange.

The differential equation below defines a weighted version of this path. It assumes a
weighted rate of utility exchange, where each playés assigned a weight;, and the
ratio of players; andk’s marginal losses at is required to be

il 7
oL X)/ Wk o, x)/wj .
We now define formally this path-valued solution. Fix play@nd a vector of weights

w-; € RNV such that)",;_; w; = 1. For each smooth problefa, S) consider the path
p = p(a, ) defined by the following differetial equations and initial condition:

S

, oz, o .
Pj(xz')=wj[ (P(xi))i| . JENN\L,

ax]'

pi(xi) =0, (2
p(nis(a)) =a.

By condition 2 in Definition 2,lie right-hand side of (2) is well defined. By conditions 1
and 3, it is continuous and satisfies the ldpitz condition on any bounded subset. There-
fore there exists a unique solution to these equations (see Hartman, 1982). Note that the
initial condition in the last line of the equation says that the path passes at the phiso,
the equatiorp; = 0 implies thatp; = 4;, that is,i’s utility is fixed atq; at all the points on
this path, and hence the path is in the hyperplan&inally,

Proposition 1. The path-valued solutiot, S) — p(a, S) defined by2) is ordinal.
3.3. Guidelines

In constructing the ordinal path-valued solutions above we singled out a pleyerse
utility remains fixed at her disagreement utility in all the points on the path. This is ob-
viously an obstacle to symmetry of all the players. The symmetry of the playé¥s\ih
depends on the weight vectar_;. If all the components of this vector are the same, then
all the players other thanare treated symmetrically. Weag that a solution that treats
equallyn — 1 of the players imlmost symmetridVe show now how we can construct a
continuum of almost symmetric ordinal path-valued solutions.

Fix a in [0, 1] and a playerj # i. Consider the weight vectar_; for whichw; = «,
and w,, = (1 — «)/(n — 2) for all playersm € N \ {i, j}. We denote byp"/(a, S)
the path defined by (2) for this weight vector and problemsS). We call the solution
(a,8) — p“I(a, S) theij-guideline In this solution the players iw \ {i, j} are treated
symmetrically.
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To achieve almost symmetry we use thieguidelines forj € N \ i to construct a new
ordinal path-valued solutiotu, S) — p'(a, S). For a problem(a, S) the pathp'(a, S) is
defined such that for each player

' max;; Pi’j (x;) ifx; <mi(a),
pr(xi) = | ak N if xi =i (a), 3)
minj?g,' p;(’](x,') if x; > m;(a).
By construction, all players other tharare treated symmetrically ip’, as required.
Note that since each of the guidelines istinso is alsop'. That is, p; (x;) = a; for all x;.
The construction op? for three players is depicted in Fig. 3.

Finally, being defined from ordinal path-valued solutions by the order preserving func-
tions min and max, the construction pf preserves ordinality.

Proposition 2. The path-valued solutio@z, S) — p'(a, ) is ordinal.

4. From path-valued solutionsto solutions

Using then almost symmetric path-valued solutiop’s which were defined in the pre-
vious section for in [0, 1], we construct now an ordinal, efficient, and symmetric solution
¥ in three steps.

(1) For each we use the ordinal path-valued solutiphto define an ordinal solution’.

(2) Using (A));en we define a symmetric ordinal soluti@h,

(3) Applying @ repeatedly, using in each stage the agreement of the previous stage as a
disagreement point, we construct a converging sequence of points. The solution that
assigns to each problem the limit point consted for the problem is the required
solutiony®,

Step 1.We first observe that the paf¥i (a, S) intersects the Pareto surfaseat a single
point.

Proposition 3. For each problema, S) there exists a unique efficient point on the path
p'(a, S). Thatis, there exists a uniqug, such thatp’ (a, S)(x;) € S.

For each define a solutiom’ by letting A’ (a, S) be the unique efficient point i (a, S).
Observation 2. The solutionA’ is ordinal.

Indeed, supposd’ (a, ) = p'(a, S)(¥;) € S. Then
1(Aa, 9) = pn(p' (@ $)(E)) € u(S).

By the ordinality ofp’, u(Ai(a, S)) = p' (u(a), u(S)) (i (%)) € n(S). By the uniqueness
of the efficient point orp’ (i (a), i1 (S)), this point must bet’ (iu(a), 11(S)).
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Fig. 5. Constructingp from the pointsA‘.

Figure 3 illustrates part of the paths1, p32, andp®, and the solutiom‘(a, S), for a
problem(a, S) with N = {1, 2, 3}.

We now haven ordinal solutionsA?. Each is almost symmetric. Using them we con-
struct a symmetric ordinal solution.

Step 2Define a solution® as follows. For each player,

minz; A%(a,S) ifa<S,
Dj(a,S) =1 a; ' ifaes,
max - A’j (@, 8) ifa=S.

Proposition 4. @ is ordinal and symmetric.
Figure 5 illustrates the construction éf(a, S) from A’(a, S), for a three-player bar-
gaining problem withz < S.

The solution® may fail the efficiency axiom, which we correct in the next step.

Step 3 For each problenta, S) define a sequence of poimzs")k>0, by a® = a, and for
k>0,a"1 =@k, ).

Proposition 5. For each problenta, ), the sequencez")k>0 converges to a point if.
Theorem 1. The solution¥?(a, S) = lim a* is ordinal, efficient, symmetric, and individu-
ally rational.
5. Thebasic extension of Shapley’s solution: v

We now show that the solutick? is the basic extension of Shapley’s solution, described

in Section 1.3.
Fora =1, p"/ is the solution of the differenti@quations with the initial condition
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anS -1
P ) = [M’j (mn)} , @
pr(x) =0, keN\}j, ()
p(nis(a)) =a.

By (5) and the initial condition, all the coqrdinates;df-/ other than; are fixed at the dis-
agreement point. That ig// (x;) = (a—;, plj’j(x,')) for eachx;. Hence, Eq. (4) is reduced
to

s

/ ani -t
Pi(xi) = [Wj(ajvl’j(xi))} . (6)

Proposition 6. The solution of(6) is
pi(x) =mjla—i, x;). (7)

Thus, wherw = 1, p"/ (x;) = (a—;, wj(a—;, x;)). Thatis, at the utility level;, player
receives her Pareto payoff at the poiat_;, x;), while all other players are bound to
their disagreement point. The image of the path coincides with thej-axis that passes
througha.

To find p', as defined in (3), consider first the case< 7; (a). In this casea_;, x;) <
(a—i,mi(a)) € S. Hence,m;(a—;, x;) > nj(a—;, mi(a)) = a;. Thus, the largest value of
py’ (xi) overall j # i is mi(a—;, x;). Analogously, when; > 7;(a) the smallest value of
py’ (xi) overallj i ismi(a—;, x;). Thus, by (3),

Observation 3. Fora = 1, p’ (x;) = (a;, 75, (a—i, x;)).

The utility vectorpii(xi) is the ideal point of the bargaining problem for the players
N \ i wheni’s payoff is bound tar;. Equivalently, the poinp’ (x;) can be viewed as the
ideal point of the projection of this problem on the hyperplane at whilpayoff isa;.

This is the extension of Shapley’s solution described in the introduction.

Obviously, the definition of’ for the casexr = 1 does not require the smoothness of
the problem in Definition 2. Also, the uniquesseof the efficient point on this path (Propo-
sition 3), and its continuity in the disagreement point follow from the continuity properties
of the functionsr;, which hold for all Pareto suates, even when they are not smooth.
Finally, the three last steps in the construction do not use the smoothness either. Thus,
the solutiong! can be defined for the set of bargaining problems without the smoothness
requirement.

5.1. Three-player problems

For three-player problems? is the Shapley’s solution. The following propertiesiof
are peculiar to the three-player case.
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Fig. 6. Constructing the path® and the poinf for three players.

The set of players i%/ = {1, 2, 3}. The utility levelsx3z andxg are marked on player 3's axis. The Pareto payoffs
71(a—3, x3) andmo(a_s, x3) are marked on the corresponding axes of these players. The resulting poisg}
is depicted. The poinﬁa(ig) isin S. The pointx satisfiest (x) = a.

Proposition 7. (1) For each three-player problerta, S) there exists a unique poiftsuch
that for each, (x_;,a;) € S.

(2) Moreover,x = ®(a, S), and for each, (Xx_;, a;) = A'(a, S), whereA’ and @ are
the solutions constructed in stepsind 2 for o« = 1.

(3) The sequencez")k>0 alternates between the two sidesSof

Figure 6 describes the constructionwof @ (a, S) for a three-player probler, S), using
Observation 3. It is a more detailed version of the construction in Fig. 2.

6. More solutions

The family of solutionsl“ is a long way from exhausting the set of ordinal, efficient,
symmetric, and individually rational solutions. We delineate here more such solutions.

Extending the familyw®). Consider a sequence = (ak)k>0 of numbers in[0, 1]. We
define for each sequencea solution¥4 as follows. For a given probler, S), define

a sequenceéa);>o in RN by a® = a and fork > 0, ak+1 = v (ak, ). The sequence
(a*) converges and the solutioh? defined byw4(a, S) = lima* is ordinal, efficient,
symmetric, and individually rational. The solutigrt’ is a special case of this construction
for the constant sequenaé = a.

Another way to define the solutiont$. This construction is also based on the path-valued
solutionsp”’/ which are defined for a given. Given a problenta, S), there exists a unique
valuex®/ such thatp’/ (a, §)(x"/) is efficient. Define for each,
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' minjz py’ 8y ifa<S,
Ay(a,S) =1 a, N if aes,
maxj py’ (xJ) ifa>S.

Unlike the construction in the previous sections, the solutiah$iere need not be effi-
cient. Nevertheless, they fail the test of efficiency in the “right” direction, and Lemma 2
in Section 7, which guarantees the convergence of the sequehgstill holds as long as
o <1.Whena =1, A (a, §) = a and(a¥) is the constant point.

The two constructions oft’ coincide in the case = 1/(n — 1). In this case all the
pathsp®/ (a, S) for all j # i coincide and therefore they are the same'ds, 5). Also all
the pointsk®/ coincide withx;, the unique efficient point op’ (a, S).

7. Proofs

We first make the observation thatrifsolves the differential equation (2), then for each
utility level x;, the pointp(x;) is on the Pareto surface i defined bynis =X;.

Observation 4. For eachy;, 7; (p(x;)) = x;, or equivalently(p_; (x;), x;) € S.
To see this, denotg(x;) = ; (p(x;)). Then

a7 ,
£ = 3 S (plan) pj o).
J

J
By (2) this sum isz#i w; = 1. By initial condition,

f(mi@) =mi(p(mi(@)) =mi(a).
ThUS,f(xi) =X;.

Proof of Proposition 1. We need to show that the pajidefined byg (u; (x;)) = u(p(x;))
solves (2) for the probleru(a), ©(S)). Differentiatingg ; with respect tor; we have

q’; (i o)) i i) = (P (i) Py (x0). (8)
Differentiating both sides of (1) with respectt¢ we obtain
omf®

8lx,~ (n)); (xj) = i (1))

il
8xj X).

Plugging p(x;) for x, and remembering thaztis(p(x,-)) = x; by Observation 2, and
wn(p(x;i)) = q(ui(x;)) by definition, we get
8”1'11(& / ’ anis
Tj(‘I(Mi(xi)))lL (pj) = u,»(xi)gj(p(xi))- (9)

S
Plugging the expression f%%(p(xi)) from (9) into the right-hand side of (2), and plug-
ging the expression fqv;. (x;) from (8) into the left-hand side of (2), we get
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n(S)

-1
d i (Xi . 10
oy, (i )))} (10)
It remains to check thenitial condition. Indeed,

q(7!"® (1(@)) = q (i (75 @) = u(p(rf @) = ().
Thusg is the solution of the differential equations fQr(a), w(S)). O

d
q’; (i (x)) =wj[ il

Proof of Proposition 2. We need to show that for eadh p};(u(a),u(S))(ui(xi)) =
uk(p;'((a, S)(x;)). This is obvious fork =i sincepf is fixed ati’s disagreement payoff.
Suppos& # i. Assume

i) <7 (u(@)). (11)

In this casepj (iu(a), 1(S)(wi(xi) = maxizi py’ (14(a), w($))(wi(x;). By the ordi-
nality of p"/ and since the maximum function commutes wijth the right-hand side
ISk (Maxj; pi’j(a, S)(x;)). Also the condition (11) is equivalent, by Observation 1,
to x; < 77 (a) in which caseux (Max;4 pp” (a, $)(x;)) = ue(pla, $)(x;)). The proof for
the other two cases in the definition pf are similar. O

Proof of Proposition 3. For any pathp that solves (2),

1 oS -1
Prxr) = ai + wy f [ i (p(t))} dr
0Xk
wi(a)
for all k £ i. The integrand is strictly negative and therefore for arsuch thatw; > 0,
pr 1S strictly decreasing. Far such thatwk =0, p is fixed atay. Thus, for fixedi andk
such thak # i, each of the functionp};-’ is either strictly decreasing or constant, and they
all have the same valuey, atw; (a). Moreover, for at least one of this, the coordinaté
has a positive weight (i > 0 then it holds forj =k, if @« = 0 then it holds for any
j # k). Therefore, fory; < m;(a), max;j; p;{’j is strictly decreasing and is aboxg, and
for x; > m; (a), minj; p;{’j is strictly decreasing and is belaw. Thus the two “branches”
of the functionp;'( form a strictly decreasing function such that for each i,

i) >ar if xi <mi(a),
pix) =ar if xi =mi(a), (12)
p};(xi) <ayp if x;i >mi(a).
Therefore, there can be at most one poin§ @n the patty’. To see that there exists such
a point consider first the cages S. Thenr;(a) = a;, and by (12)p' (a) =a.
~Assume thatz < S. Consider the patlp’ in the intervall = [a;, 7i(a)]. By (12),
p'(mi(a)) =a < S. At the other edge of,
p'(a) 2 p" (i) (13)
for any j # i, by the definition ofp’. But p*/ (a;) = (pi":: (ai), a;), and by Observation 2
this point is onS. Thus, by (13) and Observation 3 in Safra and Samet (2004);) > S.
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Consider the functio® (x;) = pi,.(x,-) —7; (p' (x)). ThenD(x;(a)) < 0, andD(a;) > 0.
Since D is continuous there exists in the interval[a;, 7; (a@)) such thatD(x;) = 0. The
vanishing ofD implies p' (x;) € S. We record the following inequality which we use later:

piG) > pi(mi(@) = ax (14)

for eachk #1i. _
The proof of the existence of an efficient point on the patHor the caser > S is
analogous. In this case the inequality in (14) should be reversed.

Proof of Proposition 4. The symmetry follows from the symmetry pf, and hence oft’,
with respect to permutations of \ i, and the symmetry of the vecton?);c y with respect
to all permutations. The ordinality follows that af , the covariance of the minimum and
maximum functions with order-preserving transformations.

For the proof of Proposition 5 we need the following lemmas.
Lemma 1. For any Pareto surface, the solution® (a, S) is continuous as a function af

Proof. We observe first that solutions to the differential equation (2) are continuous in
the initial conditiona (see Hartman, 1982). Thus, for afyif p(a, S) is the solution of

(2) then for any fixedy;, p(a, S)(x;) is continuous in. It easily follows that for each,

pi(a, S)(x;) is also continuous in.

We show thatA’ (a, §) is continuous imz, which implies this lemma. Laei” — a and
suppose thatt’ (a, S) = p'(a, $)(x) and for each, A’ (a", ) = p'(a”, S)(x}). Assume
that p’ (a”, $)(x/) — y. Theny is in S. Assume also that for eaah x; > x;. Since for
eachv p'(a”, §) is decreasing, it follows that' (a”, $)(x}) < p'(a, S)(x;). The left-hand
side of this inequality converges o while the right-hand side converges, as noted above,
to p'(a, S)(x;). Thus,y < p'(a, S)(x;). Since both are in the Pareto surfat;ehey must
coincide. O

Lemma2. If a < Sthena < ®(a, S) < n(a) andn (P (a, S)) = a.
If a = Sthena > ®(a, S) > w(a) andn (P (a, S)) <a.

Proof. Suppose:r < S. Then, by (14) for all # k&,
Al(a, S) > ay. (15)

Thus, for eaclk, @i (a, S) > ax.

Sincen > 3, we can choosé different fromi and j. As n; is decreasing iny,
we conclude from (15) that;(a) > 7;(A(a, S)). Since A (a, S) € S, 7;(Al(a, S)) =
A;(a, S) > @;(a, S), which proves that second inequality in the lemma.

To prove the last inequality, we note that by definitidn,; (a, S) < Ai_l. (a,S). Asm;
is independent af;, 7; (® (a, S)) = 7;(Al(a, S)) = a;.

The proof fora > S is analogous. O
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Proof of Proposition 5. In the proof of Proposition 5 in Safra and Samet (2004) it is
shown that Lemma 2 implies the following claim.

Claim 1. The subsequence @a"()@o of all the points belov§ (aboves) is strictly increas-
ing (decreasinyand bounded, and therefore if it is infinite it converges to a pbi(t).

Thus, it remains to show that eachtodindc, when defined, are ifi, and if both are defined
then they coincide. Indeed, suppose that there are infinitely many eleméhfgl be-
low S. Then, taking the limits on both sides@f+1 = & (a*, §) we conclude by Lemma 1
thatb = @ (b, S). By Lemma 2, this can be the case only witea S. Similarly, when the
limit point ¢ is defined, therm = & (¢, S) and therefore € S.

If both subsequences are infinite, then there exist an infinite seq(&dﬁ)ﬁgl of points
below S such that all the points i(uk'“)fil are aboves. Taking the limits on both sides
of ab*l = @ (4%, S) we conclude that = & (b, S) and therefore, by what was shown
previouslyb=c. O

Proof of Theorem 1. The theorem follows from Propositions 4 and 5. The details are the
same as in the proof of Theorem 1 in Safra and Samet (2004).

Proof of Proposition 6. Differentiating both sides of (7) we get

o7
0x;

Thus we need to show that

pixi) = (a—i, xi).

om; ans
axj (a—i, xi)le (a—i,mj(a—i, xp)) =1 (16)

Note that by definition(a_y; j, xi, 7;(a—;, x;)) € S. Therefore, applyingr; to this ef-
ficient point results inm; (a—g; jy, xi, mj(a—;, x;)) = x;. As m; is independent ofx;,
mi(a—j, mwj(a—;, x;)) = x;. Differentiating both sides of this equation yields (16}

Proof of Proposition 7. To prove the first part of the proposition, supp@se, x2, x3),
(X1, a2, X3), (X1, X2, a3) € S. From the first two inclusions we infén = 72(a_3, Xx3) and
%1 = m1(a—3, ¥3).8 Thus, by Observation 31, ¥2, a3) = p3(x3). From the third inclu-
sion it follows thatp3(¥3) € S. Thus A%(a, S) = (¥1, X2, a3). Similar equalities hold for
players 1 and 2. Henceis uniquely determined.

The second part of the proposition follows from the definitiormpof

To prove the third part, assume first that< S. By Lemma 2,&(a, S) > a. Thus,
(x1, X2, x3) > (a1, Xx2,x3) € S. Hence by Observation 3 in Safra and Samet (2004),
®(a, S) = S. The proof for the case > S is similar. O

6 When the projection of, (x_;, a;), is in S, then for eachj # i, ¥j=m;(X_;,a;). The claim is true for any
number of players. Itis only in the case= 3 that this claim impliest; (x_;, a;) = 7 j(a—g, xi) for k ¢ {i, j}.
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